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Abstract

In volume rendering shadows provide an important vi-
sual cue, and enhance depth perception. However, shad-
owing has its own disadvantages. Shadows do not take
into account the importance of features and could poten-
tially result in too dark scenes.

In this paper we propose an approach for inconsistent
shadowing, which is designed to overcome these lim-
itations. For the purpose of illustrative rendering, we
propose two complementary techniques: 1. shadow
caster inconsistency and 2. shadow receiver inconsis-
tency. We demonstrate several advantages of the dif-
ferent approaches, using inconsistent shadowing. We
present two approaches, based on shadow transfer func-
tion concept, an approach, introducing usage of gradient
magnitude information in shadowing, and a method for
adaptive shading and shadowing of the surface, depend-
ing on the gradient certainty.

Categories and Subject Descriptors (according to ACM
CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and RealismColor, shading, shadowing, and
texture

1 Introduction

In recent years, rendering and visualization algorithms,
or display algorithms, have become increasingly com-
plex. The growth of GPU’s performance together with
new shader language standards have made it possible
to implement sophisticated techniques, running in real-
time. However, developing on the GPU has significant
drawback of lacking debugging capabilities.

In order to alleviate this, a number of tools were pro-
posed. Most of them operate on a very low level, which
sometimes is inadequate due to complexity of the algo-
rithm. Thus, debugging provides no high-level descrip-
tion of the underlying algorithm. In order to address

these challenges, developers of an algorithm manually
create high-level illustrations, reflecting the concept of
the algorithm. These illustrations very clearly explain
the algorithm, however, they have limitations. First,
they are static and do not show cause and effect. Sec-
ond, they are rendered manually, which requires a lot of
work from a scientist or an illustrator. Finally, they are
a posteriori with respect to the problem. This means
that a researcher first understands the problem and then
creates such an illustration. In our work we reverse this
order, enabling the viewer to understand the algorithm
features from the illustration. Visualization of the data
structures the algorithm uses may provide considerable
help in the further development and refinement of the
algorithm.

In this paper, we contribute a framework, which vi-
sualizes the workflow of an algorithm by interactive
exploration of its parameter space. The framework
is integrated in the visualization software VolumeShop
[BG05]. The proposed solution enables flexible visu-
alization of data at different levels of abstraction: an
entire image, a single fragment and on a sub-fragment
level. Currently there is no framework which offers the
possibility to interactively and visually understand the
workflow of an algorithm. We call this paradigm meta
visualization.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related literature on shader debug-
ging and visualization. In Section 3 an overview of the
framework is given. Different visualizations that we cre-
ated for the framework are described in Section 4. We
present the hierarchical classification with examples for
each abstraction level in Section 5. Implementation de-
tails are presented in Section 6. Results of the approach
are given in Section 7. We conclude, discuss limitations
of the framework and outline directions for future re-
search in Section 8.
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2 2 RELATED WORK

2 Related Work

In recent years a lot of work has been conducted in the
fields of shader debugging and software visualization.
A number of systems assist developing proper visual-
izations or use visualization for guiding the creation of
complex systems. Below we provide an overview of the
recent research.

Laffra and Malhotra [LM94] implemented a system
which enables the developer to debug C++ code, con-
sidering object-oriented specifics and typical bugs. Fea-
tures like number of class instances, diagrams and re-
lated statistics are visualized. The topic of debug-
ging visualization software was developed by Crossno
and Angel [CR99]. Using the case study of a parti-
cle system they show, how different simple techniques
(like color coding) are used for debugging. Duca et
al. [DNB∗05] introduced an SQL-like language which
allows queries (e.g., SELECT all fragments, which cor-
respond to a given primitive). Their approach is very
powerful in retrieving the desired data from the OpenGL
pipeline. However, there are certain limitations to it.
This approach is not interactive (the video, accompa-
nying the paper, shows performance of one frame per
several seconds) and the visualizations are fixed and
cannot be changed in a flexible way. Most recently,
Laramee [Lar10] came up with a set of guidelines, tar-
geted specifically for debugging visualization software.
He proposes using customized code, visualizing the data
of interest for visualization algorithms. “Traditional
tools for debugging are of limited use because they
de-couple the information they report from the spatio-
temporal domain in which unexpected problems occur”.
Our meta visualization framework works interactively.
Furthermore, it offers a versatile control over a visual-
ization algorithm. A user is capable to visualize a cer-
tain parameter with various available visualization tech-
niques or create his own one and plug it to the frame-
work.

In recent years GPU performance has increased and as a
consequence shader programs have become more com-
plex. However, debugging of shaders remains problem-
atic. There were no dedicated debuggers for shaders,
so a developer was able to understand a shader function
using a hit-and-miss method only. Trebilco [Tre06] pro-
poses a tool, alleviating shader-intensive application de-
velopment, called “GLIntercept”. GLIntercept enables
observation of specific shaders used for a particular part
of the scene. A user can then edit shaders on-the-fly
without the need of recompiling the application. Ehrath
[Ehr06] presents a tool specifically suited for shader de-
bugging. His “Print Shader” is able to output text val-

ues for the selected screen locations. Thus, actual vari-
able values can be shown. Hilgart [Hil06] described a
rewriting method that enables stepping through a GLSL
shader program. The results were shown simultane-
ously for all fragments. Strengert et al. implemented
[SKE07] glslDevil, a high-level shader debugging tool
that uses hardware-accelerated rendering rather than
software emulation. It also supports performance anal-
ysis, but requires user interaction for conditionals and
loops. The glslDevil can produce simple visualizations
such as color-coding. Though it is fairly powerful, it
cannot provide interactive performance, as it suspends
the program execution after every OpenGL call. Among
commercial applications, there are tools such as gDE-
Bugger [Gra04], PIX for Windows [Mic07] and the lat-
est NDIVIA Parallel Nsight [NVI10]. The gDEBug-
ger allows profiling an OpenGL application, finding its
bottlenecks and showing OpenGL calls. However, it
does not feature any means for reading a variable value
in the shader code. PIX goes beyond this functional-
ity, making it possible to debug a particular fragment
[Mic07]. However, the debugging process is very low-
level, software-emulated and, therefore, slow. A user
cannot change a parameter value and immediately see
the intermediate data and how it affects the final result.
Nsight allows step-by-step debugging of high-level code
and setting breakpoints [NVI10]. However, it is not in-
teractive and does not provide any visualizations of the
algorithm itself, except for performance graphs. Thus,
so far, no method or framework was proposed to per-
form real-time visualization of display algorithms, uti-
lizing shaders. We address this challenge by developing
interactive extraction of shader parameters. The flexible
mechanism is then used to provide these parameters as
the inputs to visualization modules.
As our framework facilitates better algorithm under-
standing, we review related literature in the software vi-
sualization field. Diehl [Die07] gives an overview of
a number of techniques and applications in this area.
Since our work relates to interactive algorithm visual-
ization, we focus on the dynamic program visualization
domain. One of the first seminal works in the algo-
rithm animation field was the Sorting out Sorting video
[Bae81] which visualizes sorting algorithms on a value-
position grid. Later, there were a number of noticeable
systems created. One line of systems was founded with
BALSA [BS84]. It introduces the concept of interest-
ing events. At certain points of program execution a
user inserts method calls, which send the desired vari-
able values (as well as the event type). This concept
cannot be re-utilized for our problems, as one cannot
send an event directly from shader code. The second
line of systems originates from TANGO [Sta90]. It im-
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plements the path-transition paradigm for a continuous
animation. The TANGO system was postmortem, which
means that “the algorithm is executed, a trace or ani-
mation plan is produced and later visualized by a sep-
arate component” [Die07]. This paradigm is incompat-
ible with display algorithms for two reasons. First, a
display algorithm usually produces a huge amount of
data per frame, which is not manageable in a reasonable
period of time. Second, an interactive scenario for vi-
sualization is much more preferable, so that a user may
inspect several points of interest during application run
time and obtain the corresponding visualizations imme-
diately. As an alternative to the interesting event con-
cept, the LEONARDO [DF] framework introduces vi-
sualization by declarations. These declarations are com-
ments, which are parsed by a virtual machine and trigger
visualizations of variables values coupled with the algo-
rithm. While we also make use of the parsed comments
approach, our framework extends this concept through
separation of an algorithm and its visualization, which
enables using different visualizations for the same al-
gorithm without additional coding. Another group of
methods addresses the problem of visual debugging.
Data Display Debugger [ZL96] allows the user to in-
spect the program state. For instance, it is capable of
unfolding a list structure step-by-step. Traversal-based
visualization [KA98], instead, unfolds all the data struc-
tures and visualizes it, using visualization rules. Zim-
mermann and Zeller introduce memory graphs [ZZ01]
which show the memory state of a program by associat-
ing nodes with memory contents and arrows with refer-
ences between them. This idea was adapted for object-
oriented environments by de Pauw and Sevitsky who
use reference patterns [PS99]. However, all these ap-
proaches are tailored for debugging data structures like
lists or trees. A great variety of structures are not widely
used in most of display algorithms, except for ray trac-
ing. There are also attempts to use visualization for an
error prediction. The goal is to detect a possible erro-
neous code, and techniques are based on the assumption
that when the program runs with an error, the most fre-
quently used parts probably contain a bug. The seminal
system in this field is Tarantula [JHS02] developed by
Jones et al. However, this system proved to be not very
effective as it fails in the cases of loops and recursive
functions.
A lot of systems assist creation of visualizations. Freire
et al. [FSC∗06] created VisTrails, which captures prove-
nance for data and workflows to ensure reproducibility
of results. They build a tree for the decisions, made dur-
ing data exploration to figure out which parameters or
workflows can be changed. In their follow-up work,
Koop et al. [KSC∗08] implement the VisComplete sys-
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Figure 1: Framework overview. From top to bottom:
the data extractor module acquires information from the
shader, the mapping processor creates outputs, which
are then fed to the appropriate inputs of different visual-
ization modules.

tem which provides a user with a capability of auto-
completing VTK pipelines, using a database of previ-
ously created pipelines. Santos et al. [SLA∗09] pro-
posed a tool for creating an application from a medley
of visualization pipelines. Bruckner and Möller [BM10]
presented a tool for alleviating navigation in the parame-
ter space for artists, performing a multiparameter effects
simulation. The success of above-mentioned systems
show that visualization can be a very powerful tool in
the development of other visualizations. However, these
systems solve the problems in very particular cases. In-
stead, we propose a system which is generic enough to
make visualizations for arbitrary display algorithms im-
plemented using shaders.

3 Overview

This section describes the core of our framework: the
parameter-visualization architecture. We first give an



4 3 OVERVIEW

overview for the framework and then in detail discuss
its modules. Afterwards, we discuss the methods we
introduce: overlay visualization and feedback visualiza-
tion.

3.1 Framework Structure

Figure 1 shows an overview of the framework. The
framework takes a shader file, which contains an algo-
rithm implementation as an input. A user needs to spec-
ify which variables and parameters they would like to
visualize.

First, at each frame, these data are extracted without
a serious performance penalty. This is done by the
data extractor, which retrieves this information from the
shader and parses the layout of the data. The output of
the data extractor is a data structure which contains the
variables and parameter values computed for the current
frame.

Second, the data is visualized. The mapping processor
performs mapping of one or more variables or parame-
ters to a visualization module. These modules together
with the module which implements the algorithm form a
multiple linked views visualization. Whenever the algo-
rithm data change or a user interacts with a visualization
module, all other modules are updated simultaneously,
so they are preserved in a consistent state. Thus, display
algorithm parameters are visualized by another visual-
ization algorithm implementing the meta visualization.

3.2 Parameter Extraction from a Shader
Program

Data from GPU algorithms cannot be obtained straight-
forwardly. A shader is unable to transfer data struc-
tures, other than textures (or images), to the CPU mem-
ory. This is why we propose a customized technique for
transferring this data, described below.

We localize selection of the parameter in the shader
file itself. This is done via adding annotations. The
following code snippet takes as an input the ray coor-
dinates for the current fragment and marches through
it. We output variables vecSampleValue, vecSam-
pleColor and count:

f o r ( i n t c o u n t = 0 ; c o u n t < volumeDepth ; c o u n t ++)
{

. . .
/ / Accumula te t h e ray
. . .
vecSampleValue = GetValue ( . . . ) ;
/ / <o u t p u t vecSampleValue >
vecSampleColor = GetColo r ( . . . ) ;
/ / <o u t p u t vecSampleColor >
i f ( vecRayColor . a >= e a r l y R a y T e r m i n a t i o n C o e f f )

break ;
}
/ / <g l o b a l o u t p u t count >

Here the vecSampleValue and vecSampleColor
are output for a user-selected fragment, while the
count variable is output for an entire image (note the
global modifier).

When the algorithm is compiled with a regular shader
compiler (without meta visualization support), the com-
ments are fully transparent to the compiler and do not
create any additional overhead. If a variable changes
throughout the program, it is possible to output it mul-
tiple times. If a variable shows up in a loop, output
is automatically created for each iteration and the user
does not need to perform any extra actions. The frame-
work allows outputting an arbitrary number of variables
per shader. The results are output to an image (tex-
ture). Each variable output is associated with a unique
ID. Those are used afterwards during the data extraction
phase.

The framework environment performs a preprocessing
of the shader code. At the very beginning of the shader,
a counter is initialized. This counter shows a position in
the image, where the values are written. Each comment
is replaced with the write instructions, which output the
variable value and its ID to the texture in the position,
defined by the counter. The counter is increased after-
wards. After rendering is done, this image is read from
the GPU to the CPU memory. It is then passed to the
data extractor.

3.3 Data Extractor

The data extractor parses the shader output and then per-
forms a mapping of the extracted data to the parameters.
Conditional and loop operators may enable a variable to
appear in the output several times or never. The data ex-
tractor extracts data from the shader output and stores
values corresponding to the different IDs separately.

After the data are successfully extracted, they should
be mapped to the corresponding variable name. This
is done via back-projecting of the IDs to the names of
the variables. The ID is read from a lookup-table, cre-
ated during shader parsing, and the corresponding name
is then associated with the extracted data. These oper-
ations create a set of data structures, which consist of
variable names and their values, evaluated during the
shader execution. This set is then passed to the mapping
processor, which assigns appropriate visualizations.
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3.4 Mapping Processor

After variable or parameter data were extracted from
the shader, they need to be visualized. One possible
solution is to statically link algorithms and the visual-
izations. However, this would result prevent of reusing
these visualizations for other algorithms. Therefore, we
de-couple an algorithm from its visualization by intro-
ducing a mapping processor and independent visualiza-
tion modules. The mapping processor maps the param-
eters acquired at the previous step to the visualizations.
In order to be able to receive these parameters, it needs
to conform to the interface of the data structures set pro-
duced by the data extractor.

The mapping processor provides visualization modules
with an interface to the extracted data. It allows passing
the same variable data to different visualization mod-
ules avoiding unnecessary data duplication. The map-
ping processor is also responsible for visualization up-
dates. Whenever a variable changes its value, the map-
ping processor sends a message to all visualizations cur-
rently using this variable.

3.5 Visualization Modules

In our framework visualizations are implemented as in-
dependent modules. This enables reusing of visualiza-
tions for newly implemented algorithms. If existing
modules are not expressive enough for visualization of a
particular algorithm, a user can simply implement new
visualization modules and add them to the framework.

Each visualization module shares a common interface.
This interface allows the module to be registered by the
mapping processor to receive updates. Besides, the vi-
sualization module declares its parameter inputs used by
the mapping processor. The module also provides GUI
for mapping variables and the specification of visualiza-
tion parameters (e.g., colors and captions).

3.6 Feedback and Overlay Visualization

While visualization generates, in essence, output data, it
can also generate input data for other visualizations. For
example, if a bar chart visualization is used, a user might
be interested in, which particular datum corresponds to
a certain bar. To achieve this, we allow visualization
modules to send a feedback to the mapping processor.
Figure 2 shows this concept for the bar chart visualiza-
tion sample. The index of the selected bar is transferred
back to the mapping processor which then feeds it to

Visualization ModuleVisualization Module Mapping ProcessorMapping Processor

Shader ProgramShader Program

.glsl

Data ExtractorData Extractor

Variable Value

Variable ID

Bar IndexBar Index

Rendered ImageRendered Image

OverlayOverlay
ImageImage

Variable Variable 
DataData

Variable Variable 
DataData

Shader Shader 
OutputOutput

OutputOutput
Parameter Parameter Input        Input        

Parameter Parameter 
MappingMapping

Overlay RendererOverlay RendererCompositorCompositor

Figure 2: A sample pipeline for feedback and overlay
visualization.

another visualization module. This module can then vi-
sualize any specific information related to the data cor-
responding to this particular bar.
Until now we have been separating a display algorithm
and its visualization. They are shown in different views
and have not been spatially linked. However, in cer-
tain situations, it can be convenient to merge an algo-
rithm and its visualization. For example, one might be
interested in which fragments of an image possess cer-
tain characteristics. Therefore, we introduce an over-
lay visualization. Figure 2 presents an example of the
pipeline for overlay visualization. The bar chart visu-
alization module transfers the data to the mapping pro-
cessor corresponding to the selected bar. These data are
then passed to the overlay renderer. Finally, a compos-
itor fuses them together with the output of the renderer
that is visualized.

4 Visualization Modules

In this section we discuss different visualizations and
the motivation behind them. We do not focus on creat-
ing a comprehensive collection of different visualization
algorithms. Instead, we implement a selection, which
show the main features of the framework.
We use a synthetic scene that consists of an intersecting
ball and a box in order to demonstrate visualizations.
We will use visualization to analyze a simple volume
ray-casting algorithm presented in the code snippet in
Section 3.2.

4.1 Bar Chart

Input: a single variable, inside or outside a loop.
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Figure 3: Bar chart visualization and accompanying
GUI. Notice that one can link any variable from the
shader output to this visualization.

Figure 4: Three bar chart diagrams, from top to
bottom, assigned with the parameters vecSample-
Color.r, vecSampleColor.g and vecSample-
Color.b, respectively. The black cross shows the
fragment for which the ray profiles are shown.

A bar chart is a traditional technique for visualization. It
is able to present information in a very accessible way.
It also has a major advantage over a graph visualization:
when the data are discrete, it shows every individual da-
tum clearly.

A bar chart can take one input parameter. All the values
from this parameter (e.g., if it was assigned several times
in a loop) are fed to the bar chart. Figure 3 shows a sim-
ple bar chart. If a user selects a vecSampleColor.a,
they will get an opacity ray profile.

We demonstrate how a single visualization module can
be reused for visualization of different parameters. In
this example, it is interesting to know how the particular
materials are distributed along the ray. To achieve that,
we can reuse the above-mentioned bar chart visualiza-
tion. We create three independent bar charts and assign
a color channel per each of them shown in Figure 4.

4.2 Graph Visualization

Input: 2 variables (one variable per axis).

Being a traditional visualization, graph visualization is
of a great use. If data convey some geometrical charac-
teristics (e.g., surface height or ray angle) a graph can
show important spatial information.

Figure 5: Graph visualization of a sample value against
sample colors. On top the transfer function is shown. At
the bottom left the graph visualization is shown. At the
bottom right the visualization module GUI for adding a
new graph is presented. This visualization is made for
the same fragment and for the same scene as in Figure 4.

We implemented a graph visualization where a user can
add an arbitrary number of graphs to visualize. A user
selects one parameter to be an abscissa (or an array of
them – in the case of a loop) and the other – to be an
ordinate of the graph, as well as a color and a caption.
A user is also able to attach an arrow to the end of the
graph and adding key points (dots) for feedback visual-
ization.

Figure 5 shows an example of the graph visualization.
In this example a user visualizes a dependency be-
tween a density of a fragment (vecSampleValue.a)
and its color (vecSampleColor.r, vecSample-
Color.b). The transfer function on top is given as a
reference.

5 Display Unit Hierarchy

Shneiderman [Shn96] introduced the visual
information-seeking mantra: “Overview first, zoom and
filter, then details on demand”. Similar concepts can be
applied to the exploration of a display algorithm. First a
developer examines the overall image. Then, they take
a look at specific fragments. For example, for a soft
shadowing algorithm, one would inspect fragments at
a border of a shadow carefully. Finally, for a complex
algorithm, it may be worthwhile to go down one more
level to the sub-fragment level. We describe the ability
to of explore these levels offered by our framework.
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Figure 6: Using overlay feedback visualization for ray
length visualization. From left to right, ray length is
increasing. The overlay is rendered in green.

5.1 Image Level

At the image level one might want to output and analyze
a variable value for a whole image. To do so, a user
creates a global output. For global variables we limit
ourselves to one output per fragment. This is done in
order to keep the output to a reasonable size and easily
interpretable.
After this output is received, a user can visualize them
using visualization modules of the framework. It might
be interesting to get a histogram of ray lengths all
around the image and understand where the points with
certain ray lengths are. To support this we use feed-
back visualization for transmitting the index of the hov-
ered histogram bar. Fragments which correspond to this
histogram bar are then displayed using an overlay vi-
sualization. The count variable contains the number
of ray loop iterations or ray length. Figure 6 shows an
overlay feedback visualization for the ray lengths his-
togram. One can inspect, for instance, which fragments
correspond to the peak on the histogram.

5.2 Fragment Level

After the overview has been provided, it is time to zoom
and filter. A classic example is a ray profile for ray-
casting algorithms. This provides a great cue for under-
standing an algorithm. To output the value of a single
fragment one uses shader comments.
A user needs to specify (via the GUI) a position of a
specific fragment which he wishes to visualize This in-
formation is passed to the data extractor as shown in
Figure 7. Unlike the image level, at the fragment level
a value can be output several times, e.g., in a loop. Re-
gardless the actual number of outputs, the outputs are
identified automatically by the data extractor.

5.3 Sub-fragment Level

Complex display algorithms perform many operations
on a single fragment. Therefore, one might be interested
in going one level down and seeing more detail.

Mapping ProcessorMapping Processor

OutputOutput
Parameter Parameter 

Data ExtractorData Extractor

Variable Value

Variable ID

Variable DataVariable Data
(at Specific(at Specific
Fragment)Fragment)

Mapping to Mapping to 
Visualization Visualization 

ModulesModules

Shader Shader 
OutputOutput

User User 
InteractionInteraction

Rendered ImageRendered Image
Fragment Fragment 

CoordinatesCoordinates

Figure 7: Fragment level visualization pipeline. Values,
corresponding to a user-defined fragment are extracted
by the data extractor and passed to the mapping proces-
sor.

Figure 8: Transfer function visualization at the sub-
fragment level and ray profile visualization (bar chart).
Texture fetches are shown with black dots for the whole
ray (left) and at concrete voxels (middle and right). The
user-selected bars are highlighted with violet. This vi-
sualization is given for the same fragment and for the
same scene, as in Figure 4.

One particularly interesting feature at a sub-fragment
level is texture fetching. It is important to know how
many fetches are performed, where the texture is fetched
and which iterations (if many fetches are done) they cor-
respond to. For example, artifacts in the percentage-
closer soft shadow algorithm [Fer05] occur due to large
distances between shadow samples. Visualization of
those samples helps understand the problem.

We automatically parse all texture fetches in the shader
file. First, each texture definition is analyzed and the
texture dimensionality is acquired. This is needed
for correct output generation. Then the shader file is
searched for texture fetching commands and each of
them is output. We write the texture ID and the fetch
coordinates for each texture fetch. We can also link a
texture fetch with a variable, which uses results of this
fetch. Thus, a user can selectively visualize only the
texture fetches which correspond to the variable value
at the concrete iteration.

Figure 8 shows an example of a sub-fragment texture
fetch visualization. We decided to visualize texture
fetches (shown as black ellipses) which are made from
a texture that stores a transfer function. This visualiza-
tion is linked with ray profile visualization (bar chart),
which enables the user to browse texture fetches on the
sub-fragment level. Each bar corresponds to a single it-
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eration of the ray-casting algorithm. When a user hovers
on a bar in the bar chart, only the texture fetch made at
the same iteration is shown.

6 Implementation

The proposed framework has been implemented on the
basis of the VolumeShop system. Modules are imple-
mented as plugins to VolumeShop. For rendering and
GUI programming we used C++ and OpenGL (GLSL
is used as a shading language). Visualization modules
were implemented in Protovis [HB10]. These visualiza-
tions were then rendered as a web-page, using Qt We-
bKit [Nok08].

The shader output is performed using an
EXT_shader_image_load_store extension
available in OpenGL 4.0. We use its ability to make
an arbitrary number of memory writes from a single
fragment shader. Separate textures are created for
global outputs, local outputs and texture fetches.

Output commands in the shader code are parsed with a
simple preprocessor before the shader compilation and
then replaced with memory writes. If a user does not use
the ShaderDebugger class these commands simply
remain as comments and do not affect the rendering pro-
cess at all.

The ShaderDebugger class creates a so-called
shader resource: an entity which can be shared among
different modules. This shader resource is then linked
to all modules participating in the visualization and ren-
dering process. This resource serves as means for coop-
eration. First, the data created by one module (i.e., out-
puts from the mapping processor) and used by another
(in this case, some visualization module) are transmit-
ted through this resource. This enables encapsulating a
sender and a receiver from each other. Second, signals
of the shader resource are used for module synchroniza-
tion. For example, when the rendering module updates
the frame it triggers a corresponding event to the visual-
ization module so it can update its visualization accord-
ingly. And vice versa, when a user interacts with feed-
back visualization the visualization plugin fires a redraw
event for an overlay visualization module. The overlay
is updated accordingly.

The multiple linked view capability is supported na-
tively. Because modules operate as independent plug-
ins a user can add multiple visualizations for an algo-
rithm. These modules are synchronized in a consistent
state through the shader resource described above.

The framework works interactively for the presented al-
gorithms. All resource and variable linking operations

are performed via the GUI and no additional program-
ming is required.

7 Results

In this section we present results of a case study for the
proposed framework. We demonstrate our technique on
two algorithms: for polygonal rendering and for volume
rendering. First we present our technique on the parallax
occlusion mapping algorithm. We took as a basis its
implementation from the RenderMonkey IDE [Adv08]
and integrated it to VolumeShop as a plugin. The second
algorithm we selected is MIDA proposed by Bruckner
and Gröller [BG09]. It has been already implemented in
VolumeShop as a separate plugin.

In the case of the parallax occlusion mapping algorithm
we used the framework to find and eliminate an error
in the algorithm implementation and to provide a visual
cue for the aliasing problem. For both algorithms we
were able to produce illustrations, resembling illustra-
tions from the original papers which helped users un-
derstand the algorithm. These illustrations are based on
the actual data and are completely interactive.

7.1 Parallax Occlusion Mapping

In this section we describe the visualizations we created
to resolve the issues with parallax occlusion mapping
using the meta visualization framework. We will first
give a short overview on the parallax occlusion mapping
algorithm itself, while further details can be found in
[Tat06].

Many objects in real life have tiny details on the sur-
face. A good example is a cobblestone road. If we try
to simulate each cobble with a set of polygons, it will be
prohibitively expensive. Instead, we can use different
texture mapping approaches to model it.

A straightforward approach is just to apply a color tex-
ture. However it fails to convey the material of the sur-
face properly especially when it is specular. Bump map-
ping dramatically improves rendering quality by per-
pixel normal permutation. Per-pixel normals are ac-
quired by height map differentiation. However, bump
mapping does not convey a parallax: an effect of self-
obstruction of a surface relief. This can be simulated
by shifting texture coordinates based on the local height
value. For accurate evaluation of the texture coordinates
shift local ray casting is used as shown in Figure 9 (top).
Figure 10 demonstrate the same scene, rendered with all
of these 3 techniques.
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Figure 9: Parallax mapping illustrations from the pre-
sentation: the intersection of the viewing ray with the
surface and the corresponding texture coordinate off-
set (top), the aliasing problem, occurring because due
to undersampling (bottom). Image courtesy of Natalya
Tatarchuk.

Figure 10: Texture algorithms for simulating surface de-
tails: texture mapping (left), bump mapping (middle),
and parallax occlusion mapping (right).

When we first ported the algorithm to VolumeShop the
problem shown in Figure 11 (left) was found. This arti-
fact (shown in the red close-up) occurs at certain angles
resulting in discontinuities in the final image. In order
to find its cause we took a look on the corresponding
source code. It takes the normal map, the height map,
and the current viewing ray as an input.
whi le ( n S t e p I n d e x < nNumSteps )
{

v e c T e x C u r r e n t O f f s e t −= v e c T e x O f f s e t P e r S t e p ;
f C u r r H e i g h t = t e x t u r e ( samNormalMap ,

v e c T e x C u r r e n t O f f s e t ) . a ;
f C u r r e n t B o u n d −= f S t e p S i z e ;
i f ( f C u r r H e i g h t > f C u r r e n t B o u n d )

break ;
e l s e

n S t e p I n d e x ++;
}

Here, nNumSteps represents the maximum number
of allowed steps, nStepIndex stands for the current
number of the step, fCurrHeight is the current y co-
ordinate of the viewing ray, while fCurrentBound is
the current height of the surface (which is taken from

Figure 11: Image level visualization for parallax occlu-
sion mapping. Global output of the nNumSteps -
nStepIndex expression. The user hovers over a cor-
responding bar to obtain an overlay rendering. Notice
the solid filled gray area on the close-up which stays out
from the nicely lit valley.

the a-component of the normal map texture where the
height map is stored), and fStepSize is the viewing
ray y coordinate increment per step (which is dependent
on the angle between the ray and the surface).

This artifact might be somehow linked with the fact that
the iterative process has not ended properly. If we were
able to see which fragments have run the loop until the
very end that might give us a clue. Let us create an out-
put for the expression nNumSteps - nStepIndex.
The smaller this value is, the earlier the ray has termi-
nated. Figure 11 shows the image level visualization
for this expression. As one can observe, the areas with
flat discontinued shading correspond to the case when
the loop runs to the very end. This means that the ac-
tual intersection is not found for these pixels, because
one more step is missing. One of the possible bug fixes
would be to replace the loop condition nStepIndex
< nNumSteps with nStepIndex < nNumSteps
+ 1.

Another issue, which occurs for parallax occlusion map-
ping at acute angles is aliasing. Aliasing occurs due to
undersampling (see Figure 9 (bottom)), but it is difficult
to understand it at first. Figure 12 shows a visualization
for parallax occlusion mapping, which reveals the rea-
sons for aliasing. This visualization mimics that from
Figure 9, but in contrast, it is interactive and matches
the actual user-defined data.

In order to obtain a deeper algorithm understanding, one
can view the sub-fragment level. For example, to under-
stand why the extruded surface plot has such a shape it is
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(a)

(b) (c) (d) (e)

Figure 12: Aliasing at an acute angle in parallax occlusion mapping. Notice the differences in rendering for the
same surface under different angles: a) aliasing occurs – notice how inaccurate the solution on the right is (see (b)),
c) sampling is dence enough such that no aliasing occurs (see (d)). The green crosses show the fragments being
visualized. The image (e) shows the texture fetch corresponding to the user-selected variable output.

worthwhile to look at how the texture has been sampled.
Figure 12 shows such a visualization featuring multiple
linked views. As can be observed, association of the tex-
ture fetch with the corresponding iteration makes it pos-
sible to browse through the texture fetches correspond-
ing to the concrete iterations. Texture fetch visualization
provides a user with an important visual cue. It shows
the actual parts of the texture which contribute to the
fragment. For example in Figure 12 (b) we can see that
the extruded surface is highly curved because it corre-
sponds to a part between two bricks in the normal map.

7.2 Maximum Intensity Difference Accu-
mulation

We have also tested our framework on a volume visu-
alization algorithm. We have selected the maximum
intensity difference accumulation algorithm (MIDA)
[BG09] algorithm, as it changes the opacity value along
the ray in a peculiar way.

MIDA is a volume rendering ray-casting algorithm. It
strives to combine advantages of direct volume render-
ing (DVR) and the maximum intensity projection (MIP).
Essentially it works like DVR, but when a new local
maximum is achieved along the ray the accumulated
opacity is decreased, so this maximum affects the final
rendering result.

Figure 13 paper shows how the data value, the inten-
sity and the opacity are modified by MIDA algorithm
at local maxima in order to reveal inner structures. We
strived to achieve a similar visualization to create a sto-
rytelling image which reflects the actual way the algo-
rithm works. To fulfill this, we output parameters from
the shader: the accumulated opacity, the intensity, the
data value, and the distance, travelled by the ray, in or-
der to parameterize the plot. Notice that due to the opac-
ity decrease at local maxima, the hidden high-intensity
details, like teeth, become visible.

8 Conclusion and Future Work

In this paper we propose the framework for meta visu-
alization: visualization of display algorithms. We also
demonstrate the apparatus for interactive extraction of
arbitrary variables: independent of if they are in a loop
or not. In addition a hierarchical classification is in-
troduced for visualization of these data. It can be per-
formed globally for a complete image, for one concrete
fragment, or at the sub-fragment level. This frame-
work works interactively and allows a user to change
visualization parameters on-the-fly, taking advantage of
multiple linked views. Finally, we demonstrate how
these methods can be applied to two algorithms: one for
polygonal and one for volume-rendering. We showed
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opacity decrease
at data value
local maxima

Figure 13: Ray profiles for MIDA. The image at the
bottom left has been interactively generated by the
proposed meta visualization framework for the scene,
shown on top. The image at the bottom right has been
taken from [BG09] (it relates to another scene). Image
courtesy of Stefan Bruckner.

that illustrative visualizations that elevate display algo-
rithms understanding can be easily generated interac-
tively using our framework.
We make the system as generic as possible while pre-
serving its usability. However, it has limitations. We
currently perform visualization only for data in frag-
ment shaders. It would be interesting to visualize data
for other types of shaders (e.g., vertex and geometry
shaders) especially for polygonal rendering algorithms.
Second, the current implementation works as a set of
VolumeShop plugins. A user needs to port his algorithm
to this system. It would be much more convenient to
use this framework as an independent library. We do
not enable the use all outputs of a variable in a loop at
the image level due to performance issues. This can be
potentially helpful for complex volume rendering algo-
rithms.
We have different directions for further development of
our system. First, visualization for a shader code it-
self might be very helpful. For example, if a user se-
lects a fragment, they should get the parts of the shader
which are used for rendering of this fragment, high-
lighted. Second, more analysis can be done on the final
result dependency from input data. For example, if an
algorithm performs multiple memory fetches we would
like to know which fetches are important and which are
not so they could be omitted without a serious impact
on the quality. Finally, higher-level semantics can be
introduced. If we limit ourselves to the ray-tracing or
ray-casting algorithm, the ray itself can be considered
as a unit of hierarchy. Lower hierarchy levels in this

case will be derivative rays (e.g., reflected, refracted and
shadow rays).
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