
EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

Analytic Anti-Aliasing of Linear Functions on Polytopes

T. Auzinger1, M. Guthe2, and S. Jeschke1

1 Vienna University of Technology, Austria 2 Philipps-Universität Marburg, Germany

Abstract

This paper presents an analytic formulation for anti-aliased sampling of 2D polygons and 3D polyhedra. Our
framework allows the exact evaluation of the convolution integral with a linear function defined on the polytopes.
The filter is a spherically symmetric polynomial of any order, supporting approximations to refined variants such
as the Mitchell-Netravali filter family. This enables high-quality rasterization of triangles and tetrahedra with
linearly interpolated vertex values to regular and non-regular grids. A closed form solution of the convolution is
presented and an efficient implementation on the GPU using DirectX and CUDA C is described.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing

1. Introduction

Since the beginning of computer graphics, rasterization is
the main method to generate images or volumes from shapes.
In this process each discrete element of a raster image (a
pixel) or volume (a voxel) is assigned a value depending on
the shapes’ boundary and optional data terms like color, that
can vary across the shape. The popularity of this technique
led to special purpose hardware (GPUs) that are capable of
rasterizing many million triangles per second today. A fun-
damental problem in discretizing shape data is that practi-
cally all polygon-based representations in computer graphics
are not band limited: shape boundaries constitute disconti-
nuities in the signal, introducing infinitely high frequencies.
From the Nyquist-Shannon sampling theorem it follows that
such a signal cannot be reconstructed perfectly from dis-
cretely sampled data, so that the input signal needs to be
prefiltered before discretization can take place.

A complete sampling process is shown in Figure 1. First,
the original signal is prepared by a presampling filter that re-
moves high frequencies. Then discrete samples are produced
by multiplying the filter output by the sampling pattern. Fi-
nally, the reconversion is accomplished by an interpolation
filter (also called reconstruction filter). When displaying the
image at device resolution, the interpolation filter is defined
by the device characteristics and the point-spread function
of the human eye.

The mathematically-based argument that leads to the use
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Figure 1: A sampling system.

of ideal low pass prefilters rests on the elimination of over-
lap in the sampled image spectrum. Aliasing produces Moiré
patterns or stair-step renditions of sharp diagonal edges
and similar visual defects. As shown by Schreiber and
Troxel [ST85], they must be weighed against ringing that
is caused by the Gibb’s phenomenon, and loss of sharpness
that results from removing high frequencies.

When anti-aliasing in two or more dimensions, the one-
dimensional filters need to be generalized. This can either
be done by separable filtering (i.e. separate filtering in each
dimension) or using spherically symmetric filters. While in
a numerical setting the first are computationally less expen-
sive, visible artifacts can be caused by angle-dependant be-
havior or anisotropic effects. These originate from the angle-
dependend frequency responses of the filter and need to be
considered in addition to ringing and Moiré patterns. In case
of a perfect low-pass filter a horizontal or vertical stripe pat-
tern with a frequency slightly above the Nyquist frequency is
not visible. If the pattern is rotated it becomes visible since
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the Nyquist frequency is by a factor of
√

2 higher in the
diagonal. This effect is shown in Figure 2. The anisotropy
was also investigated by Mitchell and Netravali [MN88] who
constrain the parameter ranges of their separable filter such
that it becomes nearly isotropic. Enforcing the isotropy on
a separable filter however severely limits the choice of fil-
ter functions. Especially filters with negative lobes – like the
popular Lanczos filter – become strongly anisotropic when
each dimension is filtered separately. We thus use the spher-
ical generalization, which supports a wide range of possible
filters.

The mathematical formulation of the problem is as fol-
lows: Given a data function I defined on Rn, e.g. the color
values on a triangle or in a tetrahedron, and a filter func-
tion F , we can obtain the filtered value v(x) at sample loca-
tion x by evaluating the convolution

v(x) =
∫
Rn
I(y)F(x−y)dy. (1)

The spherical generalization is based on the requirement
that the multidimensional filter needs to show the same fre-
quency response for one dimensional signals as the original
one dimensional filterF(x). As the convolution is performed
in two or three dimensions [Jam95], this leads to the follow-
ing constraint∫ ∫

F3D(x,y,z)dydz =
∫
F2D(x,y)dy = F(x). (2)

Consider for example the ideal low pass filter which is the
sinc function in one dimension. For two and three dimen-
sions this can be generalized to [Jam95]:

F2D(x) =
J1(π‖x‖)

π‖x‖ , (3)

F3D(x) =
sin(π‖x‖)

π3‖x‖3 −
cos(π‖x‖)

π2‖x‖2 , (4)

where J1 is the Bessel function of the first kind.

In this paper we show how to analytically evaluate inte-
gral 1 for a given set of 2D or 3D polytopes to produce a
high-quality raster image or volume. Our method accounts
for a linear data function I defined on these shapes, i.e.,

Figure 2: Circular pattern with a frequency slightly above the
Nyquist frequency filtered with a Lanczos filter. Separable
filtering (middle) causes anisotropy effects in the diagonals
which are removed with spherical filtering (right).

interpolated vertex values (colors, density, etc.) of triangles
and tetrahedra. As filter function we assume a spherically
symmetric polynomial, which allows modeling a wide range
of filters and the approximation of filters which are given
by transcendent functions. Our experience shows that such
polynomial approximations do not result in any notable dif-
ferences in the output. It can be argued that filter designs that
rely on user studies and perceptional heuristics are inher-
ently associated with an error tolerance. Sampling artifacts
are the real concern and can be removed with our method.
We provide efficient implementations on a GPU in DirectX
and CUDA C. Analytic approaches such as ours make use
of the fact that computational performance of current hard-
ware increases much faster than memory bandwidth, which,
in the long term, makes it favorable over sampling-based ap-
proaches.

2. Related Work

A considerable amount of work has been published about
2D analytic anti-aliasing. Early methods by Catmull started
of with box filtering [Cat78] and were extended to spher-
ically symmetric filters using look-up tables [Cat84]. The
latter work builds on a filtering method by Feibush et
al. which uses domain decomposition to evaluate the in-
tegrals [FLC80]. Pioneering works treated constant color
polygons [KU81], [Cat78] and smoothly shaded polygons
are mentioned as a possible extension in [Cat84]. It should
be noted that [KU81] also treats the more general prob-
lem of finding an optimal filter for the given raster display.
Grant [Gra85] uses a 4D formulation of this problem to
model spatial and temporal anti-aliasing of translating and
scaling polygons. The de-facto state of the art is still an
analytic 2D filtering method by Duff [Duf89]. It supports
general filter models with polynomial approximations and
supports linear functions defined on the polytopes. Unfortu-
nately, the separable 2D formulation seems not easily gener-
alizable to three dimensions as the integral complexity grows
beyond a manageable level (see section 3 and the additional
material). Later, McCool [McC95] proposed simplicial de-
compositions of shapes for a faster filtering compared to
Duff at that time, but an extension to 3D space seems not
straightforward as well. Furthermore, Guenther and Tum-
blin [GT96] used quadrature prefiltering to further speed up
the process, with analytic aliasing in one direction and sam-
pling in the other. More recently, Lin et al. [LCSW05] pro-
posed an analytic evaluation approach for radially symmet-
ric filters that is in spirit similar to this work, but they do not
support linear functions nor negative filter lobes as needed
for most practical applications [MN88]. In addition, their
implementation runs on the CPU while we describe a fully
integrated GPU implementation. Note that while the filters
in [MN88] were originally designed for reconstruction pur-
poses, they are also used in sampling due to their favorable
comparison to other variants.
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Figure 3: The intersection of a polytope with the filter sup-
port’s sphere can generate complicated shapes, that have to
be subdivided in order to obtain well behaved domains of
integration.

Concerning three dimensional rasterization, i.e., voxeliza-
tion, a distinction has to be made between surface voxeliza-
tions [Kau87,Jon96] and solid object voxelizations [WK93].
In addition, binary voxelization techniques [HYFK98] do
only apply a binary value to each voxel which omits filter-
ing issues. Several solid voxelization papers apply filtering,
either based on integral lookup tables [WK93] and/or on the
closest distance of each voxel center to the shape bound-
ary [vK98,SK99] and applying so-called oriented box filter-
ing. Note that all these methods do not compute the correct
volumetric filter integral and do not allow for varying object
functions as we do. Probably the most closely related ap-
proach to this work is a recent paper called wavelet rasteri-
zation [MS11]. It uses a Haar wavelet-based representation
to rasterize 2D shapes (with boundaries defined by splines)
to images and 3D polyhedra to volumes. Unfortunately, in
its current form it is inherently restricted to (separable) box
filtering and only allows for binary attributes. In contrast,
this paper considers radially symmetric filters modeled by
polynomial functions of varying degree (as opposed to sim-
ple box filtering), and supports linear functions defined over
the polytopes to be integrated. To the best of our knowledge,
an analytic formulation and evaluation of this general setup
has not been attempted before.

3. Analytic Integration

In general it is not possible to derive a closed form solu-
tion for the convolution given in formula (1). It was already
shown that with a set of preconditions on the data term and
its support as well as on the filter term, such a solution can be
obtained [Duf89]. The work of Duff [Duf89] covers analytic
anti-aliasing in 2D with separable polynomial filters by ar-
guing that the integration of a polynomial can be evaluated
analytically, but they give no explicit results. In theory the
method can also be extended to three dimensions, where the
domains of integration can be determined by clipping the
input polygons against 3D grid cells. Thus the integration
boundaries of the convolution are linear functions.

While these integrals can be solved analytically, the re-

sulting formulas become unmanageable for higher dimen-
sions. In our work with a radially symmetrical filter each fil-
ter order can be integrated separately and produces a single
expression; hence, for m filter orders we have m summands
irrespective of the dimension. A similar procedure for a sepa-
rable filter would require the evaluation of all possible mono-
mials, i.e. xm1

1 xm2
2 · · ·x

mn
n , and would yield mn summands for

m filter orders and dimension n. Obviously, this becomes un-
practical and one could try to obtain a single formula for the
whole integration over all filter orders. After clipping against
a nD grid cell the worst case integration domain would be a
polytope that is bounded by non-axis aligned hyperplanes
in each dimension, i.e. the integration boundaries for coor-
dinate xi is of the form a0 + ∑

i−1
j=1 a jx j. The result would

thus depend on 1
2

(
n2 +n+1

)
variables for the integration

boundaries alone. Together with the integration of all filter
orders in each dimension and the linear interpolation term
this amounts to formulas of unmanageable sizes for three or
more dimensions. See the additional material for details.

With spherically symmetric filters, our problem state-
ment is formally as follows: Let P be a orientable non-self-
intersecting polytope in Rn, Ia,c(x) = a ·x+ c a linear func-
tion and FR(x) = ∑

N
i=0 ci‖x‖i

χ‖x‖≤R a filter function with a
cutoff radius R. For dimensions n= 2,3 we will give a closed
form solution for the convolution term

v(x) =
∫
P
Ia,c(y)FR(x−y)dy (5)

=
∫
P∩SR

Ia,c(y)F∞(x−y)dy (6)

at the sample location x. SR denotes the filter function’s sup-
port - a sphere with radius R. Although we restrict ourself
to dimensions 2 and 3 it is possible to extend this result to
higher dimensions as can be seen in the additional material.

The main difficulty in analytically computing this integral
lies in its potentially complicated domain of integration, i.e.
P∩SR. Especially in three or more dimensions the intersec-
tion of the filter’s spherical support with a general polytope
can produce a complicated shape on which the integrand has
to be evaluated, as shown in Figure 3. Therefore, an impor-
tant component of our solution is the partition of the inter-
section domain into a set of simple regions. Each of these
regions falls into one of a small number of geometric cat-
egories for which the integral (6) can be evaluated. We fur-
thermore use the fact that by substitution the convolution can
be rewritten as

v(x) =
∫
P
Ia,c(y)FR(x−y)dy =

∫
P̂
Iâ,ĉ(y)FR(y)dy (7)

with R being a rotation matrix, â = R−1a and ĉ = c+ a · x.
We denote by P̂ = R(P − x) the shifted and rotated ver-
sion of the polytope P . This allows us to assume the filter
to be centered at the origin and enables us to align a chosen
face of the shape P with a given (hyper)plane by rotation
around the origin. In comparison to the separable case this
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Figure 4: Intersecting a polygon with the circular filter support gives three qualitatively different domains for subsequent in-
tegration (a). These domains can be immediately used for integration in the 2D case. In 3D these planar regions have to be
extruded to the origin to yield the desired integration domains. The exploded view of such an extrusion of the right highlighted
region of (a) is shown in (b). The marked variables for the sector (c) (resp. segment (d)) coincide with the 2D integration result
in (8) (resp. in (9)).

gives us two main advantages. The filter is a function of just
one coordinate, i.e. the radial direction, and the integration
domains can be rotated to be ‘as axis aligned as possible’
thus yielding simple integration boundaries.

It should be noted that equation (7) also holds under
anisotropic scaling of the space. Together with the invariance
under rotation, this framework covers elliptic filters as well.
In addition this framework accommodates piecewise polyno-
mial filter functions by evaluating the convolution for differ-
ent filter radii, i.e. the convolution with two polynoms a(x)
and b(x) which are defined on [0,ra] and [ra,rb] can be
treated by the sum of the convolutions with a(x)− b(x)
on [0,ra] and b(x) on [0,rb]. Hence, for n piecewise poly-
nomials the algorithm has to be executed n times.

3.1. Integration in 2D

We first outline the integration in 2D as the 3D case builds
on it. Without loss of generality we assume the polygon
boundary to be oriented counterclockwise and we deter-
mine the integral contributions of all polygon edges sepa-
rately (see figure 4a). This property is guaranteed by the non-
self-intersection precondition on the polytope. Each edge to-
gether with the filter center at the origin spans a triangle, and
thus it is possible to evaluate the integral simply by summing
up the individual triangle contributions. The symbolic eval-
uations of the these integrals can be found in appendix A.
Preserving the boundary orientation in the following inter-
section procedure, leads to the correct signs in the final sum-
mation, similar to [GT96].

In this setting the intersection of the filter support SR with
such a triangle results in a simple line-circle intersection of
the triangle edge that stems from the original polygon, and
a centered circle with the cutoff radius R of SR. Depending

on the edge geometry this leads to a varying set of segments
and sectors. We denote with a segment a triangle that has one
vertex at the origin and is fully contained in SR (figure 4d).
In contrast, a sector is a circular region of SR (figure 4c). As
can be seen in figure 4a, boundary parts outside SR result in
sectors while the parts inside result in segments. Note that
the same holds if the origin is not contained in the polygon
as all contributions cancel correctly.

The contribution of a sector can be evaluated analytically
as given in (8). Prior to integration we rotate a segment such
that it lies in the positive half plane x ≥ 0 and such that the
polygon boundary is parallel to the y-axis. This is shown in
figure 4d and the closed form solution is given in (9). Of
course, the data function always has to be rotated together
with the segment.

3.2. Integration in 3D

The 3D case is a natural extension of the 2D case. Here we
assume a polyhedron with outward facing normals and all
polygon faces oriented accordingly. Together with the filter
center at the origin each face spans a pyramid. As before, the
integration over the whole polyhedron is the sum of the con-
tributions of all individual pyramids. Each pyramid is again
rotated around the origin such that it lies in the positive half
space z ≥ 0 and its base lies in the z = d plane where d de-
notes the pyramid height. Due to (7) this does not alter the
value of the integration, as long as the data term is rotated
the same way just like in the 2D case. Similarly, the orien-
tation of the polyhedron faces are preserved up to the actual
integration and the final summation.

Depending on the pyramid height d and the filter cutoff
radius R, we have to consider two cases. If d ≤ R, the pyra-
mid’s base polygon intersects the filter support SR, otherwise

c© 2012 The Author(s)
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Figure 5: In 3D the domains of integration are obtained by extruding the 2D intersection domains to the origin. The extrusion
of a sector (see figure 4c) gives the wedge of a cone (a) while a segment (see figure 4d) yields the tetrahedron (b). The green
appendage (see figure 4a) has to be projected onto the filter support’s sphere and gives a pyramid with a curved base (c). A
special case of it is given in (d). Note that the color scheme is the same as in figure 4 and that domains (a) and (c) always occur
in pairs.

it does not. We treat the former case first as the latter one can
be treated as a special subcase of it. The intersection of the
pyramid’s base polygon with SR is done as in the 2D case
above, with the difference that we use the cutoff radius rd
at height d which amounts to

√
R2−d2. Apart from sectors

and segments, a third kind of integration domain appears. In
3D the area between the line segment that lies outside the
circle and the resulting sector has to be treated as well and
we refer to it as appendage (see the green areas in figure 4a).

Since the base polygon lies at z = d, we have to incor-
porate the third dimension into our integration domain. A
sector becomes the wedge of a cone, as shown in figure 5a,
and its value is given in (10). Both the segment and the ap-
pendage are rotated around the z-axis such that their bound-
ary edge opposite the vertex in (0,0,d) is parallel to the y-
axis. The segment together with the origin spans a tetrahe-
dron as can be seen in figure 5b and its integration is given
in (12). The appendage produces a rather different shape
(figure 5c). Projecting the area of the appendage onto the
boundary sphere of SR towards the origin results in an area
that is confined from above by the circle with center (0,0,d)
and radius rd and from the sides by the great circles of
the sphere with constant angle ϕ. The lower boundary is
given by the projection of the relevant part of the polygon’s
edge onto the sphere. The final 3D shape given by the ap-
pendage is the ‘pyramid’ with apex in the origin and a curved
base section given by this projection. Its integration formula
in (11).

We are left with the aforementioned case where d > R
and the pyramid base does not intersect SR. Here we have
no sectors nor segments but only an appendage (figure 5d).
In this case we project it onto the filter support sphere SR in
the same way as done before and, by setting θC = 0, we get
the same result (formula (11)) as in the intersecting case.

4. Implementation

It is obvious that the evaluation of the convolution inte-
gral (6) can be done in parallel for each sampling loca-
tion and each polytope, whereas the final summation can be
done independently for each sampling location. This maps
the problem very well to highly parallel hardware such as a
GPU. We implemented the 2D case in DirectX 10 and the
3D case in CUDA C. The algorithm can be naturally divided
into three stages: a setup stage, the intersection routine and a
final integration. Due to the finite extent of the filter it is clear
that if a sampling point x is placed outside the Minkowski
sum of the current polytope and the filter support as shown
in figure 6, the convolution integral evaluates to zero. This
fact localizes computations and is used in the setup stage to
generate bounding regions for each input polytope to mask
irrelevant output locations.

While the mathematical framework developed in section 3
works for general polygonal and polyhedral input, we imple-
mented the most common case of input triangles and tetra-
hedra. In this case a linear interpolation of vertex values co-
incides with the linear data function.

The DirectX implementation for the 2D case performs
the setup stage in the geometry shader. Here, each incom-
ing triangle is ‘thickened’ so that all pixels in the relevant
region (figure 6) get rasterized. The intersection and integra-
tion stages are then computed in the pixel shader. All op-
erations are performed in a single render pass, making the
technique easy to implement in existing rendering systems.

In the CUDA implementation for the 3D case the setup
stage takes each incoming tetrahedron and displaces all four
faces of it outwards by the filter support radius. Similarly,
the axis aligned bounding box of the tetrahedron is enlarged
by the same amount. The intersection of these two figures
tightly encloses the relevant region and is used as a mask in
the following stages. The intersection stage takes as input a
tetrahedron, a sampling location, and the spherical filter sup-
port. It generates the integration domain regions (sector, seg-
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Figure 6: A tringle (left), a filter support (middle) and the
Minkowski sum of the two (right).

ments and appendages) as output. Every translation and rota-
tion that is applied to the shape has to be applied similarly to
the linear function defined on that shape, as noted above (see
equation (7)). The generated domains are then processed in a
separate integration stage which calculates the contributions
to the final sum at each sampling location. Note that since the
intersection of a tetrahedron and the filter support can result
in a highly varying number (9-45) of integration domains,
the intersection stage can incur a significant amount of warp
divergence. Depending on the hardware capabilities, warp
divergence can significantly impact the overall performance
if several time consuming integrations are serialized for a
warp. Consequently, we buffered the domain data and de-
coupled the intersection and integration stages in our CUDA
implemention. The final integration is then done with a sep-
arate kernel efficiently using the segment and sector buffer.
We observed that the amount of computations needed for
each stage hides the memory latency of the GPU.

5. Results

We show that our analytic anti-aliasing method performs
reasonably well on current GPUs with an informal compar-
ison to supersampling. Figure 7 shows a zone plane pattern
consisting of 14400 colored triangles that form 80 rings with
4 degrees angular resolution. It is displayed with a Gauss fil-
ter with a radius of 2.3 pixels at a resolution of 400x400
pixels. The left image was computed using our analytic so-
lution. It took 7.4 ms to compute on a GeForce GTX 580
graphics card using a single DirectX shader pass. The right
image was computed with jittered supersampling and some
effort to make this process efficient. A Halton sequence ef-
ficiently places samples and each sample contributes to all
pixels were it lies in the filter range. However, in our imple-
mentation the common GPU rasterizer was used. It spaces
samples regularly so that pixel samples are somewhat cor-
related. While this might be overcome with a CUDA imple-
mentation in theory, the induced additional bandwidth and
computation might or might not compensate the benefit from
sample decorrelation. Figure 7 right took a similar time to
compute (7.9ms) as the left image by accumulating 576 sam-
ples in each pixel. Some aliasing clearly remains. However,
this informal comparison must be taken with a grain of salt
as typical scenes in entertainment applications do not show
such strong aliasing as a zone plate. This makes the theoret-
ically quite bad convergence of sampling less problematic
in practice. But one general observation is that analytic ap-
proaches processes each triangle only once, so bandwidth

Figure 7: A zone plate image, computed with a 2.3 pixel ra-
dius Gauss filter. Left: the analytic solution. Right: the sam-
pled solution. Both took about the same time to compute.

is traded with processing power. As the latter appears less
costly compared to the former, analytic solutions might in
general outperform sampling in the long run. We provide an
implementation in the additional material.

Table 1 shows the time required to compute anti-aliased
3D rasterizations. We note that our approach is limited by
the diverging warps in the intersection stage and not by the
actual integration stage. In summary, complex tetrahedral
models can be filtered and rasterized into Cartesian grids
within few seconds up to few minutes.

Figure 8 shows a 3D rasterization of an extruded zone
plate using area or Gaussian anti-aliasing. It is clearly vis-
ible that the more complex Gaussian filter is able to remove
aliasing at a smaller filter radius while also preserving larger
features much better. This emphasizes the need for sophisti-
cated filters that were not possible with previous approaches.

Finally, Figure 9 shows a sea urchin sampled at different
spatial resolutions. The direct volume rendering shows how
our analytic filtering smoothly filters the solid volume at dif-
ferent spatial resolutions.

6. Summary and Future Work

This paper presented an analytic formulation for anti-aliased
sampling of polytopes with a linear function defined on
them. This includes the practically highly relevant cases of
triangles and tetrahedra with linearly interpolated vertex val-
ues. Together with a spherically symmetric polynomial filter,
this allows the analytical evaluation of the convolution inte-
grals. Using the closed form solution formulas we described
an efficient GPU implementation in the 2D and 3D case.

The linear volumetric approach might be used to render
time-varying data, like for example the helicopter blades in
Dachille and Kaufman [DK00]. Elliptical filtering is made
possible straightforwardly by scaling the polyhedra in the
opposite direction to render effects like motion blur and sup-
port non-square pixels.

In the future we plan to extend our approach to also sup-

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



T. Auzinger & M. Guthe & S. Jeschke / Analytic Anti-Aliasing of Linear Functions on Polytopes

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Direct volume renderings of an extruded zone plate pattern. The input data consists of nearly two million tetrahedra
and was analytically filtered with an area filter (a)-(d) and a Gaussian filter (e)-(h) to a Cartesian grid with dimensions 1283.
Each filter was evaluated with support radii 1, 2, 2.5 and 3 (left to right). For too narrow radii both filters show severe aliasing
(a)&(e). While the most glaring artifacts disappear with increasing radii, the area filter still exhibits defects at low frequencies
which are not present when using the Gaussian filter. The rendering technique uses linear interpolation of the source data and a
linear transfer function.

(a) 643 (b) 1283 (c) 2563 (d) 2563

Figure 9: Direct volume renderings of a colored sea urchin with different complexities at various spatial resolutions (given
as captions) using a Gaussian filter with 2.3 voxels filter radius. The tetrahedron count for (d) is 12652 and 2470 for (a)-(c).
The base of the spikes is colored black while the tip vertex is in cyan. The color value is linearly interpolated inside the spike
tetrahedra. Note that for decreasing spatial resolution (a)-(c) or higher frequencies in the source data (d) the output shows no
aliasing effect.
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643 1283 2563

tets ∩
∫

∑ ∩
∫

∑ ∩
∫

∑

19.0k 2.0 0.5 2.5 11.7 2.0 13.8 78.6 12.0 90.5
190.0k 4.2 1.1 5.2 18.9 4.1 22.9 111.7 19.0 130.6
1.9M 12.1 3.1 15.3 38.1 9.8 47.8 179.9 37.0 216.8

Table 1: Time taken (in seconds) to sample a cube – composed of a varying number of tetrahedra (tets) – to Cartesian grids
of increasing complexity. The timings for the intersection stage (∩), the integration stage (

∫
), and their sum (∑) is given. A

Gaussian filter function with five even polynomial orders and a radius of 2 grid cell lengths was used.

port temporal filtering [GBAM11]. In addition we will inves-
tigate wavelet approaches for spherical filters [MS11]. Fi-
nally, we plan to incorporate analytic visibility methods and
extend our filtering to perspective interpolation. This way the
method could be used for general analytic 3D rendering.
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Appendix A: Closed form solutions

The following integration results are given for a fixed filter order n. The final value is obtained by summation of the desired filter
orders with their respective weights. It should be noted that although the results contain non-elementary functions such as the
Gauss hypergeometric function 2F1 and the Appell hypergeometric function F1, the terms for a fixed order n can be expressed
with elementary functions. We use the abbreviation f (x)|x1

x0
for f (x1)− f (x0).

The formulas were obtained with the help of a symbolic mathematical software and manually corrected, checked and opti-
mized. The variable names used in the formulas are consistent with figures 4 and 5. Further explanations can be found in the
additional material.

2D Integrals

Assuming that 0 < r0 < R, n ∈ N and interpolation coefficients γ,λ,µ ∈ R we get with polar coordinates x = r cosϕ,y = r sinϕ∫ R

0
r
∫ ϕ1

ϕ0

(γ+λx+µy)rn dϕdr = Rn+2
(

γ

n+2
(ϕ1−ϕ0)+

R
n+3

(λ(sinϕ1− sinϕ0)−µ(cosϕ1− cosϕ0))

)
, (8)

and with the further assumption that − π

2 < ϕ0,ϕ1 <
π

2 we obtain

∫ ϕ1

ϕ0

∫ r0
cos ϕ

0
r(γ+λx+µy)rn dr dϕ = rn+2

0

((
γ

n+2
+

r0λ

n+3

)
2F1

(
1
2
,

n+3
2

;
3
2

;sin2
ϕ

)
sinϕ+

r0µ
(n+2)(n+3)

secn+2
ϕ

)∣∣∣∣ϕ1

ϕ0

.

(9)

3D Integrals

Assuming that 0 < d < R, n ∈ N, 0 < θ < π

2 and γ,λ,µ,τ ∈ R with spherical coordinates x = r cosϕsinθ,y = r sinϕsinθ,z =
r cosθ we get∫ ϕ1

ϕ0

∫ arccos( d
R )

0
sinθ

∫ d
cos θ

0
r2(γ+λx+µy+ τz)rn dr dθdϕ =

d
n+4

(
(n+4)γ+(n+3)dτ

(n+2)(n+3)

(
Rn+2−dn+2

)
(ϕ1−ϕ0)

+8dn+3
√

1− 2d
d +R

(
F1

(
1
2

;n+2,−n;
3
2

;1− 2d
R+d

,
2d

R+d
−1
)
−3F1

(
1
2

;n+3,−n;
3
2

;1− 2d
R+d

,
2d

R+d
−1
)
(10)

+2F1

(
1
2

;n+4,−n;
3
2

;1− 2d
R+d

,
2d

R+d
−1
))

(λ(sinϕ1− sinϕ0)−µ(cosϕ1− cosϕ0))

)
whereas with the additional conditions − π

2 < ϕ0,ϕ1 <
π

2 , 0 < r0 < R and 0≥ θC = arccos
(

d
R

)
< π

2 we obtain

∫ ϕ1

ϕ0

∫ arctan
(

r0
d cos ϕ

)
θC

sinθ

∫ R

0
r2(γ+λx+µy+ τz)rn dr dθdϕ =

Rn+3

4

− 4γ

n+3
arctan

 √
2d sinϕ√

2r2
0 +d2 +d2 cos2ϕ


+

2R(r0τ−dλ)

(n+4)
√

r2
0 +d2

arctan

 r0 tanϕ√
r2

0 +d2

+
2R

n+4
arctan

( r0 secϕ

d

)
(λsinϕ−µcosϕ)+

4γcosθC
n+3

ϕ (11)

+
R

n+4
(τ(cos2θC−1)ϕ+2(θC− cosθC sinθC)(µcosϕ−λsinϕ))

)∣∣∣∣ϕ1

ϕ0

.

The evaluation of the integrand on a tetrahedral integration domain proves much harder than the previous cases. This can
be attributed to the fact that while the integration domain can be very easily expressed in Cartesian coordinates, the filter
monomial rn is easily described in spherical coordinates. Thus we have not found a result formula that permits the filter order n
to be expressed as a variable. Nevertheless it is possible to evaluate the integral for each filter order separately. We show the
results for the first few even orders as the odd orders produce lengthy expressions.
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∫ ϕ1

ϕ0

∫ arctan
(

r0
d cos ϕ

)
0

sinθ

∫ d
cos θ

0
r2(γ+λx+µy+ τz)rn dr dθdϕ =

dr2
0

24

(
(4γ+2r0λ+3dτ) tanϕ+ r0 sec2

φµ
)∣∣∣∣∣

ϕ1

ϕ0

n = 0

dr2
0

360

((
12
(

3d2 + r2
0

)
γ +r0

(
20d2 +8r2

0

)
λ+10d

(
3d2 + r2

0

)
τ

)
tanϕ

+r0 sec2
ϕ

(
10d2µ+ r0 (6γ+4r0λ+5dτ) tanϕ

)
+3r3

0 sec4
ϕµ
)∣∣∣ϕ1

ϕ0

n = 2

dr2
0

5040

((
8
(

45d4 +30d2r2
0 +8r4

0

)
γ+6r0

(
35d4 +28d2r2

0 +8r4
0

)
λ+7d

(
45d4 +30d2r2

0 +8r4
0

)
τ

)
tanϕ

+r0 sec2
ϕ

(
105d4µ+ r0

(
8
(

15d2 +4r2
0

)
γ+ r0

(
84d2 +24r2

0

)
λ+7d

(
15d2 +4r2

0

)
τ

)
tanϕ

)
+3r3

0 sec4
ϕ

(
21d2µ+ r0 (8γ6r0λ+7dτ) tanϕ

)
+15r5

0 sec6
ϕµ
)∣∣∣ϕ1

ϕ0

n = 4

(12)

Appendix B: Polynomial filter coefficients

Table 2 and 3 show the coefficients for polynomial fits of various common anti-aliasing filters together with the approximation
error. All filters were normalized to the interval [0,1]. The numbers refer to the original filter width, i.e. the Gaussian (σ= 2−1/2)
is cut off at 2.3 and the Lanczos filter is of radius 2. Note that for 3D filters we use only coefficients for even polynomials while
the 2D filters can also use odd and thus have a lower degree. The coefficients are computed using a least squares fit with the
pre-integrated polynomials shown in table 4. The pre-integrations ensure that our filters satisfy equation (2).

filter (radius) c0 c1 c2 c3 c4 εmax

Gaussian (2.3) 1.30321 0.119155 -9.69022 14.2894 -6.02528 0.00579162
Lanczos (2) 1.68971 0.71905 -19.8035 31.601 -14.2415 0.00892035

Mitchell-Netravali 2.03111 -2.16092 -15.102 31.24 -16.13328 0.0347118
B -1.16265 2.328 8.46852 -21.7564 12.2412 0.0332397
C -0.521127 3.9474 -4.20988 -4.72515 5.66 0.0445042

Blackman-Harris 1.36055 0.33004 -11.613 17.2908 -7.386368 0.00457847

Table 2: Coefficients for polynomials fits of various 2D filters. All filters are normalized to the range [0,1].

filter (radius) c0 c2 c4 c6 c8 εmax

Gaussian (2.3) 1.65951 -8.09529 16.6202 -16.1818 6.05909 0.00504176
Lanczos (2) 2.58949 -14.7969 30.5864 -27.9904 9.64687 0.00298654

Mitchell-Netravali 3.25801 -24.7342 65.8731 -73.6141 29.366 0.0131654
B -2.16456 19.7691 -56.6125 65.4189 -26.5495 0.013814
C -1.1118 16.1821 -56.1939 71.2608 -30.3158 0.0201162

Blackman-Harris 1.79798 -8.86188 17.5986 -16.2609 5.75158 0.00211148

Table 3: Coefficients for polynomials fits of various 3D filters. All filters are normalized to the range [0,1].

monomial (2D / 3D) 2D pre-integration 3D pre-integration
1 2

√
1− x2

(
1− x2

)
π

x / x2
√

1− x2 + x2 log
(

1+
√

1−x2

x

) (
1− x4

)
π

2

x2 / x4 2
3

√
1− x2

(
1+2x2

) (
1− x6

)
π

3

x3 / x6 1
4

(√
1− x2

(
2+3x2

)
+3x4 log

(
1+
√

1−x2

x

)) (
1− x8

)
π

4

x4 / x8 2
5

√
1− x2

(
3+4x2 +8x4

) (
1− x10

)
π

5

Table 4: Pre-integrated polynomials for the range [0,1].
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