
Coloring Meshes of
Archaeological Datasets

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Michael Birsak
Matrikelnummer 0525386

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Wien, 10.05.2012
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at



Coloring Meshes of
Archaeological Datasets

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Michael Birsak
Registration Number 0525386

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Vienna, 10.05.2012
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at



Erklärung zur Verfassung der Arbeit

Michael Birsak
Wallensteinstraße 3/8
1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i



Abstract

Archaeological monuments are nowadays preserved for future generations by means
of digitization. To this end, laser scanners in conjunction with registered cameras are
used to gather both the geometric and the color information. The geometry is often
triangulated to allow a continuous mapping of the photos onto the geometry. The color
mapping for high-quality reconstructions of parts of the models is not without problems.
In practice, the photos overlap. Now, assuming that a particular triangle receives color
information from just one photo, there is a huge number of possibilities to map the
photos onto the triangles. This labeling problem is already covered in literature. There
are also approaches for the leveling of the remaining seams that arise because of the
different lighting situations during the exposure of the photos.

In this thesis, we improve common labeling approaches by the introduction of an
accurate geometry-based occlusion detection. An octree is used to quickly filter out
parts of the model that do not come into consideration for an occlusion anyway. The
occlusion detection prevents texturing of parts of the model with image material that
does not contain the expected region, but the colors of an occluder.

Further, a proposed approach for seam leveling on meshes is improved by the intro-
duction of a new term into the least squares problem that corresponds to the proposed
leveling approach. This new term penalizes big leveling function values and helps to
keep the leveled color values in the valid range. For better filtering results, we improve
the proposed calculation of a 1-pixel wide boundary around the leveled patches by the
introduction of outline normals for a user-defined scale of the patches.

For easier manual editing of remaining artifacts in the photos, we introduce an ap-
plication for the generation of alpha masks that indicate regions of the photos that are
used for texturing of the 3D model.

For the high-performance visualization of 3D models with a huge amount of tex-
tures, we make use of virtual texturing. We present an application that generates the
needed data structures atlas and tile store in significantly less time than existing scripts.

Finally, we show how all the mentioned functionalities are integrated into a visual-
ization application that can support a graphic artist in the post-processing of a digitized
archaeological monument.

ii



Kurzfassung

Archäologische Monumente werden heutzutage mittels Digitalisierung für zukünftige Genera-
tionen aufbewahrt. Hierzu werden Laserscanner in Verbindung mit registrierten Kameras ein-
gesetzt, um sowohl die Geometrie als auch die Farbinformation aufzunehmen. Die Geometrie
wird oft trianguliert, sodass eine kontinuierliche Abbildung der Fotos ermöglicht wird. Die Ab-
bildung der Fotos zur qualitativ hochwertigen Rekonstruktion von Teilen der Modelle ist nicht
unproblematisch. In der Praxis überlappen sich die Fotos. Setzt man nun voraus, dass ein Drei-
eck des Modells die Farbinformation von nur einem Foto erhält, so gibt es eine riesige Anzahl
an Möglichkeiten, die Fotos auf die Dreiecke abzubilden. Dieses Labeling-Problem wird be-
reits in der Literatur behandelt. Es existieren auch bereits Methoden um jene Bereiche, die von
unterschiedlichen Fotos texturiert werden, farblich an einander anzupassen. Diese Stoßkanten
entstehen durch unterschiedliche Beleuchtungssituationen während der Aufnahme der Fotos.

In dieser Diplomarbeit verbessern wir übliche Labeling-Methoden durch die Einführung ei-
ner akkuraten geometriebasierten Verdeckungserkennung. Ein Octree wird verwendet um schnell
jene Teile des Modells auszufiltern, welche ohnehin nicht für eine Verdeckung in Frage kommen.
Die Verdeckungserkennung verhindert, dass Teile des Modells Bildmaterial von Fotos erhalten,
welche nicht die erwartete Region, sondern die Farben eines verdeckenden Objekts enthalten.

Weiters wird eine vorgeschlagene Methode zur farblichen Anpassung der Stoßkanten für
Dreiecksnetze verbessert, indem ein neuer Term in das Kleinstquadrat-Problem hinzugefügt
wird, welches zu der vorgeschlagenen Methode korrespondiert. Dieser neue Term benachteiligt
große Funktionswerte der Leveling-Funktion und hilft, dass die angepassten Farbwerte nicht
den gültigen Bereich verlassen. Für bessere Filterungsresultate verbessern wir die vorgeschlage-
ne Berechnung eines ein Pixel breiten Randes um die farblich angepassten Bildregionen, indem
wir die Normalvektoren für den Rand der Regionen berechnen, um so eine beliebige Skalierung
der Regionen zu ermöglichen.

Zur einfacheren manuellen Bearbeitung verbleibender Artefakte in den Fotos stellen wir
eine Applikation zur Generierung von Alpha-Masken vor. Diese Masken zeigen jene Regionen
der Fotos, welche zur Texturierung des 3D-Modells verwendet werden.

Zur Visualisierung von 3D-Modellen mit großen Texturmengen verwenden wir Virtual Tex-
turing. Wir präsentieren eine Applikation, welche die notwendigen Datenstrukturen Atlas und
Tile Store in deutlich kürzerer Zeit als existierende Scripts generiert.

Zu guter Letzt zeigen wir, wie alle erwähnten Funktionalitäten in eine Visualisierungsap-
plikation integriert werden, welche einen Grafiker bei der Nachbearbeitung eines digitalisierten
archäologischen Monuments unterstützen kann.

iii



Acknowledgements

First, I want to thank Michael Wimmer, my supervisor, for his support. He always knew
an answer to my questions, gave me valuable tips and replied quickly to my emails.

I also want to thank Murat Arikan for providing me with information about linear equa-
tion systems and checking my code for the leveling procedure.

A big thanks goes to my sister Vera who supported me with free coffee capsules and
food for small technical jobs in her apartment.

I especially want to thank my parents Elisabeth and Franz for their amazing support
during my study. They always motivated me in times of absent motivation and kept me
afloat financially.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9
2.1 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Virtual Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Automatic workflow 19
3.1 Labeling – MosaicBuilder . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Labeling overview . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Photo undistortion . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2.1 Riegl . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2.2 Adam Technology . . . . . . . . . . . . . . . . . . . 25
3.1.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 α-expansion Graph Cuts . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Occlusion Detection . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4.1 Triangle sight frustum . . . . . . . . . . . . . . . . . 34
3.1.4.2 Edge sight triangle . . . . . . . . . . . . . . . . . . . 37

3.1.5 Shift Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.7 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Leveling – PoissonLeveler . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Leveling overview . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Solving the least squares problem . . . . . . . . . . . . . . . . 45
3.2.3 Keeping the color values in range . . . . . . . . . . . . . . . . 47
3.2.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.5 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



3.2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Manual workflow 54
4.1 MaskDrawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 VT-Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Atlas generation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Tile store generation . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Update of atlas and tile store . . . . . . . . . . . . . . . . . . . 58
4.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Results 61
5.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 MosaicBuilder . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1.1 Number of triangles . . . . . . . . . . . . . . . . . . 62
5.2.1.2 Number of labels . . . . . . . . . . . . . . . . . . . . 63
5.2.1.3 Upper threshold for octree cell side length . . . . . . 63
5.2.1.4 Max. number of iterations . . . . . . . . . . . . . . . 65

5.2.2 PoissonLeveler . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 MaskDrawer . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.4 VT-Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.4.1 Atlas generation . . . . . . . . . . . . . . . . . . . . 67
5.2.4.2 Tile store generation . . . . . . . . . . . . . . . . . . 68
5.2.4.3 Update procedure . . . . . . . . . . . . . . . . . . . 68

5.3 Our applications in practice . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Scanopy integration . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Overall workflow example . . . . . . . . . . . . . . . . . . . . 70

5.3.2.1 Automatic Workflow . . . . . . . . . . . . . . . . . . 70
5.3.2.2 Manual Workflow . . . . . . . . . . . . . . . . . . . 71

5.4 Ground Truth Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusion and Future Work 76

Bibliography 78

vi



CHAPTER 1
Introduction

Cultural heritage is important to preserve tangible items as well as intangible attributes
for future generations. Tangible items (e.g. buildings, monuments) are often too big
to be saved in a secure environment like a display case in a museum in order to pro-
tect them from atmospheric conditions and natural breakup. Therefore, and due to the
immense computational power of today’s computers, those items are preserved in a
digital manner. Laser scanners are used to produce 3D point clouds of the items of
interest. Most of those items provide more interesting information than their simple
geometry, namely their surface color. Texture mapping is the standard method to add
details to a 3D model by projecting images representing the color information onto its
surface. Some laser scanners allow the connection with a digital single lens reflex cam-
era (DSLR). In case of the RIEGL VZ-400, which is shown in Figure 1.1, the camera
is mounted on top of the laser scanner. It is important that the camera is well regis-
tered. During the registration process, the exact position and orientation of the camera
relative to the coordinate system of the laser scanner is evaluated. Then, provided that
the internal parameters of the camera (sensor dimensions, focal length, distortion) are
known, an accurate back-projection of the images onto the scanned geometry is possi-
ble. For the color mapping for high-quality reconstructions of parts of the model, the
registered camera is used for taking photos at every scan position in conjunction with
scanning of the geometry. With a point cloud, it is not possible to map the photos onto
the model in a continuous way. Therefore, often the point cloud is converted into a
mesh. Because of the shape or size of the item, a single photo is usually insufficient to
map color information onto the whole surface of the model. So when speaking about
meshes, and assuming that every triangle of the mesh should receive its color informa-
tion from exactly one photo, there have to be edges inside the model where regions,
textured by different photos, adjoin to each other. Those edges express themselves as
visible artifacts and are also referred to as seams.

1



Figure 1.1: RIEGL VZ-400 laser scanner with top mounted Digital SLR. Image taken
from [14].

The whole digitizing process leads to four major problems. The first problem is
the finding of an optimal mapping of photos onto the mesh, so that as few seams as
possible remain while at the same time choosing a high-quality photo for each triangle.
In practice, camera registration errors lead to misalignments between the photos when
they are mapped onto the model. A subproblem in the calculation of an optimal mapping
is therefore the handling of these misalignments. The second major problem is the
automatic adjustment in terms of color of the remaining seams. The third problem is
the manual editing of the photos, which is often needed to handle remaining artifacts
like highlights. Finally, the fourth problem is the high-performance visualization of a
3D model with a huge amount of textures.

All these problems are covered by our applications, which are altogether the topic
of this thesis.

1.1 Motivation
At the Vienna University of Technology, the aim of the Terapoints project is the preser-
vation of important archaeological monuments. This is done by laser-scanning the mon-
uments, which yields huge point clouds. Further, photos of the monuments are taken for
color mapping for high-quality reconstructions of parts of the models. Of course, the
exact position and orientation of the camera during the shoot is stored for every photo.

2



To make a visualization of a 3D model possible, so that the photos can be mapped
continuously onto it, the point cloud is triangulated inside applications like Geomagic.
After the triangulation, the gathered photos are mapped onto the triangle mesh. Before
the introduction of our labeling application that we will present in Section 3.1, this was
done using the approach of Abdelhafiz [1], which we will describe in Section 2.1. Both
in the approach of Abdelhafiz and ours, a particular triangle receives its color informa-
tion from exactly one photo. When a triangulated model that was textured using such an
approach is visualized, there are visible seams resulting from texturing the model sur-
face with different photos. In Figure 1.2, such seams in the Centcelles cupola model are
shown. The seams arise because of the different lighting situations during the exposure

Figure 1.2: Seams in the Centcelles cupola model without further processing of the pho-
tos. The arrows show the regions where areas, getting color information from different
photos, adjoin each other.

of the photos. This makes an editing of the photos absolutely necessary.
Recently, photogrammetry found its way into the Terapoints project. For this pur-

pose, they use a commercial solution of the ADAM Technology company [30]. The
reason for the usage of photogrammetry were issues with the camera-to-geometry reg-
istration. A disadvantage of the described digitizing approach of an archaeological mon-
ument using a laser scan and a DSLR is that the geometry and the color information are
gathered by two different devices. Although the camera is registered, in practice the
registration is never absolutely perfect. This leads to visible misalignments of the pho-
tos when they are mapped onto the model (see Figure 1.3). In contrast to the approach
using a laser scanner and a DSLR, with photogrammetry only photos are taken of the
item of interest. The model geometry is then entirely calculated using epipolar geom-
etry methods [16]. The accurateness of the model is directly correlated to the image

3



resolution of the camera. Because in photogrammetry the geometry of the model arises
completely out of the image information, the camera-to-geometry registration is better
in practice than with separate gathering of geometry and color. No matter which method
is used, misalignments of photos can occur and have therefore to be handled.

Figure 1.3: Misalignments of the photos in the Centcelles cupola model (yellow rectan-
gles) that was digitized using a laser scanner for the geometry and a DSLR for the color
information.

Another problem that arises in the post-processing of a 3D model of an archaeolog-
ical monument are the low frame rates when visualizing a model with a huge amount
of textures. Such a model can be the result of the digitizing process of a big item like a
church of which high resolution photos are taken.

At the time this thesis was in progress, a graphic artist was editing the photos manu-
ally. This is a challenging task. To see all the artifacts (seams, misalignments) in action,
the 3D model has to be visualized in an application like MeshLab [8]. When the big
textures do not fit into the memory of the graphics card, a continuous reloading is neces-
sary. This leads to slow frame rates and jerky movement through 3D space. This in turn
leads to increased time durations until the model is positioned as desired to see the part
of interest. After the model is positioned, and the edge with color differences is visible,
the two photos belonging to the edge are loaded into an image editing application. The
photos are edited manually and then the cycle starts again with the visualization of the
model. This iterative process lasts until the result is satisfactory. We found that this
work flow is unacceptable and decided to implement applications to ease the work of
the graphic artist.

4



1.2 Aim
The aim of this thesis is the development of a set of applications to make texturing and
visualization of a 3D model of an archaeological item as simple as possible. Beside
simpleness, we place importance on accurateness and performance. This thesis does
not aim to make the graphic artist jobless. In practice, it is nearly impossible to deliver
a perfect result in a fully automatic way. One reason for this are the mentioned camera
registration errors and the resulting misalignments in the model. These misalignments
can sometimes only be reduced to a certain degree. Other visible artifacts like highlights
that result from the usage of a flash light are currently not handled by our applications
at all. Therefore, at least a small manual editing step by a human being in the form of a
graphics artist is indispensable.

1.3 Contributions
The contributions of this thesis are:

• Implementation of four applications to simplify the post-processing of a 3D model
that has been generated during the digitizing process of an archaeological item.
We did not implement algorithms for conversion of a point cloud into a mesh in
an automatic way. Our input is a triangulated model in conjunction with all the
registered photos. For the triangulation of a point cloud, we recommend commer-
cial solutions like Geomagic. We decided to implement one application for each
of the following purposes:

1. Labeling
In the labeling stage, labels (in this case photos) are assigned to the triangles
of the mesh. Every triangle receives its color information from exactly one
photo. The result is therefore a mapping from a set of triangles onto a set
of labels. Every triangle is then textured by the photo that corresponds to
its assigned label. Because one particular triangle can usually be textured
by more than just one photo, there is more than just one possibility to label
the triangles. In practice, the number of possibilities is huge. The goal
of the labeling stage is to minimize the number of edges where regions,
textured by different photos, adjoin each other. Our approach is based on the
findings of Lempitsky and Ivanov [18], and Gal et al. [13]. They describe
the problem of finding an ideal mapping as a Markov Random Field energy
optimization. Gal et al. further introduced shift vectors into the image space
to compensate for the camera registration errors. We will show that our
method further improves their results by the introduction of an octree into
the labeling process. The octree contains all the triangles of the mesh and is

5



used for occlusion detection. This prevents texturing of surface areas with
parts of the photos that do not contain the expected area, but the colors of an
occluder. The occluder can be any part of the model (e.g. a wall) that was
between the camera and the particular surface area during the exposure of
the photo.

2. Leveling
The leveling step is needed to automate the editing of the taken photos. This
is done by the calculation of a 2D function that is added to the whole texture.
Pérez et al. introduced a method to do image operations in the gradient
domain [28]. Lempitsky and Ivanov adapted their findings to the problem of
seam leveling on meshes. Their approach results in a least squares problem
[18]. Our approach is based on the one of Lempitsky and Ivanov. Their least
squares problem, however, has the drawback that it does not penalize too big
function values. When leveling a disadvantageous original texture function,
the color values can exceed the valid range. Therefore, we introduce a new
term into the least squares problem that penalizes these big function values
and keeps the color values in the valid range. Gal et al. further propose
the calculation of a 1-pixel wide boundary around each patch in every photo
[13]. When the textured model is viewed from a certain distance, where
higher mipmap levels are needed, unleveled regions are filtered into the used
areas. Therefore, we found that this boundary is insufficient and introduce
the calculation of outline normals for every patch. These normals make a
user-defined scale of the patches possible. The leveling values are linearly
extrapolated along the outline normals. The upscaled patches then guarantee
better filtering results.

3. Mask generation
Masks support the graphic artist in the manual editing step. For every photo
that is used inside the model, one mask is generated. A mask is an image
with the same resolution as the corresponding photo. A black pixel inside a
mask indicates that the corresponding pixel in the photo is unused. A white
pixel belongs to a used pixel in the photo. With the masks it is obvious
which parts of the photos are used and where the main focus during the
manual editing step has to be. The work done for the mask generation has
already been published in [3].

4. Visualization
Because of the high amount of textures of the models, a performance boost
of the visualization is necessary. Therefore, a sophisticated technique called
virtual texturing is used. There is already a library for virtual texturing that
also delivers some scripts to build the needed image structures called atlas
and tile store. Those scripts are so slow that we decided to re-implement this

6



functionality in a faster way. Further, an update function is desirable to see
the edited image parts immediately inside the 3D model. The work done for
the visualization has already been published in [3].

• Testing of the implemented applications concerning accurateness and performance,
as well as the comparison with existing solutions.

1.4 Structure
This thesis is structured in the following way:

1. Introduction
This very chapter.

2. Related Work
First, information about the automatic labeling is given. Labeling in this context
is the finding of an optimal mapping of the photos onto the triangles. Second, we
provide information about the already existing methods used for leveling. In the
leveling process, one tries to do an adjustment in terms of color to get rid of the
already mentioned seams. Last, information about virtual texturing used for high
performance rendering of 3D models with a huge amount of textures is provided.

3. Automatic workflow
We first describe the workflow of the graphic artist using our implemented tools
for the automatic labeling and leveling. This directly correlates to the chronolog-
ical order of the needed post-processing steps for a particular 3D model. Only
an already labeled and leveled model is ready for the manual workflow, where
the remaining seams and other visible artifacts are handled. We give a thorough
description about our applications used for labeling and leveling.

4. Manual workflow
After the automatic workflow, there are often manual editing steps necessary in
order to get a satisfactory result. These manual editing steps were also improved
via introduction of an application used for mask generation. Because the visu-
alization of a 3D model is particularly important during and after the manual
workflow, we provide the information of our application used for visualization
improvement in this section.

5. Results
In this chapter, the performance of our applications will be evaluated by means
of some performance tests. These tests also estimate the impact of the different

7



parameters on the overall runtimes. The results of our programs for the automatic
labeling and leveling are shown by the means of rendered images of an example
model. We will further show, how all our applications were integrated into one
big application so that thy can be used by the graphic artist in a user-friendly way.

6. Conclusion and Future Work
We conclude this thesis by providing a summary of the work and give some ideas
for future research.

8



CHAPTER 2
Related Work

This chapter aims to provide an overview of the existing techniques concerning labeling,
leveling and virtual texturing.

2.1 Labeling
In the labeling procedures similar to our approach, every face Fi of the model gets a
label P j that corresponds to a particular photo. Assuming that there are K faces F1 to
FK and N photos P 1 to PN , a labeling is a mapping from the set of faces {F1, ..., FK}
onto the set of photos {P 1, ..., PN}. A label P i for a face Fj means that the face Fj is
textured by the photo P i. Obviously, not every photo can be used for every face, but
some faces can be textured by more than just one photo. A simple method to find a
valid mapping is also referred to as the best fragment approach [18]. The principle of
the best fragment approach is the calculation of weights for the photos. Every photo
gets a weight for every single face in the model. The smaller the weight, the better the
photo is fitting. In the best fragment approach, every face is textured by the photo for
which the weight is minimum. There are different methods to estimate the weight for a
particular photo-face-pair. Lempitsky and Ivanov calculate the squared sine of the angle
between the view vector and the face normal [18]. If the face is viewed perpendicularly
from the front, the view vector and the face normal coincide. The squared sine of the
angle between these vectors is 0.0, which denotes a perfect fit. If the face is viewed
from behind, the weight would be a negative number. In this case a weight that states,
that the face can not be textured with this photo, has to be used instead. When using the
squared sine of the angle between the view vector and the face normal for the weight
calculation, this can be e.g. 1.0. The best fragment approach is fast and easy, but in
practice it produces many seams. To improve the result, Lempitsky and Ivanov con-

9



sider the labeling problem as a Markov Random Field (MRF) energy optimization [20].
Therefore, they try to minimize the sum of two terms. The first term is the sum of all
the weights that are also used in the best fragment approach. The second term belongs
to all the seams occurring in a particular labeling and is a measure for the dissimilarity
of the colors on either side. For the minimization process they use an algorithm called
α-expansion Graph Cuts [5]. This algorithm needs more time than the best fragment
approach but produces bigger homogeneous areas and less seams in the model.

Abdelhafiz follows a simpler approach for the labeling. His work is based on the
calculation of the areas of the projected faces [1]. In simple terms, he counts the number
of pixels of a projected face inside the photos. Then, he chooses the photo for the face for
which the number of pixels is maximum. The result of this method might be similar to
the best fragment approach of Lempitsky and Ivanov. To improve the result, he changes
the labeling. For this, he iterates over all the vertexes in the mesh of the model. When
a vertex is found that is adjacent to differently (in terms of different photos) textured
faces, the photo is determined that is used for texturing of most of the adjacent faces.
Let P i be this photo. Now, all the faces that are not textured by P i are projected into
P i. When their projections are entirely inside of P i, the current labeling is changed so
that all the faces around the current vertex get the label P i. It is possible to do more
than one iteration over all the vertexes to further improve the result. The modification
of the initial labeling leads to bigger homogeneous areas. In Figure 2.1, this labeling
refinement approach is illustrated. In contrast to the approach of Lempitsky and Ivanov,
the color differences of the remaining seams are not considered.

P1 P1

P1

P1

P1 P1

P1

P1

P1

P1

P1
P  2

P  3

P  2

Figure 2.1: Labeling refinement approach of Abelhafiz [1]. Because P 1 is the most
frequently label around the vertex in the middle (left side), and the other faces can be
textured by P 1 as well, they also get the label P 1 (right side). Entries in the triangles
correspond to their assigned label.

The approach of Gal et al. [13] is based on the one of Lempitsky and Ivanov [18].
They also consider the labeling problem as an MRF energy optimization. Their contri-
bution is the introduction of shift vectors into the labeling process. The vectors are used
to get rid of the camera registration errors that often arise in practice. They base their

10



approach on the assumption, that registration errors are often just translational. With
translational they mean, that when a triangle is projected into an image using erroneous
camera parameters, the corresponding image material of the triangle can be found just
by translating the projected triangle inside the image. Instead of just using the photos
themselves, they use photo-vector-tuples as labels. A particular face is then labeled with
the image region that results from projecting the face into the assigned photo and shift-
ing this projection by the assigned shift vector. The shift vectors are ∈ [0, 1]2, therefore
they correspond to a translation in texture space. The set of all possible shift vectors is
a 2D continuum. However, to keep the labeling procedure combinatorial, it is necessary
to do it in a hierarchical manner.

First, for all the photos the corresponding image pyramid is generated. It is not re-
quired to generate all possible levels up to a single pixel. The number of needed levels
is directly linked to the magnitude of camera registration errors. In order to find the
appropriate number of levels, the magnitude of camera registration errors has to be ex-
pressed in pixels. A maximum camera registration error of e.g. 10 pixels means, that
the projected triangles have to be shifted by 10 pixels in the horizontal, and by 10 pixels
in the vertical direction inside a photo to find the corresponding image material. When
the maximum error is one pixel, only level 0 representing the full resolution images is
needed. With two levels (level 0 and level 1) one can compensate for an error of three
pixels. Levels 0, 1 and 2 are needed to compensate for a maximum camera registra-
tion error of seven pixels and so on. So, with a highest level number k a registration
error of 2k+1 − 1 can be compensated for. Let level 0 be the original photo and level
n be the highest generated level in the image pyramid. A highest level number of n
results in n + 1 Markov Random Field energy optimizations. In the first iteration, for
all the photos level n of the corresponding image pyramid is considered. Not the photos
themselves are used as labels, but for every of these photos nine labels are generated.
These nine labels result from the conjunction of the photo and one of the vectors of
{−1, 0, 1}2 in pixel dimensions. A vector (1, 1) at the current level states, that the pro-
jection would be shifted one pixel to the right, and one pixel up. Such a description is
very inconvenient, since it is connected to the resolution of the photo at the current level.
Therefore, the shift vectors are normalized to be ∈ [0, 1]2, similar to texture coordinates.
The description in pixel dimensions is only used for explanation reasons.

After the first iteration, all labels that would be used for texturing the model are
identified and used as seed labels for the next iteration for which layer n − 1 of all
image pyramids is used. Every seed label again is used in conjunction with one of the
vectors of {−1, 0, 1}2 in pixel dimensions. Note here, that a shift vector (1, 1) in pixel
dimensions at level n− 1 is just half the size of a shift vector (1, 1) in pixel dimensions
at level n, when they are both converted into texture space. After level n−1, level n−2
of the image pyramid is used and so on, until level 0 was used. For accuracy reasons,
Gal et al. propose a further iteration where shift vectors with the length of only half

11



pixels are used at the full resolution images.
The approach of Gal et al. can be easier explained by means of an example. Consider

a set of poorly registered photos {P 1, ..., PN}with a resolution of 1024×768 pixels that
are used for texturing of a 3D model consisting of the triangles {F1, ..., FK}. Assuming
that the maximum camera registration error has a magnitude of 63 pixels with respect to
the photos, we need the levels 0 to 5 of the image pyramid of every photo according to
the mentioned formula 2k+1−1. The resolution of the photos at level 5 is 32×24 pixels.
For the first iteration in the approach of Gal et al., we generate 9N labels by connecting
every photo of level 5 of the image pyramid with each of the shift vectors {−1, 0, 1}2 in
pixel dimensions. Because it is more convenient to normalize the shift vectors so that
they correspond to texture space, and the photos have a resolution of 32 × 24 pixels
at level 5, the resulting shift vectors are of the form (a, b) with a ∈ {− 1

32
, 0, 1

32
} and

b ∈ {− 1
24
, 0, 1

24
}. These labels are now used in the first iteration in a Markov Random

Field energy optimization to receive a good labeling result. All the labels, that would be
used for texturing of the model and are therefore not discarded in the first iteration, act as
seed labels for the second iteration. In the second iteration, level 4 of the image pyramid
of the photos is used. At level 4, the photos have a resolution of 64×48 pixels. Now the
seed labels are connected with each of the shift vectors {−1, 0, 1}2 in pixel dimensions.
The shift vectors at level 4 are normalized again and are therefore of the form (a, b)
with a ∈ {− 1

64
, 0, 1

64
} and b ∈ {− 1

48
, 0, 1

48
}. Because the seed labels already contain

a shift vector, the shift vectors are accumulated. Consider a label (P 1, ( 1
32
, 1

24
)) that

was not discarded in the first iteration and is therefore used as seed label for the second
iteration. When this label is connected with the shift vector ( 1

64
, 1

48
), the result is the label

(P 1, ( 3
32
, 3

64
)) that is now used for the second iteration. The resulting labels are then used

again in a Markov Random Field energy optimization to receive a good labeling result.
The labels that were not discarded then act as seed labels for the third iteration. The
whole procedure is continued exactly the same way until the full resolution photos at
level 0 of the image pyramids are reached. After the iteration for level 0 was carried
out, one additional iteration is done by connecting the seed labels with the shift vectors
{−0.5, 0, 0.5}2 in pixel dimensions, which equals a shifting of only half pixels. The
labels that result from this last iteration are then the final labels that are used for texturing
of the model.

Another method dealing with image-to-geometry misregistrations was presented by
Dellepiane et al. [10]. They also try to find an optimal mapping of photos onto a meshed
model. They estimate the regions on the model, where two or more projected photos
overlap. To decide, which photo shall be used for texturing of a particular triangle, they
calculate weights based on the weighting system of [6]. Simply using the “best” photo
for every triangle would lead to visible discontinuities in the final texture because of the
misregistrations. Therefore, they do the following. For all overlapping image pairs, they
project the first photo onto the model, and then back-project it into the second photo.

12



This is also done the other way round, to project the image information of the second
photo into the first one. Then, they calculate the so called optical flow, which is basically
a set of displacement vectors between corresponding pixels. This information is then
used for warping of the image information in the overlapping regions. The resulting
texture of the model then has no visible discontinuities at edges where regions adjoin,
that get its color information from different photos.

Musialski et al. presented a method for the generation of high-quality approximated
façade ortho-textures based on a set of perspective photos [27]. Based on structure-
from-motion and using the perspective photos as input, they calculate a point cloud
representing the scene geometry. They assume the façade to be planar. Therefore,
they introduce a plane that best approximates the position of the façade. The plane
is rasterized so that each element of the raster represents a single pixel of the final
image. The taken photos are then back-projected onto this plane. The labeling part of
their approach is the decision which of the pixels in the resulting image gets its color
information from which photo. For every pixel, they use the “best” photo as the origin of
the color information. Photos, that correspond to camera positions with a small distance
to the raster element on the plane and almost perpendicular viewing angle are preferred.
Occlusions are also handled. Occluding objects express themselves as geometry points
in front of the façade plane. For every camera position, these points are splatted onto the
plane in a projective way. The result of this splatting operation is then used to generate
masks for the photos that encode the areas corresponding to occluding objects. Beside
this method, they also allow the insertion of explicitly modeled objects into the scene.
These objects are then also used for mask generation to encode the occluded regions
in the photos. Certainly, pixels in the photos, that belong to occluding objects, are
penalized in the labeling operation. For further improvement of the result, they allow
the user to interactively select regions in the final image in order to texture them with
another photo.

In contrast to our mesh-based approach, Pintus et al. directly work on (extremely
dense) point clouds [29]. The result is an assignment of colors to the points. The origin
of the color information is a set of high-resolution photos. In contrast to our approach
where every basic element (in our case triangles) gets its color information from a single
photo, they assign colors to points, that are weighted sums of several pixels. First,
they re-organize the point stream in order to minimize the access operations to invisible
points with respect to a particular photo. For visibility calculation, they use the depth
buffer. They project the visible points onto the image plane of the particular camera and
fill the regions in the depth buffer having no depth value via an interpolation approach.
This guarantees that the depth information represents not only a set of projected points,
but an entire surface. Then, they assign weights to the pixels in every photo. The
weights are calculated based on the visibility of the projected points, which can be
easily evaluated using the values of the depth buffer. Because a simple usage of the

13



calculated values leads to visible seams in the rendered point cloud, they first look for
edges in the estimated weighting function. Based on this information, they do a distance
transform on the edge maps and multiply the distance field with the weighting function.
This guarantees a smooth transition between different photos. To avoid blurring, they do
multi-band blending. Finally, adaptive point cloud refinement is carried out in regions,
where more points are needed for mapping of high-frequency image information.

2.2 Leveling
In the leveling stage, one tries to get rid of the visible artifacts in the model where re-
gions that are textured by different photos adjoin each other. These seams arise because
of the different lighting situations during the exposure of the photos.

There is much literature available concerning leveling. However, most of it does
not directly deal with leveling on meshes, but only covers approaches used for stitching
together two or more planar photos to get a panorama image. Approaches proposed
in [24], [12] and [9], which are also referred to as optimal seam methods, search for a
curve in the overlapping region of two photos, and use the curve as the border between
the two photos. An adaption of such methods to the leveling on meshes is difficult, since
the region where the photos adjoin is already defined by the edge that corresponds to
the differently textured triangles. The photos could be distorted so that the estimated
curve is mapped to the edges in the mesh. A disadvantage of such approaches are, that
no colors are changed. They are therefore not suited for photos that are taken under
significantly different lighting conditions.

Other approaches blend between the images under consideration to get a smoother
intersection [31]. Blending could also be adapted to meshes so that the gradient of the
blending function would be applied perpendicularly to the edge of the mesh. Assuming
that one of the photos is significantly lighter or darker than the other, no sharp edge
would be visible, but the intensity difference of the photos attracts attention at some
distance from the edge. Furthermore, a misalignment of the photos produces ghosting
artifacts when they are simply blended.

A better idea than blending or searching for an optimal seam in order to stitch two
images together is to keep the variation of the images, namely their gradients, while
bringing their intensity levels onto the same level. This approach has its origin in the
paper of Pérez et al. [28]. They introduce a new way of image editing that is based
on the manipulation of gradients instead of colors themselves. One of their proposed
applications is seamless cloning of an object of one image into another image. This is
done by keeping the gradients of the copied object nearly unmodified while adjusting
the boundary colors to the surrounding colors of the new background. The solution of
this operation results in a Poisson equation with Dirichlet boundary conditions.

14



Levin et. al propose two similar methods for image stitching [19]. The first method
stitches two images together by minimizing the differences between the gradients of the
input images and the resulting image. For the second method they first stitch the gradient
fields of the input images, and then calculate the resulting image by minimizing the
differences between the gradients of the stitched gradient fields and the resulting image.
The approach of Levin et. al is highly related to [28].

Lempitsky and Ivanov adapted the findings of [28] to the problem of seam leveling
on meshes [18]. Instead of solving a Poisson equation, they approximate the solution by
solving a least squares problem. A disadvantage of their method is a missing mechanism
to keep the calculated color values in the valid range.

A very interesting approach for leveling of photos that were taken using only one
significant light source, e.g. a flash light, was proposed by Dellepiane et. al [10]. Such
photos are often unevenly illuminated and suffer under artifacts like specular highlights
or shadows. The only constraint of the proposed method is, that the position of the
light source in relation to the optical center of the camera keeps unchanged. In case of
conventional cameras this is no problem, since the flash light is either built in, or in case
of a DSLR it is mounted on top and therefore moves with the camera. Their contribution
is the introduction of the, as they call it, color correction space. The color correction
space coincides with the view frustum space of the camera. Every point in it corresponds
to an affine transformation used for color correction. These affine transformations are
evaluated in an empirical way at some discrete points of the view frustum, and are then
interpolated for points in between. For every pixel of the photo that should be color
corrected, the corresponding depth information is needed. The depth information can
be evaluated by taking two or more photos of the scene from different positions and
using shape-from-stereo methods. In order to get a color corrected photo, every pixel
has to be transformed the following way. Using the depth information, the point in
the scene can be found that was projected onto the pixel. This point corresponds to a
particular affine transformation in the color correction space, that has then to be used
for color correction. In their paper, they also show how the color correction space can
be established for a particular camera-light source pair using an empirical approach.
The pleasant fact about the color correction space is, that it has to be established for
a particular camera-light source combination only once. Beside the color correction
space, Dellepiane et al. also show how other image artifacts introduced by flash light
(e.g. specular highlights, shadows) can be removed. They evaluate the exact position
of the flash light in relation to the optical center of the camera. Provided that the scene
geometry, the position of the camera and the position of the light source is known,
which is the case in the mentioned setup, shadow mapping can be used to find shadowed
regions in the photo. The specular highlights in the photo, or at least candidate pixels,
can be found by the introduction of the Phong model.

Our approach is based on the approach of Lempitsky and Ivanov [18]. In contrast,

15



we introduce a further term into the least squares problem that pays attention on the final
color values so that they reside in the valid range.

2.3 Virtual Texturing
Texture mapping was pioneered in 1974 by Edwin Catmull in his Ph.D. thesis [7]. It
was a big invention, and is used in nearly all fields of computer graphics like visual-
ization, real-time rendering and computer games. Without it, also the digitized models
for cultural heritage would look quite boring. Although these models can be colored
using texture mapping, the amount of textures is so big that they do not fit entirely into
the memory of a commercially available graphics card. This problem calls for an out-
of-core solution. Since its introduction there has been heavy research regarding texture
mapping, but most publications for out-of-core rendering deal with geometry complex-
ity [15]. Dealing with huge 3D models is important too, but in our case the huge amount
of textures is the limiting factor for visualization.

Virtual texturing solves the problem of huge texture data sets. It was presented by
Mittring in [25] and covered in detail by J. Mayer in [23]. It is a highly sophisticated
technique that is used for rendering of very detailed scenes whose textures do not fit into
the memory of the graphics card. The basic concept of virtual texturing is to stream only
those parts to the graphics card that are currently visible. Of course, such a scene can
be visualized without virtual texturing as well, but the frame rate would probably suffer
extremely. Without virtual texturing, every texture would be streamed to the graphics
card as a whole, regardless of the visible areas. Because not all textures fit into the
memory of the graphics card, this leads to permanent reloading. The result will be slow
frame rates and jerky movement through 3D space. When using virtual texturing, two
important data structures are needed.

The first of these data structures is the so-called atlas. The atlas is a single texture
that consists of all the textures that belong to the virtually textured models in the scene.
It must meet some requirements regarding its size. In the simplest case, when no bilinear
filtering is used, its side length has to be power of two. There is no theoretical limit for
the maximum size of the atlas. The maximum size is essentially bound by the maximum
texture size that is allocatable on the graphics card. In the LibVT, the library for virtual
texturing that was developed by Mayer, the maximum atlas size is 128k2 . Because such
a big image is very unhandy, for example to load it into an image editing application for
observation reasons, it can be stored in 4, 16, 64 or more files on hard disc. In Figure
2.2, an atlas consisting of 70 single images is shown. Every image has a resolution of
4256×2832 pixels. The resulting atlas has a side length of 32k. Of course, the texture
coordinates of the virtually textured models have to be altered to reference the correct
positions inside the atlas.

16



Figure 2.2: Atlas used for virtual texturing consisting of 70 images. The images have a
resolution of 4256×2832 pixels each. The atlas has a side length of 32k.

256 tiles

256 tiles

25
6 

til
es

25
6 

til
es} } } }

. . .

Level 0
(65536 tiles)

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

(16384 tiles)
(4096 tiles)
(1024 tiles)

(256 tiles)
(64 tiles)
(16 tiles)

Level 7
(4 tiles)

Level 8
(1 tile)

. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

.

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

. .
 . 

.

Figure 2.3: Tile store used for virtual texturing consisting of all in all 87381 tiles. It is
based on the atlas of Figure 2.2. The tiles have a side length of 128 each.

After the generation of the atlas, the second data structure needed for virtual tex-
turing – the so-called tile store – can be generated. In Figure 2.3, the tile store that is
based on the atlas of Figure 2.2 is illustrated. The basic element of the tile store is a
so-called tile. A tile is a small texture. “Common tile-sizes range from 642 up to 2562

pixels” [23]. These tiles are the atomic elements that are streamed to the graphics card.
The structure of the tile store is directly related to mipmapping [32]. In mipmapping,
not only the full resolution of a single texture is used, but several versions with lower
resolution. These versions originate in scaling down the original image to half size

17



again and again until only one pixel resides. For the rendering process, the version that
best fits the requirements (or the two versions, in case of trilinear filtering), is used to
deliver the color for a single pixel on the screen. Similar to mipmapping, the tile store
consists of several resolution levels. Level 0 represents the atlas at its full resolution and
is constructed by cutting the atlas in equally sized tiles. After that, the atlas is scaled
down to half size to deliver the image data for level 1. Level 1 is then constructed by
cutting this scaled version of the atlas into equally sized tiles. The tiles have the same
resolution at every level. Assuming that the atlas has a side length of 32k, and the tiles
have a resolution of 1282, there would be 65536 tiles at level 0 of the tile store, 16384
tiles at level 1 and so on. In contrast to mipmapping, the atlas is not scaled down to one
pixel, but to the size of a single tile. Continuing our example, at level 8 there would be
only one tile representing the whole atlas.

The rendering of the virtually textured models needs two passes. In the first pass,
a special shader is used in order to find the needed tiles for the current frame. In every
pixel of the resulting image, the exact coordinate of the tile that is needed to deliver the
color information for that pixel is encoded. This image is then read back to the CPU
to estimate the needed tiles. The needed tiles are then read from the medium where
they reside (e.g. hard disc), compacted and streamed to the GPU. On the GPU, they
are stored in the so-called physical texture. There is also a texture on the GPU that acts
as a map for the physical texture. This pagetable is updated so that the location of the
tiles in the physical texture can be easily evaluated. In the second render pass, another
special shader is used to render the final frame. This shader uses the pagetable in order
to find the needed tiles in the physical texture. These tiles are then used as the origin of
the texture information needed to render the final frame.

18



CHAPTER 3
Automatic workflow

In this chapter, we will present our applications used for automatic labeling and leveling.
Because until this thesis was in progress, the simple approach of Abdelhafiz [1] was used
for labeling, we decided to implement a more sophisticated labeling mechanism in a first
step. In a second step, the labor-intensive image editing was the target of improvement.

In Section 3.1, we will describe the MosaicBuilder, which is our application used for
automatic labeling. We will first formulate the labeling problem. Then, we will speak
about the significance of photo undistortion and the different distortion models we were
faced with during our labeling experiments. After that, we will show how the energy
term which is the result of the labeling problem formulation can be minimized. We
will further show how occlusion detection was introduced into the labeling procedure.
Finally, we will talk about the implementation of our application.

In Section 3.2, we will describe the PoissonLeveler, which is our application used
for automatic leveling. We will first formulate the leveling problem. After that, we
will show how the least squares problem which is the result of the leveling problem
formulation can be solved. In a section speaking about the divergence of color values,
we will introduce a new term into the least squares problem to keep the color values in
range. Then, we will show how the filtering results for the visualization of a model that
is textured using a set of leveled photos can be improved. Finally, we will take a look at
the implementation of our application.

3.1 Labeling – MosaicBuilder

3.1.1 Labeling overview
Our approach for labeling is based on the approaches of Lempitsky and Ivanov [18],
and Gal et al. [13]. Both papers consider the labeling problem as a Markov Random

19



Field (MRF) energy optimization. Lempitsky and Ivanov formulate the energy term
as follows. Let {F1, ..., FK} be the set of faces in a model and let {P 1, ..., PN} be
the set of registered photos that are used for texturing of the model. The resulting
labeling, which is also referred to as a texture mosaic, is then defined by a labeling
vector M = (m1,m2, ...,mK), where m1,m2, ...,mK ∈ {0, 1, ..., N}. An element mi

in M states that the face Fi is textured by the photo Pmi . The best-fragment approach
that we described in Section 2.1 can therefore be written as M = (m1,m2, ...,mK),
where every mi = arg minj w

j
i . Here, the term wji is the cost to texture the face Fi with

the photo P j . The term wji is also referred to as the data cost. As proposed in [18], we
calculate the cost value wji as sin2 α, where α is the angle between the view vector and
the corresponding face normal. In Figure 3.1 this scenario is illustrated.

a
n

v

camera taking photo Pj

face Fi

Figure 3.1: A face Fi of the model with its normal vector n and view vector v to the
camera taking the photo P j . The cost value wji is calculated by sin2 α.

In future releases of our application, we want to consider even more metrics to cal-
culate the weight for a particular photo-face-pair. In [6], Callieri et al. calculate the
quality of image material on a per-pixel basis. For a particular photo, they compute
masks using different metrics. These masks are then multiplied in order to get a final
mask so that every pixel in the final mask encodes the quality of the corresponding pixel
in the photo. Although we need weights not for the pixels of the photos but for all
photo-face-pairs, it would be no problem to use the masks in our approach. The weight
for a particular photo-face-pair would be simply computed by projecting the face into
the photo, and considering the values in the final mask of the photo at the pixels the face
is projected onto. Some of the masks that are computed in [6], which we can also think
of to use them in our approach, are:

• Border Mask. Every pixel in the border mask stores the distance of the pixel to
both the image borders and discontinuities in the depth map. Higher distances
correspond to better image material.

20



• Focus Mask. In the focus mask, the value of each pixel is a measure for the
focusing. Higher values correspond to better image material.

• Stencil Mask. Often the user wants to exclude portions of the photos which are
then not considered in the labeling procedure. The stencil masks are provided by
the user and encode the areas that can be used for texturing.

The best fragment approach does not take the color differences of the photos into
account. The result are many seams in the final texture, which are shown in Figure 3.2.
Therefore, another cost value is introduced, which accounts for the seams. Consider two

Figure 3.2: Result of the labeling using the best fragment approach. Every face is
textured by the “best” photo, which leads to many seams.

adjacent faces Fi and Fj of the mesh, that share an edge Eij . Given a labeling vector M,
the cost produced by this edge is calculated by:

w
mi,mj
i,j =

∫
Eij

d(Prmi(X), P rmj(X))dX (3.1)

In Equation 3.1, Pri is a projection operator for the photo P i. The operator d(., .)
returns the distance between two color samples. Similar to Lempitsky and Ivanov, we
use a Euclidean distance between RGB values. The minimum distance between two
color samples is therefore 0.0 if the colors are identical. The maximum distance is

√
3,

corresponding to the distance between a white and a black pixel in normalized RGB
space. The photos are not continuous functions, so the integral of Equation 3.1 must be
discretized. It is therefore a sum of distances between color values along the projected
edge. Certainly, this sum is 0.0 when the faces Fi and Fj sharing an edgeEij are textured
by the same photo. The term w

mi,mj
i,j is also referred to as the smoothness cost.

21



(a) λ = 1.0 (b) λ = 25.0 (c) λ = 50.0

(d) λ = 75.0 (e) λ = 100.0

Figure 3.3: Impact of the parameter λ on the final texturing result. Note how the quality
of image material per face decreases with increasing λ, while the transitions become
smoother.

Let N be the set of adjacent faces in a model. Then, the final energy term that has
to be minimized can be written as:

E(M) =
K∑
i=1

wmii + λ
∑

{Fi,Fj}∈N

w
mi,mj
i,j (3.2)

The value λ in Equation 3.2 is typically ≥ 0.0. It defines the degree of penalizing of
edges, shared by faces that are textured by different photos. If 0.0 is chosen as the value
for λ, the minimization of Equation 3.2 degrades to the best fragment approach, and
every face is textured by the “best” photo. With increasing λ, the importance of quality
of image material used for the faces decreases, because the whole effort goes into the
establishment of smooth transitions between areas that receive its color information
from different photos. This behavior is illustrated in Figure 3.3. The used model is the
Centcelles cupola model.

In Figure 3.4, the energy values that were the result of approximately solving Equa-
tion 3.2 for the Domitilla cubiculum model are shown. The term data cost refers to the
first term of the equation, while smoothness cost refers to the second term. To be com-
parable, we divided the resulting values of the second term by λ. Note how the data cost
increases with increasing λ, while the smoothness cost decreases. With increasing λ,

22



color differences between images that are used for texturing of adjoining faces are more
and more penalized. Assuming that a region is already textured, the neighbor region
would rather be textured by an image with similar colors, than by an image correspond-
ing to a perpendicular view onto the region of interest, but having completely different
colors.

97814,8
109754

115581 118738 121440

6869,39 5045,16 4922,58 4879,75 4852,18

0

20000

40000

60000

80000

100000

120000

140000

1 25 50 75 100

co
st

l

data cost

smoothness cost

Figure 3.4: Impact of the parameter λ on the resulting cost values. Data cost refers to
the first sum of Equation 3.2, smoothness cost to the second one.

3.1.2 Photo undistortion
An essential part of the labeling process is the projection of triangles into the photos so
that the corresponding image material needed for texturing is found. It is important that
the distortion parameters of the camera are correctly incorporated into the projection,
otherwise an inaccurate texturing of the model is the result. During our labeling exper-
iments, we were faced with different types of distortion models. Obviously, the Riegl
company uses a different distortion model than Adam Technology. Because the undis-
tortion of the photos is important to ensure an adequate labeling result, we will provide
their methods for projection with incorporated image undistortion in the following.

3.1.2.1 Riegl

The Centcelles cubiculum model that we already showed in figures in prior sections was
digitized using a Riegl laser scanner and a DSLR. There is also a software package that
is shipped with every terrestrial Riegl laser scanner, called RiScan Pro. This software
package is then used for managing of the data that is gathered during the scans. With
every new scan project, an XML-based project file is generated that contains informa-
tion about all the scan positions, taken photos and also the distortion parameters of the

23



used camera(s). The used projection method is well documented in a file that is gener-
ated in conjunction with every project file. This file is the document type definition for
the project file. The projection method and the way how the distortion parameters are
incorporated are similar to the projection method that is implemented in the OpenCV
library.

The internal parameters of the camera are contained in the camera matrix A, which
is shown in Equation 3.3.

A =

fx 0 cx
0 fy cy
0 0 1

 (3.3)

The parameters fx and fy are the focal length of the camera in pixels in horizon-
tal and respectively vertical direction. Note that the cells on the sensor of the camera
corresponding to the pixels of the taken image do not have to be perfect squares. The
parameter fx refers to the width of the pixels on the sensor, while the parameter fy refers
to the height. Therefore, fx and fy do not have to be the same value. cx and cy are the
coordinates of the principal point in pixels with respect to the upper left corner of the
image.

Assuming that a perfect distortion-free camera is used, the homogeneous coordi-
nates (u

′
, v

′
, w

′
)> in pixels resulting from the projection of a point p = (X, Y, Z, 1)>

that is in world space into the image plane of the camera is calculated by the formula
shown in Equation 3.4. u′

v
′

w
′

 = A · [R|t] · p (3.4)

A is the camera matrix that was shown in Equation 3.3. [R|t] is a matrix that results
from concatenating the rotation matrix R ∈ R3,3 and the translation vector t ∈ R3,1. The
matrix [R|t] describes the transformation from world space into the view space of the
camera. The inhomogeneous coordinates (u, v)> in pixels of the projected point inside
the image is then simply computed by division of u′ and v′ by w′ , so that (u, v)> =
(u

′
/w′ , v

′
/w′).

In practice, lenses are never distortion-free. Therefore, we have to take distortion
into account. In RiScan Pro, there are all in all six coefficients to model the distortion.
The four coefficients k1, k2, k3 and k4 account for the radial distortion, while the two
coefficients p1 and p2 account for the tangential distortion. The radial coefficients are
used a bit different than in the underlying OpenCV model.

The calculation of (ud, vd), which are the coordinates of a projected point with in-
corporated distortion, is then done by the formulas shown in Equation 3.5 and Equation

24



3.6. The variables x and y are calculated by (u−cx/fx) and (v−cy/fy) respectively.

ud = u+x·fx ·(k1 ·r2+k2 ·r4+k3 ·r6+k4 ·r8)+2·fx ·x·y ·p1+p2 ·fx ·(r2+2·x2) (3.5)

vd = v+y ·fy ·(k1 ·r2+k2 ·r4+k3 ·r6+k4 ·r8)+2·fy ·x·y ·p2+p1·fy ·(r2+2·y2) (3.6)

The last missing parameter that has to be explained is r2. In RiScan Pro, there are
two versions of calculating r2. In order to know which version has to be used, the
version tag has to be evaluated for the corresponding camera calibration in the project
file. If the version tag is 0 or it is missing at all, r2 is calculated by x2+y2. If the version
tag is 1, r2 is calculated by arctan(

√
x2 + y2). Riegl proposes that the second version

gives better results when using lenses with very large field of view.

3.1.2.2 Adam Technology

As already stated in Section 1, beside laser-scanning also photogrammetry in the form
of the commercial software 3DM Analyst by Adam Technology is used for digitizing of
archaeological items in the Terapoints project. In contrast to the Riegl company, where
the camera model used for projection is fully documented, there is no such documenta-
tion from Adam Technology for the models produced by 3DM Analyst. In a first step,
we tried to use the same projection methods and undistortion as it is done in RiScan
Pro. This, however, led to catastrophic results. Then we tried the approach that is also
proposed in [1], which delivered satisfactory labelings. Because there is no documen-
tation from Adam Technology for the used camera model and undistortion methods
implemented in the 3DM Analyst software, we use exactly the same camera model and
undistortion methods that are proposed in [1] for the models produced by 3DM Analyst.
We will provide these methods in the following.

In order to find the image coordinates in pixels of a point p = (X, Y, Z, 1)> that is
in world space, it is first only transformed into view space using Equation 3.7. This is in
contrast to RiScan Pro, where the point in world space is directly transformed into pixel
coordinates. [R|t] ∈ R3,4 is again the matrix that transforms the point from world space
into the view space of the camera.

pview =

xview

yview

zview

 = [R|t] · p (3.7)

25



In the appproach proposed in [1], the point is then transformed into image space in
millimeters with respect to the image center because all the distortion parameters are
incorporated in this space. The transformation is done using Equation 3.8.

pimage =

(
ximage

yimage

)
= −c ·

(
xview/zview

yview/zview

)
+

(
x0

y0

)
(3.8)

In Equation 3.8, c is the focal length in millimeters. The minus sign in front of c
is needed because in the projection model proposed in [1] the origin of the image is
assumed to be in the lower left corner. Therefore, we are looking in the negative Z-
direction of the coordinate system of the camera. This is different to RiScan Pro, where
the origin of the image is assumed to be in the upper left corner. The values x0 and
y0 in Equation 3.8 are the coordinates of the principal point of the camera sensor in
millimeters with respect to the lower left corner of the image sensor.

Now the distortion parameters are taken into account. At first, the overall distor-
tion is calculated. Then, the image point pimage is adapted using this distortion. In this
distortion model, there are four coefficients k1, k2, k3 and k4 accounting for the ra-
dial distortion. The calculation of the radial distortion is shown in Equation 3.9. The
calculation of the needed parameter r2 is shown in Equation 3.10.

δradial = (k1 · r2 + k2 · r4 + k3 · r6 + k4 · r8) · pimage (3.9)

r2 = (voffset)
> · voffset, with voffset = pimage −

(
x0

y0

)
(3.10)

The tangential distortion is modeled using two coefficients p1 and p2. The calcula-
tion is shown in Equation 3.11.

δtangential =

(
p1 · (r2 + 2 · (ximage)

2) + 2 · p2 · ximage · yimage

p2 · (r2 + 2 · (yimage)
2) + 2 · p1 · ximage · yimage

)
(3.11)

The affinity distortion is modeled using two coefficients b1 and b2. The calculation
is shown in Equation 3.12.

δaffinity =

(
b1 · ximage + b2 · yimage

0

)
(3.12)

The final image distortion vector δ is now just the sum of all the single distortion
vectors, so that δ = δradial + δtangential + δaffinity.

The undistorted image coordinate in millimeters with respect to the image center is
now computed by the equation shown in Equation 3.13.

pundistorted_mm =

xundistorted_mm

yundistorted_mm

zundistorted_mm

 = pimage − δ (3.13)

26



Now we can compute the final undistorted coordinates of the projected point in
pixels with respect to the upper left corner of the image (see Equation 3.14). The pa-
rameters pixWidth and pixHeight refer to the width and respectively to the height of a
pixel on the image sensor of the camera in millimeters. The parameters W and H refer
to the width and respectively to the height of the photo in pixels.

pundistorted_pixels =

(
xundistorted_mm/pixWidth + W/2

H/2− yundistorted_mm/pixHeight

)
(3.14)

3.1.2.3 Conclusion

In the proposed methods for projection and undistortion, we only explained how to find
the image coordinates of a single point in space considering distortion. Certainly, it
is possible to account for the distortion during the labeling process, to find the correct
texture coordinates for the projected points, but using the original undistorted photos
for texturing of the final model. A disadvantage of this approach is that only the lin-
ear distortion is considered during the visualization. Since the texture coordinates are
interpolated linearly along the triangles of the mesh, the nonlinear distortion is not con-
sidered. Therefore, we first generate the undistorted versions of the original photos, and
then do the labeling using these undistorted photos.

So far, we know how the problem of labeling can be formulated so that the quality
of the image material for every face as well as the transitions between the faces are
considered. Further, we know how the geometry can be projected into the photos so that
the distortion is considered. Now the question is, how a minimization of Equation 3.2
can be calculated, or at least approximated. Lempitsky and Ivanov propose a method
called α-expansion Graph Cuts. This method is explained in the following section.

3.1.3 α-expansion Graph Cuts
In 2001, Boykov et al. introduced a method for the fast approximate energy minimiza-
tion via graph cuts [5]. In their paper, they describe the algorithm only for the labeling
of image pixels. Nonetheless, it can easily be adapted to meshes, as we will see in
this section. Because the notation used in [5] is different to ours, we will stick to our
notation for consistency to explain their approach.

A big problem of finding a global minimum of an arbitrary energy function is that
also the minimization of energy functions following a simple pattern tends to be NP-
hard. This was also proved in [5]. Therefore, the goal is finding a local minimum of the
energy function shown in Equation 3.2. A labeling vector M is a local minimum of the
energy function E(.) if

E(M) ≤ E(M′) for any M′ “near to” M. (3.15)

27



M′ refers to a labeling that can be reached by a single move from M. In the approach
of Boykov et al., such a move is either an α-expansion or an α-β-swap. Since we only
considered the version using α-expansions, we will only describe this part. For the
explanation what exactly an α-expansion is, they consider a labeling as a partition of
the labeled elements into groups with the same label. In our case, this would be as
follows. A particular labeling, corresponding to a labeling vector M, can be viewed as
a partition of all faces of the model. This partition is defined as F = {F i|1 ≤ i ≤ N},
where F i is the subset of faces with the photo P i assigned as their label. For a particular
label Pα, a move from the partition F to another partition F′ is called an α-expansion if
Fα ⊂ Fα′ and F l′ ⊂ F l for any label P l 6= Pα. In simple terms, an α-expansion leads
to an increase of the area in the mesh textured by Pα. Every face that was labeled by
Pα does not change, but at least one face that was not labeled by Pα gets Pα assigned
as its new label. In Algorithm 3.1, the basic structure of the α-expansion algorithm is
outlined.

input: Set of faces {F1, ..., FK}, set of labels {P 1, ..., PN}
1 Start with an arbitrary labeling vector M;
2 success← true;
3 while success == true do
4 success← false;
5 foreach label Pα ∈ {P 1, ..., PN} do
6 Find M̂ = arg min E(M′) among M′ within one α-expansion of M;
7 if E(M̂) < E(M) then
8 M← M̂;
9 success← true;

10 end
11 end
12 end
13 Return M;

Algorithm 3.1: Basic structure of the α-expansion algorithm, as it is described in [5]

Boykov et al. call the steps 4 to 11 a cycle, the steps 6 to 10 an iteration. In every
cycle, the algorithm iterates over all labels in a predefined or an arbitrary order. In every
iteration, the goal is to find a labeling vector M̂, for which the energy is smaller than for
the current labeling vector M. Only when at least one better labeling vector was found
during a cycle, the algorithm resumes with another cycle. If no better labeling vector
can be found during a cycle, the current labeling vector M is returned.

With the Algorithm 3.1, we have a powerful tool to calculate a local minimum of
the energy function shown in Equation 3.2. The remaining problem is finding the opti-
mal α-expansion in step 6 for a given labeling vector M. As a solution, Boykov et al.

28



propose a method using graph cuts [5]. In order to explain this approach, it is neces-
sary to understand the principles of graph cuts. Therefore, we will provide the essential
information about graph cuts, as it is also done in [5], now.

Graph Cuts. Let G = 〈V , E〉 be a weighted graph consisting of a set of vertexes
V and a set of edges E , so that every edge e ∈ E has a weight assigned. In order
to perform a graph cut, it is important that exactly two different vertexes vα, vᾱ ∈ V
are considered that are called terminals. A cut C ⊂ E is a subset of edges so that no
path exists between the two terminal vertexes vα and vᾱ. Further, this subset has to be
minimal, which means that the addition of a single edge would establish a path between
the terminals. The result of a cut of a graph G is a graph G(C) = 〈V , E − C〉. The cost
of a graph cut, defined as |C|, is simply the sum of the assigned weights of all the edges
e ∈ C. Let C = {C | C is a cut of G separating vα and vᾱ} be the set of all possible graph
cuts separating the two terminals vα and vᾱ. The minimum cut problem is finding the
cut Cmin = arg min |C| among all graph cuts C ∈ C. Boykov et al. showed and proved
in [5] that finding the optimal α-expansion in step 6 of Algorithm 3.1 is equivalent to
finding the minimum cut of an appropriately defined two-terminal graph. The layout of
this graph will be explained in the following.

Constructing an appropriate graph. For the explanation how a graph appropriate
to encode the layout of a particular mesh must look like, we will consider the small
mesh illustrated in Figure 3.5. It consists of only four faces. Every face has a label
assigned. In the figure, Fi(P j) denotes that the label P j is assigned to the face Fi.

F1(P1)

F2(P2)

F3(P2)

F4(P    a)

Figure 3.5: Example mesh with three different labels assigned to the triangles. Fi(P j)
denotes that the label P j is assigned to the face Fi. The label Pα refers to the current
label of step 6 of Algorithm 3.1.

In Figure 3.6, the graph corresponding to the mesh in Figure 3.5 is illustrated. The
layout of this graph is directly related to the current labeling vector M and the current
label Pα. Therefore, the layout changes after every iteration, because the current label
Pα changes. In the graph, there are different types of nodes. For every face in the mesh,
there is a node representing this face in the graph. In Figure 3.6, these nodes are illus-
trated by the triangles denoted by F1 to F4. Further, there are two nodes representing the
mentioned terminal nodes vα and vᾱ. For every neighboring pair of faces that is labeled

29



differently with respect to the current labeling vector M, a further node is introduced.
In [5], such a node is called an auxiliary node. In Figure 3.6, there are two auxiliary
nodes denoted by a and b. Boykov et al. differentiate between two types of edges in the
graph, called t-links and n-links [5]. Every node corresponding to a face is connected to
both terminal nodes by one t-link each. A face Fi is therefore connected to the terminal
node vα via t-link tvαFi and to the terminal node vᾱ via t-link tvᾱFi . Two neighboring and
equally labeled faces Fi and Fj are connected by an n-link e{Fi,Fj}. The introduction of
an auxiliary node a{Fi,Fj} is a little bit more sophisticated. Consider two neighboring
faces Fi and Fj that are differently labeled. Then, the introduced auxiliary node a{Fi,Fj}
is connected via t-link tvᾱa to the terminal node vᾱ, via n-link e{Fi,a} to the face node Fi
and via n-link e{a,Fj} to the face node Fj .

v
a

v
a

a b

t
F1

F1

F2

Fa

F1 

F2 
F3 

F4 

v
a t

F4

v
a

t
F2

v
a

t
a

v
a t

F2

v
a t

F3

v
a

e{F1,a} e{F2,F3}e{a,F2}

∞

t
F3

v
a

e{F3,b} e{b, F4}

t
F1

v
a t

b

v
a

Figure 3.6: Graph that corresponds to the mesh shown in Figure 3.5. The layout is based
on the graph shown in [5].

For two neighboring faces, the possible cuts are shown in Figure 3.7. In the top row
of the figure, the possibilities to separate the terminal nodes for equally labeled faces
are shown. In the bottom row, the valid cuts for differently labeled faces are shown.
Obviously, for every face node Fi, one of the t-links tvαFi or tvᾱFi has to be part of the cut C
in order to receive a valid cut. A t-link tvαFi ∈ C states that the face Fi gets the label Pα.
A t-link tvᾱFi states that the label of face Fi is not changed. The weights that are assigned
to the edges of the graph are shown in Table 3.1. Boykov et al. show in their paper that
the lowest energy labeling within a single α expansion move from the current labeling
vector M is M̂ = MC , where C is the minimum cut on Gα [5].

30



Fk

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

e{Fi,Fj}

t
Fj

v
a

cut

(a)

Fk

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

e{Fi,Fj}

t
Fj

v
a

cut

(b)

Fk

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

e{Fi,Fj}

t
Fj

v
a

cut

(c)

Fk Fl

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

e{Fi,a}

t
Fj

v
a

a
e{a,Fj}

cut

t
a

v
a

(d)

Fk Fl

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

e{Fi,a}

t
Fj

v
a

a
e{a,Fj}

cut

t
a

v
a

(e)

v
a

v
a

Fi 
Fj 

t
Fi

v
a

t
Fi

v
a t

Fj

v
a

t
Fj

v
a

a
e{a,Fj}

cut

t
a

v
a

e{Fi,a}Fk Fl

(f)

Figure 3.7: Possible cuts for equally labeled (a, b, c) and differently labeled faces (d, e,
f). The illustrations are based on the ones shown in [5].

edge weight for
tvᾱFi ∞ Fi ∈ Fα
tvᾱFi wmii Fi /∈ Fα
tvαFi wαi Fi ∈ {F1, ..., FK}

e{Fi,a{Fi,Fj}} λ · wmi,αi,j

e{a{Fi,Fj},Fj} λ · wα,mji,j {Fi, Fj} ∈ N , mi 6= mj

tvᾱa λ · wmi,mji,j

e{Fi,Fj} λ · wmi,αi,j {Fi, Fj} ∈ N , mi = mj

Table 3.1: Weights that are assigned to the edges for the minimum cut problem, as it is
shown in [5].

31



object surface

camera

image plane

(a) Exposure

reconstructed
object surface

virtual camera

image plane

(b) Back-projection

Figure 3.8: Incorrectly back-projected image information when no occlusion detection
is carried out. The taken image (a) is back-projected onto surface areas that to do not
correspond to the image information (b).

3.1.4 Occlusion Detection
With the approach of Boykov et al. [5] that we explained in the last section, we have
a powerful tool for (approximately) solving Equation 3.2 in order to come to a good
labeling result. This is exactly the method for labeling that was proposed by Lempitsky
and Ivanov in [18]. Their approach, however, gets into difficulties when complex ge-
ometry is considered. In their paper, they just show the approach using nearly convex
items like a statue head and a model of the earth ball. In the fields of cultural heritage,
however, often far more complex items have to be textured. A missing link in the ap-
proach of [18] is occlusion detection. Without occlusion detection, it is possible that
wrong image material is back-projected onto the digitized model. This issue is shown
in Figure 3.8 for a very simplistic scene.

The scene consists of an object that changes its color in the area that is invisible
to the camera. In Figure 3.8a, the exposure of the photo is visualized. The image
material in the left half of the photo corresponds to the red part of the object. In the
right half of the photo, the image material corresponds to the blue part of the object.
When no occlusion detection is used for the back-projection, no calculations are carried
out whether there was an object in between the camera and the area of interest or not.
Without occlusion detection, a particular face is textured by a photo when just the two
following criteria are met: The face must be observed from the front and the projection
of the face must be entirely inside the photo. If these are the only criteria that decide
whether a particular face should be textured by a photo or not, the issue shown in Figure
3.8b can arise. In the figure, the blue image material of the photo is back-projected onto
all the faces observed from the front and lying entirely inside the photo. We were first
faced with the mentioned issues when we were labeling a model of a cubiculum of the
Domitilla catacombs. However, we can not show images of this model for copyright

32



reasons. What we can say is that the results were absolutely unacceptable because
of the incorrectly textured faces. In the model, faces in the inside of the cubiculum
received color information from photos that just contained image material of an exterior
wall. Therefore, we introduce an accurate occlusion detection method into the proposed
approach of [18].

Occlusion detection is necessary to decide whether or not parts of a photo corre-
spond to a particular surface area of the digitized object. There are different methods
for occlusion detection available. Callieri et al. calculate depth masks for the photos [6].
The occlusion detection for a particular triangle-photo-pair is then simply performed by
projection of the triangle into the photo. If the depth values of the triangle are bigger
than the values in the depth mask, there is an occlusion and the photo can not be used
for texturing of the triangle. The accurateness of this approach is directly linked to the
resolution of the depth masks, which is usually the same as the resolution of the pho-
tos. When texturing very dense meshes or when a triangle is observed under a very flat
angle, it can happen that two neighboring vertexes are mapped onto the same pixel of
a particular depth map. It is therefore possible that a neighboring vertex overwrites the
depth value of a particular vertex for this pixel because of its smaller distance to the
viewpoint. This depth value would indicate an occlusion of the vertex and therefore of
the triangle in the photo. To be independent of the resolution of the photos, we use a
conservative geometric approach.

Consider a triangle Fi of the model. The most naive way to decide whether a par-
ticular photo P j really contains the image material needed to texture Fi, and not the
colors of an occluder, would be to iterate over all the other triangles. For every of these
triangles, one would have to evaluate if it is between the position of the camera cor-
responding to P j and the triangle Fi. If the triangle is in between, it occludes Fi and
therefore P j can not be used to texture Fi. This approach sounds easy, but the com-
plexity is unacceptable. To do such an occlusion detection for the whole set of photos
{P 1, ..., PN}, one would need to iterate over all the photos. Then, for each of these
photos, an iteration over the whole set of triangles {Fj ∈ {F1, ..., FK}, Fj 6= Fi} would
be necessary for every single triangle Fi the occlusion detection is carried out for. The
overall complexity would be therefore O(NK2).

To reduce the complexity, we introduce an octree into the occlusion detection algo-
rithm to reach a complexity of O(NK log (K)). This octree is used to quickly filter
out all the triangles that do not come into consideration for an occlusion of a particular
triangle. The octree extents directly correlate to the axis aligned bounding box of the
model. The triangles of the model are not grouped together, but are directly inserted into
the octree one by one. We introduced a parameter into our application that acts as upper
threshold for the cells of the octree. Only when all three side lengths of a particular
cell are smaller than this threshold, no further division into octants is performed. These
small cells are the leaves of the octree and store the triangle indexes of those triangles

33



that lie (partially) inside. In our performance tests we found that approximately the di-
ameter of an average triangle of the model is a good value for the upper threshold (see
Section 5.2.1.3 for details). A triangle is not always positioned in space, so that it fits
entirely into one of the leaf cells. For those cases, more than just one leaf cell holds the
index of a particular triangle.

Our occlusion detection algorithm is based on the view frustum culling algorithm
proposed in [21]. For the actual occlusion detection, we introduce two geometrical ob-
jects. The first of these objects we called triangle sight frustum. Such a triangle sight
frustum is used for the calculation whether a particular triangle of the mesh is occluded
by another triangle concerning a particular photo. The second of the introduced geo-
metrical objects we called edge sight triangle, which is used in a similar way, but is
only used for the detection of an occlusion of an edge of the mesh. These geometrical
objects and their usage will be explained in the following sections.

3.1.4.1 Triangle sight frustum

The triangle sight frustum is a geometrical object defined by four points in 3D space.
Three of these points are defined by the vertexes of the triangle for which an occlusion
shall be calculated. The fourth point of the triangle sight frustum is defined by the
position of the camera that corresponds to the photo under consideration. The four
points span four triangles. The result is a volume that looks more like a pyramid than
a frustum. Because of the analogy to a conventional camera view frustum, we chose
the word “triangle sight frustum” though. In Figure 3.9 such a triangle sight frustum is
illustrated.

camera position

v

v

v

triangle sight frustum

mesh

Figure 3.9: Triangle sight frustum used for occlusion detection concerning a single
triangle of the mesh.

The principle of the triangle sight frustum is simple. Let Fi be a triangle of the model
for which an occlusion in the photo P j shell be detected and let T ji be the resulting

34



triangle sight frustum. Then, Fi is occluded in P j if any other triangle Fk 6= Fi of the
mesh intersects with T ji . An intersection in this context only exists if at least a part of
the occluding triangle Fk is inside of T ji . If any triangle Fk 6= Fi only touches one of the
triangles of T ji , no intersection occurs. If already a touch of the triangles of T ji would
be classified as an intersection, the neighbor triangles of Fi would always occlude Fi,
since they share an edge with Fi and therefore they always intersect with T ji .

In order to rapidly find the faces of the model that even come into consideration for
an occlusion of Fi in P j , the octree is taken into account. First, T ji and the box rep-
resenting the whole octree are tested for intersection. In principle, this first test can be
omitted, since the octree measurements are defined by the axis aligned bounding box of
the model and therefore there is always an intersection between T ji and the box repre-
senting the whole octree. After this first intersection test, T ji and the boxes representing
the eight child nodes of the root of the octree are tested for intersection. Depending
on the structure of the model, this is the first part of our occlusion detection algorithm
where a bigger part of the set of triangles can be filtered out immediately by a simple
intersection test between T ji and some axis aligned boxes. In contrast to the mentioned
naive approach, where an intersection test is needed for every triangle Fk 6= Fi, here
we can exclude a bulk of triangles just by testing T ji and some axis aligned bounding
boxes for intersection. If T ji intersects with a cell of the octree, T ji and all the cells
representing the child nodes of the current cell are tested for intersection. This process
is continued in a recursive way until either all parts of the octree are filtered out, and no
occlusion is detected, or some cells representing the leaf nodes of the octree storing the
triangle indexes remain. Before we will show how the intersection test between T ji and
the triangles in the remaining octree cells is performed, we will show the very efficient
intersection test for the axis aligned boxes representing the cells of the octree.

We define the normal vectors of the four triangles of the triangle sight frustum to
point into the inside of the frustum. Then, a point is inside the frustum if it is in front of
all the triangles with respect to their normals. Therefore, if this point is behind just one
of the triangles, it is definitely outside the whole frustum. When we do not exactly want
to know if the point coincides with one of the triangles, but only whether it is in front
or behind, the triangles can be treated as planes. In our case, we do not have points for
testing, but axis aligned boxes. In order to test such a box and a plane for intersection,
it would be therefore sufficient to find the vertex of the box whose signed distance to
the plane is maximum. This vertex is called the positive vertex, or just p-vertex [21].
If the p-vertex of the box is behind the plane, the whole box is behind the plane. The
vertex, whose signed distance to the plane is minimum, is the negative vertex, or just
n-vertex [21].

In Figure 3.10, the possible relations of a box and a plane are illustrated. The green
box is completely behind the plane, since its positive vertex is behind the plane. The
yellow box gets intersected by the plane, since its positive vertex is in front of it, but

35



the negative vertex is behind it. Because both the positive and the negative vertex are in
front of the plane, the red box is completely in front of it.

plane

n
p-vertex

n-vertex

p-vertex

n-vertex

p-vertex

n-vertex

Figure 3.10: Possible relations of a box and a plane. The green box is behind the plane,
the yellow box gets intersected and the red box is entirely in front of the plane. The
illustration is based on the one shown in [21].

In order to test a triangle sight frustum and an axis aligned box for intersection, we
can therefore just find the p-vertex of the box and test it with the planes defined by
the triangles of the frustum for intersection. If the p-vertex is behind just one of the
planes, the box is definitely outside. If the p-vertex is in front of all the planes, the box
is at least partly inside of the frustum. Using the n-vertex, we could further evaluate
if the box is partly or entirely inside the triangle sight frustum. Since in our case it is
unimportant whether a box representing a cell of the octree is entirely or only partly
inside the triangle sight frustum, we only need the p-vertex. The calculation of the p-
vertex, given the two vertexes defining the axis aligned box and the normal of the plane,
is shown in Algorithm 3.2.

When all parts of the octree that do not intersect with T ji are filtered out, there may
remain some cells of the octree representing some leaf nodes. When no parts remain,
there is no occlusion and Fi can be textured by P j . The triangle indexes stored in the
remaining cells correspond to triangles of the mesh for which an intersection with T ji
is possible. In order to perform a fast intersection test for all these possibly occluding
triangles, we first test if any vertex of these triangles is inside of T ji . If this is the case, Fi
is definitely occluded and can not be textured by P j . If no vertex is inside, an occlusion
is still possible. A simple test between the vertexes of the triangle under consideration

36



Input: Axis aligned box box, plane normal n

1 p← (box.xmin, box.ymin, box.zmin);
2 if n.x ≥ 0 then
3 p.x← box.xmax;
4 end
5 if n.y ≥ 0 then
6 p.y← box.ymax;
7 end
8 if n.z ≥ 0 then
9 p.z← box.zmax;

10 end
11 Return p;
Algorithm 3.2: Calculation of the positive vertex p of an axis aligned box with respect
to a plane with normal vector n.

and the planes defined by the triangles of T ji is insufficient. Only a real triangle-triangle
intersection test can give insight into the situation then. For this we use the approach of
Möller [26]. If there is an intersection between one of the triangles T ji and any triangle
of the remaining octree cells, an occlusion of Fi exists and P j can not be used to texture
the triangle Fi. If there is no intersection, there is no occlusion and Pj contains the
correct image material to texture Fi.

The whole occlusion detection algorithm for a particular triangle Fi and a photo P j

is shown in Algorithm 3.3.
Occlusion detection using the triangle sight frustum is needed when calculating wmii

in Equation 3.2. This is the cost to texture the triangle Fi with the corresponding image
region in photo Pmi . When the occlusion detection algorithm detects an occlusion of Fi
in Pmi , the maximum value for wmii has to be estimated, indicating that Pmi can not be
used to texture Fi.

3.1.4.2 Edge sight triangle

While a triangle sight frustum is used to detect an occlusion of a triangle, an edge sight
triangle is used to detect the occlusion of an edge. Consider an edge Eij of the mesh
that is shared by the two triangles Fi and Fj , and a photo P k used for texturing. Then,
the corresponding edge sight triangle Rk

ij is defined by the two vertexes that correspond
to the edge Eij , and the position of the camera corresponding to P k. In Figure 3.11 an
edge sight triangle is illustrated.

In order to detect an occlusion ofEij in P k, the corresponding edge sight triangleRk
ij

is tested for intersection with all the triangles of the mesh that come into consideration
for an intersection. To quickly filter out all the triangles that do definitely not intersect

37



Input: Octree node node, photo P j , triangle Fi for which an occlusion in Pj shall
be detected, triangle sight frustum T ji

1 if T ji intersects node.boundingBox then
2 if node is a leaf node then
3 foreach triangle index k stored in node do
4 if any vertex v of triangle tk is inside T ji then
5 Return OCCLUSION;
6 end
7 if triangle tk intersects with any triangle of T ji then
8 Return OCCLUSION;
9 end

10 end
11 Return NO_OCCLUSION;
12 else
13 foreach child node c of node do
14 result← Return value of Algorithm 3.3 using c, P j , Fi and T ji as

arguments;
15 if result = OCCLUSION then
16 Return OCCLUSION;
17 end
18 end
19 end
20 else
21 Return NO_OCCLUSION;
22 end
Algorithm 3.3: Our algorithm for detection of occluded triangles using an octree.

with Rk
ij , the octree is used again. This is done in a similar way to the approach that

was used for the triangle sight frustum. For the intersection test betweenRk
ij and an axis

aligned box representing a node of the octree, the p-vertex of the box is calculated. If the
p-vertex is behind Rk

ij with respect to its normal, there is no intersection. If the p-vertex
is in front of Rk

ij , a second test has to performed to decide whether also the n-vertex is
in front of Rk

ij . When the p-vertex and the n-vertex are lying on different sides of Rk
ij ,

the intersection tests need to be continued with all the boxes representing the octants
of the current node of the octree. When the leaf nodes of the octree are reached, a full
triangle-triangle intersection test is performed using the approach of Möller [26].

In contrast to a triangle sight frustum Tmii that is used in the calculation of the data
cost wmii for a triangle Fi and a photo Pmi , there are two edge sight triangles Rmi

ij and
R
mj
ij needed in the calculation of the smoothness cost wmi,mji,j for two adjoining triangles

38



v

v

camera position

edge sight triangle

mesh

Figure 3.11: Edge sight triangle used for occlusion detection concerning a single edge
of the mesh.

Fi and Fj and two photos Pmi and Pmj . When just one of these edge sight triangles
intersects with any triangle of the mesh, the maximum value forwmi,mji,j has to estimated,
indicating that the color difference between the adjoining faces is maximal.

Discussion. With our approach for occlusion detection, it is now possible to map
a set of registered photos to very complex objects that are far away from convexity.
The labeling process is fully automatic, only the parameter λ in Equation 3.2 has to be
chosen to either prefer high quality of image material or smooth transitions between
regions that receive color from different photos.

Using the octree for fast occlusion detection, we also got a satisfactory labeling
result for the Domitilla cubiculum model which was inaccurately labeled without oc-
clusion detection. Unfortunately, we can not show an image of the model for copyright
reasons.

A remaining problem in the approach of Lempitsky and Ivanov [18] are the men-
tioned camera registration errors that lead to visible misalignments of the projected
photos in the textured model.

3.1.5 Shift Vectors
To account for the camera registration errors, we consider the approach of Gal et al. [13],
which was also described in Chapter 2. In the approach, shift vectors are introduced
into the labeling procedure. Instead of just using the photos themselves as labels, each
label is a tuple consisting of a particular photo and a shift vector. A triangle with such
an assigned label is then textured by the image region that results from projecting the
triangle into the photo, and shifting the projection along the shift vector inside the photo.

In our labeling experiments using this approach, we got satisfactory as well as catas-

39



(a) (b) (c)

Figure 3.12: Illustration of the results using the labeling approach of Gal et al. [18]
with introduced shift vectors to account for camera registration errors. (a) Without shift
vectors. (b) 2 levels (3 pixels). (c) 6 levels (63 pixels).

trophic results. This is shown in Figure 3.12. The used model is a small section of the
Centcelles cupola. The left side is textured by a different photo than the right side. In
Figure 3.12a, the result of the labeling without shift vectors is visualized. In the figure,
small misalignments between the photos are visible. Especially the horizontal lines do
not perfectly adjoin. For the labeling result shown in Figure 3.12b, the approach of Gal
et al. with two levels of the image pyramid of the photos was used. With two levels,
a maximum camera registration error of 3 pixels can be accounted for. Obviously, the
labeling result is better than without shift vectors. What we observed when using the
approach of Gal et al., was that the labeling result is very sensitive to the choice of the
maximum number of levels of the image pyramids. When we labeled the model using
the approach of Gal et al. with six levels of the image pyramid of the photos, the result
was not satisfactory. This issue is shown in Figure 3.12c. The misalignments of the
photos became even bigger. When using the approach of Gal et al., it is therefore very
important that the number of levels directly correlates to the maximum magnitude of
camera registration errors.

Beside the problem with the adequate choice of number of levels of the image pyra-
mids of the photos, the approach of Gal et al. is only suitable for very small models
with just a few photos. The reason for this is the exploding number of labels. Already
in the first iteration, the number of labels is nine times the number of input photos. In
the absolute worst case, the number of labels then increases by a factor of 9 for every
following iteration. When labeling a model with a huge number of triangles and also a
huge number of photos, the labeling procedure can take a very long time. In our labeling
experiments, we labeled the Centcelles cupola model consisting of more than 4 million
triangles in conjunction with 70 input photos. We chose a maximum level number of
5 to account for a maximum camera registration error of 63 pixels with respect to the

40



input photos. The labeling procedure took about 5 days, and then the result was not
satisfactory anyway because of an inappropriate choice for the maximum number of
levels.

The approach of Gal et al. is based on the assumption, that camera registration errors
are often just translational. Therefore, it would be sufficient to shift the projection of a
particular triangle inside the photos to find its corresponding image material needed for
texturing. Our labeling tests using this approach showed us that this is obviously often
not sufficient. An option could be to assign the shift vectors not to the triangles, but
only to the edges or to the vertexes of the mesh. When the projections of the vertexes of
a particular triangle would be shifted by different vectors, this would also allow scaling
and rotating of the triangle.

3.1.6 Implementation
Our MosaicBuilder is implemented in C++. For all image operations, we use the
OpenCV library in the version 2.3. In Figure 3.13, an overview of the labeling pro-
cedure as it is performed by our labeling application is given. At the moment, our
application only supports OBJ as the format for triangulated models. Both the input
model and the labeled output model are restricted to the OBJ format. The photos can be
in any format that is also supported by the OpenCV library. When the photos are read
in, they are undistorted and stored in the directory where also the labeled model will be
stored.

After the model is loaded and the undistorted photos are generated, the normal vec-
tors of the triangles of the model are calculated. It is important that the normal vectors
are calculated before the octree is constructed, because they are needed for the fast
evaluation of intersections between the triangles and the cells of the octree.

The octree is constructed in a way so that only the indexes of the triangles are stored
in the leaf nodes. For fast insertion of a triangle into the octree, at first the axis aligned
bounding box of the triangle and the cells of the octree are tested for intersection. This
test is based only on comparisons and requires no further calculations. Only when the
bounding box of the triangle and a particular cell intersect, the triangle itself and the cell
are tested for intersection.

When the octree is constructed, the actual labeling procedure via Markov Random
Field energy optimization is performed. The octree is used for occlusion detection, as it
is described in Section 3.1.

For the actual labeling step, we use the gco-v3.0 library developed by Olga Veksler
and Andrew Delong [5] [17] [4]. This library implements the α-expansion Graph Cuts
algorithm that we described in an earlier section.

41



. . .

Loading of 3D model and registered photos
+ Generation of undistorted photos

Calculation of triangle normals

Constructing of the octree

Triangulated model Set of registered photos

Labeled model

Labeling via MRF approach
using octree for occlusion detection

. . .

Set of undistorted photos

Figure 3.13: Overview of the labeling procedure as it is performed by our Mo-
saicBuilder.

3.1.7 Issues
Regardless of which value is chosen for λ in Equation 3.2, or if occlusion detection
is performed or not, in practice there remain seams in the model where regions that
get color information from different photos adjoin. In Figure 3.14, those seams are
shown for the Centcelles cupola model that was textured using our MosaicBuilder. As
already mentioned, these seams arise because of the different lighting situations during
the exposure of the photos. For a high-quality model, those seams have to be handled.
Because a manual editing as it was done by the graphic artist until this thesis was in
progress is unacceptable, we will show our automatic approach for leveling in Section
3.2.

42



Figure 3.14: Remaining seams in the model that was textured using our MosaicBuilder.

3.2 Leveling – PoissonLeveler

3.2.1 Leveling overview
The result of the labeling procedure described in Section 3.1 is a labeling vector M that
defines a mapping of the set of triangles of the model onto the set of photos used for
texturing. If the labeling approach of Gal et al. [13] is used, every label further contains
a shift vector that tells how to shift the projected face inside the assigned photo. What-
ever method is used, we now have a set of connected components {C1, ..., CT}, where
each component consists of a set of connected triangles that receive their color informa-
tion from one particular photo. Assuming that the photos are continuous functions for
each color channel (R, G and B), the mapping of just one color channel of the photos
onto the 3D model with respect to the labeling vector M results in a piecewise contin-
uous function f on the mesh M. Only at the edges where two different components Ci
and Cj adjoin, there are points of discontinuity. What we are looking for in the level-
ing procedure is a piecewise smooth leveling function g that meets the two following
criteria:

1. The magnitude of the gradients of the leveling function g is minimal.

2. The jumps of the leveling function g are equal to the negative jumps of f .

The first criteria is important to preserve the high frequencies of the function f .
The second criteria guarantees that the points of discontinuity are smoothed out at the
edges where two connected components Ci and Cj adjoin. For the leveling using photos
with three color channels (R, G and B), three separate leveling functions have to be
calculated. In the following, we will describe the leveling only for a single channel.

43



(a) (b) (c)

Figure 3.15: Illustration of the leveling procedure on a circle for a single color channel.
Intensity values are encoded by the distance perpendicular to the circle. (a) The original
function f having points of discontinuity (indicated by the radial line segments). (b) The
calculated piecewise smooth leveling function g. (c) Sum of f and g. Discontinuities
are smoothed out while at the same time high frequencies are preserved. The images
are based on the ones shown in [18].

In Figure 3.15, the principle of the leveling procedure for a single color channel is
illustrated.

Our approach for the leveling process is based on the one of Lempitsky and Ivanov
[18]. They calculate the leveling function g only at the vertexes of the mesh and then
interpolate the function values along the edges and triangle surfaces. For the explanation
of their approach, they consider the setM containing all the (i, j)-pairs prescribing that
at least one triangle adjacent to the vertex Vi is part of the connected component Cj . For
each of these (i, j)-pairs, the corresponding leveling function value gji is computed. As
an example, consider a vertex V1 that is part of three connected components C1, C2 and
C3. By definition, the connected components are textured by different photos. When the
vertex V1 is projected into these photos, the intensity values of the pixels V1 is projected
into, may differ. These intensity values define the original texture function f . At V1 we
have therefore three different function values. Similar to the notations in [18], we define
f ji to be the original texture function value at the vertex Vi for the connected component
Cj . In our example we have therefore the function values f 1

1 , f 2
1 and f 3

1 at the vertex V1.
The differences between these function values then lead to the point of discontinuity at
V1. So three leveling function values g1

1 , g2
1 and g3

1 have to be calculated at the vertex V1.
These different leveling function values are necessary to smooth out the discontinuities
at V1.

Similar to [18], we denote L to be the set of (i, j)-pairs prescribing that in the mesh
there is an edge Eij formed by the vertexes Vi and Vj .

44



Now the leveling function g, computed at the vertexes of the mesh, can be approxi-
mated by the minimization of the following least-squares energy function:∑

(i1,j)∈M
(i2,j)∈M
(i1,i2)∈L

(gji1 − g
j
i2
)2 + λ

∑
(i,j1)∈M
(i,j2)∈M

(gj1i − g
j2
i − (f j2i − f

j1
i ))2 (3.16)

The first term of 3.16 approximates the first condition we demanded of the leveling
function g. This condition is the minimality of the magnitude of the gradients. The first
term corresponds to all the edges Ei1i2 in the mesh whose vertexes Vi1 and Vi2 are part
of the same connected component Cj .

The second term of 3.16 approximates the second demanded condition of the level-
ing function g. To ensure smooth transitions at the points of discontinuity, the jumps of
g need to be the negative jumps of f . The second term corresponds to all the vertexes
Vi in the mesh, where two connected components Cj1 and Cj2 adjoin.

Lempitsky and Ivanov recommend a large value for the parameter λ (e.g.100), since
the second term is a hard constraint [18]. Further, they propose the usage of a sparse
solver in order to calculate appropriate values for the variables gji . We also use a sparse
solver in our application. The approach that we use to solve the least-squares problem
is explained in the next section by the means of an example.

3.2.2 Solving the least squares problem
Consider the little mesh shown in Figure 3.16. It consists of four triangles. The left two

g
1
1 g

2
1

g
6
1 g

5
1

g
2
2 g

3
2

g
5
2 g

4
2

V6

V1

V5

V2

V4

V3

C1 C2

Figure 3.16: Example mesh with two connected components C1 and C2 to explain the
leveling procedure. All the values gji correspond to the computed leveling function
values at the vertexes Vi.

45



triangles are textured by one photo, and therefore they are part of the same connected
component C1. The right two triangles are textured by another photo and are therefore
part of another connected component than the left two triangles. In the example, this
connected component is denoted by C2. In the mesh, there are six vertexes V1 to V6.
The vertexes are highlighted by red circles. The black dots correspond to the leveling
function values gji that are computed by solving the least squares problem. Note that
the two edges in the illustration between V2 and V5 correspond to just one physical edge
in the example mesh. C1 and C2 are therefore adjacent areas. For explanation reasons
there are two edges drawn in, because in the least squares problem the physical edge
is considered two times, one time for C1 and one time for C2. The fully expanded
least-squares problem for the example mesh in Figure 3.16 is:

(g1
1 − g1

2)
2 + (g1

2 − g1
5)

2 + (g1
5 − g1

6)
2 + (g1

6 − g1
1)

2 + (g1
1 − g1

5)
2+

(g2
2 − g2

3)
2 + (g2

3 − g2
4)

2 + (g2
4 − g2

5)
2 + (g2

5 − g2
2)

2 + (g2
3 − g2

5)
2+

λ[(g1
2 − g2

2 − (f 2
2 − f 1

2 ))
2 + (g1

5 − g2
5 − (f 2

5 − f 1
5 ))

2]

(3.17)

Now the question is how this term can be minimized. To do this, we will first
take a look at the definition of a least squares problem. All the definitions are taken
from [22]. In a least squares problem, one tries to find g∗, which is a local minimizer
for F (g) = 1

2

∑m
i=1 (fi(g))

2 = 1
2
‖f(g)‖ = 1

2
f(g)>f(g), where f : Rn 7→ Rm, is a

given vector function, and m ≥ n. In particular, it is a linear least squares problem if
the vector function f can be written as f(g) = b −Ag, where the vector b ∈ Rm and
matrixA ∈ Rm×n are given.

For the leveling procedure, we have to solve a linear least squares problem, because
the term shown in 3.17 can be written as f(g)>f(g) with

f(g) =



0
0
0
0
0
0
0
0
0
0√

λ(f 1
2 − f 2

2 )√
λ(f 1

5 − f 2
5 )



−



−1 1 0 0 0 0 0 0
0 −1 0 0 0 0 1 0
0 0 0 0 0 0 −1 1
1 0 0 0 0 0 0 −1
−1 0 0 0 0 0 1 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 1 0 0 −1 0 0
0 0 0 −1 0 1 0 0

0 −
√
λ
√
λ 0 0 0 0 0

0 0 0 0 0
√
λ −

√
λ 0





g1
1

g1
2

g2
2

g2
3

g2
4

g2
5

g1
5

g1
6



(3.18)

46



The solution of the leveling procedure is therefore just finding an appropriate g∗ sat-
isfyingAg∗ ' b. This linear equation system can be solved using standard approaches
like QR factorization. As it was also proposed by Lempitsky and Ivanov in [18], the
usage of a sparse solver is highly recommended. Naturally, the memory consumption
of the matrix A increases quadratically with the number of vertexes in the mesh. The
matrix A corresponding to a mesh with a vertex count of 300,000 would have at least
300,0002 entries. Using double precision (64 bit) for storing the elements, this would
lead to a memory consumption of 670.55 GB.

Discussion With the proposed leveling method, an adequate leveling function can
be calculated up to an additive constant. This additive constant can e.g. be set to an
appropriate value to maintain the mean gray value of the current color channel. One
problem that we observed with the leveling approach of Lempitsky and Ivanov is the
divergence of the leveled color values. When the leveling procedure leads to a range
for the color values of e.g. [−0.37, 1.67], there is no additive constant that would avoid
clamping. Therefore, we adapted the least squares problem of Lempitsky and Ivanov.

3.2.3 Keeping the color values in range
Because of the shown issues, a strategy is necessary to avoid the divergence of the
leveled color values. We decided to adapt the least-squares problem shown in 3.16.
A disadvantage of this least-squares problem is the absence of a term that penalizes
big leveling function values. It only places importance on small differences between
adjacent gji and small color differences between adjoining connected components Ci.

Therefore, we introduce a new term into the least-squares problem so that big lev-
eling function values are penalized. This term can not fully avoid that the leveled color
values exceed the valid range, but we observed a much better behavior using the new
term. Our adapted least-squares problem is shown in 3.19.

∑
(i1,j)∈M
(i2,j)∈M
(i1,i2)∈L

(gji1 − g
j
i2
)2 + λ

∑
(i,j1)∈M
(i,j2)∈M

(gj1i − g
j2
i − (f j2i − f

j1
i ))2 + µ

∑
(i,j)∈M

(gji )
2 (3.19)

Discussion We tested the new term extensively in our leveling experiments. We
observed that the least-squares problem reacts very sensitive to the parameter µ that
controls the contribution of the third term. When a value of 100.0 was chosen for the
parameter λ, a value of 0.01 for µ already brought considerable results. When the
value for µ was chosen too high, the whole leveling procedure completely failed, and
all the gji got a value of 0.0. Nonetheless, when using the third term carefully, and an
appropriate value is chosen for µ, our adapted least-squares problem can deliver better
results than the original approach of Lempitksky and Ivanov proposed in [18]. In Figure

47



(a)

(b)

(c)

Figure 3.17: Comparison of the results of different leveling approaches using a small
part of the Centcelles cupola model. (a) Originally textured model. (b) Approach of
Lempitsky and Ivanov [18]. (c) Our approach with introduced third term into the least-
squares problem of [18] for penalizing of too big leveling function values.

3.17, our approach using the third term for penalizing of too big leveling function values
is demonstrated. The used model is a small part of the Centcelles cupola textured by
three different photos. Relative to the model, the intensity values in each photo increase
from the left to the right side. Originally, we had the problem of diverging color values
in a model of the Domitilla catacombs. For copyright reasons, we can not show the
mentioned issues using screenshots of this model. Therefore, we adapted the photos of
the Centcelles cupola to deliver the same results.

Note the big loss of contrast on the left and right side of the model when there is no
penalizing of big function values (Figure 3.17b). In contrast, when our third term is in-
troduced into the least-squares problem, and big leveling function values are penalized,
the seams are smoothed out while at the same time the contrast of the overall texture is
not lost (Figure 3.17c).

The reason for the divergence of the color values, as it is shown in Figure 3.17b, is
the original texture function f . We observed a diverging behavior when f had nearly the
structure of a sawtooth function (see Figure 3.17a) so that the image intensity increases
along each of the adjoining connected components Ci.

In Table 3.2, the ranges of the intensity values before and after the leveling procedure
for the model shown in Figure 3.17 are shown for each color channel. The values
correspond to normalized intensity values in RGB color space. While the values greatly

48



Original range After approach of [18] After our approach
Red channel [0, 0.976471] [−0.449405, 1.28369] [−0.00177239, 0.963588]
Green channel [0, 0.960784] [−0.467519, 1.29606] [−0.00133750, 0.943179]
Blue channel [0, 0.929412] [−0.456940, 1.34194] [−0.00172197, 0.924188]

Table 3.2: Color ranges before and after the leveling procedure using the approach
proposed in [18] and using our approach with the introduced third term for penalizing
of big leveling function values.

leave the valid range [0, 1] when doing the leveling procedure by solving the least-
squares problem without the third term for penalizing of big leveling function values,
they nearly stay completely in the valid range when the third term is used.

3.2.4 Filtering
In [13], Gal et al. propose the enlargement of every patch in the leveled photos by one
pixel for better filtering results when the underlying model is visualized. In our tests, we
observed visible artifacts at the seams when just a one pixel wide border was calculated
around each patch. This is illustrated in Figure 3.18. The used model is the ground of a
corridor in the Domitilla catacombs. In Figure 3.18a, the unleveled version of the model
is shown. The result when the patches are not enlarged, but only the used regions of the
photos are leveled, is shown in Figure 3.18b. Obviously, unleveled regions are filtered
into the currently used mipmap level used for visualization of the model. When a one
pixel wide border is calculated around each patch, the filtering result is not significantly
better than without the calculated borders. This is shown in Figure 3.18c. Therefore, we
introduce a new method for the calculation of borders for the patches to ensure better
filtering results.

Outline normals Our approach for the calculation of sufficiently wide borders around
the patches in the photos is based on the computation of outline normals. For this, the
set of projected edges of the mesh is found for every patch that forms the outline of
the particular patch. Then, an iteration over the set of outline edges is carried out for
every patch. For each outline vertex, the 2D normal vector inside the photo is calcu-
lated. This normal vector is then scaled to a user-defined length. All the endpoints of
the normal vectors of a particular patch connected together define an area around this
patch. This area is then leveled additionally to the area of the patch. The values of the
leveling function at the endpoints of the computed normal vectors are simply evaluated
by extrapolation. In Figure 3.19, the calculation of outline normals vectors is shown for
three patches in a photo.

Discussion Using our introduced outline normal vectors for the user-defined en-

49



(a)

(b) (c) (d)

Figure 3.18: (a) Original unleveled model. (b) No enlargement of patches. (c) 1 pixel
wide boundary, as proposed in [13]. (d) 20 pixel wide boundary using our outline nor-
mals, yielding much better filtering results

largement of patches delivers significantly better filtering results, as it is shown in Fig-
ure 3.18d. A remaining problem are intersections of regions of the calculated border
of just one particular patch as well as the intersection of calculated borders of two or
more different patches. This can lead to interferences of the leveling function. In future
releases of our leveling application, we will introduce some kind of collision detection
to prevent the interference of two differently leveled regions. Further, we want to im-
prove our scaling approach to be similar to the approach shown in [33]. Similiar to [33],
we think of not just shifting the vertexes of the border along the outline normals, but to
produce three new vertexes for every outline vertex. These vertexes would then ensure
that the shifted edges are parallel to the outline edges.

3.2.5 Issues
The leveling method that was presented by Lempitsky and Ivanov in [18] can deliver
satisfactory results, but only if the input data is of high quality. A big problem are
camera registration errors. These camera registration errors lead to misalignments of
adjoining areas that are textured by different photos. Such misalignments are shown in
Figure 3.20a. The used model is the Domitilla cubiculum. For copyright reasons, we
can not show the entire model, but only this small section where we observed problems

50



P   
 

i

Figure 3.19: Calculation of outline normals and the resulting additionally leveled border
regions for three patches in a photo P i

with camera registration errors. In the figure, the upper part of the model is textured
by a different photo than the lower part. Obviously, the image regions that belong
together do not adjoin, but are shifted apart. Certainly, this is already unacceptable in
the labeled model. Unfortunately, the issues become even worse when leveling comes
into consideration. In the leveling approach proposed in [18], adjoining mesh regions
that are textured by different photos are leveled together at the vertexes of the mesh.
A big problem arises when a vertex receives significantly different colors when it is
projected into the photos belonging to the adjoining mesh regions. As it is shown in
Figure 3.20a, there is a vertex in the middle of the image that receives a red color for
the lower photo, but a significantly different color for the upper photo. When the photos
are leveled together at this vertex, the results are massive color shifts. This is shown
in Figure 3.20b. Obviously, the color the vertex received for the upper photo was a
green tone. The upper photo is shifted towards a red color at the vertex, while the lower
photo is shifted into a green color at the vertex. This extreme color shift is then linearly
interpolated along the triangles the vertex belongs to.

Another issue that is visible in Figure 3.20 is the problem that leveling function
values are only calculated at the vertexes of the mesh, and are then linearly interpolated
along the triangles. Assuming that we have a mesh consisting of very big triangles
relative to the image information, there may be color differences in the photos used for
texturing of adjoining mesh regions, that are not leveled together. This can also be the
case when the camera-to-geometry registration is absolutely perfect.

51



(a) (b)

Figure 3.20: Massive color shifts after leveling a model with huge misalignments of
photos caused by camera registration errors. (a) Labeled model. (b) Labeled + leveled
model.

3.2.6 Implementation
Our PoissonLeveler is implemented in C++. As it is also the case for our MosaicBuilder,
we use OpenCV in the version 2.3 for all image operations. An overview of the leveling
procedure carried out by our PoissonLeveler is shown in Figure 3.21.

First, the labeled 3D model and all the corresponding photos that are used for tex-
turing of the model are loaded. Then, all the connected components Ci are evaluated.
The connected components are sets of adjoining triangles so that each set is textured
by the same photo. Each of these connected components corresponds to a patch when
it is projected into the photo from which the connected component receives its color
information.

In order to enable the user-defined scaling of the patches to ensure better filtering
results, the outline normals are calculated for each patch in every photo. After that, the
linear equation system is constructed. To enable the leveling of huge models, we use
a sparse solver. In our implementation, we use the SparseLib++ library in conjunction
with IML++ [11]. SparseLib++ is a C++ class library that enables the storage of very
sparse matrices in different formats. IML++ is a C++ templated library that delivers
iterative methods for solving of linear equation systems.

The mentioned libraries are then used to solve the linear equation system. As it was
shown in Section 3.2.2, for every vertex of the mesh there have to be as many variables
gji in the linear equation system as there are connected components the vertex belongs
to.

When the leveling function has been calculated, it is added to the original texture.
Therefore, each connected component is projected into its corresponding photo. Each
vertex is projected onto a particular pixel of the photo. The color of this pixel is then
altered according to the leveling function value that was calculated for the projected

52



Loading of 3D model and photos

Evaluation of connected components Ci

Calculation of outline normals for the patches

Labeled model

Calculation of leveling function by solving
a linear equation system

Leveled model

Figure 3.21: Overview of the leveleing procedure as it is performed by our Poisson-
Leveler.

vertex and this connected component. In case of RGB photos, three leveling function
values have been calculated that are used to alter the the three color channels of the pixel.
The pixels along each projected edge are altered by the leveling function values that are
calculated by linear interpolation of the leveling function values that were calculated
for the two vertexes that define the projected edge. All the pixels inside the projected
triangles are then also altered by the linearly interpolated leveling function. Our Pois-
sonLevel does not overwrite the original photos, but generates the set of leveled photos
at a user-defined destination.

53



CHAPTER 4
Manual workflow

In this chapter, we will show the manual workflow of the graphic artist that remains after
the introduction of the applications introduced in Chapter 3. Although these applications
can significantly reduce the work of the graphic artist, in practice they do not always
deliver a perfect result. One reason for this are significantly different lighting situations
during the exposure of the photos. When photos of an outdoor monument are taken at
different times of day, the lighting situation naturally changes because of the different
positions of the sun. This leads to different intensities in the photos. Also a flash
light can not solve the problem, since it can not provide consistent lighting conditions.
Furthermore, a flash light often leads to highlights in the photos. As already mentioned,
visual artifacts like highlights resulting from using a flash light are not handled at all
by our applications. These and other remaining visual artifacts have still to be removed
manually in an image editing application. For this, we implemented applications in
order to simplify the manual workflow of the graphic artist.

In Section 4.1, we will introduce the MaskDrawer, which is our application used
for the generation of alpha masks. These masks are used for indication of areas in the
photos that are used for texturing of the model. We will first talk about the method how
the masks are generated. Then, we will give some insights into the implementation.

In Section 4.2, we will introduce the VT-Tools, which is our application used for
the fast generation of the needed data structures for virtual texturing. Since there al-
ready exist some scripts for this task, we will compare our application and the scripts
throughout the section.

54



4.1 MaskDrawer

4.1.1 Overview
Our first application that we implemented for the improvement of the manual workflow
of the graphic artist is a simple application for mask generation. A mask in this context
is an image with the same resolution as the corresponding photo used for texturing of
the model. Every mask consists only of black and white pixels, it is therefore sufficient
to store them as binary images. A black pixel corresponds to a pixel in the dedicated
photo that is not used for texturing of the model. In contrast, a white pixel corresponds
to a used pixel in the corresponding photo. The masks can be used in any image editing
application as the alpha channel for the corresponding photos.

The essential information of a particular 3D model to generate the masks are the
face indices into the texture coordinates list, the texture coordinates themselves, as well
as the material information to know for every face the photo that is used to texture it.
The indices into the texture coordinates list are important to know which of the texture
coordinates belong together to form a primitive, usually a triangle. Texture coordinates
are normally in the range [0, 1) for both u and v [2] to address the whole area of a
single texture. This enables swapping of textures with different resolutions without
the need to change the texture coordinate values [2]. When generating the masks, it
is therefore important to use a virtual camera that images exactly the region of texture
coordinates that correspond to the whole texture area. The virtual camera that fulfills
these requirements is an orthographic camera positioned at p = ( 0.5, 0.5, 0.0 ). The
width and height of the view frustum both have to be 1.0. Since the most intuitive way
to render 2D content is to use the XY-plane, the Z-value for the near clipping plane of
the view frustum has to be positive, whereas the Z-value for the far clipping plane must
be negative. A view frustum with exactly this configuration can be seen in Figure 4.1.

For performance reasons, we decided to use the GPU for the generation of the masks.
Therefore, for each photo for which a mask is generated, a buffer with exactly the same
size as the photo is created. After that, the buffer is initialized with the color that cor-
responds to invisible pixels in the corresponding photo, namely black. Then, all the
triangles of the model that are textured by the current photo are rendered into the buffer
with white color using the texture coordinates as if they were vertex positions. Because
texture coordinates consist only of two elements (u and v), the Z-value is set to 0.0 to
render the primitives into the XY-plane.

4.1.2 Implementation
Our MaskDrawer is implemented in C++ using OpenGL 3.1 as the graphics API. Cur-
rently, it is only available for Microsoft Windows. In oder to make it small and simple,
we omitted a graphical user interface. Per default, a shortcut to the application is copied

55



X

Y

Z

(1,1,-1)

(0,0,1)

view vector

Figure 4.1: View frustum of the orthographic camera used for rendering of the masks.
The masks are rendered into the XY-plane.

to the “SendTo” directory. Therefore, it can be launched via right click onto the model
file followed by a “Send To” to our MaskDrawer. Then, the masks are generated in a
subdirectory called masks. To avoid any error message, the photos used for texturing of
the model have to be at the destination referenced in the model file.

4.2 VT-Tools
An essential part of the manual workflow of the graphic artist is the visualization of
the 3D model. Without visualization, it is not possible to see the remaining artifacts
in action. It is important that the graphic artist can see the artifacts in the rendered
model to exactly know the needed editing steps in the corresponding photos. In case
of the digitized archaeological items, the high-resolution photos used for texturing the
model do not fit into the memory of a conventional graphics card. This leads to slow
frame rates and jerky movement through 3D space, which makes a fast positioning of
the virtual camera difficult. Therefore, we decided to introduce virtual texturing into the
workflow of the graphic artist. With virtual texturing, only the needed texture parts used
for rendering of the current frame are streamed to the graphics card. There is already a
library for virtual texturing that was implemented by J. Mayer, the author of [23]. This
library is called LibVT. The LibVT has been integrated into a visualization application

56



developed at the Vienna University of Technology. This application is called Scanopy,
and it is primarily used for visualization of point-based datasets. The idea was that the
graphic artist shall use Scanopy in conjunction with the LibVT for better visualization
performance of the 3D models. In addition to the LibVT, J. Mayer also implemented
some scripts for the generation of the needed atlas and tile store. However, these scripts,
implemented in Python, are so slow that we decided to re-implement this functionality
to reach a better performance. The whole functionality was implemented in a library
called VT-Tools.

4.2.1 Atlas generation
The script implemented by Mayer for the atlas generation expects the single names of
all the images that will be part of the atlas. Further, it waits for values for the number
of parts the atlas is stored into and the side length in pixels of the whole atlas. Since the
user has to do some unnecessary calculations to get the values fulfilling the requirements
(e.g. finding the atlas side length that is suitable for the chosen images, finding the
number of parts that corresponds to a handy side length of produced parts), we decided
to simplify the required input parameters for the VTTAtlas, the object inside the VT-
Tools that corresponds to an atlas used for virtual texturing. For the atlas generation,
our library only expects the path of the directory containing all the images that will be
part of the atlas. Further, only the maximum side length of a single atlas part is expected.
The side length of the atlas that is suitable for all images in the provided directory will
be calculated automatically. In contrast to the python script that only produces bitmap
files, our library allows for different file formats (PNG and JPEG).

4.2.2 Tile store generation
The existing python script for the tile store generation can only be called to generate
the tiles for a single part of the atlas that was produced with the python script used for
atlas generation. Therefore, the script has to be called for every single atlas part. Then,
the tile store is still not ready for use. All the produced sub tile stores then have to
be merged together. This leads to new problems. Assuming that there are four atlas
parts, there is one missing tile store level that has to be generated after merging the
four corresponding sub tile stores. With 16 atlas parts, there are two missing tile store
levels and so on. When merging the sub tile stores, the existing levels have to be copied
together and the single tile files renamed to include the coordinate in the merged tile
store. As if that was not enough, the borders of some tiles have to be fixed. This can be
the case when bilinear filtering is used and the tiles are generated with a border of one
or more pixels.

In contrast to this unnecessary indirection, the VT-Tools generate the whole tile store
in a single run including all the generated atlas parts.

57



4.2.3 Update of atlas and tile store
For a smooth manual workflow, an update of the atlas and the tile store has to be enabled.
Although Mayer states in his thesis that “runtime modification of a virtual texture is an
expensive operation that should be avoided” [23], in our case it is unavoidable. In the
manual workflow, the graphic artist is using atlas and tile store based on a set of photos
for high-performance rendering of the corresponding model. Virtual texturing enables
higher frame rates to position the camera to see the mentioned artifacts in action. After
estimation of the needed editing steps, the concerned photos are edited in an image
editing application like Adobe Photoshop. When the editing step has been done, the
graphic artist needs to see the changes in the rendered model immediately. With virtual
texturing, atlas and tile store have to be updated to make this possible.

To make an update as fast as possible, we avoid a full rebuild of atlas and tile store
but only touch the changed parts. Therefore, it is essential that the exact position of
every image inside the atlas is known. Further, the time of last change of every image
has to be stored to recognize an image change. This is accomplished by the generation
of a small text file during the generation of the atlas. Into this text file, the exact position
and time stamp of last change of every image that is part of the atlas is stored. The time
stamp of the image files can simply be queried from the operating system. Assuming
that an image was changed and the update procedure is run, the current time stamp of
the image file and the corresponding time stamp in the text file would differ, indicating
an image change. Because the position of the image inside the atlas can be read out of
the text file, it is easy to find the atlas parts that are concerned by the update. These atlas
parts have then to be read in, the parts corresponding to the image have to be replaced
by the new version of the image, and then the atlas parts have to be saved again. After
the update of the atlas, every level of the tile store has to be updated. For level 0 of
the tile store, the atlas parts themselves deliver the needed image data for the update.
For higher levels, the atlas parts have to be scaled down to the half again and again.
Because the atlas can be stored in 4, 16 or more files, there may be atlas parts that are
not concerned by the update procedure. Therefore, scaling down the unconcerned atlas
parts for every update would be redundant work. Therefore, in addition to the atlas
parts, also all needed mipmap levels of the atlas are stored on the hard disc. Certainly,
also these scaled atlas parts have to be updated when they contain parts of the changed
image.

Tile cache and VRAM. When atlas and tile store are updated, it is also important
that the dedicated memory region on the graphics card (VRAM) that is used to store
the currently used tiles is updated. The LibVT also holds a finite number of tiles in
main memory to prevent another time consuming streaming from hard disc. Another
streaming of a particular tile can be necessary when it has been overwritten inside the
VRAM by another tile because of a certain time period without usage. The dedicated
region in main memory reserved for a finite number of tiles is also referred to as the tile

58



cache. A problem that arises when the tile cache and the VRAM are not updated is the
simultaneous usage of tiles that correspond to the old and the new version of the changed
image. This is because of the (wise) lazy practice of the LibVT. If a tile that is needed
to render the next frame is already available in the VRAM, it is used immediately, no
matter if there is an updated version of it on hard disc. This also holds for the tile cache.
If the graphics card requests a particular tile that is available in the tile cache, the version
stored in the tile cache is streamed to the graphics card. In Figure 4.2, the artifacts that
arise when tile cache and VRAM are not updated after an update of atlas and tile store
are shown.

old

new

Figure 4.2: Visible artifacts in the model when atlas and tile store have been updated,
but not tile cache and VRAM. The artifacts arise because of the simultaneous usage of
old and new (patterned) version of tiles corresponding to a particular photo.

Unfortunately, the LibVT was originally not designed to support a changing atlas
and tile store. After the initialization step, a modification of atlas and tile store is not
allowed, otherwise the shown artifacts arise. Fortunately, J. Mayer was so friendly
to implement two further functions into the LibVT. One function is used to delete a
particular tile from tile cache, one function is used to delete it from VRAM. With the
new version of the LibVT, it is now possible to delete an old tile from tile cache and
VRAM so that it is loaded again from hard disc.

We integrated the new version of the LibVT into Scanopy. The update procedure
now works in a semiautomatic way. When a model is visualized using virtual texturing,
it is possible to change one or more photos which are part of the atlas. Then, the update
procedure is called inside Scanopy via keystroke. During the update, the atlas and tile
store are updated on hard disc as it was described before. After that, the new functions

59



of the LibVT are used to delete the old versions of the tiles from tile cache and VRAM.
This ensures that the changed tiles are loaded again from hard disc and streamed to the
GPU. After the update procedure, the changes of the photos are visible in the rendered
model immediately.

4.2.4 Implementation
The VT-Tools are entirely implemented in C++. We use the libjpeg-turbo for loading
and writing of JPEG files and the libpng for loading and writing of PNG files. The
libjpeg-turbo has been chosen for the JPEG files because it produced the best results
regarding loading time in the performance test shown in [23].

The VT-Tools have been implemented in a way so that it can be called similar to
the MaskDrawer via “SendTo”. The only file that it expects is a small text file with
all the needed parameters. The most important of these parameters are the maximum
side length of the atlas parts, the paths where the atlas and the tile store will be stored,
the side length of the tiles, as well as the output formats of the atlas and the tile store.
The configuration file has to be placed into the directory where all the images are stored
that will be part of the atlas. When the VT-Tools are called by “SendTo” using such a
parameter file, all the images files that are in the base directory of the parameter file are
taken into account. If all the parameters are valid, the VT-Tools generate the atlas, split
into as many parts so that the maximum side length is not exceeded, and the tile store,
consisting of tiles of the desired length. The number of levels of the tile store results
from the size of the atlas and the side length of the tiles.

60



CHAPTER 5
Results

5.1 Platform
We use two different systems for testing of our applications. The first system is a per-
sonal computer with an Intel i7 2600K CPU with 3.4 GHz, 8 GB RAM (Corsair XMS3
PC3-10667U CL9-9-9-24), 128 GB solid state drive (Crucial RealSSD C300), 2000 GB
hard disc drive (Western Digital Caviar Green, 64MB Cache) and a nVidia GeForce
GTX 570 graphics card. If it is not mentioned explicitly, this system is used as platform
for testing and the hard disc drive is used as the origin of the data for the tests. The
operating system used is Microsoft Windows 7 Professional in the 64 Bit edition.

The second system is a Hewlett Packard Pavilion dv6599eg notebook with an Intel
Core2Duo T7300 processor with 2.0 GHz, 2 GB RAM and an nVidia GeForce 8400M
GS graphics card. The operating system used is Microsoft Windows 7 Professional in
the 32 Bit edition.

5.2 Performance Tests
In this section, we will evaluate the performance of our applications. All performance
values are snapshots, which means that we do not average over several iterations. In
order to present reasonable numbers, the times needed to load the models and the photos
from hard disc were subtracted from the overall runtimes.

5.2.1 MosaicBuilder
The runtime of our MosaicBuilder, the application for the automatic labeling of a trian-
gulated 3D model, depends on several parameters. Some of them, like the smoothness

61



cost weight λ, can be chosen by the user. Other parameters, like the number of triangles,
are naturally given by the 3D model that is the input for the labeling process. We want
to show the effect of these parameters on the runtime in the following.

Unfortunately, the labeling with shift vectors as it was presented by Gal et al. in [13]
takes much time. This approach was also implemented into our MosaicBuilder, and we
tested the performance for the Centcelles cupola model which has about four million tri-
angles and 70 input photos. The labeling procedure took about 5 days with deactivated
occlusion detection for higher performance, but the result was still not satisfactory. The
reason for this was an inappropriately chosen value of 6 for the maximum number of
levels for the image pyramids. Also a better value of 3 would have led to a runtime
of about 2 days. Because the approach of [13] is therefore only suited for very small
models with a small number of input photos, we only tested the standard labeling ap-
proach as it was presented by Lempitsky and Ivanov in [18] with our introduced octree
for occlusion detection thoroughly.

5.2.1.1 Number of triangles

The number of triangles is naturally given by the 3D model that is used as input for the
labeling procedure. In order to have some models with a different number of triangles
so that the number changes in a linear way when they are ordered by their number of tri-
angles, we generated differently detailed versions of one particular model in Geomagic.
Our input is the Centcelles cupola model. We generated five versions with a number of
triangles from 300,000 to 100,000.

In Figure 5.1, the impact of the number of triangles of the model on the labeling
time is illustrated. To be comparable, all parameters apart from the number of triangles
were the same for each iteration. We used all available photos (70) as input labels.
The number of iterations for the α-expansion Graph Cuts algorithm in the form of the
gco-v3.0 library was set to 2, the smoothness cost weight λ was set to 25. The upper
threshold for the octree cell side length was set to 0.1.

The red line in the graph shows the times with occlusion detection, the blue line
without occlusion detection. Obviously, the occlusion detection has a significant impact
on the labeling time. In every case, the labeling time with occlusion detection at least
doubles the labeling time without occlusion detection. In our case, the occlusion detec-
tion was not really needed because the model, the Centcelles cupola, has naturally no
occlusions because of its convex shape. Nonetheless, for very complex models that are
far away from convexity, the longer labeling time using occlusion detection has to be
accepted in order to get a good labeling result.

62



0

100

200

300

400

500

600

700

800

900

100000 150000 200000 250000 300000

la
be

lin
g 
tim

e 
[s

]

number of triangles

without occlusion detection with occlusion detection

Figure 5.1: Impact of the number of triangles on the time needed to label the model

5.2.1.2 Number of labels

The number of labels is given by the number of registered photos that are used for
texturing of the model. In our performance tests concerning the impact of the number of
labels, we used the version of the Centcelles cupola model with 150,000 triangles. The
occlusion detection was deactivated, the number of iterations for the α-expansion Graph
Cuts algorithm in the form of the gco-v3.0 library was set to 2, and the smoothness cost
weight λ was set to 25.

In Figure 5.2, the impact of the number of labels on the labeling time is illustrated for
the runtimes with and without occlusion detection. For the labeling procedure without
occlusion detection, the time needed to label the model, linearly depends on the number
of input photos. When occlusion detection is activated, the time needed to label the
model increases more intensive the more labels are considered.

5.2.1.3 Upper threshold for octree cell side length

As already mentioned in Section 3.1.4, we allow the user to define an upper threshold
for the side length of the octree cells. Only when all three side lengths of a particular
cell are bigger than this threshold, the cell is further divided into its octants. Otherwise,
the cell is a leaf node of the octree and the triangle is added immediately, provided that
the triangle intersects the cell.

In Figure 5.3, the impact of the upper threshold for the side lengths of the octree
cells on the labeling time is illustrated. In the figure, the labeling times for a threshold
of 0.075 and 0.1 are equal, because these values lead to the very same number of octree

63



0

50

100

150

200

250

300

350

400

50 55 60 65 70

la
be

lin
g 
tim

e 
[s

]

number of labels (photos)

without occlusion detection with occlusion detection

Figure 5.2: Impact of the number of labels (photos) on the time needed to label the
model

350

360

370

380

390

400

410

420

430

440

0.025 0.05 0.075 0.1 0.125

la
be

lin
g 
tim

e 
[s

]

upper threshold for octree cell side length [m]

Figure 5.3: Impact of the upper threshold for the octree cell side length on the time
needed to label the model

layers. These values correspond to the average diameter of a triangle of the mesh.
As can be seen, the labeling times are minimum for these values. A bigger threshold
leads to a higher labeling time because of the resulting fewer number of octree layers.
When the octree has fewer layers, the cells corresponding to the leaf nodes of the octree
are bigger and therefore each cell has to store more triangle indexes. Then, during a

64



particular occlusion test, more real triangle-triangle intersection tests have to be carried
out than with an octree with more layers. The cells corresponding to the leaf nodes of an
octree with more layers are smaller so that many triangles that come into consideration
for an occlusion can be filtered out by a more efficient intersection test with some axis
aligned boxes.

As it can be further seen in the figure, also a too small upper threshold leads to
a higher labeling time. This is because of the fact that when using very small cells
corresponding to the leaf nodes of the octree, one particular triangle of the model is
stored in many leaf nodes. When testing a triangle sight frustum and the octree for
intersection, it is possible that one particular triangle that is stored in the octree comes
many times into consideration for an intersection and is then also tested every time.
Certainly, it is possible to use a data structure to remember all the triangles that heave
already been tested for intersection. However, we observed an even worse performance
caused by the overhead of such a data structure.

5.2.1.4 Max. number of iterations

The gco-v3.0 library that implements the α-expansion Graph Cuts algorithm, which we
explained in Section 3.1.3, allows the user to set the number of maximum iterations.
This maximum number also has a significant impact on the labeling time. This is shown
in Figure 5.7a. As can be seen, the time needed to label the model linearly depends on
the number of iterations. However, a bigger number of iterations not always implies a
smaller overall labeling cost and therefore a better labeling result. This is illustrated in
Figure 5.7b. From the first to the second iteration, there is a significant reduction of
labeling cost. From the second to the third iteration, the improvement is not that big
anymore. Finally, from the third to the fourth iteration, there is no noticeable improve-
ment. In our labeling experiment, we mainly did two iterations, which seams to be a
good trade-off between labeling time and cost.

5.2.2 PoissonLeveler
The runtime of our PoissonLeveler, the application for the automatic leveling of the
overall texture of a 3D model, depends on the size of the model and the number of
connected components. Each connected component is textured by the same photo. The
parameter λ that controls the degree of penalizing of color differences between adjoin-
ing connected components Ci does not have any influence on the runtime.

In Figure 5.5, the impact of the number of triangles on the time needed to level the
overall texture of a 3D model is shown. The used models are the differently detailed
versions of the Centcelles cupola. Each of these versions is textured by about 30 pho-
tos. Therefore, the number of connected components is approximately the same for all
instances. As it can be seen in the figure, for the first four versions the leveling time

65



0

50

100

150

200

250

300

350

1 2 3 4

la
be

lin
g 
tim

e 
[s

]

max. number of iterations for gco-v3.0 
library

(a)

34200

34400

34600

34800

35000

35200

35400

35600

1 2 3 4

O
ve

ra
ll 

la
be

lin
g 

co
st

max. number of iterations for gco-v3.0 
library

(b)

Figure 5.4: Impact of the maximum number of iterations for the gco-v3.0 library on the
time needed to label the model (a) and the overall labeling cost (b).

linearly depends on the number of triangles. Only for the model with 300,000 triangles,
the resulting runtime is an outlier of the observed linear increase.

0

10

20

30

40

50

60

70

80

100000 150000 200000 250000 300000

le
ve

lin
g 
tim

e 
[s

]

number of triangles

Figure 5.5: Impact of the number of triangles on the time needed to level the overall
texture of a 3D model.

66



5.2.3 MaskDrawer
A performance test for our MaskDrawer, the application for the generation of black-
and-white masks for all photos that are used for texturing of a 3D model, is not very
spectacular. Since it only reads a model file and all the corresponding photos from
hard disc, generates the masks on the GPU, and writes the masks back to hard disc, its
runtime naturally depends on the number of photos. Certainly, a big model file needs
more time to be loaded, but in practice this is insignificant. Concerning the input photos,
we observed a performance of about 14.3 megapixel per second. This number includes
the times for loading and writing of the masks.

5.2.4 VT-Tools
The VT-Tools, our application for the generation of the data structures that are needed
for virtual texturing, has been compared to the existing scripts implemented by Mayer,
the author of [23]. The scripts are implemented in Python using the Python Imaging
Library and ImageMagick for image operations. For consistency reasons, we altered
the scripts for our tests so that only ImageMagick is used. This is no violation, since
it was planned by the author of the scripts according to some code comments anyway.
The VT-Tools have been tested on our second testing platform, which is the Hewlett
Packard notebook with Intel Core2Duo T7300 processor.

We split this section into three parts. The first part covers the performance tests
concerning the atlas generation. In the second part, we will take a look onto the needed
times for the tile store generation. Finally, we will evaluate the performance of the
implemented update procedure.

5.2.4.1 Atlas generation

In Figure 5.6, the performance of our VT-Tools concerning atlas generation compared
to the existing Python implementation is shown. We tested the performance for two
different atlas sizes (8k2 and 32k2). In both cases, our application is significantly faster
than the existing Python script. While our application needs approximately the same
time to generate an atlas with a particular size, regardless of the number of files the
atlas is stored into, the Python script needs the longer the more parts are produced. This
behavior can be explained by the nature of the script. The script calls ImageMagick
for every single atlas part that is generated. So when the atlas is stored in 64 files on
hard disk, ImageMagick has to be called 64 times. One particular photo has therefore
to be loaded from hard disk again for each part the photo belongs to. In contrast to this
behavior, our application keeps as many photos as possible (up to a user-defined upper
limit for the memory consumption) in memory.

67



0

5

10

15

20

25

1 4 16 64

tim
e 

ne
ed

ed
 fo

r a
tla

s g
en

er
ati

on
 [s

]
(le

ss
 is

 b
ett

er
)

number of parts of the 8k² atlas

Python with ImageMagick VT-Tools

(a)

0

100

200

300

400

500

600

700

800

16 64 256

tim
e 

ne
ed

ed
 fo

r a
tla

s g
en

er
ati

on
 [s

]
(le

ss
 is

 b
ett

er
)

number of parts of the 32k² atlas

Python with ImageMagick VT-Tools

(b)

Figure 5.6: Performance of the VT-Tools concerning atlas generation compared to the
existing Python implementation. (a) Generation of an 8k2 atlas. (b) Generation of a
32k2 atlas.

5.2.4.2 Tile store generation

Also the generation of the tile store is significantly faster with our VT-Tools than with
the existing Python implementation. This is shown in Figure 5.7. We tested the gen-
eration of tile stores with sizes for the tiles of 1282 and 2562. Because of the bad
performance of the Python script, we omitted the generation of the tile store consisting
of tiles with a size of 1282 for the 32k2 atlas.

The scripts need significantly more time to generate the tile store the more tiles
are produced. The reason for this is the same as for the atlas generation. Because
ImageMagick is called for every single tile that is produced, at least one atlas part has
to be read from hard disc every time.

We also tested the performance of our VT-Tools when generating an atlas with a
size of 128k2 with its corresponding tile store with a tile size of 1282. The atlas was
generated in 9min 11s, the tile store (11 levels with 1,398,101 tiles) in 2h 58min 21s. In
contrast to all the other tests of the VT-Tools, this big atlas with its tile store has been
generated on the Intel i7.

5.2.4.3 Update procedure

The easiest way to update atlas and tile store is a rebuild. However, when just a single
photo has changed, there are many parts that are unnecessarily regenerated. Therefore,

68



0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

8k 16k

tim
e 

ne
ed

ed
 fo

r ti
le

 st
or

e 
ge

ne
ra
tio

n 
[s

]
(le

ss
 is

 b
ett

er
)

atlas side length [px]

Python with ImageMagick VT-Tools

(a)

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

8k 16k 32k

tim
e 

ne
ed

ed
 fo

r ti
le

 st
or

e 
ge

ne
ra
tio

n 
[s

]
(le

ss
 is

 b
ett

er
)

atlas side length [px]

Python with ImageMagick VT-Tools

(b)

Figure 5.7: Performance of the VT-Tools concerning tile store generation compared to
the existing Python implementation. (a) Tile size of 1282. (b) Tile size of 2562.

we implemented an update function that only touches the changed parts. The perfor-
mance boost of our optimized update function in comparison to a rebuild of atlas and
tile store is shown in Figure 5.8. We tested our update function for two different atlas
side lengths (8k and 32k). The tile stores consist of tiles with a side length of 128 pix-
els. We only changed a single photo before we started the update. As can be seen in the
figure, the optimized update is significantly faster than a full rebuild.

5.3 Our applications in practice

5.3.1 Scanopy integration
Our applications were compiled as libraries and integrated into Scanopy, an application
developed at the Vienna University of Technology and at the Imagination Computer
Services GmbH. Scanopy is mainly used for the visualization of huge point clouds, but
it can also be used for polygonal models. The already mentioned LibVT that enables
virtual texturing functionality has already been integrated into Scanopy.

All the functionalities of our applications can be controlled by the user by means of
a graphical user interface. Therefore, we implemented some dialogs into Scanopy.

69



1,00

10,00

100,00

1000,00

8k 32k

tim
e 

ne
ed

ed
 fo

r u
pd

at
e 

[s
]

(le
ss

 is
 b

ett
er

)

atlas side length [px]

full rebuild optimized update

Figure 5.8: Performance of the optimized update function of the VT-Tools compared to
a full rebuild of atlas and tile store.

5.3.2 Overall workflow example
In this section, we want to show how the functionalities of our applications will ease
the work of the graphic artist in future by means of an example. To this, we will show
how the model of the Centcelles cupola first walks through the automatic workflow for
labeling and leveling. Then, we will show how the masks are used to ease the manual
editing. Finally, we will show how the model is visualized in Scanopy using virtual
texturing.

5.3.2.1 Automatic Workflow

In the automatic workflow, the 3D model of interest is labeled and leveled. The pa-
rameters for these procedures can be set in the mentioned dialogs we implemented into
Scanopy. In future, the graphic artist can simply choose a triangulated 3D model and
a set of registered photos via file dialog. The registration information for the photos
either comes from a RiScan Pro project file or from the files produced by the 3DM
Analyst from Adam Technology. When the model file and the photos are chosen, the
graphic artist can set values for the parameters that are needed for the labeling process.
The most important parameter is the weight for the smoothness cost term that penalizes
color differences between adjoining triangles. A simple click on a button then starts the
labeling process. The labeled model file and all the undistorted photos are then stored
at a predefined location. The undistortion of the photos is performed as it was described
in Section 3.1.2. For our example, we chose 25 as weight for the smoothness cost term.

70



The input mesh is shown in Figure 5.9a. The result of the labeling process is shown in
Figure 5.9b.

The input for the leveling procedure is the labeled model in conjunction with the
undistorted photos. The model file can again be chosen via file dialog. The most im-
portant parameter for the leveling process is the weight for the term that penalizes color
differences between adjoining connected components. For our example, we chose 100
as weight for this term. The result of the leveling process is shown in Figure 5.9c.

5.3.2.2 Manual Workflow

In the manual workflow, the remaining visual artifacts are handled in an image editing
application like Adobe Photoshop. For this, the masks produced by our MaskDrawer
are used. The masks show the regions of the corresponding photos that are used for
texturing of the model and support the graphic artist during the manual editing steps so
that he knows where the main focus of the editing has to be.

In order to generate the masks, we also integrated the MaskDrawer into Scanopy.
Because the masks are defined as soon as the model is labeled, they are generated di-
rectly after the labeling procedure.

In Figure 5.10, one photo that is used for texturing of the Centcelles cupola model
and the corresponding mask is shown. This mask can be loaded into an image edit-
ing application and assist the graphic artist by showing the regions that are used for
texturing.

In Figure 5.11, a screenshot of the Scanopy application while rendering the final
Centcelles cupola model using virtual texturing is shown. As already mentioned, we
implemented an update function into the VT-Tools. When a model is now visualized in
Scanopy using virtual texturing, it is possible to edit one or more photos that are part
of the atlas. Then, a single keypress starts the update procedure. The atlas and the tile
store are updated so that they contain the new versions of the changed photos. Then,
the old versions of tiles that correspond to changed image regions are deleted from the
tile cache and from the VRAM. The new versions of the tiles are then loaded so that the
manual changes of the photos are visibile inside the 3D model immediately.

71



(a)

(b)

(c)

Figure 5.9: Result of the automatic workflow. (a) Triangulated 3D input model. (b)
Labeled model. (c) Labeled and leveled model.

72



(a) (b)

Figure 5.10: (a) Photo used for texturing of the final model. (b) Corresponding black-
and-white mask that is used as an alpha mask

Figure 5.11: Screenshot of the Scanopy application while rendering the final Centcelles
cupola model using virtual texturing.

5.4 Ground Truth Test
A remaining question is how the quality of a final labeled and leveled model is in com-
parison to the original input photos that are used for texturing. This comparison can also
be considered as a ground truth test, since the photos show the archaeological monument

73



of interest how it looked like during the time of exposure.
For the ground truth test, we take some original photos of an archaeological mon-

ument and render some images of the labeled and leveled 3D model of the monument.
We set the internal and external parameters of the virtual camera to be the same as of the
real world camera. Ideally, the input photos and the rendered images using the virtual
camera look the same. In Figure 5.12, we show the ground truth test for the labeled
and leveled model of the Centcelles cupola. In the left column, some original input
photos are shown. In the right column, there are the corresponding views of the final
labeled and leveled 3D model. The photos and the corresponding views look the same at
first sight, which shows that our labeling application correctly maps the photos onto the
model. However, the original photos provide a higher contrast than their corresponding
views of the 3D model. This can be explained by the fact that a particular region of one
original photo is not necessarily the one that is used for texturing of the corresponding
surface area of the model, since it can also be part of another photo that shows this sur-
face area from a worse viewpoint. Further, the quality of the views of the 3D model is
negatively influenced by visible artifacts that are caused by camera registration errors.
These registration errors lead to misalignments of the photos as it is visible on the right
side of Figure 5.12b. When a labeled model that contains misalignments of photos is
leveled, color shifts as they are visible at the top left of Figure 5.12d can arise.

74



(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Comparison of some original photos (a, c, e) of the Centcelles cupola and
their corresponding views of the labeled and leveled 3D model (b, d, f).

75



CHAPTER 6
Conclusion and Future Work

We presented a set of applications for the post-processing of a digitized archaeological
item. The input of our approach is a triangle mesh of the item and a set of registered
photos. We showed how we could further improve the results of existing labeling meth-
ods. For this, we introduced an octree for occlusion detection to prevent texturing of
surface areas with image material that does not contain the corresponding image infor-
mation, but the colors of an occluder. Further, we presented different methods for photo
undistortion, which is an essential part in the labeling process.

For the automatic adjustment in terms of colors of the photos used for texturing
of the model, we showed how we could improve existing methods used for leveling.
We introduced a new term into a proposed least squares problem in order to prevent
the leveled colors to leave the valid range. Because the proposed approach of adding
just a 1-pixel wide border to the patches in the photos is insufficient in our opinion,
we presented the user-defined scaling of the patches by introduction of outline normals.
The scaling of the patches then ensures better filtering results, so that unleveled regions
are not filtered into areas of the photos that are used for texturing of the model.

Because our two proposed applications for automatic labeling and leveling can not
guarantee a perfect result, a manual editing of the photos used for texturing is still
needed. Therefore, we presented an application for mask generation. These masks are
black-and-white images and are used as indicator for used areas in the photos that are
used for texturing of the model. The graphic artist who is editing the photos can use
these masks in order to know where the focus of his work has to be.

Last, we presented an application for the generation of the data structures atlas and
tile store that are needed for virtual texturing. We could show that our application is
significantly faster than existing scripts for this task. In contrast to the scripts, our
application further allows the update of atlas and tile store when a consisting photo was
changed.

76



Future Work As we could show in this thesis, our applications for the automatic
labeling and leveling can deliver satisfactory results. However, the quality of the result-
ing textured models highly depends on the quality of the input data. Especially camera
registration errors can lead to visible artifacts such as misalignments after the labeling,
and massive color shifts after the leveling procedure. In our opinion, also the proposed
approach by Gal et al. [13] that introduces shift vectors into the labeling process in order
to get rid of the camera registration errors is not the perfect solution. Their approach is
only suitable for very small models and a few photos. Still then, it can not guarantee a
perfect result, since camera registration errors are not always translational. Therefore,
we think that there is still much room for improvement concerning labeling methods.

An interesting way to think about labeling was presented by Dellepiane et al. in [15],
who calculate the optical flow for surface regions where projected photos overlap in
order to warp these photos together. A global adaption of the camera registrations,
so that no visible misalignments in the model are the result, is either very difficult to
calculate or even impossible. Therefore, we think that research in the fields of local
photo adaption as it is done in the approach proposed in [15] in order to compensate for
camera registration errors is the right way to go.

Also the leveling method proposed by Lempitsky and Ivanov in [18] is not with-
out fail. Since the leveling function is only calculated at the vertexes of the model and
linearly interpolated in between, this can lead to significantly color differences of ad-
joining triangles that receive its color information from different photos, also when the
vertexes are perfectly leveled. A solution would be an adaptive refinement of the mesh
at the borders of regions that are textured by different photos.

77



Bibliography

[1] Ahmed Abdelhafiz. Integrating Digital Photogrammetry and Terrestrial Laser
Scanning. PhD thesis, Technical University Braunschweig, 2009.

[2] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[3] Michael Birsak. Workflow optimization for a graphic artist working on large tex-
ture sets using virtual texturing. In Proceedings of the 15th Central European
Seminar on Computer Graphics, pages 35–41, 2011.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(9):1124 –1137, sept. 2004.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
23(11):1222 –1239, nov 2001.

[6] Marco Callieri, Paolo Cignoni, Massimiliano Corsini, and Roberto Scopigno.
Masked photo blending: Mapping dense photographic data set on high-resolution
sampled 3d models. Computers & Graphics, 32(3):464–473, 2008.

[7] Edwin Earl Catmull. A subdivision algorithm for computer display of curved sur-
faces. PhD thesis, 1974.

[8] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia. MeshLab: an open-
source 3D mesh processing system, April 2008.

[9] J. Davis. Mosaics of scenes with moving objects. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, CVPR ’98,
pages 354–, Washington, DC, USA, 1998. IEEE Computer Society.

[10] Matteo Dellepiane, Ricardo Marroquim, Marco Callieri, Paolo Cignoni, and
Roberto Scopigno. Flow-based local optimization for image-to-geometry projec-
tion. IEEE Transactions on Visualization and Computer Graphics, 18:463–474,
2012.

78



[11] Jack Dongarra, Andrew Lumsdaine, Xinhui Niu, Roldan Pozo, and Karin Rem-
ington. Sparse matrix libraries in c++ for high performance architectures, 1994.

[12] Alexei A. Efros and William T. Freeman. Image Quilting for Texture Synthesis
and Transfer. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics
Proceedings, pages 341–346. ACM Press / ACM SIGGRAPH, 2001.

[13] Ran Gal, Yonatan Wexler, Eyal Ofek, Hugues Hoppe, and Daniel Cohen-Or.
Seamless montage for texturing models. Comput. Graph. Forum, pages 479–486,
2010.

[14] RIEGL Laser Measurement Systems GmbH. http://www.riegl.com, 2011.

[15] Enrico Gobbetti and Fabio Marton. Far voxels: a multiresolution framework for in-
teractive rendering of huge complex 3d models on commodity graphics platforms.
ACM Trans. Graph.

[16] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2003.

[17] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph
cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147
–159, feb. 2004.

[18] V. Lempitsky and D. Ivanov. Seamless mosaicing of image-based texture maps.
In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference
on, pages 1–6, june 2007.

[19] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. Seamless image stitching
in the gradient domain. In ECCV (4), pages 377–389, 2004.

[20] S. Z. Li. Markov random field modeling in computer vision. Springer-Verlag,
London, UK, 1995.

[21] Lighthouse3d.com. http://www.lighthouse3d.com/tutorials/view-frustum-
culling/geometric-approach-testing-boxes-ii/, 2012.

[22] K. Madsen, H.B. Nielsen, and Ole Tingleff. Methods for non-linear least squares
problems, 2nd edition, 2004.

[23] Albert Julian Mayer. Virtual texturing. Master’s thesis, Institute of Computer
Graphics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, October 2010.

[24] David L. Milgram. Computer methods for creating photomosaics. IEEE Trans.
Computers, 24(11):1113–1119, 1975.

79



[25] Martin Mittring and Crytek GmbH. Advanced virtual texture topics. In ACM
SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 23–51, New York, NY, USA,
2008. ACM.

[26] Tomas Möller. A fast triangle-triangle intersection test. journal of graphics, gpu,
and game tools, 2(2):25–30, 1997.

[27] Przemyslaw Musialski, Christian Luksch, Michael Schwärzler, Matthias Buchet-
ics, Stefan Maierhofer, and Werner Purgathofer. Interactive multi-view façade
image editing. In Vision, Modeling and Visualization Workshop 2010, November
2010.

[28] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 313–318, New York, NY,
USA, 2003. ACM.

[29] Ruggero Pintus, Enrico Gobbetti, and Marco Callieri. A streaming framework for
seamless detailed photo blending on massive point clouds. In Proceedings of Euro-
graphics Conference - Cultural Heritage Papers, 32nd Eurographics Conference,
Llandudno, Wales, UK. Eurographics, Wiley-Blackwell, April 2011.

[30] ADAM Technology. http://www.adamtech.com.au/, 2012.

[31] Matthew Uyttendaele, Ashley Eden, and Richard Szeliski. Eliminating ghosting
and exposure artifacts in image mosaics. In CVPR (2), pages 509–516. IEEE
Computer Society, 2001.

[32] Lance Williams. Pyramidal parametrics. In Proceedings of the 10th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH ’83, pages
1–11, New York, NY, USA, 1983. ACM.

[33] Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina,
and Alexander Reshetov. Guided visibility sampling. ACM Transactions on
Graphics, 25(3):494–502, July 2006. Proceedings ACM SIGGRAPH 2006.

80


	Introduction
	Motivation
	Aim
	Contributions
	Structure

	Related Work
	Labeling
	Leveling
	Virtual Texturing

	Automatic workflow
	Labeling – MosaicBuilder
	Labeling overview
	Photo undistortion
	Riegl
	Adam Technology
	Conclusion

	bold0mu mumu top-expansion Graph Cuts
	Occlusion Detection
	Triangle sight frustum
	Edge sight triangle

	Shift Vectors
	Implementation
	Issues

	Leveling – PoissonLeveler
	Leveling overview
	Solving the least squares problem
	Keeping the color values in range
	Filtering
	Issues
	Implementation


	Manual workflow
	MaskDrawer
	Overview
	Implementation

	VT-Tools
	Atlas generation
	Tile store generation
	Update of atlas and tile store
	Implementation


	Results
	Platform
	Performance Tests
	MosaicBuilder
	Number of triangles
	Number of labels
	Upper threshold for octree cell side length
	Max. number of iterations

	PoissonLeveler
	MaskDrawer
	VT-Tools
	Atlas generation
	Tile store generation
	Update procedure


	Our applications in practice
	Scanopy integration
	Overall workflow example
	Automatic Workflow
	Manual Workflow


	Ground Truth Test

	Conclusion and Future Work
	Bibliography

