
Rapid Visualization Development
based on Visual Programming

Developing a Visualization Prototyping Language

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik & Digitale Bildverarbeitung

eingereicht von

Benedikt Stehno
Matrikelnummer 0225175

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr. techn. Martin Haidacher

Wien, 20.10.2011
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Rapid Visualization Development
based on Visual Programming

Developing a Visualization Prototyping Language

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computergraphik & Digitale Bildverarbeitgung

by

Benedikt Stehno
Registration Number 0225175

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr. techn. Martin Haidacher

Vienna, 20.10.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Benedikt Stehno
Geymüllergasse, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

Over the years, many visualization tools and applications were developed for specific fields of
science or business. Staying in the alcove of their field, these are highly suited and optimized
for visualizing specific data, with the drawback of not being flexible enough to extend or alter
these visualizations for other purposes.

Often, customers of such visualization packages cannot extend them, to fit their needs,
especially if the software is closed source. But even using open source software does not solve
this problem efficiently, since to extend the software, costumers need to have programming skills
and are often forced to reimplement algorithms or visualizations which already exist, making
rapid development impossible.

The goal of this thesis is to develop a dataflow visual programming language (DFVPL)
and a visual editor for the rapid development of visualizations. With this programming
language, called OpenInsightExplorer, users can develop visualizations by connecting graphical
representations of modules rather than writing source code. Each module represents a part of
a visualization program. Modules are designed to function as an independent black box and
they start to operate as soon as data is sent to them. This black box design and execution model
allows to reuse modules more frequently and simplifies their development.

This programming language and its editor run platform independently to reach a high
number of potential programmers, respectively users, to develop visualizations, since they are
not bound to a specific platform. It is extendable, by means of self developed modules and data
types to extend the language. Programming and editing a visualization is easy and fast, even
for people with only little programming experience. The production cycle of the development
of visualizations is reduced to a minimum. This is achieved by reusing and combining existing
modules.

The usability of the programming language was evaluated by implementing two example
visualizations with it. Each example originates from different areas of visualization, therefore
demanding different data types, data transformation tasks and rendering.

iii

Kurzfassung

Seit geraumer Zeit wurden Visualisierungstools speziell für bestimmte Bereiche in der
Forschung und für die Wirtschaft entwickelt. Diese sind oftmals für ihr Einsatzgebiet
hochgradig optimiert, was es beinahe unmöglich macht, diese auf einfachem Wege für neue
Anforderungen anzupassen.

Oftmals können Anwender solcher Visualisierungs-Softwarepakete diese nicht ihren
eigenen, spezielleren Anforderungen anpassen, besonders wenn es sich um proprietäre
Anwendungen handelt. Aber auch Open-Source-Software löst dieses Problem nicht
zufriedenstellend, da die meisten Endkunden nicht über Programmiererfahrung verfügen.
Oftmals müssen Algorithmen oder ganze Visualisierungen, die schon existieren, solchen
Softwarepaketen hinzugefügt werden, um die gewünschte Funktionalität zu erreichen. Dieser
Umstand macht eine schnelle Entwicklung unmöglich.

Das Ziel dieser Diplomarbeit ist es, eine visuelle Programmiersprache (Visual Programming
Language - VPL), die auf datenstromorientierte Programmierung basiert, zu entwickeln.
Anwender entwickeln Visualisierungen mit dieser Programmiersprache OpenInsightExplorer,
indem sie vorgefertigte Module miteinander graphisch verbinden, anstatt Source Code
zu schreiben. Jedes dieser Module stellt einen Teil der benötigten Funktionalität einer
Visualisierung dar. Der Aufbau der Module ist so konzipiert, dass sie sich wie unabhängige
Black Boxen verhalten und ausgeführt werden, sobald sie Daten empfangen. Dieses Design
erlaubt es Module öfters zu verwenden und erleichtert die Programmierung dieser.

Die Sprache selbst als auch ihre integrierte Entwicklungsumgebung ist plattformunabhängig,
um eine Vielzahl von möglichen Anwendern zu erreichen. Des weiteren ist diese leicht
zu erweitern hinsichtlich zusätzlicher Module und Datentypen. Auch Personen mit wenig
Programmiererfahrung sind im Stande, in dieser Programmiersprache Visualiserungen zu
entwickeln. Ebenfalls wird die Entwicklungszeit neuer Visualisierungen reduziert, indem
großteils nur fertige Module zu einer Applikation kombiniert werden müssen.

Um die Verwendbarkeit der Sprache zu testen, wurden zwei unterschiedliche Beispiel-
Visualisierungen in der Sprache umgesetzt. Jedes Beispiel verlangte unterschiedliche
Datentypen, Algorithmen und Renderingtechniken.

v

Contents

1 Introduction 1
1.1 Visualization . 3
1.2 The Visualization Pipeline . 3

2 State of the Art 7
2.1 Visual Programming . 7
2.2 Dataflow Programming . 8

2.2.1 Determinism of the Dataflow Model 9
2.2.2 Controlling the Flow of Data Tokens 10
2.2.3 Alternative to the Token-Based Model 11
2.2.4 Dataflow Execution Architectures . 11
2.2.5 Practical Realization of the Dataflow Model 14

2.3 History of Dataflow Visual Programming Languages 14
2.4 Present Dataflow Visual Programming Applications 17

2.4.1 LabVIEW . 17
2.4.2 KNIME . 17
2.4.3 OpenDX . 18
2.4.4 Quartz Composer . 19
2.4.5 Visualization Toolkit . 20

3 OpenInsightExplorer 23
3.1 Features of OpenInsightExplorer . 25
3.2 Framework Design Decisions . 27

3.2.1 Choosing the Development Language 27
3.2.2 Dataflow Execution Architecture . 27
3.2.3 Connectivity Scheme . 30
3.2.4 Growing Ports . 31
3.2.5 Data Types and Side Effects . 31

4 Implementation 33
4.1 General Structure of the Framework . 34
4.2 Patches . 34

4.2.1 Loading Patches at Runtime . 34

vii

4.2.2 Loading Jar Files at Runtime . 35
4.3 Ports . 37

4.3.1 Custom Data Types . 38
4.3.2 Generic Port Class . 38
4.3.3 Stream Ports . 42

4.4 Hiding the Framework Implementation . 45
4.4.1 Hiding Behind Proxy Classes . 46
4.4.2 Proxy Port Listeners . 49
4.4.3 Redirecting Exceptions . 51
4.4.4 Proxy Port Return Statements . 51

5 Results 53
5.1 Volume Rendering . 53
5.2 OpenStreetMap Visualization . 57
5.3 The OpenStreetMap XML File Format . 57

6 Discussion and Future Work 63
6.1 Growing Ports and Generic Ports . 63
6.2 Structured Programming . 64
6.3 Debugging . 64
6.4 Data Types and Side Effects . 65
6.5 GUI . 65

7 Conclusion 67

A User’s Guide 69
A.1 Introduction . 69
A.2 The GUI . 70

A.2.1 The Workbench . 70
A.2.2 The Patch Bag . 70

A.3 Patches . 72
A.4 The Patch Titlebar Icons . 72
A.5 A “Hello World“ Tutorial . 75

A.5.1 Running the Application . 77
A.5.2 Loading and Saving Compositions . 77

A.6 Ports in Detail . 78
A.6.1 The Different Port Types . 78
A.6.2 Connection Rules . 78
A.6.3 Port Icons . 79
A.6.4 Growing Ports . 79

B Programmer’s Guide 81
B.1 Introduction . 81
B.2 Patch Interface . 81

viii

B.3 Ports . 84
B.4 Port Labels . 85
B.5 Port Trees . 85
B.6 Spawning Threads . 87
B.7 Data Request . 87
B.8 Trigger Functionality . 89
B.9 Growing Ports . 90
B.10 Generic Ports . 92

Bibliography 95

ix

CHAPTER 1
Introduction

Many tools were developed to visualize data so far. They are all designed to transform data
into meaningful visual images, that should allow people to gain insight and help to interpret
the data. These tools help to understand data faster and in a more intuitive way. Furthermore,
some visualization applications were developed to explore data sets and extract information in
an interactive way. A great number of people could benefit from using visualization techniques
for their every day life, to gain insight into various matters. But only experts use visualization
software more or less exclusively. This can be reasoned by the following facts:

Most of the visualization software or tools were highly optimized for a specific field of
science or business, with the drawback of not being flexible enough to extend or alter these
visualizations for other purposes. For example, a highly optimized visualization package for
flow rendering is often incapable of rendering a histogram of the stream line lengths being
displayed. To mention yet another example, a graph based visualization of a social network
lags the feature of rendering a pie chart representing the different connection types from a user
in focus.

Therefore some visualization suits were developed which contain collections of different
visualization methods and techniques. User can combine and/or configure to design custom
visualizations. This combining and customization step is often limited to a certain level. Only
a few aspects of a visualization can be configured and only certain visualization techniques can
be combined at all.

Users could extend these visualization suits implementing certain needed functionality on
their own. In most cases this is a rather impossible task, especially if the software is closed
source. But even using open source visualization software does not solve this problem efficiently
since to extend the software, costumers need to have programming skills. They are often forced
to re-implement algorithms or visualizations which already exist, making rapid development
impossible.

However some visualization suits or applications do support a plugin feature, which allows
to extend the software with features or visualization techniques without altering the framework,

1

e.g., one visualization software only supports reading data out of specially formated files and
lacks the ability to read the data out of a database instead. This feature may be added as a plugin
to the software package. On the downside such plugins can actually only be developed by users
with significant programming knowledge. Moreover the developers must be familiar with the
programming language the visualization application is written in.

People have to choose a specific visualization software that hopefully supports all requested
features they need. In the case it does not do that they have to deal with the problem that
they cannot extend or configure the software easily. To summarize the problem: It is a rather
complicated task to rapidly develop custom visualizations especially for people without any
significant programming experience.

To solve this problem we designed and implemented a rapid development framework for
visualizations in which even little experienced programmers can develop visualizations. It is
called OpenInsightExplorer and it is basically a programming language for visualizations.
Users build custom visualizations with OpenInsightExplorer by arranging and connecting
graphical elements, rather than writing source code. Using this so called visual programming
paradigm allows even users with few empirical programming knowledge to develop
visualizations. In addition, OpenInsightExplorer makes also use of the dataflow programming
paradigm. In the case a language merges both paradigms together, it can be classified to
the family of dataflow visual programming languages (DFVPL). OpenInsightExplorer is a
member of this family.

OpenInsightExplorer’s usability was evaluated by implementing two different example
visualizations. Each example originates from different areas of visualization, therefore
demanding different data types, data transformation tasks and rendering. These example
implementations should ensure that the language is capable of covering distinct areas of
information and scientific visualization.

This thesis is structured in the following way: The rest of this chapter will introduce the
basic concepts of information visualization and each step of the visualization pipeline will
be explained. Chapter 2 provides a short introduction to the concepts of visual programming
and a more detailed one for the dataflow programing paradigm. Furthermore this chapter
contains a section which deals with the historical development of dataflow visual programming
languages. Starting with the first early members of the family all important successors get
examined which introduced noteworthy essential features. The last section of chapter 2 gives
a state-of-the-art overview of present dataflow visual programming languages. The following
chapter 3 describes in detail the idea behind OpenInsightExplorer, its design decisions and
the features it has. Chapter 4 features the implementation details of OpenInsightExplorer.
Various aspects of the implementation of the framework and its features are explained in this
chapter. The usability of the framework is evaluated in chapter 5. It depicts how the example
visualizations got implemented with OpenInsightExplorer. Furthermore, it discusses on how
intuitive these implementation tasks are. A discussion and future work section can be found in

2

chapter 6. It also deals with possible future improvements of the framework. The conclusion
of this thesis is given in the final chapter 7. The conclusion exams how many preset goals of
OpenInsightExplorer were finally achieved.

A User’s Guide and a Programmer’s Guide for the OpenInsightExplorer framework can be
found in the Appendix of this thesis. Both can be read independently from the rest of this thesis
and each other. They function as stand alone manuals. However, the thesis references to both
manuals to provide further details at several times.

1.1 Visualization

Visualization is a scientific research field which deals with developing computer aided
techniques for visually representing large quantities of data. These techniques transform data
into meaningful visual images, that should allow people to gain insight and help to interpret the
data. Some of these techniques are interactive and allow to analyze the data sets in an interactive
manner.

Visualization techniques can be subdivided into two main groups (by neglecting several
other smaller subgroups). One subgroup is the scientific visualization branch, which concerns
primarily visualizing three dimensional phenomena. This area emphases realistic rendering
of volume data sets which perhaps have a dynamic time component. The other subgroup is
the information visualization branch. This group deals with techniques to visually represent
large quantities of high dimensional data, mainly large scale collections of non numerical data.
Despite the fact that scientific and information visualization cover distinct areas both share the
same processing steps which are described in the following section.

1.2 The Visualization Pipeline

Every visualization follows the concept of the visualization pipeline [5, 6], illustrated in Figure
1.1. Different subgroups of visualization may merge several processing steps together or simply
skip individual steps. To generate the final visualization output, for example an image, the data
gets transformed in each step of the pipeline. Users may interact with certain aspects of each
processing step.

3

prepared
data

data
analysis

filtering

focus
data

mapping

geometric
data

visualization
output

rendering

data process
flow interaction

raw
data

data
acquisition

Figure 1.1: The visualization pipeline

The visualization pipeline contains the following successive processing steps:

• Data acquisition
In the first step the user defines the data source from which the data should be loaded and
visualized. The data may get read out of special formated files, databases or various other
sources like simulations or real time measurements. The result of the data acquisition is
raw data.

• Data Analysis
The data is prepared for visualization in this step for example by interpolating missing
values, applying a smoothing filter or correcting erroneous measurements. Normally, little
to none user interaction is required for this step. The outcome of this processing step is
prepared data.

• Filtering
Filtering is a user centered step. The user selects the portions of data he/she wants to be
visualized. For example, a user selects data out of a certain time range, which should
be visualized. After this stage only focused data remains in the pipeline for the further
processing steps.

• Mapping
The focused data gets mapped to geometric primitives (e.g., points and sprites) and their
attributes (e.g., color, position). The focused data gets transformed to geometric data in
this process stage.

• Rendering
The final step of the pipeline transforms the geometric data into the resulting image,
providing the visualization output.

4

OpenInsightExplorer provides modules for each of these successive processing steps. The
software gives users the opportunity to build their own costume visualizations by connecting
graphical representations of these modules together, designing a custom visualization pipeline.

5

CHAPTER 2
State of the Art

OpenInsightExplorer is based on two paradigms, the visual programming paradigm and the
dataflow programming paradigm. In the past, these two paradigms were merged together,
resulting in the family of dataflow visual programming languages (DFVPL), to which
OpenInsightExplorer belongs to.

This chapter begins with a short introduction to the concept of visual programming, followed
with a more detailed one for the dataflow programming. The later introduction is executed in
far more detail since it contains information which is necessary to understand the implications
for the design of OpenInsightExplorer. Besides this chapter contains a section which deals with
the historical development of dataflow visual programming languages. Starting with the first
early members the section exams all important successors which introduced noteworthy essential
features. At the end some examples of present members of visual dataflow programming
languages are given and are examined.

2.1 Visual Programming

Visual programming languages (VPL) allow users to program by manipulating or arranging
graphical elements rather than writing textual source code. Users arrange or combine graphical
symbols, following the specific syntax rules of a language.

Visual programming languages can be designed to work on a higher abstraction level than
their textual counter-parts using graphical metaphors. This gives users the ability to work
with them in a more intuitive way. Often they reach such an abstraction level that no prior
programming experience or knowledge is required to express or design programs. Hence they
often are used for End User Development [15], where users can create, modify or extend parts
of a software without any significant knowledge about programming.

Every visual programming language can be classified into one of these three basic
categories: icon-based, form-based or (block) diagram-based, depending on which type of visual
expressions are used.

7

Many visual programming languages follow the concept of boxes and arrows which belongs
to the category of diagram based visual programming. Boxes (or nodes) represent entities
which are connected by arrows (or arcs). Such connections express relations between entities.
By connecting boxes together programming converts into the task of designing a graph which
represents a program. Dataflow languages are also based on the boxes and arrows concept, which
seems to be one reason why the visual programming and dataflow programming paradigms got
combined.

OpenInsightExplorer is based on the boxes and arrows visual programming concept. Boxes
represent modules or processing steps from the visualization pipeline 1.2 and arrows express
paths, on which the data flows from each processing step to the next one.

2.2 Dataflow Programming

Dataflow programming languages consist of nodes and directed arcs (see Figure 2.1), following
the boxes and arrows concept [1, 10, 12, 13, 23, 26].

node (box) arc (arrow)

Figure 2.1: A node and an arc - the basic elements of a dataflow language.

Several of these basic elements are connected together to a graph or network, representing
a program. Nodes can be understood as black boxes and they perform calculations on the data
they receive such as primitive arithmetic or comparison operations (e.g., perform an addition
or multiplication). Nodes send data tokens through these arcs to other connected nodes. Data
tokens can be numbers, arrays or even pointers to objects. Arcs behave like unbound FIFO (first-
in first-out) queues [22] between a sending and a receiving node. Arcs which flow to a node are
called input arcs and the node can receive data tokens through them. In contrast arcs which flow
away from a node are called output arcs and the node can send data through them.

Nodes perform calculations or tasks as soon as they have received all necessary data
tokens for the execution. This principle is called the dataflow execution model. Sometimes
they only need to receive data on some of the input arcs and not on all of them for a specific
task. A complete set which will trigger an execution of a specific task, is called a firing
set [1, 7, 10]. Nodes can have several firing sets which will trigger different operations. On
execution, the node removes the data tokens from the firing set input arcs and places the results
of its computations onto its output arcs. Finally it waits until a new firing condition arises.
Multiple nodes can become fireable at the same time and can therefore be executed in parallel.
The dataflow execution model assures that operations are executed as soon as all vital data is
available.

This scheme differs from the von Neumann execution model which most computers
implement. Program instructions are written in a sequential order and are executed sequentially,

8

i=A-23
j=23+B
X=i*j

(a)

23A B

- +

*

X

i j

(b)

Figure 2.2: Comparison between a sequential program (a) and its equivalent dataflow graph/network (b).

one after another (see Figure 2.2 (a) for an example program). The execution of a program
depends on the ordering of the instructions which might not be optimal. Some instructions may
get executed later than they could have been since all vital operants were already valid at a
earlier time. Using the classic von Neumann execution model no instructions are executed in
parallel.

Figure 2.2 (a) shows a traditionally sequentially executed program and its equivalent as a
dataflow graph (b). Further a constant (represented as a square) is a part of the graph. It has a
forking output arc. This means it puts on each forked arc branch a token with the same value.
The output gets duplicated. As soon as data is available at the input arcs of the subtraction
(A) and addition (B), these nodes can operate. Their second operant is a constant (the square)
which always provides data because it fills up the FIFO buffer of its output arcs with its constant
value. Hence these nodes can are executed in parallel since their firing set depends only on one
variable input. Furthermore when more data arrives from A and B, the subtraction and addition
nodes can calculate intermediate results even when the multiplication node still operates on the
first wave of data. This behavior is called pipelined dataflow [16, 37].

In contrast to this the von Neumann execution model (see Figure 2.2 (a)) takes three time
units to finish (assuming one unit for each instruction), which are always executed in the same
sequential order. No pipelining, no parallel execution and no intermediate results are calculated.

2.2.1 Determinism of the Dataflow Model

Dataflow languages are called well behaved in the case the nodes produce exactly one output
set of data tokens for one input set. They generate new data tokens for their results and do not
modify any consumed ones. This behavior makes a dataflow language become a pure dataflow
language which is equivalent to a functional language. Functional languages treat computation
as the evaluation of mathematical functions and avoid state and mutable data. Besides that the
absence of a globally data storage makes it side-effect free, since all operations are based on local

9

data only (the sent and received tokens). Of course in that case the data tokens cannot contain
any pointers to global stored data. On the same input tokens such a pure dataflow language
produces always the same results and it becomes deterministic. In some cases this can be a
desired purpose.

2.2.2 Controlling the Flow of Data Tokens

Occasionally the result of one node’s output arc will be needed as an input operand for more
than one other node (e.g., see Figure 2.2). In that case the node will duplicate its result token
and put it on every of its forked output arc branches. This preserves the data independence (side-
effect freeness) and deterministic behavior since all input arcs FIFO buffers will have their own
duplicated copy of the data token.

On the other hand, it is not permitted to simply merge arcs together. This could compromise
the ordering how the data tokens arrive at a merged input and therefore the computation of a
node itself and in turn the determinacy of the language. Additionally a mechanism is needed
that allows to switch between destination nodes for the data tokens. Many dataflow languages
use special gate nodes to control the flow of tokens in a dataflow network.

Gate Nodes

There are two types of gate nodes that allow to manipulate the flow of tokens without
endangering determinacy. One covers the case of two or more input arcs which are merged
together. The second one deals with the problem to steer the output to a specific destination.

Merge

A B

Control

Figure 2.3: A merge gate.

The merge gate node, depicted in Figure 2.3, has three input and one output arc. This node
reads first from the control input, which can only carry a boolean typed token. Depending on
the received state of the value, it will delegate one token from its input to the output. In the case
the control carried a true it will fetch from input labeled A, otherwise from B. The merge gate
can be expanded to handle more than two input arcs. Of course, the control input will be typed
to a numeric data type instead of boolean. In this case, the received number will decide which
input arc is selected.

A switch gate, as illustrated in Figure 2.4, has one control input, a second input and two
output arcs. It places the token from the input depending on the read control value on one of

10

Switch

A B

Control

Figure 2.4: The switch gate.

both outputs. On true it places the input on A and on false it delegates the token to B. The switch
gate can also be modified the same way like the gate node, to handle more output arcs.

2.2.3 Alternative to the Token-Based Model

An alternative to the token-based model was developed and referred to as the structured model
[10]. It does not suffer from one drawback of the token-based approach. In the token-based
model, nodes cannot access the incoming data randomly and have no history sensitivity. The
structured model follows the same arc and node design as the token-based version. But instead
of using a FIFO buffer, only one data object is placed onto an arc and remains there. This
object will hold a structure that references data, instead of sending tokens across nodes in the
dataflow network. This structures can be accessed randomly but can also hold infinite arrays
which mirrors the functionality of streams in the token-based approach.

The structured model does not store data efficiently and introduces more complexity, since
it has to keep track of which data can be released. It operates the same way as Java’s garbage
collector which frees data as soon as it is not referenced by a pointer anymore. This model
only gained acceptance in the research area. Almost every commercial implementation of the
dataflow model followed the token-based approach.

2.2.4 Dataflow Execution Architectures

There are two theoretical main approaches for the implementation of the dataflow execution
model. The first architecture is the data driven approach, see Figure 2.5 [10–12]. A node
stays inactive until a routine, called the driver, determines, that on its input arcs a whole firing
set is placed. The driver will execute the node, which will consume its input tokens and place
its results onto all of its output arcs. This may cause other nodes to become fireable which
will be executed subsequently. The driver can operate in additional threads which will scan
independently for fireable nodes and can execute them in parallel.

Figure 2.5 illustrates an example of the data driven approach. This example is simplified so
that every node only has one firing set. A node becomes only fireable if on all of its input arcs
data has arrived. In the first step (a) the driver scans trough all nodes of the dataflow network
to determine which are in the fireable state. It finds two nodes that are ready for execution, A
and B. Since they have no input arcs at all, they are always fireable. In step two (b), the driver

11

ED

C

B
A

(a)

ED

C

B
A

(b)

A

ED

C

B
A

A B

(c)

A

ED

C

B
A

(d)

A

ED

C

B
A

C C

(e)

ED

C

B
A

(f)

Figure 2.5: Example of a data driven dataflow network.

executes both nodes in parallel. This is emphasized in the figure by using bold outlines for the
nodes and their output arcs. Both executed nodes place their results on their output arcs - as
depicted in (c). Now the driver determines that the node C just became fireable, since on both of
its input arcs a data token is available. Node D did not become fireable since its other input arc
is still empty. Depending on the used driver algorithm it also may happen that the nodes A and
B are fireable again too. But most implementations of drivers only execute always firable nodes
like A and B only if no other execution-ready node was found. Therefore only node C gets
executed as depicted in step (d). Again, the executed node places it result token onto its output
arcs (e). Finally nodes D and E become fireable and get executed in the last depicted step (f).

Another approach is the demand driven architecture, see Figure 2.6 [10, 22]. Nodes issue
demands to the relevant nodes connected to its input arcs. They propagate their request for data
to nodes linked to their inputs. Requests can expand trough the whole dataflow graph. As soon
as all requests from a node are satisfied (it received data on all inputs of its firing set) it gets
executed. It places the result only onto the branch of the output arc where it was prior inquired
for data.

An example of a demand driven network is depicted in Figure 2.6. It makes the same
simplification like the last one. Every node only becomes fireable as soon it has received data on
each of its input arcs. The demand driven execution starts at nodes which have no output arcs.
Every of these nodes alternately issues a request for input data. This example starts with node

12

ED

C

B
A

(a)

ED

C

B
A

A

(b)

ED

C

B
A

A

(c)

ED

C

B
A

A B

A

(d)

ED

C

B
A

C
A

(e)

Figure 2.6: Example of a demand driven dataflow network.

D, but E would also be a possible candidate. In the first step (a) node D issues to all of its input
connections a request for tokens. This is illustrated in the figure by using a red colored bold
outline for the node and additional red arrows, which represent requests. In the second step (b),
node A gets executed right away as it does not depend on any input data at all. It places only
a data token onto its output arc which is connected to node D. Nodes only place data tokens
onto branches where they were previously inquired for data in this execution model. Node C
recognizes the data request from node D (it’s now depicted with a red outline). Since it depends
on data from other nodes it cannot get executed right away, unlike it happened previously with
A. Therefore node C issues requests to the nodes linked to its input arcs in step (c). Both partner
nodes A and B can satisfy the request immediately because both are not dependent on any input
data. They get executed and place their result tokens onto their output arcs as depicted in step
(d). In the final step (e) node C becomes fireable and is executed. Its result token moves node
D into the firable state (data rests on all of its input arcs), which gets executed shortly afterwards.

Both architectures have their benefits and drawbacks. The data driven approach does not
suffer of the request propagation overhead which the demand driven method produces. On the
other hand, with the demand driven approach it is possible to eliminate the need for certain gate
node types (see Section 2.2.2) [10]. For example, the switch (see Figure 2.4) node becomes
redundant, because only needed data is demanded at all. Either the node connected to the output
arc labeled A or the one linked with B will request data, but not both.

13

2.2.5 Practical Realization of the Dataflow Model

In theory the pure dataflow model seems a promising approach but the implementation of it is a
very difficult task [34]. This theoretical model makes assumptions which cannot be practically
realized. First of all the model states that FIFO buffers are unbound in capacity which cannot
be converted into reality since computer systems have limited memory. In addition the model
states that an up to infinite number of instructions could be executed concurrently implying
an unrealizable infinite number of processing elements. These restrictions dictate that the pure
dataflow model cannot be implemented entirely. Thus the minor changes of the model (to enable
an implementation) can result in deadlocks [1].

2.3 History of Dataflow Visual Programming Languages

This section is about the historical development of dataflow visual programming languages
(DFVPL). Starting with the first early members it examines all important successors which
introduced noteworthy essential features. Some of these features or concepts are explained
in detail since they were essential to the design of OpenInsightExplorer and can be found in
present dataflow visual programming applications.

One of the first pure visual programmable dataflow programming languages was Data-
Driven Nets (DDN) [9]. It was developed by A. L. Davis in the 1970s and operates at a very low
level on the token-based dataflow approach. Nodes perform rather simple tasks only. Programs
were already rendered as graphs. Arcs contain FIFO queues and are restricted to a certain data
type, introducing so called typed arcs to dataflow languages in this way. Figure 2.7 depicts a
typed arc example. The arc is restricted to the data type boolean. Node A can only send boolean
tokens through this arc and B can only receive such tokens. This feature ensures that both nodes
will send and receive tokens of the same data type. Typed arcs proved to be an essential feature
since they introduce a type-safety check mechanism to DFVPLs. A equivalent mechanism was
implemented in OpenInsightExplorer to provide the same essential functionality like typed arcs.

A B
boolean

Figure 2.7: Example of a typed arc. Node A sends only tokens of the data type boolean to B.

Davis further developed a Graphical Programming Language (GPL) which proved to
be a higher level language version of and derived from DDN [39]. It introduces structured
programming to dataflow visual programming languages. Whole sub-graphs of a dataflow
network can be expanded out of a single node (see Figure 2.8), structuring a program with the
top-down refinement approach [40]. These sub-graph nodes can be defined recursively. As
its predecessor DNN, GPL also uses typed arcs. GPL introduced facilities for visualization
and debugging. Moreover, it provided the possibility for additional on-demand text-based
programming.

14

A

B

C

D

E

(a)

A

B

D

E

C1

C2

C3

(b)

Figure 2.8: A whole sub-graph (the nodes C1, C2 and C3) of a dataflow network (b) can be collapsed to
the single node C (a) and expanded again.

Functional Graph Language (FGL) [21] was created by Keller and Yen in the 1980s. It is
a visual dataflow language that is based on the structured model instead of the commonly used
token-based approach. Almost similar to GPL, this language also supports top-down stepwise
refinement for structuring programs.

In 1983 the first version of ProGraph [8,18,27], a more general purpose DFVPL developed
by Acadia University, was released. It is a multi-paradigm programming language including
the dataflow, visual and object oriented paradigm. It became a cross-platform supported
software with executables/versions for Classic MacOS, Microsoft Windows and Mac OS X.
The methods of each object are defined using dataflow diagrams (see Figure 2.9). ProGraph
includes iterative constructs and permits procedural abstraction by condensing a graph into a
single node. ProGraph has also been used as a subject in research.

The concept of programming consists of two tasks, emphasize Gerlernter and Carriero
[17]. First programmers must express how computations are made and additionally how these
computations are coordinated. This distinction becomes more and more important in the advent
of distributed and heterogeneous computer systems. They suggested to separate these tasks into a
computation and a coordination language. Dataflow graphs almost naturally fit the specifications
of coordination languages. Through their node and arc based concept, they express relations
between computations (nodes) and coordination of their execution.

Most successors of FGL separated the tasks of computation and coordination. They use the
dataflow model for coordination and as execution model only. Often their nodes are written
in a different programming language but their execution still follows the rules of the dataflow
principle. Additionally nodes became more complex and they execute more sophisticated tasks
in comparison to those of previous dataflow languages. For example Vipers is a DFVPL that

15

Figure 2.9: A ProGraph screenshot depicting a member function of an object.

uses the dataflow paradigm for coordination and as execution model [3]. Its nodes are written
in the stand alone scripting language Tcl.

Morrison [26] proposed a system where nodes can be written in any arbitrary programming
language. The nodes can be arranged in a single visual network editing environment which
controls the coordination of execution. His dataflow-based programming concept does not
follow strictly the rules of the pure dataflow model. Moreover he also emphasizes a coarser
grained dataflow approach which means that nodes should execute more complex tasks rather
than primitive operations. He reported that his method seems to prove to be practical when
applied in a real-world scenario. He also proposed the concept of token streams. Instead of
only sending independent data tokens through a dataflow network, nodes can group a series of
data tokens together by surrounding them with special bracket tokens.

Granular Lucid (GLU) developed by Jagannathan [19] is based on Morrison’s concept.
The coordination task is written in Lucid, a textual dataflow language. Whereas functions are
written in another, properly sequential, language. GLU also promotes the more coarse grained
dataflow approach as Morrison suggested. With GLUs coarse grained approach, Jagannathan
proved that it is feasible to achieve similar performances compared to conventionally developed
applications for parallel processors.

OpenInsightExplorer follows Morrison’s concept with the exception that the same
programming language is used for the framework and its nodes. OpenInsightExplorer can be
classified as a coarse grained dataflow visual programming language since most of its nodes

16

execute rather complex tasks. The framework supports the concept of token streams too
allowing to group data tokens to a stream.

2.4 Present Dataflow Visual Programming Applications

This section addresses current commercial applications which use the dataflow visual
programming paradigm. It examines how the visual programming is implemented and what
additional features are supported.

2.4.1 LabVIEW

National Instruments released 1986 the first LabVIEW - Laboratory Virtual Instrumentation
Engineering Workbench [18, 21] platform for Apple Macintosh. LabVIEW is still in
development and several versions of the platform were released up to now. With this software
users can build virtual instruments by connecting different function nodes within a block
diagram by drawing wires (see Figure 2.10). Every virtual instrument has a visual front panel.
Users can add controllers and output displays to it which will be represented as function nodes
within the editor. Structural programming is provided by LabVIEW. Users can develop their
own functional nodes and reuse them arbitrarily in their projects.

LabVIEW uses a programming language, referred to as G. Function nodes are executed
as soon as all their input data become available following the execution model of a dataflow
language. In newer versions of LabVIEW execution-ready nodes are scheduled by a build-in
scheduler of LabVIEW on multiple threads/processes. The software is developed to be cross-
platform capable with support of Windows, Mac OS X and Linux.

LabVIEW demonstrated that large projects can be developed faster with a visual
programming language in comparison to traditional text based programming languages. Jet
Propulsion Laboratory, a NASA research and development center, reported that through the
visual syntax of LabVIEW a large project was significantly faster developed than the same
system in C [2]. LabVIEW became an industrial success and its benefits made it popular
among researches.

2.4.2 KNIME

KNIME [4,24,33] is a visual data exploration and data mining tool, written in Java. Its graphical
workflow editor is implemented as an Eclipse [14] plugin (see Figure 2.11). The user can arrange
various nodes or modules and connect them visually in the workflow editor with pipelines
generating a dataflow network for analysis and visualization.

It is possible to write own nodes to extend the functionality of KNIME. It also has built-in
nodes to incorporate with existing tools, such as Weka [38], R [31] and JFreeChart [20]. Modules
or nodes do communicate only with one data structure called DataTable [4]. Its structure is
similar to an SQL data table having a unique row identifier (primary key). Additionally the
DataTable holds meta information about the columns such as their types and names. The support
of dataflow networks containing loops is currently in an experimental state.

17

Figure 2.10: Example screenshot of a LabVIEW project, showing the blockdiagram source code (lower
left window) and the visual front panel of a virtual instrument (upper right window).

2.4.3 OpenDX

OpenDX (Open Data Explorer) [28] is a cross-platform scientific data visualization software,
developed by IBM. It can deal with different kinds of data such as scalar, vector or tensor fields.
Visualizations can be programmed either using a scripting language or the visual program editor,
depicted in Figure 2.12.

Each programmed visualization consists of connected modules, therefore following the
dataflow principle. There are many ready-to-use modules of different kinds of visualizations
(e.g., a streamline renderer), which only need to be configured properly.

Additionally OpenDX supplies GUI modules for interaction. With them the user is able
to manipulate various aspects of the visualization with graphical user elements. Some of
these, so called interactors, were developed to be smart and data driven. For example sliders
determine automatically the minimum and the maximum of the dataset setting its boundaries
appropriately. OpenDX is open source and user can expand its capabilities by programming
their own visualization modules or using a build in scripting language.

18

Figure 2.11: A screenshot of the graphical workflow editor.

2.4.4 Quartz Composer

Quartz Composer [30] is a visual based programming language for rendering and/or processing
graphics. The user can arrange within a graphical editor nodes (called patches) and connect
them, generating the final program called composition (see Figure 2.13). These compositions
can be played as a system screen saver, iTunes music visualization, as a Quartz Composer stand
alone application or can be embedded into a Cocoa or Carbon application. Since this software is
developed by Apple Inc., it is bound to a specific set of platforms and closed source. However it
is possible to develop plugins and one’s own specialized patches with new functionality. Since
developers can not introduce new custom data types they have to emulate them with the already
provided ones.

Quartz Composer supports following the native data types, which can be passed between the
patches. It is not possible to extend these data types.

• Boolean

• Index

• Number (double precision floating point)

• String (unicode)

19

Figure 2.12: OpenDX screenshot.

• Color

• Image

• Structure (named or ordered collection of objects, including nested structures)

• Mesh (vertices, vertex normals, texture coordinates, colors)

• Interaction

2.4.5 Visualization Toolkit

The Visualization Toolkit (VTK) is an open source C++ library for developing visualizations
and image processing applications [32, 36]. It has several interpreted interface layers including
Java, Tcl and Python. VTK is cross-platform and integrates GUI toolkits such as QT and Tk.
The Visualization Toolkit supports a wide variety of visualization algorithms for scalar, vector,
tensor, texture and volumetric data. It also contains an extensive information visualization
framework and supports parallel processing.

20

Figure 2.13: Quartz Composer screenshot.

The toolkit itself does not support any visual dataflow programming, but it was used as
basis for many visualization applications that do. MeVisLab [25] for example integrates VTK
modules in addition to its own ones. This cross-platform application framework allows users
to program medical image processing applications and scientific visualizations with the visual
dataflow programming paradigm (see Figure 2.14).

VTK’s representation of a visualization pipeline follows the concept of dataflow
programming. Its so called visualization model consists of independent modules which
get connected together to a network. Each module performs algorithmic operations on the data
as they flow through the network. The execution of the network is demand driven (each module
requests new data from their inputs) or event driven in response to user input.

The modules can be further classified into three types: sources, filters and mappers. Source
modules initiate the network and generate one or more output data sets. Filters require one or
more inputs and generate one or more outputs. Mappers terminate the network and require one
or more inputs.

The execution of a network is based on an implicit scheme. Each module maintains an
internal modification and execution time-stamp. When output from a module A is requested,
A compares its modification time and the modification time-stamps of its inputs against its last

21

Figure 2.14: A screenshot of MeVisLab.

execution time. In the case A or one of its inputs was modified (more recently than A’s last
execution) it will be re-executed.

After examining the history of dataflow visual programming languages and the features of
present state-of-the-art applications, the following chapter deals with OpenInsightExplorer. It
describes the feature the languages has and the design decisions which were made for it.

22

CHAPTER 3
OpenInsightExplorer

OpenInsightExplorer is the rapid visualization prototyping language or framework we have
developed. It is a solution attempt to the following problem: it is rather complicated to
rapidly develop custom visualization especially for people without any significant programming
experience. This chapter describes the idea behind OpenInsightExplorer, the design decisions
for the framework and the (unique) features which are implemented into the software.

The basic idea of the framework is to combine the advantages of visual programming and
dataflow programming (see Section 2.1 and 2.2). OpenInsightExplorer lets users program their
custom visualizations visually. Users simply connect graphical representations of modules in
a visual editor rather than writing source code. Each module represents a certain stage of the
previously mentioned information visualization pipeline (see Section 1.2). There are modules
that cover the step of data acquisition, for example a module that loads data from a file. Other
modules may transform this data to geometric primitives. This occurs in the mapping stage of
the pipeline. Connecting multiple individual modules with certain functionality together results
in building a custom visualization pipeline. The user-defined connections express paths on
which the data flows from one processing step to the next.

The modules are called patches in the OpenInsightExplorer framework. They operate as
independent black boxes. That means that the user does not need to know precisely how they
work. It is only necessary to know what they do. Since every stage of the visualization pipeline
exchanges data with its preceding and/or succeeding stage, patches need to exchange data with
each other as well. They have so called input ports and output ports (Figure 3.1 depicts a
graphical representation of the Box patch). Through its input ports a patch receives data from
a previous stage of the visualization pipeline. It processes this data and passes its results to the
next stage of the pipeline through its output ports.

To create visualizations with OpenInsightExplorer, users only need to find patches with the
desired functionality and connect them in the visual editor of the framework (see Figure 3.2).

23

Figure 3.1: A patch named Box with input ports (named X, Y, Z, Width, Height, Depth, Color) and an
output port (Out).

Visualizations developed with the OpenInsightExplorer are called compositions. A detailed
composition programming tutorial can be found in section A.5 of this thesis. Using this simple
visual programming concept allows users with little programming experience to program custom
visualizations [18].

Patches are designed to function as dataflow nodes. They get executed as soon as data
on their input ports arrives following the dataflow execution model. If a certain functionality
or stage of a custom visualization pipeline is missing users with only a little programming
experience can develop missing patches. Developers only need to implement a small Java
interface to create a fully operational patch.

Since OpenInsightExplorer follows a modular approach for patches (each visualization is
only a composition of independent patches) exchanging or adding new patches turns out to be
simple. Also this modularization supports rapid development because patches can be reused for
many different visualizations. Only missing new functionality must be implemented.

Figure 3.2: Programming with OpenInsightExplorer: two patches are connected together. The patch
Static String sends its output to the patch entitled Output Console.

24

3.1 Features of OpenInsightExplorer

This section lists some important and partially unique features OpenInsightExplorer supports.

• Open source and platform independence
OpenInsightExplorer is open source software. The framework is written in Java, which is
a platform independent programming language. Many platforms and architectures support
runtime environments for Java (JRE) and can run software written in Java.

However, the current version of OpenInsightExplorer can only be executed with the
operating system Windows on machines with 32 bit or 64 bit architecture. The framework
uses an OpenGL binding library (Jogl), which supports other platforms as well, but
OpenInsightExplorer only implements the support of Windows binding of Jogl currently.
Adding the Jogl support for other platforms to the framework should be a feasible task.

• Automatic Parallelization
OpenInsightExplorer is a visual dataflow programming language. Patches get executed
like nodes of a dataflow language. The dataflow execution model automatically
parallelizes the execution of nodes whenever possible (see Section 2.2).

• Streams
Instead of sending only individual data tokens between patches, OpenInsightExplorer
implements the concept of Morrison’s token streams (see Section 2.3). Patches can have
special stream ports which enable to group data together to a stream (see Section 4.3.3).

• Growing ports
The growing ports mechanism of OpenInsightExplorer is a unique feature. It allows to
add and remove ports dynamically to a patch while editing a visualization (see Section
3.2.4).

• Type-safety
Ports in the framework support a type-safety mechanism. Every port of a patch is
constructed for a certain data type (with the exception of generic ports which will be
discussed below). It can only send or receive a certain data type it was assigned to.
Whenever a user tries to connect two patches in the visual editor OpenInsightExplorer
verifies if the data types of the input port and output port are compatible. This is
comparable to the typed arcs (see Section 2.3) mechanism which was introduced through
DNN.

• Generic ports
To make patches more flexible, OpenInsightExplorer introduces a unique feature that
allows generic port types. Patches can have ports, which are not assigned to a certain
data type. As soon as they are connected, they can adapt their data type to the type of
the connection partner. They can change their data type dynamically. This feature allows
to implement patches, which can operate on any desired data type and can be used more
frequently (see Section A.6 and B.10).

25

• Custom data types
Unlike Quartz Composer (see Section 2.4.4), for example, OpenInsightExplorer allows
users to introduce new data types. Ports can be constructed with any arbitrary data type
developers of a patch may desire. This is in our opinion a very important feature because
visualizations can be build upon very different data types (e.g., volumetric data, data
structures that represent graphs, etc.). This feature proved to be very useful for one group
of our example visualizations (see Section 5.3).

• Classes as data type
In OpenInsightExplorer patches can send and receive instances of classes as data. These
objects can contain (like any other Java class) methods and functions in addition to the
data. For example, a class that represents a graph can have a method which returns the
nodes of it. Furthermore such a class could implement many different interfaces and
therefore represents multiple data types at once (e.g., a graph class can implement two
interfaces at once: one represents an undirected graph and the other one a directed graph).

• Delegating patches
The exchange of objects containing functions enables the development of patches that
follow the delegation pattern. A patch can call a function of a previously received helper
object and therefore delegates certain needed functionality to it. This can greatly enhances
the usability of patches. For example: a patch renders graphs it receives. To render a
graph it has to determine a camera position. Instead of implementing only one camera
positioning model on its own it can delegate this functionality to a helper object. This
helper object implements a function that returns a position for the graph. The patch
receives this helper object on one of its input ports. Now multiple camera positioning
patches can be implemented that will send helper objects with different implementations
of the function. One may send an implementation that the whole graph is visible, another
one sets the camera to zoom-in on the node with the most connections in the graph.

• Patch GUI
Developers can place GUI elements of a patch in three different locations. Patches can
have a running GUI which is a window that will be visible during the runtime of a
visualization. For example the Renderer patch providing an OpenGL render surface uses
the running GUI window for output purposes. The second location a developer can use is
the configuration GUI. This window will only be visible during editing a visualization.
It is useful to display GUI elements that configure the behaviour of a patch. The third
location is the bound GUI. It is directly visible between the input and output ports of a
patch (see Figure A.6). The implementation of the GUI system is covered in section B.2
in detail.

26

3.2 Framework Design Decisions

This Section describes some important design decisions for OpenInsightExplorer.

3.2.1 Choosing the Development Language

One of OpenInsightExplorers conceptual goals is to be platform independent. Therefore the
platform independent development language Java was chosen as development language. Other
programming languages were also considered such as C++ or C# to name a few. But only Java
provides a runtime environment which is truly platform independent enough for the requirements
of OpenInsightExplorer. Furthermore Java offers a built-in platform independent windowing
toolkit and a huge runtime library.

Of course, other languages also provide such a functionality but mainly through other
additional libraries which may or may not be platform independent. This in turn would force
developers who want to extend OpenInsightExplorer to get familiar with these libraries. Also
the project must be built for each release for every target platform separately. In contrast Java
uses a virtual machine and just-in-time compilation to establish platform independence.

Moreover custom developed patches should be easy to add to an existing installation of
OpenInsightExplorer, possibly even at runtime. Most of the other programming languages do
not provide such functionality at all or in an inconvenient way. To achieve such a behaviour
in those languages the platform independence often must be abandoned. Through the nature of
Java, loading new patches at runtime is a fairly straightforward task (see Section 4.2.1).

3.2.2 Dataflow Execution Architecture

One very important question was, which dataflow architecture OpenInsightExplorer should
follow, the data driven or the demand driven approach (see Section 2.2.4). Both approaches
possess distinct benefits and drawbacks. Two important factors had to be additionally taken into
account. Which one of them would fit better to interactive and event driven GUI elements such
as sliders or file-choosers because visualizations can be interactive and therefore contain such
elements. Secondly which approach seems more suitable for developers who are only familiar
with object oriented programming.

Dependent on the chosen architecture a way to handle the firing set of a patch had to be
determined. The firing set is the condition under which a node of a dataflow network should be
executed.

For example, a dataflow network contains a node representing a GUI slider (labeled S in
Figure 3.3). This slider node sends values which are adjusted in the GUI slider element. Node
A represents a simple addition node which reads from both inputs and adds the values together.
The B node will send repetitively a set of data, embodying a filled buffer. According to this
example setup a solution must be found for the question when the slider node reaches its firing
state, since it does not depend on any other node in the dataflow network.

27

(a)

B

A

S

(b)

Figure 3.3: Slider GUI element (a) and a dataflow network including a slider node labeled S (b).

There are several ways the slider node could reach the firing state and should send the current
value of the slider depending on the chosen architecture.

• Only on value change
In the data driven approach, the slider node could send only data in the case the value has
changed. This approach does not work, because the value is needed multiple times. In
this scenario, node A would stop after the first addition, since it does not receive any more
data from S. Of course node A could be implemented, so that it only reads once from the
S input and adds the read value to the whole set of data from B. But as soon as node B
sends the whole position set again, this approach will fail too.

• Always fireing
Node S could fire the whole time, filling up the FIFO buffer on the connection arc. This
approach has a serious drawback. As soon as the value of the slider has changed, the
following will happen: To one part of the data set from B the old value of the slider will
be added, hence the values the FIFO buffer held up change of the slider’s value. And to
the other part the new value will be added. Furthermore, depending on the dimension of
the buffer, this method will introduce lag to the whole visualization. The bigger the FIFO
buffer is dimensioned the more of the old values must be consumed before the change
appears.

• On demand
The slider node will only place the current value of the slider onto its output arc, as soon
as node A tries to read from it. This is equivalent to the demand driven architecture. This
will prevent introducing any lag but has the same problem we already had with the only
on value change approach. Maybe parts of the set from B will be added with different
values. Of course A can be implemented to read only once from S and add this value to
the whole set from B. This approach does not fail in the case B sends the whole position
set again. A can simply requests a new value from S for the whole set from B.

This little example even gets more complicated under the assumption that B should only
send a set of data after the value of the slider has changed at all. This resembles the situation
when a visualization should render only a new frame if one of the GUI elements were changed.
This can be accomplished by adding an additional output arc to the slider node which will

28

B

A

S

trigger

on change

Figure 3.4: The slider example network with an additional trigger.

send a signal on a value change (see Figure 3.4). Further the buffer node B must receive an
additional input, which will trigger it to send its buffered data.

To summarize this fairly simple example: Nodes behave very differently depending on the
kind of functionality they implement or represent. Therefore they also have different firing sets
and conditions on which they should be executed. And finally, it is possible to use signals to
trigger events and more or less for synchronization purposes. The following conclusions for the
OpenInsightExplorer can be deduced from this example:

• Patches need mechanisms to recognize if other patches need data from them
With this functionality interactive GUI control could send data only if it is really requested,
following the on demand architecture.

• Patches should have the ability to recognize when data is sent to them
Patches must be able recognize if another patch wants to trigger some method of it (e.g.,
a buffer patch must provide a port which triggers the patch to send all buffered data).

• Patches must support multiple fire states that activate different functionality
Some patches are equipped with multiple input ports, e.g., a buffer patch. On one of the
inputs it receives values to hold. The other input functions as a trigger for sending all data
contained in the buffer so far over an output port.

OpenInsightExplorer uses a modified data driven approach extended with trigger and
request functionality. With this design patches can have two kinds of ports (see Figure 3.5).
Input ports which receive data and output ports to send data. A connection between an output
and an input port corresponds to an arc in all dataflow graphs presented so far.

A out Bin

Figure 3.5: Patch A has an output port labelled out and patch B an input port named in.

At the start of a visualization, a patch can spawn several threads which will run concurrently.
When a patch reads from an input port, one of two possibilities can occur: If data is available,

29

it consumes the data token from the input port and the execution of the thread continues. In
the case no data is available, the thread is suspended until a token has arrived at the port. This
approach makes it unnecessary to define firing sets and to use a driver to determine which patch
could be executed. Patches can decide on their own which data would be important for the
current state and which may change during execution.

In the previous slider network example (see Figure 3.3) node A could be implemented as a
patch for the framework as follows: It spawns a thread which will read alternately from both
input arcs and add the received operands together.

In addition, output ports can recognize if an input port requests data. If an input port tries
to read from an empty arc FIFO, the output port gets a notification. Developers can register
a method in the output port which the port should call in such a case. This method is called
listener function. The patch can recognize that data is requested and can respond to this
demand. This conforms to the demand driven architecture. It can send data immediately if the
value to be sent is already valid or known. Or it may request data itself from its input arcs for
operands to determine the value, which will be sent afterwards. It should be noted, that the
thread of the patch which triggered the listener, by reading from the empty input arc, will be
suspended until the request has been satisfied.

The slider node in the mentioned example (Figure 3.3) can be implemented as patch by
using this technique. Only if the node A reads from the arcs connected to the slider node and
triggering thereby a request, the slider node will place a value onto the output arc.

An input port also provides the opportunity to register a listener function. This function
will be called as soon as a token is put into a previous empty FIFO of an arc. This enriches
patches and their ports with the trigger and signalling functionality. Of course patches could
spawn threads which will read from input ports endlessly, providing the same functionality as
using a listener on an input port. But the listener approach saves resources and seems easier to
comprehend.

The trigger labeled input of node B (see Figure. 3.4) can be implemented by using a listener.
No extra thread for reading the input port must be spawned, thus saving dispensable overhead.

3.2.3 Connectivity Scheme

OpenInsightExplorer only allows connections between exactly one input and one output port.
Other dataflow languages, in contrast, occasionally feature arbitrary connection and relation
schemes. Figure 2.5 illustrates a dataflow network with 1:N support, for example. The output
arcs from the nodes A and C are split up and their branches are connected to different nodes.

The decision, to prune the connection rules to 1:1 relations only, is based on several reasons.
First, OpenInsightExplorer supports previously introduced request scheme. An optionally
registered listener function of an output port would have to determine from which branch the

30

request came from, before sending a result exclusively down that branch. This would have
caused only a minor modification of the source code.

Secondly if one input port is connected to multiple output ports (a N:1 relation), such
requests would have to be invoked in all of the multiple output port nodes. Their result tokens
would be received in an arbitrary sequence at the input port which would possibly compromise
computations. This would also be the case in a pure data driven architecture which supports
N:1 connection relations which do not feature any on demand support.

Therefore the decision was made to limit the connection scheme to 1:1 relations. If the
output of a patch is required as input for more than one other patch, OpenInsightExplorer users
can employ patches which function as gate nodes (see Section 2.2.2). These special patches are
capable of controlling the dataflow in various ways. Some of them duplicate the received input
tokens and send these through their multiple output ports. But OpenInsightExplorer is equipped
with a feature that makes the usage of such special gate patches unnecessary in some cases. This
feature is called growing ports and is described in detail in the following section.

3.2.4 Growing Ports

In some cases, it is desirable to dynamically add or remove ports to patches. For example, a
patch that determines the maximum of a set of numbers should be flexible with respect to the
number of operands of the function - hence the number of input ports (see Figure 3.6). To give
another example, the slider patch should provide its values to more than one other patch by
adding extra output ports. Adding extra output ports prevents the need for special gate patches.

OpenInsightExplorer introduces a new unique feature that adds a lot of flexibility and
can be used to avoid the occasional need of some special gate patches. Nodes can be
implemented to add and remove ports dynamically. In the visual representation of nodes in the
OpenInsightExplorer editor (see Figure 3.7), some ports will feature specific add and remove
icons. By clicking on those icons, the node will add or remove ports dynamically.

The ports of nodes are organized in trees. These trees, one for the input and another one for
the output ports, can be altered dynamically via the growing port mechanism (see Section B.5).
A more detailed description to this mechanism and example screenshots are given in the User’s
Guide (see Section A.6.4) and the Programmer’s Guide (see Section B.5) .

3.2.5 Data Types and Side Effects

One of the objectives of OpenInsightExplorer is to be a rapid prototyping language for a broad
range of various visualizations. To accomplish this target, the language must not be bound to a
predefined set of data types. Programmers must be free to use and introduce new data types to
their projects, since different visualizations may build upon different data types.

This decision has a drawback. OpenInsightExplorer loses the ability to be side-effect free,
which the pure dataflow model requires (see Section 2.2.1). Developers can introduce data types
that hold references to objects. Accessing a referenced object by different nodes of a dataflow

31

(a)

(b)

Figure 3.6: Schematic diagram of a two value maximum node (a) and the through growing ports extended
version (b).

Figure 3.7: Screenshot of OpenInsightExplorer depicting the maximum node and a version of it with an
additional port.

network concurrently can cause side-effects, because the manipulation happens on global data.
This is a small price to pay for the flexibility which is gained through this design decision (see
Section 5.2 for an example). Also some other state-of-the-art languages, e.g., Quartz Composer
are not side-effect free and even tied down to a handful of native data types.

This chapter summarized the features of OpenInsightExplorer and all the design decisions
which were made for it. The following chapter deals with the actual implementation of the
framework and its features.

32

CHAPTER 4
Implementation

This chapter addresses the implementation of the OpenInsightExplorer framework. It describes
how patches and ports and the dynamic loading process of patches and libraries are implemented.
Furthermore this chapter contains a section which deals with hiding the frameworks internals
from the developers and providing a clean programming interface.

Figure 4.1: The visual editor of OpenInsightExplorer.

33

4.1 General Structure of the Framework

OpenInsightExplorer is a stand-alone Java application compiled to a jar file. It is started by
double clicking on the jar file. After startup users see the graphical editor of the framework, the
so called workbench (see Figure 4.1). Within this editor users can program visualizations by
dragging patches into the workbench and connecting them together. This process is described in
detail in Appendix A.1 of this thesis.

The whole framework is designed to follow a modular concept. OpenInsightExplorer
itself only provides the visual editor and all necessary functionality to execute a programmed
visualization. All other functionality is provided by patches, which are described in detail in the
following section.

4.2 Patches

Every visualization made with OpenInsightExplorer consists of several patches, which represent
certain stages of the visualization pipeline. The functionality of OpenInsightExplorer can be
extended by developing new custom patches. They are designed to work as black boxes. All
patches implement the same Java interface, called Patch. It defines all necessary functions which
OpenInsightExplorer needs to graphically render patches, display vital information about them
and let users connect them to a visualization pipeline. Building on only one interface raises the
modularity of the framework. A detailed description of the patch interface can be found in the
Appendix B.2 of this thesis.

4.2.1 Loading Patches at Runtime

To add custom developed patches developers must only copy the compiled files of it into the
appropriate directories. The binary files (“.class“) are stored in the /Patch directory. The files
can even be placed in sub directories, reflecting the naming of the package. Therefore every
added patch descends from the root package called Patch.

OpenInsightExplorer scans at the start all files and sub directories of the patch directory.
It adds every class it finds which implements the Patch interface. This process is described
in detail in the introduction of the Programmer’s Guide (see Section B.1). Since the software
finds and instances patches with the Class.forName() method and the standard ClassLoader the
classpath must contain the current working directory.

This is achieved by setting the classpath in the manifest file of the OpenInsightExplorer.jar
(see Listing 4.1). Additionally the manifest tells the JRE where it can find the main class in the
jar file. This adds an auto-run capability to the jar file. This means that most operating systems
will start OpenInsightExplorer by double clicking its jar file. User are not bothered any more to
start the software in a command prompt.
Mani f e s t−V e r s i o n : 1 . 0
Main−C l a s s : O p e n I n s i g h t E x p l o r e r . O p e n I n s i g h t E x p l o r e r
Class−Pa th : .

Listing 4.1: The Manifest.mf file of the OpenInsightExplorer.jar

34

4.2.2 Loading Jar Files at Runtime

Some patches will need to access additional libraries, stored in separate jar archives to operate
flawlessly. Furthermore, different versions of a library may exist depending on which operating
system OpenInsightExplorer is being executed. Sometimes even the computer architecture must
be taken into account. For example, if a patch performs OpenGL rendering, the Jogl library
must be loaded beforehand.

To address this problem, the OpenInsightExplorer installation contains a sub directory
called lib. In that folder all additional multi-platform and architecture independent jar archives
are stored. Also the Dynamic Link Libraries (DLL) they may access are placed in this directory.
This lib directory contains two sub directories, an amd64 and an x86 named folder. The amd64
folder contains all the 64-bit libraries and DLLs and the x86 folder the 32-bit ones.

If a patch relies on a library which is not a default element of the OpenInsightExplorer
software package, it can be shipped with the patch all together. Patches should place their
libraries in the lib directory and all jar archives are loaded which the framework finds in that
directory at startup. Additionally the architecture of the computer is determined and only
content of the specific architecture sub folder is loaded too.

Usually all jar archives which may be accessed by a program must be specified to the JRE
before program execution. This is done by adding them to the classpath. Since the software
does not know which libraries were installed before execution of OpenInsightExplorer these jar
archives must be loaded manually at runtime. The Listings 4.2 and 4.3 depict the needed source
code for this process.

p u b l i c s t a t i c vo id l o a d A l l J a r s I n D i r (S t r i n g d i rname) {
F i l e f = new F i l e (d i rname) ;
i f (f . e x i s t s ())

f o r (S t r i n g s : new F i l e (d i rname) . l i s t (
new F i l e n a m e F i l t e r () {

p u b l i c boolean a c c e p t (F i l e d i r , S t r i n g name) { re turn name . endsWith ("
. j a r ") ; }

})) a d d J a r (d i rname +s) ;
}

Listing 4.2: Scanning a directory for jar archives.

35

@SuppressWarnings (" d e p r e c a t i o n ")
p u b l i c s t a t i c vo id a d d J a r (S t r i n g s) {

URLClassLoader s y s l o a d e r = (URLClassLoader) C l a s s L o a d e r . g e t S y s t e m C l a s s L o a d e r
() ;

C las s <?> s y s c l a s s = URLClassLoader . c l a s s ;

C las s <? >[] p a r a m e t e r s = new C l a s s [] {URL. c l a s s } ;

t r y {
Method method = s y s c l a s s . ge tD ec l a r ed Me tho d ("addURL" , p a r a m e t e r s) ;
method . s e t A c c e s s i b l e (t rue) ;
method . i n vok e (s y s l o a d e r , new O b j e c t [] { new F i l e (s) . toURL () }) ;

} ca tch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e () ;

}
}

Listing 4.3: Loading a jar file at runtime.

Some libraries access Dynamic Link Libraries during execution via JNI. Of course these
files must be found by Java during execution.
Depending on the operating system the JRE tries to find these library files in different locations.
On Windows for example the JRE will search through all directories which are set in the PATH
and USRPATH variables and finally in the current working directory per default. On Unix
based operating systems the library path is specified in the LD_LIBRARY_PATH variable.
Users can add locations where to search for DLLs via setting the java.library.path at startup of
the JRE. It is not possible to set this parameter within the manifest file of a jar.

OpenInsightExplorer determines the architecture of the platform it runs on at startup and
adds the appropriate directories at runtime via the System.setProperty() method (see Listings
4.4 and 4.5).

36

p u b l i c s t a t i c vo id addDi r (S t r i n g s) {
t r y {

F i e l d f i e l d = C l a s s L o a d e r . c l a s s . g e t D e c l a r e d F i e l d (" u s r _ p a t h s ") ;
f i e l d . s e t A c c e s s i b l e (t rue) ;

S t r i n g [] p a t h s = (S t r i n g []) f i e l d . g e t (n u l l) ;
f o r (i n t i = 0 ; i < p a t h s . l e n g t h ; i ++) {

i f (s . e q u a l s (p a t h s [i])) {
re turn ;

}
}

S t r i n g [] tmp = new S t r i n g [p a t h s . l e n g t h + 1] ;
System . a r r a y c o p y (p a t h s , 0 , tmp , 0 , p a t h s . l e n g t h) ;
tmp [p a t h s . l e n g t h] = s ;

f i e l d . s e t (nul l , tmp) ;

System . s e t P r o p e r t y (" j a v a . l i b r a r y . p a t h " , System . g e t P r o p e r t y (" j a v a .
l i b r a r y . p a t h ") + F i l e . p a t h S e p a r a t o r + s) ;

} ca tch (E x c e p t i o n e) {
e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}
}

Listing 4.4: Adding a directory to the java.library.path at runtime.

p r i v a t e f i n a l S t r i n g f i l e s e p =System . g e t P r o p e r t y (" f i l e . s e p a r a t o r ") ;
p r i v a t e f i n a l S t r i n g u s e r d i r =System . g e t P r o p e r t y (" u s e r . d i r ") ;

S t r i n g a r c h =System . g e t P r o p e r t y (" os . a r c h ") ;
S t r i n g l i b = u s e r d i r + f i l e s e p +" l i b "+ f i l e s e p ;
S t r i n g l i b _ a r c h = l i b + a r c h + f i l e s e p ;

O p e n I n s i g h t E x p l o r e r . addDi r (l i b) ;
O p e n I n s i g h t E x p l o r e r . addDi r (l i b _ a r c h) ;
O p e n I n s i g h t E x p l o r e r . l o a d A l l J a r s I n D i r (l i b) ;
O p e n I n s i g h t E x p l o r e r . l o a d A l l J a r s I n D i r (l i b _ a r c h) ;

Listing 4.5: Loading libs and architecture dependent libs.

4.3 Ports

As mentioned before in chapter 3 patches exchange data through their input and output ports.
This message passing follows the concept of the producer consumer problem. There are patches
which produce data and others which will consume. Since patches should run concurrently the
communication between them must be synchronized. The consumer can only process data which
was sent by the producer so far. If no more data is available, the execution of the consumer must

37

be suspended until new data has arrived. Also the producer should not wait until the consumer
has read this data.

The solution to this problem is to let the producer write the data to a buffer from which the
consumer reads. OpenInsightExplorer uses a simple ring buffer implementation with a fixed
buffer size at runtime. Since the buffer has a fixed size no performance penalties can happen by
reallocating additional storage space.

A producer patch thread gets suspended if the ring buffer is totally filled leaving no space
for additional data. On the other hand a consumer thread gets halted when there is no more data
available to be read.

This design provides the opportunity to enhance the functionality of this dataflow language.
In OpenInsightExplorer the ring buffer is implemented to send signals to listeners in the case
of a buffer under-run. Producer patches can be implemented so that they only provide data on
request, following the on demand architecture. Additionally patches can register listeners on
receiving data, implementing a trigger functionality.

4.3.1 Custom Data Types

Some visual dataflow programming languages support only a small set of built-in data types
which nodes can exchange, e.g., Quartz Composer (see Section 2.4.4). Working with only a
limited set of data types would make the development of visualizations (which may need more
complex data structures and data types) become a very tedious task. Needed data structures and
types must be emulated with the given limited set. Languages which do not support custom data
types, such as Quartz Composer, often provide a specific data type which allows to circumvent
this limitation. This data type allows to combine basic data types to a structure and even add
other structures to it.

This approach has an essential drawback. Accessing members of such a data structure can
only be done in a non type-safe way. OpenInsightExplorer also provides such a structure data
type to work with. It proved to add a lot of flexibility to a dataflow programming based language.

OpenInsightExplorer is designed in such a way that ports can exchange any data type a
developer may desire. Furthermore this design concept enriches OpenInsightExplorer to use
every class the standard Runtime Library (rt.jar) of Java offers and classes of other libraries too.
It even gives developers the opportunity to develop their own data type classes specifically fitted
to the given type of visualization.

4.3.2 Generic Port Class

To enable custom data types the classes which represent different ports must be generic so
developers can specify which data type the port should send or be able to receive. There is
only one reason why a port should be aware of the data type it was constructed with: type-
safety. The port must know its generic type at runtime, so it can validate a connection to another
port providing the same functionality as typed arcs (see Section 2.3). Both must be constructed
with compatible data types.

During the development of OpenInsightExplorer it transpired that this is almost an
impossible task to accomplish. Usually Java only keeps track of the generic type of a class at

38

compile time and not, as necessary, at runtime with one exception. The reason for this is that
Java compilers use a technique called type erasure to be downwards compatible with older
JREs. In this process all information about the generic related type parameters and arguments is
removed within a standard class or method. At runtime its impossible that a class with a generic
parameter can determine the type of the parameter since the compiler replaces all generic types
by the type Object.

One solution attempt to this problem is to use a technique called type tokens which turned
out to be insufficient. The following example depicts the reason why: To the constructor of a
generically typed class an extra parameter is added, which is unveiling the actual type of the
generic parameter (see Listing 4.6).

p u b l i c c l a s s SimpleTypeTokenExample <E> {
p r i v a t e Class <?> t y p e ;
p r i v a t e E d a t a ;

p u b l i c SimpleTypeTokenExample (Class <E> t y p e) {
t h i s . t y p e = t y p e ;

}

p u b l i c s e t (E d a t a) {
t h i s . d a t a = d a t a ;

}

p u b l i c E g e t () {
re turn t h i s . d a t a ;

}

p u b l i c Class <?> ge tType () {
re turn t h i s . t y p e ;

}

p u b l i c p r i n t T y p e () {
System . o u t . p r i n t l n ("my t y p e i s "+ ge tType () . t o S t r i n g ()) ;

}
}

Listing 4.6: Simple type token example.

This technique sounds promising, since it solves the problem of determining the actual type
of the generic parameter. But as depicted in Listing 4.7, a mistake can easily happen and the
wrong type gets assigned. Also the programmer must specify twice which generic data type a
class has which seems fairly clumsy.

39

SimpleTypeTokenExample < I n t e g e r > s t t e =new SimpleTypeTokenExample < I n t e g e r >(
I n t e g e r . c l a s s) ;

s t t e . s e t (1 0) ;
i n t myint = s t t e . g e t () +20;

s t t e . p r i n t T y p e () ;

SimpleTypeTokenExample < S t r i n g > s t t e _ f a i l u r e =new SimpleTypeTokenExample < S t r i n g
>(I n t e g e r . c l a s s) ;

s t t e _ f a i l u r e . s e t (" h e l l o ") ;
S t r i n g m y s t r i n g = s t t e _ f a i l u r e . g e t () +" wor ld " ;

s t t e _ f a i l u r e . p r i n t T y p e () ;

/ / o b v i o u s l y wrong
i f (s t t e . ge tType () . e q u a l s (s t t e f a i l u r e . ge tType ())

System . o u t . p r i n t l n (" t h e y have t h e same t y p e ") ;

Listing 4.7: Simple type token fail example.

As mentioned earlier Java removes all generic type information at compile time from
standard classes and methods. Only anonymous inner classes will keep their generic type
parameter information even after compile time.

Reflection can be used to exploit the fact that anonymous classes will keep their generic
type information even after compile time. This solution enables to get rid of type tokens and
programmers must not specify twice the type of data the port should operate with. The only
drawback of this technique is that it must be ensured that ports are constructed as anonymous
inner classes. This seems rather simple, because a custom Exception (AnonymousException)
can be thrown in the case a port is not constructed as an anonymous class (see Listing 4.8).

40

p u b l i c S i m p l e G e n e r i c P o r t <E>{

Class <?> t y p e ;

p u b l i c S i m p l e G e n e r i c P o r t () throws AnonymousException {
t r y {

t y p e =(Class <? >) ((P a r a m e t e r i z e d T y p e) t h i s . g e t C l a s s () .
g e t G e n e r i c S u p e r c l a s s ()) . ge tAc tua lTypeArgumen t s () [0] ;

} ca tch (j a v a . l a n g . C l a s s C a s t E x c e p t i o n E) {
/ / a C l a s s C a s t E x c e p t i o n i s thrown , i f t h e c l a s s was n o t c o n s t r u c t e d as

an anonymous i n n e r c l a s s
throw new AnonymousException (" Simple G e n e r i c P o r t s must be c o n s t r u c t e d

anonymously and wi th a g e n e r i c t y p e p a r a m e t e r ") ;
}

}

p u b l i c vo id send (E d a t a) {
/ / . . . code t h a t w i l l send da ta t o a c o n n e c t e d p o r t . . .

}

p u b l i c E g e t (E d a t a) {
/ / . . . code t h a t w i l l r e t u r n r e c e i v e d da ta . . .

}

p u b l i c vo id c o n n e c t (S i m p l e G e n e r i c P o r t <?> p o r t) throws C o n n e c t i o n E x c e p t i o n {

/ / check i f bo th da ta t y p e s are c o m p a t i b l e
i f (! t h i s . ge tType () . e q u a l s (p o r t . ge tType ())) throws new C o n n e c t i o n E x c e p t i o n

(" Data t y p e s a r e i n c o m p a t i b l e ") ;

/ / . . . c o n n e c t i o n code . . .
}

}

. . .

t r y {
S i m p l e G e n e r i c P o r t < I n t e g e r > m y i n t p o r t =new S i m p l e G e n e r i c P o r t < I n t e g e r > () { } ;

/ / t h i s does n o t c o m p i l e
S i m p l e G e n e r i c P o r t < S t r i n g > m y s t r i n g p o r t =new S i m p l e G e n e r i c P o r t < I n t e g e r > () { } ;

/ / t h i s w i l l throw an E x c e p t i o n a t r u n t i m e . . .
S i m p l e G e n e r i c P o r t < I n t e g e r > noanonymouspor t =new S i m p l e G e n e r i c P o r t < I n t e g e r > ()

;

} catch (AnonymousException ae) {
/ / thrown i f t h e Por t i s n o t c o n s t r u c t e d as an anonymous i n n e r c l a s s

}

Listing 4.8: Implementation of a simple generic port.

41

4.3.3 Stream Ports

So far ports can be generated which operate on any desired data type. These ports are able to
send only individual chunks of data. Some visualizations will need data structures, which will
allow to group individual data together.

For example, a file reader patch reads the content of a file, line by line, and sends this
information to another patch. The second patch should be able to realize the start of the whole
record of lines and the end of it. It maybe counts the number of lines the file consists of.

The solution to this problem should not subvert one of the basic design principles of dataflow
programming: nodes should work concurrently. Therefore sending an array of all lines seems
suboptimal. The second patch can only start working as soon as the file reader patch has read the
whole content of the file. Even if the second patch only wants to know the first line of the file,
it has to wait until the first patch processed the whole file. In this case Morrison’s token stream
model provides a suitable alternative (see section 2.3).

A stream consists of a start token, an ordered sequence of data and a token which will
signal the end of a stream. Streams can also be embedded into another stream, which is a big
improvement over flat arrays. These streams within streams are called sub streams. These
starting and end tokens are called open and close brackets [26], which will surround the actual
data. As illustrated in Section 4.3, ports can be implemented to follow the producer consumer
problem. Output ports represent producers and input ports consumers (see Listing 4.9).

/ / t h e Producer
p u b l i c c l a s s O u t p u t P o r t <E>{

/ / Connec ted i s t h e I n p u t P o r t t o which t h i s Outpu t Por t i s c o n n e c t e d t o
p u b l i c I n p u t P o r t <E> Connec ted ;

p u b l i c vo id send (E d a t a) {
/ / send a da ta e l e m e n t t o t h e I n p u t Por t " Consumer "
Connec ted . r e c e i v e (d a t a) ;

}
}

/ / t h e Consumer
p u b l i c c l a s s I n p u t P o r t <E>{

E [] r i n g b u f f e r =new E [b u f f e r s i z e] ;

p u b l i c vo id r e c e i v e (E d a t a) {
/ / h e re comes code which adds da ta t o t h e r i n g b u f f e r
r i n g b u f f e r [w r i t e p o s]= d a t a ;

}

p u b l i c E g e t () {
/ / r e t u r n s an e l e m e n t from t h e r i n g b u f f e r
re turn r i n g b u f f e r [r e a d p o s] ;

}
}

Listing 4.9: Example implementation of ports that follow the producer consumer problem.

42

Obviously, ports which should operate on streams must be able to send and receive open
and close tokens additionally to the real data elements. These tokens and data elements must
be added to the ringbuffer in sequence as they were received. Apparently these bracket tokens
cannot be added to a ringbuffer designated to a generic data type.

To solve this issue data elements are packed within so called Information Packets or shortly
IPs [26]. They may contain actual data elements or else they represent these open and close
bracket tokens instead (see Listing 4.10).

package O p e n I n s i g h t E x p l o r e r . IP ;

import O p e n I n s i g h t E x p l o r e r . S t ream . Close ;
import O p e n I n s i g h t E x p l o r e r . S t ream . Open ;

p u b l i c i n t e r f a c e Ip <E>{
E g e t () throws Open , C lose ;

}

Listing 4.10: The information packet (IP) interface.

All three kinds of information packets will implement this generic IP interface. Packets who
contain actual data, will return the data element which they contain on calling the get() method.
The bracket packets are also implementing the interface, but will not carry any data itself. In the
case their get() method is called they will either throw an Open or a Close exception depending
on which control token they should represent.

Some extensions to the port implementation must be made to equip it with streaming
capabilities. Two additional send methods are added to the StreamOutputPort in comparison to
the basic OutputPort, which will send the control token IPs. Real data elements are packed into
a IPData packet before sending to a connected StreamInputPort. The StreamInputPort class
contains a ringbuffer which holds IPs of the generic type the port should receive. Additionally
the get() method throws now Open and Close exceptions (see Listing 4.11).

43

/ / t h e Producer
p u b l i c c l a s s S t r e a m O u t p u t P o r t <E>{

/ / Connec ted i s t h e I n p u t P o r t t o which t h i s Outpu t Por t i s c o n n e c t e d t o
p u b l i c S t r e a m I n p u t P o r t <E> Connec ted ;

p u b l i c vo id send (E d a t a) {
/ / send a da ta e l e m e n t c o n t a i n e d w i t h i n an IPData p a c k e t t o t h e I n p u t

Por t " Consumer "
Connec ted . r e c e i v e (new IPData <E>(d a t a)) ;

}

p u b l i c vo id sendOpen () {
/ / s e n d s a c o n t r o l t o k e n Open t o " Consumer "
Connec ted . r e c e i v e (new IPOpen <E > ()) ;

}

p u b l i c vo id s e n d C l o s e () {
/ / s e n d s a c o n t r o l t o k e n Close t o " Consumer "
Connec ted . r e c e i v e (new IPClose <E > ()) ;

}

}

/ / t h e Consumer
p u b l i c c l a s s S t r e a m I n p u t P o r t <E>{

IP <E > [] r i n g b u f f e r =new IP <E>[b u f f e r s i z e] ;

p u b l i c vo id r e c e i v e (IP <?> d a t a) {
/ / h e re comes code which adds an IP t o t h e r i n g b u f f e r
r i n g b u f f e r [w r i t e p o s]= d a t a ;

}

p u b l i c E g e t () throws Open , C lose {
/ / r e t u r n s da ta or i n t h e case o f a s t r e am c o n t r o l t o k e n th rows an

e x c e p t i o n
E d a t a = r i n g b u f f e r [r e a d p o s] . g e t () ;
re turn d a t a ;

}
}

Listing 4.11: Implementation of ports with streaming capabilities.

Throwing exceptions in the case a StreamInputPort reaches a control token becomes very
handy. Developers do not need to check IPs if they are control tokens or unpack data IPs. They
only have to call the get() method and handle the Open and Close exceptions. The following
code snippets demonstrate the streaming mechanism (see Listing 4.12 and 4.13. This example
features the file content reader and the line counter mentioned in the beginning of the section
4.3.3.

44

S t r e a m O u t p u t P o r t < S t r i n g > o u t p u t =new S t r e a m O u t p u t P o r t < S t r i n g > () ;

/ / o u t p u t g e t s c o n n e c t e d t o t h e S t r e a m I n p u t P o r t

F i l e R e a d e r f r = new F i l e R e a d e r (" MyFile . t x t ") ;
B u f f e r e d R e a d e r b r = new B u f f e r e d R e a d e r (f r) ;
S t r i n g s ;

o u t p u t . sendOpen () ;
whi le ((s = b r . r e a d L i n e ()) != n u l l) Outpu t . send (s) ;
o u t p u t . s e n d C l o s e () ;

f r . c l o s e () ;

Listing 4.12: Streaming the content of a file line-by-line and signaling the start and the end of the file.

S t r e a m I n p u t P o r t < S t r i n g > i n p u t =new S t r e a m I n p u t P o r t < S t r i n g > () ;

/ / i n p u t g e t s c o n n e c t e d t o t h e S t r e a m O u t p u t P o r t

i n t l i n e c o u n t =0 ;
whi le (t rue) {

t r y {
System . o u t . p r i n t l n (" l i n e # " +(l i n e c o u n t ++)+" : "+ i n p u t . g e t ()) ;

} ca tch (Open o) {
System . o u t . p r i n t l n (" F i l e has s t a r t e d ") ;
l i n e c o u n t =0 ;

} ca tch { Close c) {
System . o u t . p r i n t l n (" F i l e ended and has "+ l i n e c o u n t +" l i n e s ") ;

}

}

Listing 4.13: Reading the stream and outputting the content of the stream to the console.

4.4 Hiding the Framework Implementation

The previous sections described how to create streaming and non-streaming ports which can
operate on any desired data type since they get instanced with a generic type parameter.

One of the design goals of OpenInsightExplorer is that it should be fairly easy to extend
even for average skilled developers. At a deeper look on the current state of the port classes,
programmers are confronted with many methods and functions which should not be accessed.
The access should be limited to the framework itself. For example, the receive() method of
the InputPort and StreamInputPort classes must be declared public because output ports call
these methods on sending data. Patch developers on the other hand should not even realize these
methods exist since they may get called by accident. Developers should only be confronted with
the minimal set of functions and methods they really need to use a port. The real implementation
should be hidden from them.

45

One possibility to accomplish this is to apply the cheshire cat programming pattern, often
also called pimpl idiom [35]. OpenInsightExplorer uses this pattern and adapted it a bit since it
does not provide the entire desired functionality.

4.4.1 Hiding Behind Proxy Classes

The basic idea of the cheshire cat programming pattern is to hide the class that really implements
the whole functionality behind proxy classes. Each proxy class can even provide different
methods and functions, depending on how the real implementation should act like. These
methods in the proxy classes will only redirect calls to the real implementation. Therefore only
one real implementation for all kinds of ports is needed. It has all the functionality for input and
output and of course streaming, the RealPort.

p u b l i c c l a s s R e a l P o r t <E> {

boolean i s I n p u t P o r t ;
R e a l P o r t <E> Connec ted = n u l l ;
IP <E > [] r i n g b u f f e r =new IP <E>[b u f f e r s i z e] ;

p u b l i c R e a l P o r t (boolean i s I n p u t P o r t) throws AnonymousException {
/∗ code t o f i n d o u t which g e n e r i c t y p e t h e Por t i s i n s t a n c e d o f
∗ s e e s e c t i o n " Ci rcumven t Type Erasure "
∗ /

t h i s . i s I n p u t P o r t = i s I n p u t P o r t ;
}

p u b l i c vo id Connect (R e a l P o r t <E> p o r t) throw E x c e p t i o n { /∗ Connect t h i s Por t
w i t h a n o t h e r Por t ∗ / }

p u b l i c vo id r e c e i v e (IP <E> i p) { /∗ r e c e i v e s IPs ∗ /

p u b l i c vo id send (E d a t a) { /∗ s e n d s da ta t o a c o n n e c t e d Por t ∗ / }
p u b l i c vo id sendOpen () { /∗ s e n d s an Open t o k e n ∗ / }
p u b l i c vo id s e n d C l o s e () { /∗ s e n d s a Close t o k e n ∗ / }

p u b l i c E g e t () { /∗ r e t u r n s r e c e i v e d da ta ∗ / }
p u b l i c E g e t S t r e a m () throws Open , C lose { /∗ r e t u r n s r e c e i v e d s t r ea m data ,

s e e s e c t i o n " ’ S tream P o r t s " ’ ∗ / }

p u b l i c vo id setName () { /∗ s e t t h e Name o f t h e Por t ∗ / }
p u b l i c S t r i n g getName () { /∗ g e t t h e Name o f t h e Por t ∗ / }

}

p u b l i c a b s t r a c t c l a s s P o r t {
p u b l i c a b s t r a c t P o r t setName () ;
p u b l i c a b s t r a c t S t r i n g getName () ;

}

Listing 4.14: Implementation of the RealPort and the abstract Port class.

46

All proxy classes extend an abstract class called Port. This abstract Port class defines a
minimum set of methods each proxy must at least implement to be understood as a port. For
illustration purposes in a reduced example the functionality is limited to get() and set() methods
for the name of a port (see Listing 4.14).

On the construction of the proxy class InputPort, it instantiates a RealPort and stores its
reference in the variable hide. This variable hide is declared private therefore developers cannot
access the whole functionality of the RealPort. Since it is not an output port and has no streaming
capability, it only provides the one method which is necessary to function as an input port, the
get() method (see Listing 4.15).

p u b l i c c l a s s I n p u t P o r t <E> ex tends P o r t {

p r i v a t e R e a l P o r t <E> h i d e ;

p u b l i c I n p u t P o r t <E > () throws AnonymousException {
/ / t e l l t h e R e a l P o r t t h a t i t i s an I n p u t Por t
t h i s . h i d e =new R e a l P o r t <E>(t rue) ;

}

/ / s e t Name and r e t u r n a s e l f r e f e r e n c e , o v e r r i d i n g t h e " Por t setName () "
p u b l i c I n p u t P o r t <E> setName (S t r i n g name) {

h i d e . setName (name) ;
re turn t h i s ;

}

p u b l i c S t r i n g getName () {
re turn h i d e . getName () ;

}

/ / g e t a r e c e i v e d da ta e l e m e n t
p u b l i c E g e t () {

re turn h i d e . g e t () ;
}

}

Listing 4.15: Implementation of the InputPort proxy.

The output port proxy is implemented in a similar way, with two exceptions. It tells the
RealPort constructor to act as an output port by setting the isInputPort parameter to false.
Furthermore, it has no get() method and provides a send() method instead (see Listing 4.16).

47

p u b l i c c l a s s O u t p u t P o r t <E> ex tends P o r t {

p r i v a t e R e a l P o r t <E> h i d e ;

p u b l i c O u t p u t P o r t <E > () throws AnonymousException {
/ / t e l l t h e R e a l P o r t t h a t i t i s an Outpu t Por t
t h i s . h i d e =new R e a l P o r t <E>(f a l s e) ;

}

/ / s e t Name and r e t u r n a s e l f r e f e r e n c e , o v e r r i d i n g t h e " Por t setName () "
p u b l i c O u t p u t P o r t <E> setName (S t r i n g name) {

h i d e . setName (name) ;
re turn t h i s ;

}

p u b l i c S t r i n g getName () {
re turn h i d e . getName () ;

}

/ / send da ta
p u b l i c O u t p u t P o r t <E> send (E d a t a) {

h i d e . g e t () ;
re turn t h i s ;

}

}

Listing 4.16: Implementation of the OutputPort proxy.

Up to now the implementation follows exactly the cheshire cat pattern. Developers cannot
access the real implementation of a port, the RealPort, with their reduced proxy interfaces.
Unfortunately the framework is also unable to deduce the hidden RealPort behind a given
proxy class pointer. But OpenInsightExplorer must be able to unveil it: For example, the Patch
interface contains the methods getInputPorts() and getOutputPorts() which only return pointers
to proxy ports. To connect input ports and output ports of patches the framework must access
the RealPort hidden behind these proxies.

Apparently an abstract method to the abstract Port interface could be added forcing all
proxies to implement it which will return this reference. But this destroys all the efforts to
hide the implementation of a patch from developers, because they could call this method as well
as gaining access to the implementation.

A better solutions is to add a private static final HashMap to the RealPort class. Also the
constructor gets modified with an additional parameter which holds the reference to the proxy.
The constructor adds every time it is called an entry to the HashMap, with the proxy as key
and itself as value. The RealPort class implements a public static get() method, which returns a
reference to the RealPort object if it is called with the proxy port as parameter.

48

p u b l i c c l a s s R e a l P o r t <E> {

p r i v a t e s t a t i c f i n a l WeakHashMap< Por t , WeakReference < R e a l P o r t <?>>> map=new
WeakHashMap< Por t , WeakReference < R e a l P o r t <? > > >() ;

p r i v a t e P o r t myProxy= n u l l ;

p u b l i c s t a t i c R e a l P o r t <?> g e t (P o r t p o r t) {
WeakReference < R e a l P o r t <?>> wr= R e a l P o r t . map . g e t (p o r t) ;
re turn (wr != n u l l ? wr . g e t () : n u l l) ;

}

p u b l i c R e a l P o r t (Po r t <E> proxy , boolean i s I n p u t P o r t) throws
AnonymousException {

/∗ code t o f i n d o u t which g e n e r i c t y p e t h e Por t i s i n s t a n c e d o f ∗ /
t h i s . i s I n p u t P o r t = i s I n p u t P o r t ;
t h i s . myProxy= proxy ;
map . p u t (proxy , new WeakReference < R e a l P o r t <? > >(t h i s)) ;

}

. . .

/ / no more r e f e r e n c e s t o t h i s R e a l P o r t and t h e proxy ? remove HashMap e n t r y
p u b l i c vo id f i n a l i z e () throws Throwable {

R e a l P o r t . map . remove (t h i s . myProxy) ;
}

. . .

Listing 4.17: Using a WeakHashMap to reference all RealPort objects.

More precisely a WeakHashMap is used instead of a HashMap. WeakHashMaps can hold
references to objects which are not visible to the Garbage Collector, a WeakReference. As soon
as all other references are nullified, the objects will be finalized (see Listing 4.17).

Patch developers are not aware of the RealPort class. The framework hides this class
successfully behind proxy classes and itself can still access it (see Listing 4.18).

/ / c r e a t e a Conso le Patch and a c c e s s t h e R e a l P o r t o f t h e I n p u t P o r t r o o t node
P a t c h p =(P a t c h) new Conso le () ;
p . i n i t () ;
System . o u t . p r i n t l n (R e a l P o r t . g e t (p . g e t I n p u t P o r t s ()) . t o S t r i n g ()) ;

Listing 4.18: The framework can still access the RealPort object by using the classes’ get() method.

4.4.2 Proxy Port Listeners

Many ports in OpenInsightExplorer give programmers the ability to set listeners. These listeners
are interfaces which declare a reference to callback functions that the port calls in the case a
specific event occurs.

For example, it is possible to set an InputPortReceiveListener for an InputPort. When
the port receives data it will call the Receive() method of listener with a reference to itself

49

as a parameter (see Listing 4.19). This gives the programmer the ability to use only one
InputPortReceiveListener for multiple InputPorts if it is desired to distinguish the port on
the basis of the given reference. Therefore developers may not create for each port an
InputPortReceiveListener for itself and can furthermore access the referenced get()-method
immediately.

Since there are different input port classes with different capabilities (different get()
methods) they all have a suitable receive listener of their own. For the InputPort
an InputPortReceiveListener interface is available which declares a Receive() method
with an InputPort as parameter. On the other hand for the StreamInputPort the
StreamInputPortReceiveListener is appropriate since it declares the Receive() method
with a StreamInputPort as reference parameter (see Listing 4.19).

/ / method i n I n p u t P o r t c l a s s
p u b l i c I n p u t P o r t <E> s e t R e c e i v e L i s t e n e r (I n p u t P o r t R e c e i v e L i s t e n e r <E> l i s t e n e r) {

new I n p u t P o r t R e c e i v e (l i s t e n e r , t h i s , h i d e) ;
re turn t h i s ;

}

. . .

/ / I m p l e m e n t a t i o n o f t h e R e c e i v e L i s t e n e r proxy
p u b l i c c l a s s I n p u t P o r t R e c e i v e implements C a l l B a c k R e c e i v e {

R e a l P o r t <?> h i d e ;
I n p u t P o r t R e c e i v e L i s t e n e r <E> l i s t e n e r ;
I n p u t P o r t <E> p o r t ;

p u b l i c I n p u t P o r t R e c e i v e (I n p u t P o r t R e c e i v e L i s t e n e r <E> l i s t e n e r , I n p u t P o r t <E>
p o r t , R e a l P o r t <?> h i d e) {

t h i s . l i s t e n e r = l i s t e n e r ;
t h i s . h i d e = h i d e ;
t h i s . p o r t = p o r t ;

i f (l i s t e n e r == n u l l) h i d e . s e t R e c e i v e L i s t e n e r (n u l l) ; e l s e h i d e .
s e t R e c e i v e L i s t e n e r (t h i s) ;

}

p u b l i c vo id Rece ive () {
l i s t e n e r . Rece ive (p o r t) ;

}

}

Listing 4.19: Example implementation of the listener functionality.

50

4.4.3 Redirecting Exceptions

In Section 4.4.1 it was mentioned that the RealPort class may throw several exceptions. For
example, if the port is not constructed as an anonymous class. Every exception gives the
developer the opportunity to analyze its stacktrace, following up to the point where it had been
thrown.

This would reveal the hidden RealPort class and that should be avoided. Every exception
that the RealPort class can throw, manipulates its stacktrace in the constructor (see Listing 4.20).
They remove all elements at the top of their stacks which could lead to the real causer, our hidden
class. They keep the rest of the stacktrace untempered, giving the programmer the ability to find
the line of code which caused the exception up to the point where he accessed the framework
in the wrong way. For example, the top of an AnonymousException stacktrace references to
the line of code where the developer constructs a port class like a normal class instead of being
constructed as an anonymous class. All stacktrace elements were removed which would guide
him to the line of code where the exception was thrown in reality.

package O p e n I n s i g h t E x p l o r e r . E x c e p t i o n s ;

p u b l i c c l a s s AnonymousException ex tends E x c e p t i o n {

p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D = 1L ;

p u b l i c AnonymousException (S t r i n g s) {
super (s) ;

i n t removecount =3 ;
S t a c k T r a c e E l e m e n t [] s t a c k = t h i s . g e t S t a c k T r a c e () ;
S t a c k T r a c e E l e m e n t news tack [] = new S t a c k T r a c e E l e m e n t [s t a c k . l e n g t h−

removecount] ;
f o r (i n t i =0 ; i < news tack . l e n g t h ; i ++) news tack [i]= s t a c k [i + removecount] ;
t h i s . s e t S t a c k T r a c e (news tack) ;

}

}

Listing 4.20: Removing elements from the stacktrace.

4.4.4 Proxy Port Return Statements

Proxy port methods are designed to return a reference to themselves instead of being declared
void. This behaviour allows to construct and configure ports in one line of code (see Listing
4.21).

For example, it is possible to construct an InputPort and set its name, several listeners and
even add some child ports in one compact statement. Sometimes a reference variable can be
spared by using this self reference scheme. Of course this technique is optional and developers
can still use reference variables to configure ports.

51

/ / w r i t t e n as one l i n e code u s i n g s e l f r e f e r e n c e
t r y {

a d d e r I n p u t . add (new I n p u t P o r t < I n t e g e r > () { } . setName (" Number ") .
s e t R e c e i v e L i s t e n e r (t h i s) . s e t R e m o v e L i s t e n e r (t h i s)) ;

} catch (AddExcept ion e) {}
catch (AnonymousException e) {}

/ / t r a d i t i o n a l way
t r y {

I n p u t P o r t < I n t e g e r > number=new I n p u t P o r t < I n t e g e r > () { } ;
number . setName (" Number ") ;
number . s e t R e c e i v e L i s t e n e r (t h i s)
number . s e t R e m o v e L i s t e n e r (t h i s) ;
a d d e r I n p u t . add (number) ;

} catch (AddExcept ion e) {}
catch (AnonymousException e) {}

Listing 4.21: Using self reference to configure a port in one line of code.

52

CHAPTER 5
Results

To evaluate the usability of the OpenInsightExplorer framework two example visualizations
were implemented with it. The first example is a volume renderer and the second example is a
collection of different visualizations of the OpenStreetMap project. The example visualizations
demand different data types, data transformations and rendering techniques.

5.1 Volume Rendering

The first example visualization which was implemented to evaluate the framework is a basic
volume renderer based on raycasting. A volume renderer displays a 2D projection of 3D
discretely sampled data sets. These data sets are typically acquired by computer tomography- or
a magnetic resonance imaging scanners. The volume usually gets sliced into a series of pictures
of the same resolution, defining a regular volumetric grid. Each element of this grid, a so called
voxel (volumetric element), represents a density value or other properties of the volume.

To generate a picture of the volume a camera position relative to the volume needs to be
defined. Additionally a color gets assigned to each possible value of the volume. This mapping,
from values to colors, is called transfer function. The renderer can look up a color for each
value in this transfer function.

All example renderers use the volume ray casting technique for image generation. A ray is
generated for each image pixel, emanating from the eye point of the camera and passing through
this image pixel. The volume gets sampled at regular intervals along this ray. For each sampled
density value of the volume the renderer looks up the assigned color in the transfer function.
A compositing function combines these gathered color samples to the final color of the image
pixel. Using different composition functions results in different volume visualizations (e.g., first
hit, accumulate, maximum intensity projection, etc.).

The goal was to use only off-the-shelf patches of the framework whenever possible for each
example volume visualization. Only two custom patches (the TF Editor and the Volume File

53

Loader patch) had to be implemented in addition because of their rather specific functionality.
The examples use GPU hardware acceleration for image generation. This is achieved using
GLSL fragment shader programs, which implement the ray sampling and composition functions.
The first volume renderer generates x-ray like pictures of the volume (see Figure 5.1). This
example composition contains only 20 patches in total (see Figure 5.2).

Figure 5.1: A screenshot of the GUI for the volume renderer. On the left is the transfer function editor
depicted and in front the file open dialogue of the File Chooser patch is shown. The right window is the
rendering output window, displaying the volume visualization.

All volume renderer compositions share the same visualization pipeline and therefore the
same data acquisition step. For this processing stage a custom Volume File Loader patch was
implemented. This patch takes a file handle as input, loads the volume data, converts it into a
texture3D OpenGL texture and sends it to the next stage. Additionally it outputs the dimensions
of the volume too. This patch is connected with the File Chooser patch, which allows to load
different files during the visualization with an interactive file dialogue. All data analysis steps
were omitted, but additional patches could be developed for this purpose (e.g., a patch that will
generate a histogram of the volume or calculate the gradients of the volume and transforms them
into texture3D for the renderer to use).

54

The user can filter and map color attributes to the density values of the volume with a
transfer function editor (see Figure 5.1). The editor is provided by the TF Editor patch. This
patch embodies the filter and mapping stages of the visualization pipeline. The TF Editor
is the second patch that was specially designed and implemented for the volume rendering
compositions. It provides a GUI where users can edit functions for each color channel (red,
blue, green) and alpha and outputs a one dimensional OpenGL texture. The final rendering step
of the pipeline is done by the Shader patch, which takes a string containing a GLSL fragment
program as input. It compiles the program and executes the shader with the values provided to
its other inputs (in this case the texture3D containing the volume, the transfer function texture
and a three component vector with the eye position of the camera).

Based on the raycasting volume renderer, various other composition functions were
implemented. Some of them provide additional functionality, e.g., they take the density
gradients or light sources for shading into account. All those renderers originate from the same
base version and are only slight modifications of it. Most of the time only the GLSL shader
program was adapted with a different composition function. For some examples an additional
patch (providing a light source position) was connected to the Shader patch.

Volume rendering techniques belong to the field of scientific visualization. A basic volume
renderer was implemented to evaluate the OpenInsightExplorer’s capabilities to use GPU
hardware acceleration and to determine the overhead which the framework’s dataflow execution
implementation produces. The example renderer achieved high rendering framerates, which
primarily depend on the performance of the used graphic card rather than the execution model.
This example also supports OpenInsightExplorers modularity concept. Only two additional
patches had to be developed. This was accomplished in a short timespan which was significantly
shorter than implementing a volume renderer from scratch.

55

(a) Left half of the composition.

(b) Right half of the composition.

Figure 5.2: The composition of the raycasting volume renderer.

56

5.2 OpenStreetMap Visualization

The second example visualizes data from the OpenStreetMap (OSM) [29] project.
OpenStreetMap is a collaborative project to create a free editable map of the world. Maps from
OpenStreetMap contain information about highways, buildings, public transport and much
more. For this example visualization a map of the city of Vienna was used. It was extracted
from the OpenStreerMap database.

5.3 The OpenStreetMap XML File Format

OpenStreetMap maps can be exported to special format XML-files. These files are build on only
three simple elements: node, way and relation. Each element may have an arbitrary number of
properties (a.k.a. tags) which are key-value pairs (e.g., highway=primary).

• Node
Nodes are the basic underlying element of the OSM scheme. Nodes describe a single
geo-spatial point with a pair of latitude and longitude coordinates. Nodes are commonly
used to define a way. Furthermore a node can also be a standalone unconnected point,
representing something like a telephone box, a pub, a place name label, or all kinds of
other points of interest (POI). Standalone nodes have at least one tag.

• Way
A way is an ordered interconnection of at least 2 nodes that describe a linear feature such
as a street or similar. Way elements are also used to define outlines of areas and buildings.
They contain references to the nodes they consist of.

• Relation
Relations are used to group all sorts of elements together. They can contain references
to nodes, ways and even other relations. For example a relation describes the whole
transportation network of a city. This relation would have references to all relations which
represent a single service line of the network. On the other hand those relations will
reference each way they need to represent a service line.

Since OpenInsightExplorer allows users, as a feature, to introduce arbitrary data types, the
example maps these elements to specially developed classes (see Listing 5.1). Each of them can
hold the tags (the previously mentioned key-value pairs) of the XML elements and if specified,
the references to other elements with ArrayLists within a HashMap.

57

p u b l i c c l a s s Node {
p u b l i c long ID ;
p u b l i c double l a t ;
p u b l i c double l o n ;
p u b l i c HashMap< S t r i n g , S t r i n g > t a g s =new HashMap< S t r i n g , S t r i n g > () ;

p u b l i c Node (long ID , double l a t , double l o n) {
t h i s . ID=ID ;
t h i s . l a t = l a t ;
t h i s . l o n = l o n ;

}

p u b l i c S t r i n g t o S t r i n g () {
S t r i n g s=" Node ID+"+ID+" l a t : "+ l a t +" l o n : "+ l o n +" \ n " ;
f o r (S t r i n g k : t a g s . ke yS e t ()) s +=" \ t t a g : "+k+" "+ t a g s . g e t (k) +" \ n " ;
re turn s ;

}
}

p u b l i c c l a s s Way {
p u b l i c long ID ;
p u b l i c HashMap< S t r i n g , S t r i n g > t a g s =new HashMap< S t r i n g , S t r i n g > () ;
p u b l i c A r r a y L i s t <Node> nodes =new A r r a y L i s t <Node > () ;

p u b l i c Way(long ID) { t h i s . ID=ID ; }

p u b l i c S t r i n g t o S t r i n g () {
S t r i n g s="Way ID+"+ID+" \ n " ;
f o r (S t r i n g k : t a g s . ke yS e t ()) s +=" \ t t a g : "+k+" "+ t a g s . g e t (k) +" \ n " ;
re turn s ;

}
}

p u b l i c c l a s s R e l a t i o n {
p u b l i c long ID ;
p u b l i c HashMap< S t r i n g , S t r i n g > t a g s =new HashMap< S t r i n g , S t r i n g > () ;
p u b l i c A r r a y L i s t < R e l a t i o n > r e l a t i o n s =new A r r a y L i s t < R e l a t i o n > () ;
p u b l i c A r r a y L i s t <Node> nodes =new A r r a y L i s t <Node > () ;
p u b l i c A r r a y L i s t <Way> ways=new A r r a y L i s t <Way> () ;

p u b l i c R e l a t i o n (long ID) { t h i s . ID=ID ; }

p u b l i c S t r i n g t o S t r i n g () {
S t r i n g s=" R e l a t i o n ID "+ID+" \ n " ;
f o r (S t r i n g k : t a g s . ke yS e t ()) s +=k+" : "+ t a g s . g e t (k) +" \ n " ;
re turn s ;

}
}

Listing 5.1: The classes which map the OSM elements scheme.

58

For the data acquisition step of the OpenStreetMap (OSM) example visualization, a special
patch called OSM File Reader was implemented. It loads all data from the OSM XML file and
maps the elements to the data type classes. As soon as the complete file is loaded it streams
the data through its output ports. The patch can be triggered to stream all elements again with
its trigger labeled input ports. Various different filtering patches were implemented which allow
users to select only parts of the data set that are of interest (e.g., buildings, trams, etc.). Three
different patches (Render Relations, Render Ways and Render Nodes) map the basic OSM
elements to rendering primitives such as points and lines with the additional attributes color and
size.

The stream of render primitives is sent through the OSM Camera patch to the final rendering
window. This patch buffers the stream and adds a camera to it. If the user interacts with the
rendering window (e.g., mouse dragging) the camera patch will update the position of the
camera and send the previously buffered stream again. This enables scrolling and zooming into
the rendering of the street map.

Figure 5.3: Rendering all ways (gray) and buildings (red).

59

The visualization in Figure 5.3 shows all ways and buildings of Vienna. The corresponding
composition contains only 10 patches in total (see Figure 5.5). The OSM File Reader’s way
output stream is split with a Filter Buildings patch into two separate streams. One stream
contains way elements which represent buildings and another one which does not. Both streams
are converted to render primitives of different colors with Render Ways patches. Both of the
streams are merged again with a generic Stream Merge patch which adapts its ports to the
render primitive type.

Another implemented OpenStreetMap visualization renders routes of a map for example
(see Figure 5.6). The user can select interactively the routes to be visualized (see Figure 5.4).
For example, public transport service lines, bicycle routes or any other routes of interest can be
selected. All selected routes get sorted by their lengths and are rendered with a different color.
Additionally, a bar chart of the lengths is generated and displayed in a different output window.

Figure 5.4: Rendering selected routes sorted by their lengths and displaying a bar chart depicting their
lengths. To each route a different color gets assigned. In the lower left window users can select
interactively the routes they want to visualize.

This example demonstrates the capabilities and the benefits of the usage of individually
implemented data structures to create patches (especially the filter patch). The big advantage
is that the user can achieve the desired result with very few lines of code. The example also
emphasizes the fact that re-usability is highly given. If a patch is already implemented it does
not require much effort for minor modifications and re-usage.

60

(a) Left half of the composition.

(b) Right half of the composition.

Figure 5.5: An OpenStreetMap composition which visualizes buildings and ways.

61

(a) Left half of the composition.

(b) Right half of the composition.

Figure 5.6: A OpenStreetMap composition which visualizes lengths of user selected ways.

62

CHAPTER 6
Discussion and Future Work

This chapter discusses the features which OpenInsightExplorer introduced to the field of
dataflow language research and those which are obviously and rather painfully missing. The
framework was evaluated with the development of the example visualizations. This happened
after the completion of the framework. Most insights gathered during the production of the
examples were not used to further improve the framework. Many of the proposed improvements
would lead to major design changes and therefore code alterations. These improvements were
not implemented because of time constraints.

6.1 Growing Ports and Generic Ports

The growing port mechanism indicates to be an admirable feature for upcoming visual dataflow
languages. It simplified the development process of the example visualizations, since some
patches could be adopted to the number of needed input and output ports without large efforts.

Generic ports demonstrated their practical usefulness in the example visualizations too. With
the implemented generic port approach, the framework can offer many off-the-shelf patches such
as the Stream Merge patch that can adapt itself to a certain data type dynamically (see Figure
5.5). Such patches can be reused more frequently because they can operate with many different
data types. Without the generic ports feature, e.g., a special version of the Stream Merge patch
needs to be implemented for each data type it should merge.

63

6.2 Structured Programming

The current version of OpenInsightExplorer does not provide any mechanism for structured
programming. It was assumed, that the prototyped visualizations would not become complex
enough to justify such facilities. This assumption turned out to be wrong, as soon as the
OpenStreetMap example was implemented. Some of the compositions in this example fill up
multiple screens in the editor, making it very hard to keep the overview. Like other visual
dataflow languages OpenInsightExplorer should provide a mechanism where users can collapse
whole sub-graphs to a single node and expand it on demand again.

Container Patch (Expanded)
Virtual Port Virtual Port

Container Patch (Collapsed)

Figure 6.1: Schematic diagram of a the intended Container patch.

To accomplish this, a special Container patch must be developed (see Figure 6.1). Users
can drag patches into it. The container can be collapsed and expanded, hiding or revealing the
embedded patches. If a patch, which is embedded within such a container, gets connected to
a patch lying outside of the container the ports of the embedded patch is virtually duplicated
and will be renderer at the enclosing container border. Both patches connect to the virtual port
instead of connecting to each other directly.

In the case of OpenInsightExplorer the implementation of this feature becomes a lot more
complex in comparison to other visual dataflow languages, since only OpenInsightExplorer
provides the unique growing ports mechanism. The virtual duplicates need to have the same
add and remove port functionalities, like their real counterparts. It seems necessary to duplicate
the parent ports on some occasions too since they may have add and remove listeners which will
operate on their childs.

6.3 Debugging

The framework lacks a debugging toolkit. Debugging in dataflow languages means to find the
node which is not producing (any) output and the reason why. Most often, input ports are not
connected in the right manner, so they do not reach the firing state as expected.

In the current version of OpenInsightExplorer, users have to debug their programs by
temporarily connecting output ports to the Console patch to investigate if a patch produces
output as desired. By repeating this task on several patches, it is possible to track down the error.
Moreover, each time the users have to reconnect the output ports to their previous connection

64

partners again. This is a very exhausting task, since it becomes more a trial-and-error approach
to find the patch which does not behave like indented.

A future version of OpenInsightExplorer should possess a sophisticated debugging toolkit.
This toolkit should allow to run visualizations in a special debug mode. In this mode the
editor window will not disappear and users can point with the cursor on patches and their ports.
Pointing on a port will result in displaying the content of the FIFO buffer and the information
if a thread is halted caused by an empty or full buffer. Additionally, an inspection window will
exist which shows all patches and ports which are currently halted by an attempt to read from an
empty input port or an output port which tries to send to a full FIFO buffer.

6.4 Data Types and Side Effects

As previously addressed in section 3.2.5, OpenInsightExplorer allows developers to introduce
new custom data types. This is accompanied with the loss to be side-effect free. This is a small
price to pay for the flexibility which is gained through this design decision. Also some other
state-of-the-art languages, e.g., Quartz Composer are not side-effect free and even tied down to
a handful of native data types.

6.5 GUI

The GUI of OpenInsightExplorer could be improved in several ways on closer examination:

• The disconnect buttons of ports can be entirely removed. Instead clicking on a port or
a connection wire with the right mouse button could provide the same functionality and
would result in a cleaner interface.

• All patches should provide a minimize icon in their titlebar. A patch window would
collapse to the point where only its titlebar would be visible any more. All connection
wires of the input ports would end on the left boundary of the titlebar and all output
connections on the right end.

• Connection wires should be rendered more like wires instead of straight lines. This can
be accomplished by using splines.

• Stream port connection wires should be rendered bolder than other wires.

• It should be studiously avoided that wires cross other wires or reside behind patches if
possible.

• Users should be able to relocate wires manually.

65

CHAPTER 7
Conclusion

This thesis presents OpenInsightExplorer a new visual dataflow programming language. It was
designed for rapid prototyping visualizations. It allows to connect modules in a visual editor
that represents individual processing stages of the visualization pipeline. These modules are
executed by the dataflow execution model, which almost naturally supports parallel execution.

Like most other dataflow languages, OpenInsightExplorer is prone to dataflow network
deadlocks. It does not introduce new features for deadlock prevention or recognition to the
field of dataflow language research. OpenInsightExplorer follows a coarse grained dataflow
approach. This means that the modules are rather complex and such deadlocks seldom occur.

It does not support any kind of structured programming, which nearly all current visual
dataflow programming languages do. Also OpenInsightExplorer provides only a basic
debugging support in comparison to other state-of-the-art languages. To extend the framework
with more sophisticated debugging tools and structured programming support should be a very
feasible task.

Despite the existing drawbacks of the framework, OpenInsightExplorer introduces new
unique features to the field of visual dataflow programming research. Features like the growing
port mechanism and generic ports. Both mechanisms enable the development of more flexible
and reuseable modules. Developers can use and introduce arbitrary data types to the framework.
Many other existing visual dataflow programming languages are not capable of this. It seems
worthwhile to further investigate the dataflow execution architecture of OpenInsightExplorer. It
uniquely combines the two main dataflow execution models and simplifies the development of
modules.

To summarize the results of this thesis and to make a conclusion: OpenInsightExplorer
clearly failed to be a universal tool for non-programmers for developing arbitrary visualizations
in the current development state. The visual programming paradigm of OpenInsightExplorer is

67

still too complex for users without any programming experience. The example visualizations
proved that OpenInsightExplorer cannot provide all necessary modules off-the-shelf. All
missing modules must be implemented by the users. But users with programming experience
can benefit from the framework. They are able to implement all missing modules and can reuse
already existing ones. This speeds up the development process and allows to rapidly prototype
rather simple visualizations. OpenInsightExplorer’s concept is not flexible enough to support
the development of complex or arbitrary visualizations. Nevertheless OpenInsightExplorer
introduces new unique features, which could bring great benefits to other visual dataflow
languages. They are worthwhile to be adopted by current state-of-the-art languages to improve
their usability.

68

APPENDIX A
User’s Guide

A.1 Introduction

OpenInsightExplorer is a visual dataflow programming language for developing visualizations.
This type of programming language consists of nodes called patches in OpenInsightExplorer.
These modular units get connected together in a graphical editor of the framework. Depending
on how patches are connected they represent a visualization application. This guide gives an
introduction on how to find the right patches for a visualization and to compose them together
to an application.

Figure A.1: Main GUI after starting OpenInsightExplorer.

69

A.2 The GUI

After starting OpenInsightExplorer two different windows are visible on the screen (Figure A.1).
The big main window is the workbench editor (entitled Open Insight Explorer) and the smaller
one the so called Patch Bag.

A.2.1 The Workbench

Figure A.2: The workbench’s menubar.

With the workbench a user is capable to load, store and run visualizations and of course
build them. Visualization programs are called compositions in OpenInsightExplorer, since they
are composed of individual patches. Clicking on the play-button in the menubar (see Figure
A.2) runs a composition (). The File menu allows to load and store compositions. When a
composition is started the workbench and patch bag window will disappear to make space for
GUI elements of the visualization. To stop a running composition and return to the editing mode
of the editor a user has to click on the stop button that will be displayed in the upper-left corner
of the screen (Figure A.3).

Figure A.3: The stop icon in the upper left corner of the screen.

A.2.2 The Patch Bag

The smaller window is the patch bag, see Figure A.4. On the left side is a tree containing
patches which are modules with different functionalities grouped in libraries. They are arranged
and categorized in a tree by the features they provide. The tree consists of categories and even
sub-categories.

70

Figure A.4: The patch bag with a selected Slider patch, showing information about the patch.

There are several categories like Input, Output and Rendering for example. The input
library consists of patches which provide GUI elements like sliders and textfields. Rendering
contains modules to perform OpenGL rendering. The right side of the window provides
information about the patches if they are selected in the tree. It shows information about
how to use and configure these patches in a meaningful manner. To develop visualizations
with OpenInsightExplorer the user drags patches from the patch bag and drops them into the
workbench editor window as depicted in Figure A.5. In the editor a new graphical representation
of the patch will appear. This little window has different functionalities which will be explained
in the next section.

Figure A.5: Dragging patches into the workbench.

71

A.3 Patches

Patches are displayed as little windows in the workbench editor (see Figure A.6). They can be
moved around by dragging them on the titlebar. The name of the patch can be altered via double
clicking on it and editing the appearing textfield. Depending on the provided functionality of a
patch its titlebar may contain several icons on the top right corner.

Figure A.6: Patch with input ports (named X, Y, Z, Width, Height, Depth, Color) and an output port
(Out) and a bound GUI (the checkbox labeled Center Box).

Almost every patch has so called ports. The ports placed on the left (below the titlebar) are
called input ports. With these ports the patch is able to receive data. On the right side of the
patch are the output ports. The patch uses them to send data to another patch. The names of the
ports are printed in different colors depending on the data type the ports are able to send/receive
data. Different patches can be connected by clicking on their ports which should be connected
together.

A.4 The Patch Titlebar Icons

• Delete
Removes a patch from a composition. All connections to other patches will be removed
automatically. Also all windows the patch owns are terminated.

• Info
Shows information about this patch in the patch bag window.

72

• Hide Bound GUI
Some patches have a GUI element to configure its own behavior. This GUI element is
placed in the middle under the titlebar of the patch. It is called bound GUI because it is
directly bound to the graphical representation of the patch in the workbench. With this
icon it can be hidden and the patch will have a smaller size (see Figure A.7).

Figure A.7: Examples of a shown and hidden bound GUI (the textfield) of a patch.

• Show Bound GUI
Shows the bound GUI of a patch.

• Show Configuration GUI
This icon will bring up a window where the user can configure the patch (see Figure A.8).

Figure A.8: A color chooser with its configuration window visible.

73

• Show Running GUI
Will show the running GUI, the window the patch owns that will be visible when the
composition runs (see Figure A.9).

Figure A.9: A patch with its running GUI visible.

74

A.5 A “Hello World“ Tutorial

This section depicts a little basic step-by-step tutorial on how to program with
OpenInsightExplorer. This tutorial implements a simple “Hello World“ program. It explains
how to add patches to a composition, connect them and finally run the composition.

Composing “Hello World“

• Start OpenInsightExplorer or in the case it is already running, create a new composition
by clicking on New Composition in the File menu at the workbench window (see
Figure A.10).

Figure A.10: Starting a new composition.

• Expand the sub category Static in the patch bag window by clicking on it. The library tree
will now expand and show new entries.

• Drag the entry named Static String from the patch bag window into the workbench. A
new window entitled Static String will appear in the workbench, as depicted in Figure
A.11.

Figure A.11: Dragging the Static String patch into the workbench.

75

• Expand the Output library in the patch bag and drag the Console patch into the workbench
(see Figure A.12). In the workbench a small window entitled Console will appear. Also a
new window called Output Console will pop up. This window is the running GUI of the
Console patch. It will display all data which is send to the patch.

Figure A.12: Dragging the Console patch into the workbench.

• The user can drag patches in the workbench on their titlebar.

• Connect the Static String output port entitled once with the Console input port labeled #0
by clicking on once and later on #0. Some icons near those ports will appear (see Figure
A.13).

Figure A.13: Dragging the Console patch into the workbench.

76

A.5.1 Running the Application

To run the “Hello World“ program just press the play () icon in the workbench’s menubar. The
editor and the patch bag vanish and all running GUI windows will appear. In this example it is
the Console window, depicted in Figure A.14. Everything that was entered in the textfield of
the Static Text patch will now be displayed in the Console patch’s output window. To stop the
application just click on the stop button displayed in the upper left corner of the screen.

Figure A.14: The Console patch outputs the string which was send to it.

A.5.2 Loading and Saving Compositions

Compositions can be loaded and saved. Under File in the menubar of the workbench are
two entries for that purpose, Load Composition and Save Composition. In both cases a
file dialog will appear (see Figure A.15). Compositions carry the file postfix “.cmp“. Either it
is a dialog for choosing a composition file to load or specify a name and a location to save a
composition. When a composition is loaded the current composition will be lost if not saved
prior.

Figure A.15: A composition loading and saving dialog.

77

A.6 Ports in Detail

This section takes a closer look on ports and exposes the rules when they will accept or decline
connections. It describes the icons of the ports and the coloring of their names.

A.6.1 The Different Port Types

There are three different types of ports in OpenInsightExplorer. The little icons near the name
of the port allow a distinction of the type of the port.

• Basic ports
Input and output ports receive and send individual chunks of data. This type of port can
only be connected to other basic ports or to mixed mode ports.

• Stream ports
These ports exchange data as a stream. Stream ports only accept connections to other
stream ports or mixed mode ports.

• Mixed mode ports
Mixed mode ports can handle data from basic and stream ports. Depending on their
connection partner they will change their own type dynamically.

A.6.2 Connection Rules

• It is only possible to connect input with output ports. This seems almost straightforward
since only output ports provide data and only input ports are able to receive data.

• Ports allow only one-to-one connections. It is impossible to couple an input port with
more than one output port or vice versa.

• Ports can only be connected to ports of the same type except they are connected to mixed
mode ports.

• The different colors represent different data types. A port can only be connected to another
port of the same color because it should understand and handle the same data type. This
rule has exactly two exceptions:

– The port has a white color
This means that the port can handle a generic data type. It will either dynamically
adapt its type to the one it is connected to or will refuse a connection if the patch
cannot handle this data type. In some cases the patch even changes the type of
multiple ports to adapt itself to the new data type. For example the Console patch
has such ports because it should print out information about the data it receives,
regardless which type the data has (see Figure A.16). Another example is the Filter
patch. Depending on the data type it receives on the input ports it will send out data
of the same type on the output port.

78

Figure A.16: Output Console with a generic port.

– Sub data types
In some cases data types are build upon other data types. The coloring of the ports
suggests the least common thread the port can handle. The information about what
data types and sub types it may or may not accept is displayed on the right side of
the patch bag. This can be either invoked by clicking on the info icon () in the
patch’s titlebar or by selecting the patch in the patch bag. The port will refuse a
connection upon attempt with an unsupported data type and the editor will display a
notice message.

A.6.3 Port Icons

• Disconnect
This icon triggers the disconnection of both involved ports of a connection. After the
dissolve of the connection, both ports are ready to get newly and independently connected
again. A example is depicted in Figure A.17.

Figure A.17: Example how to disconnect two patches.

A.6.4 Growing Ports

OpenInsightExplorer includes a feature called growing ports. It provides patch developers the
ability to write patches that can dynamically vary the number of ports a patch provides (see
Figure A.18). With growing ports it is possible that a user can signal a patch that more or less
input ports are needed, depending on the number of operands the patch should process. The
growing port approach is not limited to adding ports of the same kind. Signaling a patch to add
ports may result in adding simultaneously input and output ports or even a collection of ports of
different data types.

79

• Add
The add icon causes the patch to add new ports or even a collection of ports to itself.

• Remove
Removes a port or a collection of ports. Connections of removed ports will be suspended
automatically.

Figure A.18: Example of the growing ports mechanism. Everytime the Add icon is triggered the patch
adds a set of input ports (Name, Value) to the Uniforms. In this example it was triggert twice. Clicking
on the Remove icon removes just the set the icon belongs to.

80

APPENDIX B
Programmer’s Guide

B.1 Introduction

The functionality of OpenInsightExplorer can be extended by developing new patches. This
guide gives a brief introduction how to achieve this.

OpenInsightExplorer was designed to be easy extendable. Patches are only Java classes
which implement a special interface called Patch. The Program scans through the Patch
directory and its sub directories to find such classes. Patches can be appended to an
OpenInsightExplorer installation by just copying the compiled class files into these directories.

This approach has a major drawback: OpenInsightExplorer must call the standard
constructor of each class in order to be able to verify the implementation of the interface. No
resources of any kind should be allocated or constructed within the standard constructor.

As soon as a patch is dragged from the patch bag into the workbench, the editor will construct
a new instance of this patch class. Afterwards it calls the init() method of the instance to signal
that it became life. Within this init() method all resources such as ports, JPanels and JFrames
should be created. After calling this method the editor will fetch all references to GUI elements
only once. These references should be static for the whole lifetime of a patch.

B.2 Patch Interface

In order to write a new patch, the Patch interface must be implemented. This interface consists
of a set of methods making the patch working. The Listing B.1 depicts the Patch interface
followed by a detailed description of each method.

81

package O p e n I n s i g h t E x p l o r e r ;

import j a v a . i o . S e r i a l i z a b l e ;
import j a v a x . swing . JFrame ;
import j a v a x . swing . J P a n e l ;

import O p e n I n s i g h t E x p l o r e r . P o r t s . I n t e r f a c e s . I n p u t P o r t ;
import O p e n I n s i g h t E x p l o r e r . P o r t s . I n t e r f a c e s . O u t p u t P o r t ;

p u b l i c i n t e r f a c e P a t c h {

p u b l i c vo id i n i t () ;
p u b l i c vo id r e s e t () ;
p u b l i c vo id s t a r t () ;
p u b l i c vo id s t o p () ;

p u b l i c S t r i n g g e t I n f o () ;
p u b l i c S t r i n g getName () ;

p u b l i c vo id l o a d (S e r i a l i z a b l e o) ;
p u b l i c S e r i a l i z a b l e save () ;

p u b l i c P o r t g e t I n p u t P o r t s () ;
p u b l i c P o r t g e t O u t p u t P o r t s () ;

p u b l i c J P a n e l getBoundGUI () ;
p u b l i c JFrame g e t C o n f i g u r a t i o n G U I () ;
p u b l i c JFrame getRunningGUI () ;

}

Listing B.1: The Patch interface.

• void init()
Is called when the patch gets dragged into the workbench window and becomes alive. All
initialization must be done here exclusively. The standard constructor should not be used
for the allocation of any resources.

• void start()
Threads and port listeners (which the patch needs) should be constructed and registered
within start(). It is being called every time a composition is started.

• void reset()
OpenInsightExplorer calls this method before start() every time a composition is started.
Developers should reset or clear data structures like lists within this method.

• void stop()
Is called when a composition is stopped. Within this method Receive and/or Wait listeners
of ports should be unsubscribed if necessary and threads spawned by the patch should be
stopped.

82

• String getInfo()
This function should return a String containing a description of the functionality of the
patch. This information will be displayed in the right half of the patch bag window and
if the gets clicked in the titlebar of the patch. HTML-tags can be used to describe the
look of the patch bag information page and even pictures and hyperlinks can be included
(see Listing B.2).

p u b l i c S t r i n g g e t I n f o () {
re turn "<html ><h1>My Patch < / h1>My P a t c h does . . . < br > and l o o k s l i k e <

br ><img=" . / myPatch . j p g " > </ html >" ;
}

Listing B.2: Example implementation of the getInfo() method.

• String getName()
Returns the name of the patch used for the patch bag entry and the titlebar of the patch.

• void load(Serializable o) and Serializable save()
On saving a composition in OpenInsightExplorer the save() method is called for every
patch and the framework writes the results in a serialized form into the save file. Therefore
it is possible to reproduce the state of each patch on loading. Each object will be
deserialized on loading and given as an argument for the load() method.
The following Listing B.3 excerpts the loading and saving of a patch which represents a
graphical slider.

p r i v a t e J S l i d e r j s l ;

p u b l i c vo id l o a d (S e r i a l i z a b l e o) {
/ / s e t t h e s l i d e r t o t h e r i g h t v a l u e a f t e r l o a d i n g
j s l . s e t V a l u e ((I n t e g e r) o) ;

}

p u b l i c S e r i a l i z a b l e save () {
/ / read t h e s t a t e o f t h e s l i d e r and save i t
re turn (I n t e g e r) j s l . g e t V a l u e () ;

}

Listing B.3: Load and save example.

• Port getInputPorts() and Port getOutputPorts()
All input and output ports of a patch are organized in trees. getInputPorts() and
getOutputPorts() should return the root nodes of each tree (see Section B.5). In the case
the patch has no input or output ports the method should return null. The functionality of
ports will be explained in detail in a later section of the guide (see Section B.3).

83

Patches can have GUI elements which will be shown in the OpenInsightExplorer editor. The
following methods are only called once (after the patch has been constructed and init() was
called). All the references to these Swing objects should be static for the whole lifetime of the
patch.

• JPanel getBoundGUI()
Should return the reference to a JPanel representing the bound GUI. It is used to display
only a few GUI elements to configure properties of a patch. This JPanel will be fitted
centered within a patch representation in the workbench window. It can have its own
Layout Manager or should be set to a fixed size.

• JFrame getConfigurationGUI()
This JFrame is visible while editing a composition in the editor. Its purpose is to display
GUI elements that configure a patch. Patches should use this configuration GUI if the
bound GUI would become too large and/or overloaded with elements.

• JFrame getRunningGUI()
Patches can have windows that will be visible when a composition runs. These JFrames
should be used to display the output or controlling elements of a visualization.

B.3 Ports

Patches exchange information via their ports. Most important there are two types of ports.
Input ports which receive data and output ports which send data. Ports allow only one-to-one
connections. It is impossible to couple an input port with more than one output port or vice
versa. Ports can be further classified to the following types:

• Basic ports
They can only send or receive one individual chunk of data at a time.

• Stream ports
These ports operate on a data stream. They signal a start of a stream, send some data and
finally signal the end of the data stream. Streams can be empty and layered within other
streams of the same data type.

• Mixed mode ports
Mixed mode ports can handle data from basic and stream ports. Depending on their
connection partner they adapt their own type.

Additionally developers must specify which kind of data type a port should operate on. The
following code snippet in listing B.4 demonstrates how to create ports for different kinds and
data types.

84

t r y {
/ / i n p u t p o r t w i t h da ta t y p e Double

I n p u t P o r t i n =new I n p u t P o r t <Double > () { } . setName (" Number ") ;

/ / i n p u t s t r ea m w i t h da ta t y p e S t r i n g
I n p u t S t r e a m P o r t names=new I n p u t S t r e a m P o r t < S t r i n g > () { } . setName (" Names ") ;

/ / i n p u t mixed mode p o r t w i t h da ta t y p e P o i n t
I n p u t M i x e d P o r t coord =new I np u tM i xe d P or t < P o i n t > () { } . setName (" C o o r d i n a t e s ") ;

/ / o u t p u t p o r t w i t h da ta t y p e Double
O u t p u t P o r t max=new O u t p u t P o r t <Double > () { } . setName ("Maximum") ;

/ / o u t p u t p o r t w i t h da ta t y p e S t r i n g
O u t p u t S t r e a m P o r t l i n e s =new O u t p u t P o r t < S t r i n g > () { } . setName (" F i l e l i n e s ") ;

} catch (AnonymousException e) {
/ / i n t h e case a p o r t was n o t c r e a t e d as an anonymous c l a s s
}

Listing B.4: Creating different ports with different data types.

All three kinds of ports can be declared to work as generic ports. That means that they
can change their data types dynamically at runtime (depending on the connection partners). An
introduction to this topic is given in section B.10.

B.4 Port Labels

These label ports are not designed for message passing. They have only structural purposes for
the port tree GUI and cannot by declared with any data type (see Listing B.5). Their usage is
explained in more detail in the following section.

/ / i n p u t p o r t l a b e l
I n p u t P o r t L a b e l i n r o o t =new I n p u t P o r t L a b e l () . setName (" I n p u t s ") ;

/ / example o f a n o t r e n d e r e d o u t p u t p o r t l a b e l
O u t p u t P o r t L a b e l o u t =new O u t p u t P o r t L a b e l () ;

Listing B.5: Using label ports to structure the port trees.

B.5 Port Trees

OpenInsightExplorer uses two trees to organize the ports of a patch. These trees (one for the
input and another one for the output ports) can be altered dynamically via the growing port
mechanism. Patches return the references to the root nodes of both trees via the getInputPorts()
and the getOutputPorts() methods (see Section B.2).

85

Figure B.1 illustrates how the patch Shader organizes its input ports. Boxes with round
corners symbolize label ports (see Section B.4). They are only for structural purposes and do
not exchange any data with other ports. Ports which return null via the getName() method are
not rendered in the OpenInsightExplorer GUI, like the input tree root node of the Shader patch.

"Name"
String

"Fragment"
String

"Uniforms"

"#0"

"#1"

"Name"
String

"Value"
<Generic>

<empty>

"Value"
<Generic>

(a) (b)

Figure B.1: Example of an input port tree of the Shader patch and a screenshot depicting how the
OpenInsightExplorer editor renders that tree. Note that the root node is unnamed and therefore not visible.

To each port a child can be added via the addChild() method. Furthermore ports can also be
organized as lists (see Figure B.2). Ports are added to a list using the add() method. Only ports
of the same kind and data type can be added to the list.

"#0"
Double

"#1"
Double

"#2"
Double

<empty>

"Maximum"
Double

(a) (b)

Figure B.2: Example of an output port tree, were some ports are organized in a list. Note that the root
node is unnamed and therefore not visible.

86

B.6 Spawning Threads

The OpenInsightExplorer framework provides functionality to spawn and execute threads for
a patch. Developers need not create and control the threads of their patches manually. By
calling OpenInsightExplorer.execute() method programmers can pass an implementation of
the Runnable interface which will be executed by the framework automatically.

Reading from ports and sending data should happen exclusively within spawned threads or
port Listener functions. Sending and receiving function-calls may block in the case a receiving
buffer is empty or full. Hence calling an input port’s get() or an output port’s send() method
within any in the Patch interface declared methods can result in a deadlock of the visualization.
In the case a thread reads from an empty input port it is suspended until data has arrived. If
meanwhile the composition is stopped by the user an InterruptedException is thrown. Within
its catch statement developers can exit the run() method and therefore expire the current thread
(see Listing B.6).

p u b l i c vo id s t a r t () {
O p e n I n s i g h t E x p l o r e r . e x e c u t e (t h i s) ;

}

p u b l i c vo id run () {
whi le (t rue) {

t r y {
System . o u t . p r i n t l n (In . g e t ()) ;

} catch (I n t e r r u p t e d E x c e p t i o n i e) {
re turn ;

}
}

}
}

Listing B.6: Threading example.

B.7 Data Request

Output ports of OpenInsightExplorer are capable to determine if their connection partner
requests data. This feature was implemented to support interactive GUI elements that are only
providing data upon request. This technique is demonstrated with a simple patch that sends the
current running time of a composition (see figure B.3).

This Running Time patch only has one output port called Out (see Listing B.7). In the init()
method a WaitListener is registered to the port. The registered callback function Wait() of the
listener is called every time the connected input port tries to read data from it.

In this function the difference of the current system time and the value of the variable
starttime is send through the port Out. This variable contains a timestamp when the composition
was started. This was determined within the start() method of the patch.

87

Figure B.3: Screenshot of the Running Time patch.

p u b l i c c l a s s RunningTime implements Patch , O u t p u t P o r t W a i t L i s t e n e r <Long >{

O u t p u t P o r t <Long> Out ;
long s t a r t t i m e ;

p u b l i c S t r i n g g e t I n f o () {
re turn " Running Time " ;

}

p u b l i c S t r i n g getName () {
re turn " Running Time " ;

}

p u b l i c P o r t g e t O u t p u t P o r t s () {
re turn Out ;

}

p u b l i c vo id i n i t () {
t r y {

Out=new O u t p u t P o r t <Long > () { } . setName (" M i l l i s ") . s e t W a i t L i s t e n e r (t h i s) ;
} ca tch (AnonymousException e) {}

}

p u b l i c vo id s t a r t () {
s t a r t t i m e =System . c u r r e n t T i m e M i l l i s () ;

}

p u b l i c vo id Wait (O u t p u t P o r t <Long> p o r t) {
Out . send (System . c u r r e n t T i m e M i l l i s ()− s t a r t t i m e) ;

}
}

Listing B.7: A source code snippet of the Running Time patch. Note that only essential methods are
depicted in this listing. All other methods of the Patch interface are empty or return null.

88

B.8 Trigger Functionality

Developers can register a listener to an input port. This listener will call a function in the
case the port currently receives data. This provides a trigger functionality. This mechanism is
demonstrated with a little example patch. The Even patch will determine if the number is even
(see Figure B.4).

Figure B.4: Screenshot of the Even patch.

This patch has two ports (see Listing B.8). An input port called In and the output port Out. A
ReceiveListener is registered to the input port In which triggers the callback function Receive()
every time In receives data. Within this method the currently received data from In is read and
it is determined if the number is even. The result is finally sent with Out.

p u b l i c c l a s s Even implements Patch , I n p u t P o r t R e c e i v e L i s t e n e r <Long >{

I n p u t P o r t <Long> In ;
O u t p u t P o r t <Boolean > Out ;

p u b l i c S t r i n g g e t I n f o () { re turn " Even " ; }

p u b l i c P o r t g e t I n p u t P o r t s () { re turn In ; }

p u b l i c S t r i n g getName () { re turn " Even " ; }

p u b l i c P o r t g e t O u t p u t P o r t s () { re turn Out ; }

p u b l i c vo id i n i t () {
t r y {

In =new I n p u t P o r t <Long > () { } . setName (" Number ") . s e t R e c e i v e L i s t e n e r (t h i s) ;
Out=new O u t p u t P o r t <Boolean > () { } . setName (" Even ") ;

} ca tch (AnonymousException e) {}
}

p u b l i c vo id Rece ive (I n p u t P o r t <Long> p o r t) {
t r y {

Out . send (In . g e t () %2==0? t rue : f a l s e) ;
} ca tch (I n t e r r u p t e d E x c e p t i o n e) {}

}

}

Listing B.8: A source code snippet of the Even patch. Note that only essential methods are depicted in
this listing. All other methods of the Patch interface are empty or return null.

89

B.9 Growing Ports

The growing ports approach of OpenInsightExplorer and how to iterate over a list of ports
(see Section B.5) is demonstrated with a simple example patch in this section. This patch adds
numbers together. The user should be able to specify how many numbers he/she wants to add.
Therefore this Add patch must be flexible on the number of input ports (see Figure B.5).

Figure B.5: Screenshot of the Add patch after two additional input ports were added by clicking twice on
the plus icon.

Two ports (an input port named In and an output port Out) are constructed with the data type
Double in the init() method (see Listing B.9). An AddListener of In is defined which will call
the AddRequest() every time a user clicks on the plus icon. Within this method an additional
input port gets constructed and is added to the list of In.

Since the user may remove some previously added input ports a RemoverListener is defined
for each additionally constructed port. The RemoveRequest() will remove the port from the list
of In. The port argument of this method is a reference to the port where the user has clicked on
the remove icon. A RemoveListener was never assigned to the In port, hence the user cannot
remove this port and it can be used safely as the root node of the input port tree. In this case the
tree becomes only a flat list. Every time a port is added or removed the renumber() method is
called. It iterates trough the list of input ports of In and renames them with “#“ followed by a
number which is incremented at each list element.

In the start() method a thread is spawned which loops endlessly. In every pass of the loop
this thread iterates over the input port’s list of In and tries to read a value and adds it to the sum.
If no data is available on one input port the thread gets suspended until a value is received. When
the iteration is completed the sum is sent over to the output port.

When the user stops the composition, the currently executed get() method call of the input
port will throw an InterruptedException. This exception is used to break out of the endless loop
and stop the execution of the patch.

90

p u b l i c c l a s s Add implements Patch , Runnable , AddLi s t ene r , RemoveLis t ene r {

I n p u t P o r t <Double > In ;
O u t p u t P o r t <Double > Out ;

p u b l i c S t r i n g g e t I n f o () { re turn "Add" ; }
p u b l i c P o r t g e t I n p u t P o r t s () { re turn In ; }
p u b l i c S t r i n g getName () { re turn "Add" ; }
p u b l i c P o r t g e t O u t p u t P o r t s () { re turn Out ; }

p u b l i c vo id i n i t () {
t r y {

In =new I n p u t P o r t <Double > () { } . s e t A d d L i s t e n e r (t h i s) ;
Out=new O u t p u t P o r t <Double > () { } . setName ("Sum") ;

} ca tch (AnonymousException e) {}
renumber () ;

}

p u b l i c vo id s t a r t () { O p e n I n s i g h t E x p l o r e r . e x e c u t e (t h i s) ; }

p u b l i c vo id run () {
whi le (t rue) {

double sum =0;
f o r (I n p u t P o r t <Double > p o r t : In)

t r y {
sum+= p o r t . g e t () ;

} catch (I n t e r r u p t e d E x c e p t i o n e) { re turn ; }
Out . send (sum) ;

}
}

p u b l i c vo id AddRequest (P o r t p o r t) {
t r y {

In . add (new I n p u t P o r t <Double > () { } . s e t R e m o v e L i s t e n e r (t h i s)) ;
} ca tch (AddExcept ion e) {} catch (AnonymousException e) {}
renumber () ;

}

p u b l i c vo id renumber () {
i n t c =0;
f o r (I n p u t P o r t <Double > p o r t : In) p o r t . setName (" # " +(c ++)) ;

}

p u b l i c vo id RemoveRequest (P o r t p o r t) {
p o r t . remove () ;
renumber () ;

}

}

Listing B.9: A source code snippet of the Add patch. Note that only essential methods are depicted in
this listing. All other methods of the Patch interface are empty or return null.

91

B.10 Generic Ports

Ports can change their data type dynamically. This feature is called generic ports in
OpenInsightExplorer. It allows developers to design patches, which can be used with multiple
data types. This mechanism will be demonstrated via a simple generic buffer patch (see Figure
B.6). It can adapt itself to store any data type a user may desire. Therefore no special buffer
patch need not be developed for every data type.

Figure B.6: Screenshots of the Simple Generic Buffer patch, depicting it in the generic state and adapted
to the Double data type.

All output and input ports can be put into the generic state by setting its data type via
setType() to null (see Listing B.10). This will tell the OpenInsightExplorer framework that
on a connection attempt it should give the patch the opportunity to adapt itself to the data
type of the potential connection partner. Ports will recognize such an attempt by setting
the ConnectListener. The listener calls the method Connect() in the case of such an event.
Additionally, Disconnect() gets called if the port gets disconnected.

Within the init() method the In and Out ports are set to the generic state and the
ConnectionListener is registered to both of them. As soon as one of the ports In or Out is
connected the Connect() method is called. Within this method it is determined if the patch is
still in the generic state. In this case every generic port of the patch is set via the setType()
method to the data type of the potential connection partner. If now the other port is connected
the framework can check if the data types are matching, since it was set to a data type previously.

The Disconnect() method is used to determine when the patch should reset the ports to the
generic state again. As soon as all generic ports are disconnected their types are set to null again.

92

p u b l i c c l a s s S i m p l e G e n e r i c B u f f e r implements Patch , I n p u t P o r t R e c e i v e L i s t e n e r <
Objec t > , C o n n e c t L i s t e n e r {

O u t p u t P o r t < Objec t > Out ;
I n p u t P o r t < Objec t > In ;
I n p u t P o r t < Objec t > T r i g g e r ;

Vector < Objec t > b u f f e r ;
C las s <?> t y p e = n u l l ;

p u b l i c S t r i n g g e t I n f o () {
re turn " Simple G e n e r i c B u f f e r " ;

}

p u b l i c P o r t g e t I n p u t P o r t s () {
re turn In ;

}

p u b l i c S t r i n g getName () {
re turn " Simple G e n e r i c B u f f e r " ;

}

p u b l i c P o r t g e t O u t p u t P o r t s () {
re turn Out ;

}

p u b l i c vo id i n i t () {
b u f f e r =new Vector < Objec t > () ;

t r y {
Out=new O u t p u t P o r t < Objec t > () { } . setName (" Out ") . s e t C o n n e c t L i s t e n e r (t h i s) .

s e t T y p e (n u l l) ;
In =new I n p u t P o r t < Objec t > () { } . setName (" In ") . s e t R e c e i v e L i s t e n e r (t h i s) .

s e t C o n n e c t L i s t e n e r (t h i s) . s e t T y p e (n u l l) ;
T r i g g e r =new I n p u t P o r t < Objec t > () { } . setName (" T r i g g e r ") . s e t R e c e i v e L i s t e n e r

(t h i s) ;
In . add (T r i g g e r) ;

} ca tch (AnonymousException e) {
} ca tch (AddExcept ion e) {
}

}

p u b l i c vo id r e s e t () {
b u f f e r . c l e a r () ;

}

p u b l i c vo id Rece ive (I n p u t P o r t < Objec t > p o r t) {
synchronized (b u f f e r) {

t r y {
i f (p o r t . e q u a l s (In)) {

b u f f e r . add (In . g e t ()) ;
} e l s e {

T r i g g e r . g e t () ;

93

f o r (O b j e c t o : b u f f e r) Out . send (o) ;
}

} catch (I n t e r r u p t e d E x c e p t i o n e) {}
}

}

p u b l i c vo id s e t T y p e (Class <?> t y p e) {
t h i s . t y p e = t y p e ;
In . s e t T y p e (t h i s . t y p e) ;
Out . s e t T y p e (t h i s . t y p e) ;

}

p u b l i c boolean i s A n y G e n e r i c P o r t C o n n e c t e d () {
re turn (In . i s C o n n e c t e d () | | Out . i s C o n n e c t e d ()) ;

}

p u b l i c boolean s t i l l G e n e r i c () {
re turn (t h i s . t y p e == n u l l ? t rue : f a l s e) ;

}

p u b l i c vo id r e s e t T o G e n e r i c () {
s e t T y p e (n u l l) ;

}

p u b l i c vo id Connect (P o r t here , P o r t t o) throws C o n n e c t E x c e p t i o n {
i f (s t i l l G e n e r i c ()) s e t T y p e (t o . ge tType ()) ;

}

p u b l i c vo id D i s c o n n e c t (P o r t h e r e) {
i f (! i s A n y G e n e r i c P o r t C o n n e c t e d ()) r e s e t T o G e n e r i c () ;

}

}

Listing B.10: A source code snippet of the Simple Generic Buffer patch. Note that only essential methods
are depicted in this listing. All other methods of the Patch interface are empty or return null.

94

Bibliography

[1] K. Arvind and D.E. Culler. Dataflow architectures, pages 225–253. Annual Reviews Inc.,
Palo Alto, CA, USA, 1986.

[2] E. Baroth and C. Hartsough. Visual programming in the real world, pages 21–42. Manning
Publications Co., Greenwich, CT, USA, 1995.

[3] M. Bernini and M. Mosconi. Vipers: a data flow visual programming environment based on
the Tcl language. In Proceedings of the workshop on Advanced visual interfaces, Advanced
Visual Interfaces, pages 243–245, New York, NY, USA, 1994. ACM.

[4] M. R. Berthold, N. Cebron, F. Dill, G. D. Fatta, T. R. Gabriel, F. Georg, T. Meinl, P. Ohl,
C. Sieb, and B. Wiswedel. KNIME: The Konstanz information miner. In proceedings of
the workshop on multi-agent systems and simulation mass, 4th annual industrial simulation
conference (ISC), pages 58–61, 2006.

[5] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in information
visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1999.

[6] E. H. Chi. A taxonomy of visualization techniques using the data state reference model.
In Proceedings of the IEEE Symposium on Information Vizualization 2000, pages 69–75,
Washington, DC, USA, 2000. IEEE Computer Society.

[7] D. Comte, G. Durrieu, O. Gelly, A. Plas, and J. C. Syre. Parallelism, control and
synchronization expression in a single assignment language. SIGPLAN Notices, 13:25–
33, January 1978.

[8] P. T. Cox and T. J. Smedley. A visual language for the design of structured graphical
objects. In Proceedings of the 1996 IEEE Symposium on Visual Languages, pages 296–
303, Washington, DC, USA, 1996. IEEE Computer Society.

[9] A. L. Davis. The architecture and system method of ddm1: A recursively structured data
driven machine. In Proceedings of the 5th annual symposium on Computer architecture,
International Symposium on Computer Architectures, pages 210–215, New York, NY,
USA, 1978. ACM.

[10] A. L. Davis and R. M. Keller. Data flow program graphs. Computer, 15:26–41, 1982.

95

[11] A. L. Davis and S. A. Lowder. A sample management application program in a graphical
data-driven programming language. In Digest of Papers Compcon Spring, 14:162–165,
1981.

[12] J. B. Dennis. First version of a data flow procedure language. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 362–376, London, UK,
1974. Springer-Verlag.

[13] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-flow processor.
SIGARCH Computer Architecture News, 3:126–132, 1974.

[14] Eclipse. http://www.eclipse.org. Accessed: 2011-02-01.

[15] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. Meta-design: a
manifesto for end-user development. Communication of the ACM, 47:33–37, 2004.

[16] G. R. Gao and Z. Paraskevas. Compiling for dataflow software pipelining. In Selected
papers of the second workshop on Languages and compilers for parallel computing, pages
275–306, London, UK, UK, 1990. Pitman Publishing.

[17] D. Gelernter and N. Carriero. Coordination languages and their significance.
Communications of the ACM, 35:97–107, 1992.

[18] T. R. G. Green and M. Petre. Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of visual languages and computing, 7:131–
174, 1996.

[19] R. Jagannathan. Coarse-grain dataflow programming of conventional parallel computers.
In Advanced Topics in Dataflow Computing and Multithreading, pages 113–129. IEEE
Computer Society Press, 1995.

[20] JFreeChart. http://www.jfree.org/jfreechart/. Accessed: 2011-02-19.

[21] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming
languages. ACM Computing Surveys, 36:1–34, 2004.

[22] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Information processing, pages 471–475. North Holland, Amsterdam, 1974.

[23] R. Karp and R. Miller. Properties of a model for parallel computations: Determinacy,
termination, queueing. SIAM Journal, 14:359–370, 1966.

[24] KNIME. http://www.knime.org. Accessed: 2011-06-03.

[25] MeVisLab. http://www.mevislab.de/. Accessed: 2010-11-09.

[26] J. P. Morrison. Flow-Based Programming, 2nd Edition: A New Approach to Application
Development. CreateSpace, Paramount, CA, 2010.

96

[27] M. Mosconi and M. Porta. Iteration constructs in data-flow visual programming languages.
Computer Languages, pages 67–104, 2000.

[28] OpenDX. http://www.opendx.org/index2.php. Accessed: 2011-03-12.

[29] OpenStreetMap. www.openstreetmap.org. Accessed: 2011-03-17.

[30] Quartz Composer. http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html.
Accessed: 2011-02-06.

[31] R. http://www.r-project.org/. Accessed: 2011-06-02.

[32] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The visualization toolkit: an object-
oriented approach to 3D graphics. Prentice-Hall, Inc., 2 edition, 1998.

[33] C. Sieb, T. Meinl, and M. R. Berthold. Parallel and distributed data pipelining with
KNIME. The Mediterranean Journal of Computers and Networks, 3(2):43–51, 2007.

[34] J. Silc, R. Borut, and T. Ungerer. Asynchrony in parallel computing: from dataflow to
multithreading, pages 1–33. Nova Science Publishers, Inc., Commack, NY, USA, 2001.

[35] H. Sutter. Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems,
and Solutions. Pearson Higher Education, 2004.

[36] Visualization Toolkit. www.vtk.org. Accessed: 2011-06-01.

[37] W. W. Wadge and E. A. Ashcroft. LUCID, the dataflow programming language. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[38] Weka. http://sourceforge.net/projects/weka/. Accessed: 2011-03-22.

[39] P. Whiting and R. Pascoe. A history of data-flow languages. Annals of the History of
Computing, IEEE, 16(4):38–59, 1994.

[40] N. Wirth. Program development by stepwise refinement. Communictaions of the ACM,
14:221–227, 1971.

97

	Introduction
	Visualization
	The Visualization Pipeline

	State of the Art
	Visual Programming
	Dataflow Programming
	Determinism of the Dataflow Model
	Controlling the Flow of Data Tokens
	Alternative to the Token-Based Model
	Dataflow Execution Architectures
	Practical Realization of the Dataflow Model

	History of Dataflow Visual Programming Languages
	Present Dataflow Visual Programming Applications
	LabVIEW
	KNIME
	OpenDX
	Quartz Composer
	Visualization Toolkit

	OpenInsightExplorer
	Features of OpenInsightExplorer
	Framework Design Decisions
	Choosing the Development Language
	Dataflow Execution Architecture
	Connectivity Scheme
	Growing Ports
	Data Types and Side Effects

	Implementation
	General Structure of the Framework
	Patches
	Loading Patches at Runtime
	Loading Jar Files at Runtime

	Ports
	Custom Data Types
	Generic Port Class
	Stream Ports

	Hiding the Framework Implementation
	Hiding Behind Proxy Classes
	Proxy Port Listeners
	Redirecting Exceptions
	Proxy Port Return Statements

	Results
	Volume Rendering
	OpenStreetMap Visualization
	The OpenStreetMap XML File Format

	Discussion and Future Work
	Growing Ports and Generic Ports
	Structured Programming
	Debugging
	Data Types and Side Effects
	GUI

	Conclusion
	User's Guide
	Introduction
	The GUI
	The Workbench
	The Patch Bag

	Patches
	The Patch Titlebar Icons
	A “Hello World“ Tutorial
	Running the Application
	Loading and Saving Compositions

	Ports in Detail
	The Different Port Types
	Connection Rules
	Port Icons
	Growing Ports

	Programmer's Guide
	Introduction
	Patch Interface
	Ports
	Port Labels
	Port Trees
	Spawning Threads
	Data Request
	Trigger Functionality
	Growing Ports
	Generic Ports

	Bibliography

