
Projektpraktikum aus Computergraphik und Digitaler Bildverarbeitung (WS2010)
Franz Spitaler, Przemyslaw Musialski (Editors)

Documentation for the ’Advanced Facade Rendering’ Project

Franz Spitaler †

21 February 2011

Abstract
This document is intended to give an overview of the project ’Advanced Facade Rendering’. The Project’s aim was
to improve the generation of facades and their geometry and subdivisions based on simple facade pictures. These
subdivisions are set automatically by using some sophisticated image-based algorithms or manually by the user.
This way it is possible to create astonishing results of a facade from a picture in just a few minutes.

1. Introduction

The aim of this document is to give an overview of the
project and to explain how everything works in general. We
start explaining the overall project structure by explaining
the library - dependencies and afterwards we continue with a
more detailed description of the rendering part of the project.
We will describe how the rendering is organized and will go
through the processing steps needed to calculate one frame.
A list of all classes and a short description of their func-
tionality finishes the documentation part of this document.
At last a small conclusion follows and gives a hint on how
the framework could (and will) be extended. The project
was programmed for the course ’Praktikum aus Computer-
graphik und digitaler Bildverarbeitung’ which has 12ECTS,
and i worked together with Dr. Przemyslaw Musialski who
was my advisor for this course. Before we start with the de-
scriptions of the libraries and their dependencies, we want
to give you a first impression of how the program looks like
when you use it. In figure 1 you see the renderer part of the
program.

2. Program structure

Our goal while working on the project, was to keep the struc-
ture simple. So it is much easier to understand what is being
processed in which part of the program. Therefore we de-
cided to create several libraries that all work together. These
libraries are set up in a way, such that tasks and computations
dedicated to one topic, are handled and processed in one li-
brary without the need to interact with other libraries. All in

† spitefr@gmail.com, Mat.#:0226436

Figure 1: This is the GUI of the program. You can see the
logger’s RichTextBox at the bottom, the many render settings
on the right side and the menu bar. In the middle region you
see the OpenGL control and an edited and rendered facade.

all we created eight libraries that somehow depend on each
other. We also tried to decouple them as much as possible in
the time we had. A short introduction to the structure of the
program follows right after this section (see section 2.1 and
following).

2.1. Program subdivision

The project is split in two parts to guarantee a good maintain-
ability. You can see the resulting main-structure in the figure
2 below. This architecture allows us to keep a good overview

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

of the project and it was easy to change or add features to the
program.

• The first part of the program holds only one library. It’s
name is ’Facade Renderer’ and it handles every possible
user input. The main use of the library is the creation of
the user interface (the window) and the right handling of
the interactions with the user. It delegates the different in-
puts and settings-changes to the right destination and is
the place where every part of the program interacts with
other parts.

• The second part of the program consists of seven libraries
that form the base for all computations. Most of the li-
braries are used in the ’user-interface’-part of the applica-
tion. They receive commands from the user-interface and
act in a defined manner. A description of the libraries fol-
lows in the next section 2.2 and in section 4 on page 6.

Figure 2: The two main parts of the project visualized.

2.2. Library description

When we defined the architecture of the program we made
the decision to split the user interface part of the program
from the rest of the program, which is a common program
design. We created seven libraries that are used for handling
the different parts of the program.

• The smallest and least complex library is the ’Helper’. It
has no dependencies on other libraries of the project and
can be used throughout the whole program, because it is
referenced in every other solution project. The helper’s
only task is to log messages to a RichTextBox in a ’Win-
forms’ window.

• The second project is the ’WpfControl’ which is used for
displaying and changing properties of WPF-elements. It
also consists only of one class.

• The ’Shader’ project is the first project that is little more
complex and consists of a few classes that handle the in-
teraction and use of OpenGL-shaders.

• The ’OpenGLHandler’ is the main rendering project. Is
is responsible of the rendering of the scene and uses for
example the shader project to create the rendered images.

• The ’Core’ is mainly used as an extension to the OpenGL-
Handler and is responsible for the texture setups and
the materials used to render the images. It is also a
bridge from the OpenGLHandler project to the FacadeLib
project because it defines some important interfaces and
primitives that are also used in the FacadeLib.

• The ’ImageProcessing’ library: It implements all needed
algorithms needed to do image based calculations like
edge detection. These algorithms are able calculate po-
sitions of facade-splits for example. This is probably the
most complex library in the whole solution.

• The ’FacadeLib’ library is also relatively complex. It de-
fines a lot of interfaces and data types that are used to rep-
resent the facade (both, in the modeler and the renderer
parts of the solution). Most of the user-interactions are
delegated to and processed in this project. It is the main
place of the definitions of the ’facade’ and it’s elements.

• The last library is the ’Facade Renderer’ which defines
all the user interface parts of the program for example.
It responds to user inputs directly (e.g. by handling the
’Open File’ command) or delegates commands to the right
destination in another project (eg. by calling the ’Render-
Frame’ method defined in the OpenGLHandler library).

2.3. Library dependencies

After the short introduction into the base structure of the so-
lution we want to discuss the inter-library dependencies. To
show how they all form the solution we decided to create the
figure 3. This is a visualization of the dependencies between
the solution projects. The arrow indicates a dependency. If
project ’A’ depends on project ’B’, an arrow will be pointing
from the box with the label ’A’ to the box with the label ’B’.

Figure 3: Visualization of the dependencies between the li-
braries of the solution.

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

3. The rendering

After this short descriptions about how the whole solution
is organized and set up, we continue with a very important
part of the project - the rendering part. At first there was the
need to make the decision which OpenGL-wrapper for C#
we wanted to use to create the visual output of our program.
We decided to use the OpenTK toolkit because it is a very
easy to use library. A short description of the OpenTK li-
brary follows in the next section (see 3.1)

3.1. The OpenTK library

The OpenTK library is a good wrapper for the OpenGL li-
brary. It makes all OpenGL commands and objects usable
in the C# language. It defines a very useful ’glControl’ win-
forms form which is used in out solution.
There are many useful parts in OpenTK and a few were used
in out project. There are the Vector and Matrix classes for ex-
ample which we used in out solution. These classes are very
useful when interacting with OpenGL objects or shaders.
The classes define all standard operators and provide geo-
metric functions like ’transform’ or ’scale’ as well.
Another very nice feature when using the built-in vector and
matrix-classes was the fact, that these classes are used by de-
fault to send data to the shaders, so no additional conversion
of the data was necessary.

3.2. The Core library

The core library is used as the central point of handling the
use and the creation and generation of OpenGL textures that
we use to generate the output images. It additionally pro-
vides the interface and the classes of the different materials
that we used to render the facade. There are the ’Material-
Base’ and the ’ReflectMaterial’ classes. The third purpose of
the library is the definitions of the primitives used through-
out the program. Theses are the ’Ray’, the ’Vertex’ and the
’Box’ classes for example.

3.2.1. Textures

We need to use several different textures in out program.
They are of a different type, like ’Texture2D’ or ’Texture-
CubeMap’ for example and they use different color formats
like ’Rgba’ or ’DepthComponent24’. We need to load tex-
tures from the file-system or create them from ’Bitmap’ ob-
jects. We also need to create empty textures with some pre-
defined settings. These type of textures are used to render
information of the scene to (like the depth-information that
is used to compute the shadows in the scene). This creation
and loading of the textures is done in the ’Texture’ class and
is used in the ’Texturehandler’. This two classes work to-
gether very tightly and the texturehandler uses the functions
defined in the texture class. It also created all framebuffer
objects needed in the program. FBO’s are used to render the
depth informations of the scene directly into a texture for

example. This texture is then used to calculate the shadow
information for the final image. Another use of the FBO’s is
the use in the SSAO calculation.

3.2.2. Materials

Since we want to render facades we need to use two different
types of materials at least. These materials are the ’Materi-
alBase’ material and the ’ReflectMaterial’. The first one is
used for all facade elements by default. The second mate-
rial is derived from the first one and adds a reflection pa-
rameter. It is used for windows in the facade for example.
Both materials implement the ’IMaterial’ interface that is de-
fined also in the core library. This interface defines properties
that every material should have, the correspondent shader
program and shader-interaction functions. The materials are
used when we render the facade elements. They provide au-
tomatic shader-setup so it is easy to work with them.

3.2.3. Primitives

The core library also defines some important primitive
classes that we use. There is the ’Ray’ class for example.
This class is used to determine the actually pointed-at fa-
cade element for example. The ’Vertex’ is used to store in-
formations of one single point of the facade. This informa-
tion includes the position, the normal and the texture coordi-
nates that should be used to texture the shapes. This vertex
is used by several other primitive type in the core library.
These are the ’edge’, the ’triangle’ and the ’quad’ classes
especially. Each of these classes use the vertex class to de-
fine it’s endpoints. Another use of the vertex is the definition
of the points of a ’ShapeGL’ object which effectively is a
cuboid. The primitives defined here in the core library are
used in several different other libraries. So it is possible for
different libraries to use the same objects to work with and
therefore it is easily possible for them to interact with other
libraries.

3.3. The OpenGLHandler library

The OpenGLHandler is the library where all OpenGL ren-
dering functions and setups are defined and handled. The
most important class in this library is the static ’Render’
class which in the central place for all OpenGL specific op-
erations. At first we will discuss the initializations steps that
are done in the render class (see section 3.3.1 followed by a
small introduction of the other important classes of this li-
brary (see sections 3.3.2, 3.3.3 and section 3.3.4) and their
use in the render class. At last we will show how the dif-
ferent renderpasses are done (see section 3.3.5) and how the
results of each pass is used in the frame composition (see
section 3.3.6).

3.3.1. Initialization

The initialization of the OpenGL part of the program is done
after all ’glControls’ that we use are initialized and a handle

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

is created for them. All the initialization steps are invoked
from the ’glControl_HandleCreated’ method in the ’Main-
Form’ class.

• The first thing is the initialization and setup of OpenGL
itself in the function ’Render.InizializeRenderer’. In that
function all important and constant OpenGL settings are
specified. This function also initializes all shaders that
we use in out program and after all of the shaders are
compiled and added to the shadermanager the few addi-
tional scene objects like the light, the groundplane and
the ’screenalignedquad’ (used to render the skybox) are
set up. When all these steps are done, the first step of ini-
tializations is finished. At this point we can use OpenGL
calls and have a set up scene with shaders ready for use.

• The next step in the initialization process is the setup of
the camera for the glControl. The setup for the camera is
simply done by setting the viewport size in the camera
and by setting a middle vector for it. These informations
are needed for the rendering itself and also for the user
interactions like the rotation of the camera around a point
in space.

• The last step in the chain of initializations is the creation
of all default textures and all framebuffer objects. This ini-
tialization is done in the ’TextureHandler.Initialize’ func-
tion.

3.3.2. Light

The light class is used to automatically handle settings that
affect the light. This includes the ’direction’ of the light in
the scene. The light we use in the program is a infinitely dis-
tant light. This means that we only need the direction of the
light to render. Since it is more easy for the user do define
a light’s position and a light ’look at position’ it is possible
to define the direction of the light by setting these two val-
ues. The light class also provides automatic calculation of
the modelmatrix and projection matrix that are used to ren-
der the scene into a depthbuffer as seen from the light’s point
of view. This depthbuffer is then used to calculate shadow
positions in the scene when we re-render everything from
the camera’s point of view.
Since our lightsource should behave, like it was infinitely
far away from the scene, we create an orthogonal projection
matrix. When we create the projection matrix there is one
special optimization that we use to achieve a high accuracy
for the depthmap calculation. We calculate the minimum and
the maximum distance of the boundingbox of the whole fa-
cade. We then use these values to set the near and far values
of the projection matrix resulting in depthvalues that always
lie in the range [0, 1].
When we do the distance calculation we also calculate the
minimum and maximum x- and y- values of the bounding-
box points as seen from the camera. With these points we
can improve the shadowmap quality again because the shad-
owmap is perfectly fit onto the facade.

3.3.3. Camera

The camera is an important part of the rendering library. We
defined the way the camera should work by letting it rotate
around a defined point in space if the user changes the rota-
tion. This way we ensure that the facade is in the center of
the view normally. Of course it is possible not only to ro-
tate the camera, but also to move and zoom it. We define the
center of the rotation of the camera in the center of the fa-
cade object. The camera object itself is responsible for the
handling of the user inputs that changes the actual view. So
it provides functions that calculate translations, zooms and
rotations from user inputs.
Every time there is a change of the view, we additionally
calculate a new projection matrix. We perfectly fit the fa-
cade’s boundingbox into the depth range by setting the near
and far projection values accordingly. This ensures a really
good ’depth resolution’ which is needed when we calculate
the SSAO. The only problem that occurs when we set the
depth range to fit the facade’s boundingbox is, that also the
groundplane would be culled at these depth-values. To solve
this problem we use another projection matrix that has a very
small value for the near and a very high value for the far set-
tings. The camera has another feature built-in. Is is possible
to go into a ’focus-mode’. This means that we can select
facade elements and let the camera zoom in, to fit the se-
lections on the screen. This is done by calculating the inter-
section of all the boundingboxes of the selected facade ele-
ments. Then this boundingbox will be fit on the screen (with
a margin). This focus-mode also sets another point of rota-
tion for the camera, namely the center of the boundingbox
of the selected facade elements. This helps the user when he
wants to watch the elements from all points of view.
When we switch from the normal mode into the focus mode
(by pressing ’f’ while we have selected at least one facade el-
ement) we will see another nice feature that we implemented
in this library, the ’Animate’ class. An introduction to this
class will be given in the next section.

3.3.4. Animate

As mentioned above, we use a short animation to show the
state-change from normal render mode to the focus mode
that includes a camera position change and a transparency
change of the non-selected facade elements that are blended
out. The animation values are calculated in the animate class
that is also located in the OpenGLHandler library. The us-
age of this class is very simple. It uses a delegate that can
be set to different predefined functions to get the animation
the user wants. A whole animation is then started (after set-
ting the delegate!) by calling the ’Animate.RenderSequence’
function. This function uses the previously set delegate to
change the desired values and then calls the render method.
These steps are done until the animation is finished.

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

3.3.5. Renderpasses

In our program we need to use more than one render pass to
get the final output. We want to give a short overview of all
used render passes that we need to get the results we want.
Not all render passes are needed to be computed every time
a new frame should be output. For example the scene is only
rendered to the depthmap of the light if changes of the light
of changes of the facade require the depthmap to be updated.
If only the camera is rotated for example, there is no need to
update the shadowmap. Similarly the SSAO texture is only
rendered if there is the need to do so (i.e. when SSAO is
enabled in the render settings). So here is a list with with
short descriptions of all render passes that can occur.

• Depthmap pass: In this render pass we render the facade
from the light’s point of view. We use backface-culling
(with a polygon-offset) to render into the shadowmap to
avoid light-leaking. As mentioned earlier, this pass is not
required every frame. We only render to the shadowmap
if the settings of the light changed or if at least one facade
element was modified.

• Main render pass: This pass is rendered from the cam-
era’s point of view. This render pass is in fact one of two
passes that are required for every frame. This render pass’s
result is the normally shaded scene. If the shadow map-
ping is enabled we use the shadowmap to compute the
shadows as seen from the camera. If the shadowmapping
is disabled we will not do this computation. The results
of this pass are in fact three different textures that can be
used in further passes. The first texture holds the color
information including alpha values. The second texture
holds the depth information of the rendered scene as seen
from the camera’s point of view. The third texture holds
the normals for each fragment in the camera-view-space.
This additional information is needed for the SSAO pass.

• Screen space ambient occlusion pass: This render pass
is used to calculate the ambient occlusion information
from the previously created depth texture and normal tex-
ture from the main render pass. Together with a ’random
texture’ is is possible to calculate an approximations of the
ambient occlusion as seen from the camera. In this render
pass we do not actually render geometry but do some cal-
culations based on the textures mentioned that are mapped
to a screen aligned quad (in fact is is a triangle fan, be-
cause quads are not supported in OpenGL 3.2 any more).
The result of this renderpass is another texture that is go-
ing to be blurred in the next render pass. This pass as well
as the blurring pass are only done if the ambient occlusion
is enabled in the render settings.

• Blurring pass: This pass’s purpose is only to blur the re-
sulting texture from the ambient occlusion pass and it will
only be executed if the ambient occlusion is enabled. To
blur the ambient occlusion texture from the previous pass
we additionally use the depth texture from the main ren-
der pass. This texture is used for the bilateral blur because

it prevents blurring over a big ’depth discontinuity’, so no
bleeding from the blur will occur.

• Texture combination pass: This pass is the second pass
that will be executed every time although it is not required
if the ambient occlusion if disabled. It is used to multi-
ply the color texture from the main render pass by the
blurred ambient occlusion texture from the ambient oc-
clusion passes. If the ambient occlusion is disabled the
color texture will be multiplied by a white texture instead
of the ambient occlusion texture.

In the next section you will see how the render passes work
together.

3.3.6. Frame composition

To give an overview of the different render passes and to il-
lustrate how they work together and form the final render
result we want to refer to figure 4. The green boxes repre-
sent the different render passes and the gray boxes their out-
put textures. The sequence of the render passes from top to
bottom correspond to the time they are calculated relatively
compared to the others. The output of each render pass is
at least one texture the output of the last render pass is not
really a texture but directly rendered to the screen. The or-
ange arrows between the previously calculated textures to
the following render passes indicate their usage in these ren-
der passes.

3.3.7. Effects

To create the desired effects of the final output of the render-
ing part we use a few special effects as already mentioned.
We want to give a short description of how they work. We
will start with the one’s that were easy to implement and fin-
ish with the more complex one’s.

3.3.7.1. Reflections The first effect is the calculation of re-
flections in the windows of the facade. As already mentioned
we use two different materials to give the windows and other
elements of the facade a different appearance (see section
3.2.2). To achieve a more realistic rendering we decided to
implement a reflection effect for facade elements that are de-
fined to use the reflection shader. This shader uses the direc-
tion from the camera to the vertices of the shapes to calculate
the reflections. This is achieved by reflecting this vector with
the normal information on the surface. The result is another
vector which is then used to lookup the texture color from
the cubemap that is also used to render the skybox. This way
it is possible to see the correct reflection of the skybox in
every window.

3.3.7.2. Shape Wireframes Since we work with many fa-
cade elements (i.e. shapes) we need to distinguish every el-
ement from it’s neighbors. When we only use the shading
information this is often difficult, so we wanted a better so-
lution and came up with the wireframe mode. To get the

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

Figure 4: Visualization of the different render passes and
how the individual resulting textures are used in the other
render passes.

desired result we render every ’real’ edge of the facade el-
ements before we rerender the elements shaded again. This
was only possible by adding a second vertexbuffer object o
the ShapeGL’s because the sequence of the rendered vertices
is completely different than the one that is used to render the
facade element shaded normally.

3.3.7.3. Shadow Mapping This is a very common effect
and widely used nowadays. To add shadows in our program
we decided to implement a simple standard shadowmapping
and use a percentage closer filtering to get smooth transitions
from ’shadowed’ to ’non-shadowed’. We render the scene
from the light’s point of view whenever it is necessary (see
sections 3.3.2, 3.3.5 and figure 4 for more information). The
calculated depthmap is used in the next render pass - the
main render pass (again, see 4).

3.3.7.4. Screen space ambient occlusion If the ambient
occlusion effect is enabled, we calculate the effect in the op-
tional render passes four and five (see figure 4). To do that
we create a small (32x32 pixel in out solution) random tex-
ture that hold randomly generated values. We also need the
depth texture and the normal texture created in the main ren-
der pass. The random texture is used to ’randomly’ rotate
16 predefined vectors in the shader that is used to calculate

the ambient occlusion information. For every pixel the view-
space position is calculated and then translated by the rotated
vectors. Then a depth comparison with the depth texture is
performed and this way we calculate an occlusion value for
that fragment. The result is an approximation of the ambient
occlusion effect by only using depth- and normal- informa-
tion. The result is also noisy because we always use different
vectors to calculate the ambient occlusion value. This is the
reason why we use a blur pass to smooth out the noise of the
calculated textures.

4. A more detailed description of the libraries

We already gave a short introduction to the different libraries
we use (see section 2.2). To give an even better insight into
the program we now want to describe the different libraries
in detail below.

4.1. Helper

The Helper project only consists of one static class and does
not actually add functionality to the program. It’s intent is to
help the used get response to actions and inputs he makes.

4.1.1. Logger

The Logger is a simple class that uses a RichTextBox to log
some messages that should be output. The output destina-
tion for the Logger is set as soon as the handle of the Rich-
TextBox is created. It defines an enum called ’LogType’ that
is used to distinguish different types of messages that should
be logged. Since the output of the Logger is set at the time
the handle of the RichTextBox is created, it could be pos-
sible that messages that should be logged arrive before that
time. To handle such situations there is a ’buffer’ that is used
to store all output informations until the output-textBox is
created.
It is possible to change the behavior of the logger, because
it is possible to enable or disable the whole logger or only
some types of log-messages. The logger does not have any
dependencies on other solution libraries and is therefore us-
able in every other library of the solution.

4.2. WpfControl

This is a relatively simple library. It is the second library
that has no dependencies on oder libraries of the solution.
It defines a WPFControl that is used to display settings of
different controls.

4.2.1. WpfPropertyGrid

The class defines a WPFControl that is derived from the grid
control. It provides functionality to represent properties of
wpf elements. These properties can then also be changed and
are immediately updated on that wpf element. It is used in
the modeler part of the project.

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

4.3. Shader

The Shader project only consists of three classes that han-
dle all used shaders in the solution. The ShaderManager and
the ShaderLoader are two public static classes and together
with the Shader class this library handles every action on the
shaders.

4.3.1. ShaderManager

The static ShaderManager class is used to interact with the
different shader objects in a simple way. It uses a dictio-
nary that holds all loaded shaders, so that they can be ac-
cessed easily using their names. The manager allows us to
add shaders, set shaders active and get information about the
different shader objects (e.g. the shaderprogram handle).

4.3.2. Shader

The Shader class is used to handle all interactions with a sin-
gle shader. It can load the sourcecode of a shader (using the
ShaderLoader), compile, link and completely create a single
OpenGL shader that is added to the shadermanager’s shader
dictionary after successful creation. It stores all data needed
for a shader like the sourcecode, the shader handles and the
shader-program handle.

4.3.3. ShaderLoader

The static ShaderLoader class is used to load single shaders
sourcecodes. It is only used by the Shader class and retrieves
the sourcecodes for a specified shader from the resources of
the solution project not the filesystem (this could be changed
easily and is the reason why we use it at all).

4.4. OpenGLHandler

This project is used to interact with OpenGL. This could be
the rendering of a frame or the animation of the camera ob-
ject. For a detailed description of the OpenGLHandler please
see section 3.3.

4.5. Core

This project is used to interact with OpenGL also. For a de-
tailed description please see section 3.2.

4.6. ImageProcessing

This is the central library for image-based calculations. It
consists of many classes and is the most complex library in
our solution. It provides a lot of classes and algorithms that
can be used to extract information from images. For example
we have the ability to do edge detection as well as other,
more complex, calculations.

4.7. FacadeLib

The facadelib library uses most of the other libraries except
the OpenGLHandler library. It is a main part of the program
where many informations and calculations are invoked. The
facadelib defines the actual behavior and ’structure’ of the
facade we work with. This definitions are done in the first
class we will look at, now.

4.7.1. FacadeControl

The FacadeControl is defined as a static class that get’s ini-
tialized on program startup. It provides the load and save
methods used to load a saved file or to save a file (it uses
the ShapeSerializable to do that). The facadecontrol class
also defines some other important features, like the ability
to use the well known ’undo’ and ’redo’ commands. To be
able to do that, we use the Serializer again and push or pop
the actual facade on a stack. This works fast and stable. The
facadecontroller has a lot of different members that interact
with each other. Some important one’s are the ’MainShape’
which represents the root shape of out shape hierarchy. If
we split this shape into two shapes these two shapes will be
children of the root shape. That way we get a ’shape-tree’
we can work with. Another important member of this class
is the ’RenderableList’ which is used to hold the 3d geome-
try that represents the shape tree. This is the actual geometry
we use to render that facade in 3d. The last important mem-
ber is the ’MaterialDict’ dictionary which holds all (i.e. two)
materials we use for rendering the facade elements. There
are important methods in this class as well, namely the ’Se-
lection and Interaction Functions’, the ’Groups Functions’
and the ’Travesal Functions’.

4.7.2. ImageManager

This is another static class we use. It mainly provides some
imaging extensions like the possibility to convert a ’Bgr’ ob-
ject to a ’Vector3’ and vice versa.

4.7.3. InteractionEvents

This is again a static class we use to define some interactions
with ShapeWPF objects. Two important methods are the
’AutoSplitX’ and ’AutoSplitY’ methods which use the Fa-
cadeOptimizer to compute splitlines for the selected shapes.

4.7.4. InteractionManager

An object of this class is generated only in the FacadeControl
and then used in a few other classes as well. It is used to
interact with the WPF representations of the facade elements
and splitlines and therefore in includes many ’Traversals and
Updates’ methods that are used in the modeler of out project.

4.7.5. ISelectable

The facadelib does not only define some ’facade classes’ but
also some interfaces like the ISelectable interface. This in-
terface is used to define objects to be selectable. It defines

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

one property named the ’SelectionState’ that indicated the
state of this object. It also defines some methods that indi-
cate if an object’s boundingbox is hit by a ray or not, and
it defines the method to determine the exact position of that
hit. This interface is implemented by two other interfaces
that we will describe in the following sections, namely the
’IEditable’ and the ’IRenderable’ interfaces.

4.7.6. IEditable

This is an interface that implements the ISelectable interface.
It defines some properties like the ’Pos’, ’Size’ and ’BBox’
that define the geometric properties of objects. It contains
a shape object as well as the properties that indicate if this
IEditable object ’IsRoot’ or ’IsTerminal’. The IEditable in-
terface is implemented in the abstract class ’EditableShape’.

4.7.7. IRenderable

This interface also implements the ISelecatble interface. It
additionally implements the IDisposable interface to ensure
that every implementing classes must implement the ’Dis-
pose’ method as well. This is needed to ensure that, if
an object that should be rendered and therefore has some
OpenGL-Objects associated, all of these OpenGL-objects
must be released as well. Additionally the interface defines
two properties. This is the ’Material’ and the ’Opacity’ prop-
erties which are needed for all IRenderable objects. The de-
fined methods include the ’Render’ method that ensures that
every IRenderable is able to render itself. It provides an addi-
tional ’RenderShadow’ method were we can save processing
time by not setting useless states etc. and the ’RenderWire-
Frame’ method which uses another vertex buffer object to
only render the wireframe representation of an IRenderable.
An ’Update’ and a ’ChangeState’ method finish the defini-
tions made here. The IRenderable interface is implemented
by the ’ShapeGL’ class which also derives from the ’Edita-
bleShape’ abstract class.

4.7.8. ISplittable

The last interface that is defined in the FacadeLib is the IS-
plittable interface. It implements the ’Core.IIndexable’ in-
terface that only defines a 2d integer vector ’Index’. The
ISplittable interface defines two properties that are IEnu-
merbable<float> that represent the x- and y- values of the
splitlines. Also four definitions of methods are included,
they define some splitline interactions like the adding of a
splitline or the adding of a splitline to it’s parent, the split-
line removal or the movement of a splitline. This interface is
implemented by the ’Shape’ class.

4.7.9. Groundplane

As mentioned in the short description of the FacadeLib it-
self, the library also defines the important shape objects and
it’s WPF and OpenGL representations. It also defines the
’Groundplane’ for example which we want to describe here.

It is basically a very simple object that is rendered with
OpenGL. So it defines some standard members like a ma-
terial, a size and position. This class implements the IDis-
posable interface to ensure OpenGL cleanup on object de-
struction as well. As the name suggests this class is used to
render a groundplane beneath the facade to be able to show
the shadows and to make the spatial relations of the objects
clearer.

4.7.10. ScreenAlignedQuad

The ScreenAlignedQuad is also a very simple class that de-
fine objects that should be rendered to the screen. This object
is even simpler than the groundplane that was discussed in
the section above because we don’t need a size and other in-
formations. This object is a triangleFan to be exactly because
in OpenGL 3.2 there are no quads any more. The object’s
vertices are always defined in normalized screen coordinates
and have the values [-1; 1] for x- and y- coordinates. These
screenalignedquads are used to render textures to the screen.
This is needed when we do the ambient occlusion calcula-
tions for example. In the shaders we have the advantage that
we do not have to transform the vertices of the object at all.

4.7.11. Shape

This is another very important class of our solution. It’s pur-
pose is to represent a facade element. So all facade elements
are shapes. The shape class implements the ISplittable inter-
face that enables objects to get split. It has several members
that allow us to index that shape in different ways and it has
some standard members like a size etc. It includes several
state members that indicate the selection state of the objects
for example and it has a IEnumerable collection that hold the
children of this shape.

4.7.12. ShapeGL

The ShapeGL is the class that is used to render all of the
facade elements. It provides a constructor that creates geom-
etry from a shape object. The ShapeGL class derives from
the abstract EditableShape class and implements the IRen-
derable interface. The class provides methods to create the
actual geometry of the object and all methods needed to ren-
der the ShapeGL, it’s wireframe representation and to update
the geometry.

4.7.13. ShapeWPF

This class is equivalent to the ShapeGL class with the dif-
ference that it creates a WPF representation from a Shape
object.

4.7.14. ShapeGroupWPF

This class is used to group ShapeWPF objects as the name
might suggest. This class handles the possible interactions
with groups of shapes like the ’synchronized splitting’ of
many shapes at once.

c© ICGA/TU Wien WS2010.



Spitaler Franz / Projektpraktikum Computergraphik

4.7.15. SerializableFacade, SerializableShape,
SerializableGroup

These classes are used to define the serialization of the
shapes, shapegroups and the whole facade. With the serial-
ization of these objects it is possible to load and save data.
This is used in combination with files ans with memory
streams to provide the undo and redo commands.

4.8. FacadeRenderer

To finish the detailed description of out solution it is also
very important to get an overview of the GUI-library we use
in our solution. This library is used to define all GUI ele-
ments and also includes the program entry point in the static
class ’Program’. The FacadeRenderer library references all
other libraries described (see also figure 3 for more informa-
tion on the library dependencies). The program class opens
one window at startup, and this window is of type ’Main-
Form’. This class is the first we will discuss in the next sec-
tions.

4.8.1. MainForm

This class is the main class for the user interface and de-
fines all winforms controls you will see on the startup of
the program. There are several settings-related controls as
well as the RichTextBox the logger will use (see section 4.1
and section 4.1.1 for more information on the logger) and
the OpenGL control (for more information on th OpenTK
library used see section 3.1). The MainForm is derived from
the ’Form’ class that gives us many possibilities to handle
user interactions and events that occur. The class is rela-
tively big, so we decided to split it up to several parts. In
the main part of the class we handle some user inputs like
the changes of some settings and the closing of the applica-
tion itself. The three other parts of the class have different
aims. The first other part handles all user interactions done
on the menu. This is the creation or the loading of a new
facade for example. The second other part of the MainForm
class is dedicated to handle all events that have to do with
the OpenGL control. This includes view changes as well as
the handleCreated event for example. The last other part of
the MainForm is used to handle events that have to do with
the RichTextBox used to log messages to. It’s main purpose
is to set the output destination for the logger if the textbox
was created handling the handleCreated event.

4.8.2. LogSettingsForm

This is another form that is used to enable the user to spec-
ify which messages should be logged into the textbox. There
are several checkboxes in the form that change the behavior
of the logger directly because it can be enabled or disabled
completely. Another possibility is to enable or disable spe-
cial types of messages.

5. Conclusion

To conclude the documentation, it’s important to note, that
there are many possibilities to improve the behavior and per-
formance of the program. Some of the features we imple-
mented were very hard to implement and therefore time con-
suming. Since we only had a small amount of time to finish
the project we didn’t have the time to optimize everything. It
is also possible to add some nice features like a rule extrac-
tion from the facade elements to allow the user to interac-
tively change the size and the look of the generated facade.

c© ICGA/TU Wien WS2010.


