Out-of-Core Selection and Editing of Huge Point Clouds

Claus Scheiblauer®, Michael Wimmer

Institute of Computer Graphics and Algorithms, Favoritenstrasse 9-11 / E186, A-1040 Wien, Austria

Abstract

In this paper we present an out-of-core editing system for point clouds, which allows selecting and modifying arbitrary parts of
a huge point cloud interactively. We can use the selections to segment the point cloud, to delete points, or to render a preview
of the model without the points in the selections. Furthermore we allow for inserting points into an already existing point cloud.
All operations are conducted on a rendering optimized data structure that uses the raw point cloud from a laser scanner, and
no additionally created points are needed for an efficient level-of-detail (LOD) representation using this data structure. We also
propose an algorithm to alleviate the artifacts when rendering a point cloud with large discrepancies in density in different areas by
estimating point sizes heuristically. These estimated point sizes can be used to mimic a closed surface on the raw point cloud, also

when the point cloud is composed of several raw laser scans.

Keywords: Point-based rendering, Viewing algorithms, Graphics data structures and data types

1. Introduction

In recent years the amount of data produced by laser scan-
ners has increased tremendously. Some examples for the ap-
plication of laser scanning are in the field of cultural heritage
to document places and buildings of historical interest, in the
field of geodesy to measure the earth’s topography, or in the
production industry to document the status of a large industrial
plant in order to support change management. In all these areas
the physical size of the scanned objects is ever increasing. An-
other reason for the tremendous amount of data produced is that
the possible number of samples per scan is surpassing 1 Billion
(10%) for the latest generation of laser scanners [1, 2].

The point clouds resulting from laser scans are usually used
to inspect the scanned objects. But it is also important to be
able to interact with the point clouds to extract more informa-
tion from the model. For example in the field of building arche-
ology, the construction phases of a building can be recovered by
interactively segmenting the model. Some areas of the model
that are to be investigated are possibly occluded by other ar-
eas of the model, so the uninteresting parts should be hidden
for the time of the investigation by selecting them and making
them invisible.

We propose a point-based editing system that can be used
to segment a point-based model into arbitrary regions, even if
the model does not fit completely into main memory. We pro-
vide a tool that makes working with point clouds feasible and
intuitive. One important aspect is that the data structure we use
for the point-based models does not require additionally created
points compared to the original dataset. We also propose a point
size heuristic that can be quickly evaluated and is therefore well

*Tel: +43 (1) 58801-18646, Fax: +43 (1) 58801-18698
Email address: scheiblauer@cg.tuwien.ac.at (Claus Scheiblauer)

Preprint submitted to Computer & Graphics

suited for a point cloud that is often changed by editing oper-
ations. The benefit for users is that they can interact with the
point cloud directly and do not have to await a costly and error-
prone conversion to a mesh-based structure, and that they can
work on the whole point cloud at once, always having all points
that possibly belong to a region available for manipuation. In
particular, the contributions of this paper are:

e A method for interactive selection of arbitrary parts of a
point cloud using a so-called Selection Octree.

o Inserting points into and deleting points from a rendering
optimized data structure.

e A point size heuristic for estimating the splat size radii
in a point-based model to mimic a closed surface in a
sufficiently densely sampled area.

The Selection Octree is a tool to handle different visualiza-
tions of the same model without actually having to permanently
modify the large model. For example, an archaeologist might
create several selections including different parts of a model
representing different creation times. He can then easily switch
between visualizations of different time periods.

The insertion and deletion operations for the rendering op-
timized data structure are required for editing operations on the
point model, which is a compound of all available laser scans.
Instead of building one point cloud, we could use the individual
scans separately, but for the exploration and interaction with
data from laser scans it is more efficient to work on a single
point model, because this allows recognizing the sampling den-
sities of individual areas of the model and rendering with a
sampling density adapted to the current view. This would not
be possible when using the scans separately. The information
which point belongs to which scan position, which might be

January 12, 2011



useful for some processing tasks, is not lost in our system, as
we can store arbitrary attributes per point, e.g., the scan position
index.

2. Previous Work

A general overview of point-based rendering and process-
ing is given in [3], where in-core and out-of-core rendering al-
gorithms are presented, but no out-of-core editing algorithm.

For point clouds that can be held in main memory, Weyrich
et. al. [4] presented a plugin for the Pointshop 3D point manip-
ulation system [5] that allows manipulating the raw data from a
range scanner. In the Digital Michelangelo project [6], range
images (e.g., images with depth) were sub-sampled to build
range image pyramids to deal with the tremendous amount
of data during rendering and editing the point clouds. Scan-
alyze [7] is a system for aligning large triangle meshes out-
of-core. It uses level-of-detail (LOD) representations of the
meshes to be able to merge and align different meshes. The
meshes are generated from point clouds from scanned objects.
In the Active Points [8] system a color editing tool is used, be-
cause they claim that the appearance of a model is more im-
portant than the actual geometry. Boubekeur and Schlick [9]
point sample a large polygon-based model, so that the geome-
try of the large model is approximated in-core and can be inter-
actively textured. None of these systems is suitable for editing
large unstructured point clouds.

In [10], the potential of out-of-core point rendering systems
is described in the context of cultural heritage. The paper shows
the interaction possibilities with huge point clouds by describ-
ing a number of use cases where different tools are used to sup-
port the archaeological work. However, that paper focuses on
the user side and does not describe algorithmic implementa-
tion strategies. These are the focus of the current paper, which
shows the algorithmic contributions that lead to the tools and
use cases described in [10].

Wand et. al [11] also describe an editing system for large
point clouds. They build up an octree and store a quantization
grid at the inner nodes of the octree, where each grid cell stores
an arbitrary point that is inserted into the data structure to repre-
sent all points at lower levels in the hierarchy. This is similar to
the idea of Inner Octrees in [12] where each octree node stores
an octree itself, the so called Inner Octree. The points inserted
in one octree node are stored at the lowest Inner Octree level.
For editing, Wand et al. use a weight at each point in an inner
node grid cell, which is then updated during editing operations.
A disadvantage of their implemented system is that they reserve
disk space for about 3 times of the size of the actual point data.

Other data structures that are well suited for fast rendering
are difficult to adapt for editing. Dachsbacher et al. [13] de-
veloped a hardware-accelerated LOD point rendering algorithm
for models that can be stored in-core. Pajarola et al. [14] ex-
tended the work of [13] for an out-of-core setting. They had to
introduce a global indexing scheme on the point data. Gobetti
and Marton [15] showed a point rendering system for very large
models that uses only the points of the original point cloud and
is therefore memory efficient. The point-based models have to

be preprocessed though, because they assume a homogeneous
point density for rendering. Kalaigh and Varshney [16] ana-
lyze point clouds statistically using a clustering-based hierar-
chical principal component analysis (PCA) of the point geom-
etry, which results in a compact statistical representation from
which the point cloud can be rendered directly. All three afore-
mentioned approaches for rendering huge point clouds are not
well suited to delete points or insert new points, because then
the LOD hierarchies would have to be repaired in a costly op-
eration.

In [17], a number of external memory sorting algorithms are
described, as well as algorithms for external memory problems
like range searches and directory lookups. Dynamic data struc-
tures for inserting and deleting elements are created by combin-
ing efficient smaller static data structures and updating them.

Spatial databases provide a way to organize multi-
dimensional data in a way that database queries can be pro-
cessed efficiently [18]. Typical queries are, e.g., point queries,
region queries, or nearest neighbors. The data structures used
for spatial databases are related to the problem of organizing a
point cloud for efficient rendering, but they do not consider the
problem of rendering LODs for a reduced version of the whole
point cloud. The Quadtree data structure (or Octree in 3D) is
also used for spatial databases, and it is the base data structure
for the Nested Octree [12].

Volumeshop [19] uses a selection volume that stores real
values in the range [0,1], where 0 means “not selected” and 1
means “fully selected”. The selection volume is evaluated at ev-
ery frame to modify the transfer function in the selected areas.
This way selected areas can be emphasized by a different color
or opacity value. Selection volumes are extended by Biirger
et. al [20] to support sub-voxel editing operations by using a
high resolution volume that is an upsampled representation of
the original volume. Editing operations in this volume are per-
formed directly on the GPU.

3. Modifiable Nested Octree

We choose the Nested Octree [12] as base data structure for
manipulations, because we want to visualize huge point models
in real time. Due to this requirement, the chosen data struc-
ture has to fulfill certain criteria. It should support out-of-core
rendering and real-time rendering, so it has to support LODs,
because when rendering a huge point cloud not all points can
be shown in every frame. We would also like to have a com-
pact representation of the point cloud, i.e., a representation that
does not need additionally created points for rendering or edit-
ing. Furthermore the build up process should be deterministic,
so we can easily update the LOD structure when inserting or
deleting points.

There are also drawbacks when using this rendering opti-
mized data structure. Due to the nested representation of the
LODs, a neighbor query has to search nodes at all hierarchy
levels, because the potential neighbors of a point can be at any
hierarchy level. The most efficient way to do a neighbor query
is to first determine a maximum radius in which neighbors shall
be searched, and then collect all points from all hierarchy levels



Black = Outer Bintree
Colored = Inner Bintrees E

"
HY . Sm. a7,
Z/\\* VAN

I

\/\JOOOO‘OOOOJOOOO‘

Figure 1: The hierarchy of a completely filled Nested Bintree of depth 5, where
Inner Bintrees and the Outer Bintree have a depth of 3. The root nodes of the
Inner Bintrees are held in the nodes of the Outer Bintree. The points reside at
all levels of the Inner Bintrees.

Nested Octree - Inner Octree Grid at MNO node

Figure 2: The difference between a Nested Octree and a Modifiable Nested
Octree is in the storage of the points. The Nested Octree stores the points in its
nodes in Inner Octrees (left), while the MNO stores the points in grids (right).
Inserting and deleting points are costly operations for an Inner Octree, because
the octree has to be rebuilt. An Inner Octree also has to maintain a certain
order when mapping the points to a VBO [12], while a grid can map the points
sequentially to a VBO.

that are within this radius. This is not necessary in an octree
where the points are only stored at the leaf nodes.

Figure 1 shows an example of the original Nested Octree
data structure (a Nested Bintree for representation). In this ex-
ample the Inner Bintrees are fully occupied, i.e., all levels of
the Inner Bintrees hold points. For rendering, the tree structure
of an Inner Bintree is linearized [12], and the points are stored
in Vertex Buffer Objects (VBOs) and sent to the graphics card.
When rendering a frame, the bounding boxes of the nodes are
projected to screen space, and all nodes whose projected size is
larger than a predefined threshold are chosen for rendering, and
all points of the chosen nodes are rendered.

We made some changes to the original Nested Octree data
structure so we can use it for efficiently inserting and deleting
points and call it Modifiable Nested Octree (MNO). We basi-
cally abandon the idea of maintaining a hierarchy in the Inner
Octrees, and replace them by regular grids. This corresponds to
removing the upper levels of the Inner Octrees and only retain-
ing the leaf nodes (Figure 2). An additional advantage is that
the overdraw generated by points in the upper levels of fully
occupied Inner Octrees is removed.

With these changes the LOD hierarchy now works similar

to the LOD hierarchy of the Layered Point Clouds [15]. They
subsample the original point cloud at each node (using a kd-
tree) to get the points for this node. The advantage of using
a regular grid at each node of the hierarchy, and inserting the
points there, is that the point model becomes editable.

3.1. Inserting Points

Inserting points into a new MNO is now very simple. All
points start to search at the root node of the MNO for an empty
cell in the root node’s regular grid. The regular grid’s cell into
which a point falls is determined by calculating the grid index
for the point by subdividing the root node’s bounding box to
the resolution of the regular grid, and inserting the point into
the grid. If a point falls into an empty grid cell it is stored there.
If it falls into a grid cell that has already been occupied, it is cal-
culated into which child node of the root node the point falls, by
calculating the child node index from the point coordinates and
the center of the root node’s bounding box. Inserting the point
into the child node is now recursive, and the point is checked
against nodes further down the hierarchy until it finds an empty
grid cell.

An optimization to this algorithm is to hold back a certain
number of points before they are inserted into a child node that
does not yet exist. This way, a new child node will always
hold at least this number of points, as nodes that hold too few
points are inefficient when loading them from hard disk during
rendering.

In our implementation the grid is represented as a hash ta-
ble, and we calculate the keys for the hash table to check if a
position in the grid is still free. For best performance we use a
speed-optimized hash map implementation from Google [21].

3.2. Build-Up Process

The build-up process starts by reading point data files and
converting them into a binary data stream to get a uniform rep-
resentation of all points, independent of the data format they
are originally stored in. When reading the point data files, the
bounding box of the points contained in the files is calculated.
The binary data stream stores the points intertwined, i.e., a point
with all its attributes is stored as a continuous array of bytes.
Examples for attributes are position, color, normal, or scan po-
sition index.

Note that many out-of-core algorithms rely on a first pass
to create locally coherent work items that can be treated in-
core (e.g., distribution sort [22]). However, in the case of point
clouds it is not easily possible to find borders for these buckets,
and therefore a subdivision so that each bucket can be treated
in-core, because the density of the points can be very inhomo-
geneous.

After creating the binary data stream, the points are then
read in batches of several 1000 points from the data stream
and inserted according to the insertion algorithm (Section 3.1).
The basic insertion algorithm only works for models that com-
pletely fit into main memory. To make it work for larger mod-
els, we manage the nodes of the already built up MNO in a
least-recently-used (LRU) cache [11]. The points of the nodes



are swapped in and out of memory according to the require-
ments of the insertion algorithm. The LRU swapping algorithm
uses the main memory as cache for the nodes of the MNO, so
if a point model fits completely in main memory the build up
algorithm is as fast as the basic insertion algorithm.

The points of one node are stored in one file on disk, and
all files are stored in one directory. The access to the files is
managed by the file system, e.g., on our test machine we use
the NTFS file system which is used by Windows. NTFS indexes
the files in a directory with a B-tree [23], which minimizes the
number of disk accesses to find a file.

This out-of-core algorithm works especially well if there
is spatial coherence among points, which is often the case in
scanned models. The original build-up algorithm [12] swaps
points to disk every three levels they are filtered down the octree
hierarchy. This is reasonable when the amount of main memory
is no more than 512MB, but today the main memory on high-
end PCs is already 4GB or more, which can be used as cache
during build up. The number of points that can be held in-core
depends on the attributes per point and on the size of the LRU
cache. Assuming that one point has the attributes position and
color represented in 16 bytes and that the LRU cache has a size
of 10GB, then a point cloud with some 625M points can be built
in-core.

3.3. Adding Points

When adding new points to an existing model, and all new
points fit into the bounding box of the model, then the new
points are simply inserted into the existing model, i.e., the new
points are converted to a binary stream and then inserted. If this
is not the case, and new points are outside the current bound-
ing box, the bounding box of the model has to be enlarged to
enclose all the new points before inserting the new points. Fur-
thermore the LOD hierarchy of the MNO has to be updated to
keep it consistent.

To find the new bounding box of the model we add supe-
rior octree levels to the bounding box of the root node of the
existing MNO. This is done iteratively. From the 8 possible
superior bounding boxes for a new octree level we choose the
one bounding box that minimizes the distance (center to center)
between the bounding box of the new superior octree level and
the bounding box of the new points. Superior octree levels are
added this way until the root node of the octree encloses the
new points completely.

After this, the new points are inserted into the MNO, which
now has one or more empty nodes above the old root node. Here
we use again the LRU cache to manage swapping the points of
those nodes in and out of memory. When all new points have
been inserted, it can still be the case that there is no connection
between the old root node and the new root node in the LOD
hierarchy as illustrated in Figure 3. To find points that fill the
LOD hierarchy accordingly, we insert the points of the old root
node (actually a copy of them) into all newly created octree
nodes, to find the grid cells in the new octree nodes that need to
be filled. We are only interested in the grid cells, so we delete
the copies of the points of the old root node from these grid
cells again. If a point falls into an already occupied grid cell,

Red = Existing Points
Blue = New Points

Figure 3: Schematic illustration of the LOD hierarchy of an MNO after insert-
ing new points. The red points are part of the old MNO (red bounding box),
and the blue points are newly inserted. The bounding box of the blue points
does not intersect with the old MNO, so in level 1 the LOD hierarchy from the
new root node to the old root node is broken (there should be a point in the left
part of level 1).

nothing has to be done. If a point falls in an empty grid cell,
the bounding box of the grid cell is then used to find a leaf node
of the MNO from which points can be used to fill this grid cell.
When an appropriate leaf node is found, one point is inserted
into the new grid cell and deleted from the leaf node. If a leaf
node becomes empty it is deleted from the MNO.

Note that an octree node can only be determined unambigu-
ously as long as the bounding box of the new grid cell is smaller
than or equal to the bounding box of the octree node. If the
bounding box is larger than the bounding box of an octree node,
then it does not matter which child to follow to find a leaf node.
In this case, when there are more than one child at an octree
node, we randomly select one child node and continue search-
ing for a leaf node from there.

3.4. Deleting Points

For deleting points, we also use the LRU cache to manage
the points in the nodes of the MNO. When deleting points from
the MNO, holes in the LOD hierarchy can appear. The holes
in the LOD hierarchy are filled again by pulling up points from
a leaf node that has a bounding box that is inside the bounding
box of the cell that holds the point to be deleted. If no point
can be found to replace the deleted point, then this cell remains
empty. The deleting algorithm traverses the MNO in postorder,
so leaf nodes are processed first, and a leaf node is simply re-
moved from the octree hierarchy when all points in this node
have been deleted.

3.5. Rendering

When rendering an MNO, the rendering algorithm traverses
the MNO from the root node to find the nodes that are large
enough when projected to screen space and therefore shall be
rendered. For this purpose the bounding box of the frontmost
grid cell of an MNO node, with respect to the current view
point, is projected to screen space, and if its size is above a
predefined threshold (e.g., 1 pixel) the node is inserted into a
priority queue that is ordered by the importance of the nodes.



The most important nodes are the ones (partly) within the
view frustum, close to the viewpoint, and in the center of the
screen. Rendering starts with the most important node. When
rendering a node, we render all points of the node, and we ren-
der the points of that node at the same size. If not using a
fixed point size for rendering, we use the point size heuristic
described below (Section 5).

As geometric primitive we use screen-aligned quadratic
splats, as they are the fastest to render. Nodes that are chosen
for rendering but are currently not in memory are swapped to
memory in a separate thread. This is done by sending a request
to the reading thread to read the file containing the points of
the node. The reading thread then passes back a memory buffer
with the loaded points, which can then be moved directly to the
GPU for rendering. Points that are not used for rendering any
more are dropped from the GPU and stored in a LRU cache in
main memory. Only when points fall out of the main memory
cache they have to be loaded again from disk if needed.

We extended the rendering capabilities of the original
Nested Octree implementation to allow more than one point
cloud to be rendered out-of-core at the same time. When sev-
eral point clouds are loaded into the scene, they use the same
node budget, i.e., the same priority queue, and the importance
function designating which node to render is evaluated globally
on all available and visible nodes from all point clouds.

4. Selection Octrees

Selecting points in an out-of-core setting is not trivial, since
not all points are available in memory at any time. If selection
happens on individual points of a surface, moving closer to the
surface could make a more detailed LOD level appear, whose
points would not be selected although they belong to the se-
lected part of the surface. To overcome this problem we have
chosen to define the selection not on individual points, but on
the space that the selection encompasses. For this, we introduce
the so-called Selection Octree as a selection primitive. The Se-
lection Octree is a separate data structure with the same root
node as the MNO of the point model. All points whose position
is within the Selection Octree are marked as selected. Points
that are loaded after defining the selection just have to check
whether they are inside the Selection Octree or not, and are then
marked accordingly. The points on disk are not changed during
selection. The selection remains valid when the user changes
the viewpoint.

Contrary to selection volumes used in volume rendering
[19, 20], we do not use a regular grid as base data structure
for the selection volume, as the points of raw laser scans are ir-
regularly distributed. Due to this we use an octree, as it is built
hierarchically and therefore uses less memory in areas with low
point density.

We store the Selection Octrees in-core, and the number of
Selection Octrees that can be handled at the same time is per se
not limited, as we simply store the Selection Octrees in a list.
The only limit that might occur is the amount of available main
memory. A typical Selection Octree uses about 1MB, where

Figure 4: The nodes of the Selection Octree that encompass the selection are
shown in green. All selected areas are managed by the same Selection Octree,
the nodes connecting the areas shown in orange. Empty leaf nodes are shown
in grey. The semi-transparent sphere is the selection sphere used to de-/select
points.

one Selection Octree node uses 12 Bits for its state and 4 point-
ers for managing the Selection Octree hierarchy (the children of
anode are stored in a singly-linked list). The Selection Octrees
can be used for different selections at the same time, and points
can be part of different Selection Octrees at the same time.

4.1. Building the Selection Octree

The Selection Octree is built from the points that are se-
lected by the user. For user interaction we provide a volumetric
selection brush [4, 20] which follows the surface of the model
by reading the Z-Buffer. If there is no valid entry in the Z-Buffer
for a position, i.e., the Z-Buffer is at negative “infinity” for this
position, than the z-value of the last valid position is used. The
user can interact with the brush by moving the mouse. On press-
ing the left mouse button, all points that are loaded to the graph-
ics card and are inside the selection brush are marked by a flag
in the alpha channel of the color of the point (we do not need the
alpha channel for rendering) by continuously intersecting the
volume of the selection brush with the nodes of the MNO. On
releasing the mouse button, all points (marked and not marked)
from the nodes that were intersected by the volumetric brush
since pressing the mouse button are copied into an array and
inserted into the Selection Octree.

All these points are inserted at once, and the points are fil-
tered down according to their position. Creation of new child
nodes is continued until either only one point is left at a node,
or if at one node only marked or unmarked points exist. Note
that we do not store any points in the Selection Octree perma-
nently, the points are only used to build the octree hierarchy.
The points that are not marked have also to be inserted into the
Selection Octree, as they are necessary to determine the exact
border of the Selection Octree.

Building the Selection Octree is quite fast (see Table 5).
The build up time is longest for very large selections (up to 2.5
seconds), while for smaller selections it is unnoticeable by the
user. The Selection Octree can be updated in the same way as it
is built, i.e., inserting new points into the already existing octree



Figure 5: Selecting points in some distance to the model results in aliasing for
the border of the selection when zooming into the model, as can be seen in the
right image.

hierarchy. For further usage Selection Octrees can also be saved
to disk and loaded again later.

4.2. Building the Deselection Octree

Building the Deselection Octree is done in a similar way
as building the Selection Octree. The user again selects points
with the selection brush, but now he can only mark points that
have already been selected. On pressing the right mouse button
all selected points within the brush are marked by a flag that
they will be deselected. On releasing the mouse button again
all points of all MNO nodes that were intersected by selection
brush are inserted into the Deselection Octree. When the points
are collected, they are copied from the graphics card into an
array. After they have been copied (the copied points retain
their alpha channel flags) the points on the graphics card reset
all flags in the alpha channel, as they are now unselected points.

The Deselection Octree is then built to represent the volume
described by the deselected points, i.e., still selected points and
ordinary points are not included in the Deselection Octree. Af-
terwards it is substracted from the Selection Octree, which lasts
only some milliseconds. The now reduced Selection Octree is
optimized to merge nodes with the same properties to larger
nodes. The Deselection Octree is then deleted from memory.

4.3. Properties of the Selection Octree

All points that are marked as selected can be rendered as
invisible by projecting them to infinity inside the vertex shader
(setting the point’s w-coordinate to 0), enabling a preview of
the model without the selected points.

The maximum resolution of the Selection Octree is bound
by the size of the currently rendered octree nodes. If the user
is selecting points at a coarse LOD, the resolution will be low,
e.g., the bounds of the selection will exhibit aliasing artifacts.
This can be seen when approaching the model and therefore
rendering it at a finer LOD as shown in Figure 5. There does
not seem to be an obvious solution to this problem, as an auto-
matic refinement of the Selection Octree, without inserting new
points, might not be in coherence with the points of the model.
Another option would be to define a hull around the Selection
Octree, and when loading new points from disk insert all points
to the Selection Octree that are in the space between the outer
border of the Selection Octree and the border of the hull around
the Selection Octree, but we did not test this. On the other hand,

the Selection Octree represents exactly the detail that was avail-
able to the user when he created the selection, so the result is
not unexpected.

5. Point Size Heuristic

One of the most critical aspects when interacting with a
huge point cloud is that the point sizes are chosen in a way
that holes are avoided in closed surfaces. This is important to
allow selection operations, because otherwise connected sur-
faces would not be visible anymore when viewed from a closer
distance. On the other hand, we do not make any assump-
tions about sampling rates or the existence of surfaces in the
point cloud, since outdoor scans often have wildly varying sam-
pling rates in the model. We chose a compromise and present
a heuristics that is based on the octree depth of points and a lo-
cal density estimate. Figure 6 gives an example of the varying
sampling densities when rendering a point-based model and the
effect of the weighted point size.

For points in nodes where no children are rendered (leaf
nodes or nodes whose children are too small to be rendered
when projected to screen space), we simply choose the side
length of the inner octree grid cell as the world space point size.
The point size is then projected to screen space at a distance of
1 from the viewpoint, and so determines the point splat size for
the points of an MNO node in screen space. If the distance
of a point is other than 1 from the viewpoint, the point size is
divided by the distance of the point in the vertex shader.

The problem is choosing the point size for points that are
stored in the upper nodes of the MNO. The point sizes should
fit the surrounding points which are stored in nodes at lower
levels. If we use the grid cell size as we do for leaf nodes,
points would become huge in upper hierarchy levels and hide all
surrounding points. Note that we do not make any assumptions
on the distance between neighboring points.

Our heuristic uses a weighted point size that reflects the
number of points in the children of a rendered node as a lo-
cal density estimate. Only nodes that are rendered contribute
to the point size estimation. The point size is influenced by
two weights, the number of points in an MNO node and the
so-called level weight.

5.1. Virtual Depth

The first weight is the number of points in a node. The more
points in a node, the higher its influence on the point size. This
will ensure that inner nodes that have only few points stored in
their children will render with a larger point size.

The point size is calculated for each node that is rendered
in the current frame. The point size heuristic calculates a (po-
tentially non-integer) virtual depth of the points in a node, so
that they are rendered as if they were at another level in the
hierarchy. The virtual depth vd,,,4. for one node is calculated as

Z n; * W(dl) * di + Npode * W(dnode) * dnade

i

Vdpode =
Z n; * W(dl) + Npode * W(dnode)

i



Figure 6: A view inside the basilica of the model of the Domitilla Catacomb. On the left side the point cloud is rendered with a fixed point size of one. The sparsely
sampled areas are partly due to the different sampling densities, partly due to the LOD algorithm which prefers to load nodes in the center of the screen. On the
right side the point cloud is rendered with the weighted point size. The level weight is calculated from the exact distribution of the points in the MNO.

where n; is the number of points at node i, d; is the depth of
node i, and w(d;) is the level weight for node i. The index i
goes over all rendered direct and indirect children of a node.
Intuitively, this means if a node has many points in a child of
depth d, then the point size of that node will be similar to the
point size at level d in order to let the points in the inner node
blend into the points of the “dense” children.

When only using this weight, the points of the upper lev-
els in the hierarchy are still rendered too large compared to the
points of the lower levels. This can be accounted for with the
level weight.

5.2. Level Weight

The second weight is the number of points per level. This
gives the lower levels more weight and pulls the point sizes to-
wards these levels, as most points are held there. Figure 7 shows
an example distribution of the points in the 20 levels (counted
from O to 19) of the Domitilla Catacomb model (see Figure
9). The three graphs show different calculation methods for the
distribution of the points. Other models we tested have similar
distributions of the points.

The simple level weight just counts all points at each level.
But since the MNO also stores points in the inner nodes of the
octree, the points of the inner nodes contribute to the wrong
hierarchy level, as they should be counted at the levels of the
leaf nodes they would fall into.

We have done this with two different methods. First by es-
timating the number of points in the leaf nodes, and second
by actually intersecting the points of the inner nodes with the
bounding boxes of the leaf nodes.

In the first method we estimate the number of the points
in the leaf nodes by assuming a uniform sampling distribution.
Then we calculate how many points of an inner node would fall
into a leaf node under this assumption, and add this number to
the number of points in the leaf node. We do this for all leaf
nodes. Note that an inner node can also be partially a leaf node,
if not all children are occupied. In this case the bounding boxes
of the empty child nodes act as leaf nodes. With this estimation

0.9+ | — Simple Level Weight
Estimated Level Weight

0.8 Exact Level Weight

0.71

0.61

0.5r

0.4r

0.3F

0.2r

0.1r

TR

0123 456 7 8 910111213141516 171819

Figure 7: Comparison of the different level weight calculation methods for the
model of the Domitilla Catacomb. With the exact calculation method some 90
percent of all points are in the 2nd and 3rd lowest levels combined.

the distribution of the points is already shifted about one level
(see Figure 7, cyan graph).

In the second method we exactly calculate the points that
are within the bounding boxes of the leaf nodes by simply inter-
secting the leaf nodes’ bounding boxes with the points of their
direct and indirect parent nodes and counting the total number
of points that fall into each leaf node. As can be seen in Figure
7 (red graph) the resulting distribution of points per level is fur-
ther shifted down in the hierarchy levels, resulting in a smaller
point size for rendered points of the upper levels.

Figure 8 shows the blending of the points of the different
hierarchy levels. Points of level 9 are rendered smaller than
points of level 8. Combining all levels results in a homogeneous
representation of the zoomed out area.

6. Results

To test the performance of the build up algorithm, we use
four different point models (see Figure 9). The test computer



All Levels

Level 8

Level 9

Figure 8: The points of the different levels are blended to make a closed surface of the point model. In the closeup points from hierarchy level 8 and 9 are shown.
All levels combined result in the closed surface for the point model.

Figure 9: The scans used for benchmarking the build-up algorithm and the editing operations. Left: Santa Claus model, consisting of about 16M points. It was
scanned with a scan-arm. Center left: Model of the “Hanghaus” in Ephesos, consisting of about 15M points. Center right: The Stephansdom in Vienna, consisting
of 193 single scans and about 460M points. Right: A view of the subterranean Domitilla catacomb in Rome, hovering below the turf. This model consists of 1828
single scans and about 1.92 Billion points.

Model Attributes | AttribsSize Time | Build Time | Size on disk | Throughput
Santa Claus | p,c 16B | 3m 25s 13.6s 255.0MB 18.7MB/s
Santa Claus | p,c,n 28B | 4m 58s 13.9s 445.6MB 32.0MB/s
Ephesos p.c 16B 34s 11.6s 235.9MB 20.3MB/s
Ephesos p.c.n 28B 35s 12.1s 412.4MB 34.0MB/s

Table 1: The build-up times and sizes for the resulting models for the Santa Claus point cloud (16M points) and the Ephesos house (15M points) built with the
MNO build up algorithm. The AttribsSize column shows the number of bytes that are used for all attributes of one point. The Time column shows the complete
processing time, including reading the data files and converting them to a binary data stream. The Build Time column shows the build-up time alone. The models
are built in-core. The size of the resulting models is larger than the added up size of the points alone due to padding at the disk sectors and the header file that holds
the information about the octree hierarchy. The Attributes column shows which attributes were used for build up (p = position, ¢ = color, n = normal).

Model Attributes | Obj per leaf | Nodes mem Time | Build Time | Size on disk
Santa Claus | p,c 131,072 512 | 11m 43s 1m41s 778.6MB
Santa Claus | p,c,n 65,536 3000 | 15m 21s Im 51s 1,321.3MB
Santa Claus | p,c,n 131,072 512 | 15m 07s 1m 44s 1,116.9MB
Santa Claus | p,c,n 500,000 128 | 14m 47s 1m 28s 989.6MB

Table 2: The build up times and sizes for the resulting models for the Santa Claus point cloud (16M points) built with the XGRT system. Again, the "Time” column
shows the complete processing time, including reading the data files. The “Build Time” column shows the build up time alone. "Obj per leaf” means the maximum
number of points per leaf node and "Nodes mem” means the maximum number of nodes in memory. The ”Attributes” column shows which attributes were used for
build up (p = position, ¢ = color, n = normal).



Model Attributes | AttribsSize Time | Build Time | Size on disk | Throughput
Stephansdom | p,c 16B | 1h45m 07s | 1h38m 31s | 7,390.1MB 1.25MB/s
Stephansdom | p,c,n 28B | 3h02m 31s | 2h49m 50s | 12,922.0MB 1.27MB/s
Stephansdom | p,c,n,r,i,s 44B | 3h 58m 18s | 3h 51m 44s | 20,299.6MB 1.46MB/s
Domitilla p-C 16B | 3h 53m 21s | 2h 22m 29s | 30,812.4MB 3.60MB/s
Domitilla p.c.n 28B | 4h28m 36s | 3h 01m 31s | 53,874.6MB 4.94MB/s
Domitilla p.C.0,L1,8 44B | 5h59m 51s | 4h27m 32s | 84,622.8MB 5.27MB/s

Table 3: Here the AttribsSize column shows the number of bytes that are used for all attributes of one point. The Time column again shows the complete processing
time, including reading the data files and converting them to a binary data stream. For the Domitilla model (1.92 Billion points) the point data files are the original
files from the laser scanner which need long to process. The Build Time column shows the build-up time alone. Size on disk shows the size of the resulting model
for out-of-core build up using the MNO build up algorithm. Throughput shows the number of bytes per second that are processed during the build up stage. The
Stephansdom model (460M points) has a lower throughput then the Domitilla model, which is due to the large areas that the single scans cover in the Stephansdom
model. Table 4 shows that this results in more LRU cache misses. Finally the Attributes column shows which attributes were used for build up (p = position, ¢ =

color, n = normal, r = point radius, i = point index, s = scanposition index).

Model Attributes LRU size | MNO nodes | Nodes to mem | Nodes to mem %
Stephansdom | p,c 1,287.7MB 54,474 228,495 412%
Stephansdom | p,c,n 1,288.0MB 54,474 281,623 507%
Stephansdom | p,c,n,r,i,s 1,288.0MB 54,474 315,267 568%
Domitilla p.c 1,288.0MB 261,598 173,222 66%
Domitilla p.c.n 1,288.0MB 261,598 245,959 94%
Domitilla p.enris | 1,288.0MB 261,598 320,124 122%

Table 4: The LRU cache sizes in megabytes, the number of nodes in the final MNO, the number of nodes swapped back to memory during build up, and the
percentage of the swapped back nodes with respect to the nodes of the final MNO. The single scans in the Stephansdom model contribute to larger areas of the
model, which results in more cache misses in the build up LRU cache. Due to this more nodes have to be swapped out of and back to memory. The Attributes
column shows which attributes were used for build up (p = position, ¢ = color, n = normal, r = point radius, i = point index, s = scanposition index).

has an Intel Core2 Quad Q6600 CPU with 2.4 GHz, 4GB RAM,
a RAIDO+1 with 4 SATA hard disks running at 10.000 RPM,
and a GeForce 8800GTX with 768MB VRAM.

We build up the models with different per-point attributes
to evaluate the performance characteristics of the build-up al-
gorithm. The possible attributes are position, color, normal,
point radius, point index, and scan position index. In total these
attributes use 44 bytes per point. The tests are performed with
all or a subset of these attributes. When reading the point data
from the source files and converting them to a binary stream,
we can choose which attributes the points in the binary stream
should have. If an attribute is not available in the source data,
it is added for each point and filled with a default value. In
the resulting binary stream all attributes that the user has cho-
sen are available, and from this binary stream the MNO is then
built. The attributes position, color, and normal are so called
“meta-attributes” in our system, where we can choose which
representation they should have on disk and in memory. When
loading points from disk, during rendering the meta-attributes
can be converted to a specific representation that is suitable for
rendering, or they can be passed to the graphics card directly.

We use the Santa Claus model (16M points) and the Eph-
esos model (15M points) to test the in-core performance of our
build-up algorithm, as they fit completely in the main memory
of the computer. The models have position, color, and normal as
attributes (using 28 bytes per point). During build up, the size of
the LRU cache is at most 30% of the complete main memory.
In Table 1, we show the results for the in-core build-up algo-
rithm. The data throughput is much higher when normals are
also used with the attributes, so the traversal of the octree struc-

ture is the main limiting factor when inserting points in-core.
We can insert 1.21M points per second when using only posi-
tion and color as attributes and 1.17M points per second when
using a normal per point as well (these numbers are averaged
over both models). We compare our build up algorithm with the
algorithm presented by Wand et al. [11]. We use their XGRT
point rendering system, which is provided as open source. The
timings given for the build up in XGRT are from the console
output of XGRT. Table 2 shows the parameters used for the
data structure, the timings for the complete processing, and the
timings for the in-core build up alone. The size of the resulting
model on disk seems to be dependent on the maximum number
of objects that are allowed in the leaf nodes, and it is 2 to 3
times larger than the size of the original scan data.

For testing the out-of-core performance we use the
Stephansdom model (460M points), whose normals were es-
timated in a pre-process, and the Domitilla model (1.92 Billion
points). Table 3 shows a comparison of the build-up times of
these two models with different point attributes. The Stephans-
dom models show a similar build-up performance for the bytes
per second that are processed (from 1.25MB to 1.46MB per
second), but the Domitilla models on the other hand show a
large discrepancy. It seems that the build up of the Stephans-
dom models is limited by the number of disk accesses, but the
build up of the Domitilla models is limited by the access time to
the files on disk. Another observation is that the Domitilla Cat-
acomb models can be built with a higher build-up performance
than the Stephansdom models. The reason for this seems to be
that the single scans of the Domitilla model contribute to more
limited areas of the model, due to the narrow hallways. This



# Points | SelOct Build Time
313,010 0.08s
609,897 0.18s
2,521,201 0.79s
12,048,415 2.18s
13,248,293 2.52s

Table 5: Times needed for building a Selection Octree.

# Points | Delete Time
8660 1.85s
2,316,123 1m 19.87s
16,622,231 2m 02.66s
627,325,824 | 11m 39.05s

Table 6: Times needed for deleting different areas from the Domitilla model.

results in less LRU cache misses and less disk accesses during
build up (see Table 4).

We tested the build-up times of the Selection Octree (see
Table 5). Inserting points can be done at a rate of 5.26M points
per second. The Deselection Octree is built in the same time,
the subtraction from the Selection Octree typically lasts 20 to
80 milliseconds.

Timings for deleting points from the Domitilla model are
shown in Table 6. Deleting becomes more efficient for larger
areas, because then nodes that are completely inside the selec-
tion can be deleted immediately.

7. Conclusion

We have presented a system for interactively editing huge
point clouds which is efficient both in memory usage as well
as interaction performance. Our system uses significantly less
memory and offers higher build-up speed than previous work.
It is built on the paradigm of representing selections as separate
objects, so-called Selection Octrees. These can be built effi-
ciently and allow both manipulations on as well as segmenting
the point cloud. We also present an enhanced rendering opti-
mized out-of-core data structure for storing huge point clouds
that does not use additionally created points compared to the
original point cloud, but still offers efficient operators for insert-
ing and deleting points. The system is supported by a point-size
heuristic that displays a closed surface on a point based model
if the model is sufficiently densely sampled, and offers both
better rendering quality and the use of depth-based brushes for
creating selections.

8. Acknowledgments

This work was funded by the Austrian Research Promotion
Agency (FFG) through the FIT-IT project “Terapoints”, and by
the Austrian Science Fund (FWF) through the START project
“The Domitilla-Catacomb in Rome. Archaeology, Architec-
ture and Art History of a Late Roman Cemetery”. That project
is possible by commission and with the help of the Pontificia
Commissione di Archeologia Sacra/Roma.

10

References

(1]
(2]
[3]

Riegl Laser Measurement Systems, http://www.riegl.com/, 2010.

Zoller Frohlich GmbH, http://www.zf-laser.com/, 2010.

M. Gross, H. Pfister, Point-Based Graphics (The Morgan Kaufmann Se-
ries in Computer Graphics), Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

T. Weyrich, M. Pauly, R. Keiser, S. Heinzle, S. Scandella, M. Gross,
Post-processing of Scanned 3D Surface Data, in: M. Gross, H. Pfister,
M. Alexa, S. Rusinkiewicz (Eds.), Symposium on Point-Based Graphics,
Ziirich, Switzerland, pp. 85-94.

M. Zwicker, M. Pauly, O. Knoll, M. H. Gross, Pointshop 3D an Inter-
active System for Point-based Surface Editing, ACM Trans. Graph 21
(2002) 322-329.

M. Levoy, The digital Michelangelo project, in: 3DIM99, pp. 2-11.

M. Ginzton, K. Pulli, Scanalyze a system for aligning and merging range
data, 2002.

H. Xu, B. Chen, ActivePoints Acquisition, Processing and Navigation
of Large Outdoor Environments, Technical Report, Department of Com-
puter Science and Engineering University of Minnesota at Twin Cities,
2002.

T. Boubekeur, C. Schlick, Interactive out-of-core texturing with point-
sampled textures, in: M. Botsch, B. Chen, M. Pauly, M. Zwicker (Eds.),
Symposium on Point-Based Graphics, Eurographics Association, Boston,
Massachusetts, USA, 2006, pp. 67-73.

C. Scheiblauer, N. Zimmermann, M. Wimmer, Interactive Domitilla Cat-
acomb Exploration, in: K. Debattista, C. Perlingieri, D. Pitzalis, S. Spina
(Eds.), VASTO09: The 10th International Symposium on Virtual Reality,
Archaeology and Intelligent Cultural Heritage, Eurographics Association,
St. Julians, Malta, 2009, pp. 65-72.

M. Wand, A. Berner, M. Bokeloh, A. Fleck, M. Hoffmann, P. Jenke,
B. Maier, D. Staneker, A. Schilling, Interactive Editing of Large Point
Clouds, in: Symposium on Point Based Graphics, Eurographics Associ-
ation, Prague, Czech Republic, 2007, pp. 37-45.

M. Wimmer, C. Scheiblauer, Instant Points, in: Proceedings Symposium
on Point-Based Graphics 2006, Eurographics, Eurographics Association,
2006, pp. 129-136.

C. Dachsbacher, C. Vogelgsang, M. Stamminger, Sequential point trees,
in: Proceedings of ACM SIGGRAPH 2003, volume 22(3) of ACM Trans-
actions on Graphics, ACM Press, 2003, pp. 657-662.

R. Pajarola, M. Sainz, R. Lario, Xsplat: External memory multiresolution
point visualization, in: Proceedings IASTED Invernational Conference
on Visualization, Imaging and Image Processing, pp. 628-633.

E. Gobbetti, F. Marton, Layered point clouds a simple and efficient
multiresolution structure for distributing and rendering gigantic point-
sampled models, Computers & Graphics 28 (2004) 815-826.

A. Kalaiah, A. Varshney, Statistical geometry representation for efficient
transmission and rendering, ACM Transactions on Graphics 24 (2005)
348-373.

J. S. Vitter, External memory algorithms and data structures: dealing with
massive data, ACM Computing Surveys 33 (2001) 209-271.

V. Gandhi, J. M. Kang, S. Shekhar, Spatial Databases, Technical Report,
Department of Computer Science, University of Minnesota, Minneapolis,
USA, 2007.

S. Bruckner, M. E. Groller, Volumeshop: An interactive system for di-
rect volume illustration, in: IEEE Visualization, IEEE Computer Society,
2005, p. 85.

K. Biirger, J. Kriiger, R. Westermann, Direct volume editing, IEEE Trans-
actions on Visualization and Computer Graphics 14 (2008) 1388-1395.
Google, http://code.google.com/p/google-sparsehash/, 2010.

D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd ed.)
Sorting and Searching, Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 1998.
Microsoft, How NTFS Works,
us/library/cc781134(v=WS.10).aspx,
(2003).

[4]

[3]
(6]
(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23] http://technet.microsoft.com/en-

Microsoft TechNet Webpage



