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Abstract

Current urban building reconstruction techniques rely mainly on data gathered from either laser scans or image-

based approaches, and do usually require a large amount of manual post-processing and modeling. Difficulties

arise due to erroneous and noisy data, and due to the huge amount of information to process.

We propose a system that helps to overcome these time-consuming steps by automatically generating low-poly

3D building models. This is achieved by taking both information from point clouds and image information into

account, exploiting the particular strengths and avoiding the relative weaknesses of these data sources: While the

segmented point cloud is used to identify the dominant planar surfaces in 3D space, the images are used to extract

accurate edges, fill holes and generate textured polygonal meshes of urban buildings.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Modeling packages

1. Introduction

Fast and easy reconstruction of three-dimensional buildings

as polygonal models is highly demanded in various appli-

cations like GIS systems, cultural heritage, CAD systems

or games. Both laser scanning and photometric methods are

widely utilized in this field, providing different types of in-

put data and bringing along various kinds of artifacts.

3D point sets often have poor quality due to noise, out-

liers, or missing data which can be handled e.g. by exploiting

repeating structures [ZSW∗10]. Our system overcomes these

difficulties by reconstructing piecewise planar surfaces from

both a point set and multiple images. While point sets pro-

vide extensive 3D information, images contain more accu-

rate edges and boundaries. By combining these advantages,

our approach is suitable for quickly generating textured low-

poly 3D models of buildings in a typical urban scene.

A remarkable aspect of our reconstruction system is that

it can be used fully automatically for a wide range of archi-

tectural scenes. At the same time, it is very easy to manu-

ally intervene during the process for improved results. This

is traced back to the fact that individual steps are calculated
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Figure 1: Pipeline of our proposed method.

fast, intermediate results can be individually re-calculated,

and customizable parameters are easy to understand.

As depicted in Figure 1, our system starts with segmenting

the input points into planar clusters. A polygonal surface of

each cluster is subsequently reconstructed by a grid-based

evaluation exploiting multi-view image information, or if no
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such data is available, by a point rasterization step. Finally,

all polygons are combined to a joint, textured 3D model.

1.1. Input Data

Our reconstruction system uses a 3D point cloud and photos

with known camera parameters (image shots with position

and orientation) as input data. The points have to be oriented,

i.e. each point has a surface normal assigned. It is sufficient

to estimate the normals with a simple least squares method,

as exact object edges are extracted from the images.

The input data can be acquired by image-based structure

from motion techniques [SSS08, FP09], or by laser scan-

ners with additional, registered photos. While both capturing

methods provide a good impression of the scene to recon-

struct, common artifacts like noise, mismatches and holes

cannot be avoided due to reflective surfaces, occluders or

varying lighting conditions.

2. Point Cloud Segmentation

The goal of our point cloud segmentation is to divide the ori-

ented points into planar pieces and to remove points which

are not located on a planar surface. The point cloud is first

divided into clusters with similar surface normals and sub-

sequently according to spatial distances. Finally, all unclus-

tered points are evaluated and potentially added to an ex-

isting cluster. The segmentation is done iteratively on the

remaining points until no additional clusters can be found.

2.1. Axes Search

The segmentation process starts with the search for domi-

nant axes in the scene by evaluating all surface normals. For

typical urban scenes the segmentation is improved by fitting

predefined axis frames (90◦, 45◦ or 60◦) to the surface nor-

mals: Inaccuracies from the normal estimation are removed,

and well aligned point clusters which only contain a rela-

tively small number of points are detected. For the automatic

system we search for 45 degrees in the first iteration, then for

angles with 60 degrees and finally for the remaining domi-

nant axes without angular relations.

The axis frame fitting uses a RANSAC approach. Two

surface normals are taken randomly from the point set and

define the orientation of the selected axis frame. The quality

of a specific axis frame orientation is defined by the number

of inliers, i.e. the surface normals that are within a maximum

angle α to one of the predefined axes. Axes which have only

a small number of inliers are removed from the axis frame.

Figure 2 shows an example for a fitted orthogonal axis frame

and the corresponding inlier normals.

The orientation of the best axis frame is improved by an

iterative mean-shift [Che95] optimization step as denoted

in Equation 1, where a identifies an axis, n a normal and

Figure 2: Three orthogonal main axes have been identified

in this scene. The colored areas on the normal sphere denote

all points belonging to one axis cluster. The clustered points

are shown with the same colors in the right figure.

Rot(u,v) returns the rotation matrix between two directions.

For each axis, the mean unit vector is calculated from all

normals within angle α weighted with function w. For each

axis, the rotation to its local maximum on the unit sphere is

computed. The final transformation for one iteration step is

the weighted average of all rotation matrices, followed by an

SVD-based orthogonalization.

R = ∑
a

Rot

(

a,
∑n w(a,n) ·n

‖∑n w(a,n) ·n‖

)

·∑
n

w(a,n)

w(a,n) = (
n ·a− cos(α)

1− cos(α)
)2

(1)

The search for axes without angular relations starts with

equally spaced seed axes on the unit sphere. The number of

seeds depends on the angle α, which defines the maximum

distance for potential inliers. All initial axes are indepen-

dently optimized by mean-shift rotations, and will converge

to centroids of local clusters. Only axes with sufficiently

large clusters at their final position are accepted.

2.2. Planar Segmentation

Points with orientation close to a detected axis direction are

grouped to a cluster, wherein multiple 3D planes are fitted.

All cluster points are projected to a 1D space along the axis

direction and clustered in order to find dominant planes. De-

tected planes are fit to their cluster points with weighted least

squares. A small threshold is needed for clustering along the

axis orientation in order to prevent two planes from merging.

Subsequent to the plane search, a 2D distance based clus-

tering is performed to separate different surfaces which are

located in the same plane. The points are clustered with

single-linkage, i.e. there is a minimum distance between

any two points of different clusters. The minimum distance

threshold can be chosen less strictly, since potential holes in

a surface will be removed during polygonization.
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Figure 3: Cluster points are rasterized into a binary image.

Morphological closing is applied to remove small holes.

2.3. Point Evaluation

The previous clustering steps might miss some points due

to noisy 3D positions or erroneous normals. Therefore, the

final step of one iteration evaluates each unassigned point

and adds it to the best-suited point cluster within a maximum

distance. Similar as in Section 2.2, one threshold is used for

the orthogonal distance to the plane, and one for the distance

to the nearest point in the cluster. The remaining unclustered

points are processed in the next iteration.

3. Polygonization

The final reconstruction step generates triangle meshes for

the planar point clusters. The points are usually densely dis-

tributed, but the segment borders are not exactly defined, and

holes may occur due to missing data. We provide two differ-

ent algorithms for creating polygons: the first one only de-

pends on the point cloud itself (Section 3.1), while the sec-

ond one uses image information (Section 3.2-3.4).

3.1. Point Rasterization

Each point cluster is transformed into 2D space by projecting

it onto its fitting plane. The 2D points are rasterized in a bi-

nary image, and small holes are removed by morphological

operations (cf. Figure 3). In order to avoid rasterization arti-

facts, the points are aligned to globally dominant axes before

rasterization. These dominant axes can be taken from the cal-

culated main axes for normal segmentation (Section 2.1) or

computed by principal component analysis.

This approach is fast and has proven to be robust in our

test scenes, but artifacts in the point cloud propagate to the

final polygon mesh. It is not possible to discriminate be-

tween real surface holes and artifacts due to missing data,

and surface boundaries are often jagged. Hence, we incor-

porate image information as described in the next sections.

Nevertheless, the rasterization approach is a good alternative

for areas with missing or inferior image information.

3.2. Image Projection

The image-based surface reconstruction starts with selecting

the best suited images for each planar cluster. Depending on

the overall number of input images, two to four photos are

selected. The selection favors photos with a steep view angle

Figure 4: Nearly collinear line segments are merged and

subsequently connected to form a grid.

and a large unoccluded projection area of the planar cluster.

In practice, this is done with the help of hardware occlusion

queries and point splats.

The selected images are projected onto the slightly in-

creased bounding region generated by the cluster points in

the fitted plane. The projected images overlap correctly in

areas where the plane coincides with the real surface.

3.3. Edge Detection

The final polygons should be bounded by strong image edges

which correspond to edges located in the cluster plane. Gra-

dient images are generated from all projected images, but

high gradient values are only accepted if they occur in a ma-

jority of the images. This prevents taking edges into account

which are not located on the current plane surface. Straight

lines are extracted from the cumulated gradient image with

a Canny edge filter followed by an edge linking step.

Experiences with many test scenes indicated that edges

evoked by changes in texture are often much stronger than

edges evoked by depth changes. Another observation was

that in the case of buildings, depth changes are often aligned

to orthogonal main directions. For this reason, two perpen-

dicular main directions in the current plane image are de-

tected, and only edges along these directions are accepted.

3.4. Grid Filling

The set of line segments is simplified by merging nearly

collinear segments. Based on the resulting line segments, a

rectilinear grid is created by extending all lines to their next

intersection with another line (cf. Figure 4). The outer grid

boundary is defined by the union of all line segments and all

projected cluster points.

The point density for each cell is defined as the ratio be-

tween the number of its inlying points and its area, normal-

ized by the median density of all cells. Cells belonging to the

object surface are identified by thresholding their density. A

polygon per cluster is then created by simply transforming

the boundaries of accepted cells from 2D plane coordinates

to 3D world coordinates.

3.5. Combination and Texturing of Polygons

In the previous sections the polygonization was done for

each point cluster separately, but in most cases the individ-
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Figure 5: Results: Library and Castle-P19 (top row), Manor and Octagon(bottom row).

ual polygons have direct neighbors from other point clusters.

The overall result can be highly improved by closing gaps

and correcting intersections between neighboring polygons.

Clipping splits the geometry of

a cluster by the intersection line

of the two neighboring polygon

planes. A part is deleted if its rel-

ative size is very small, or if the

number of inlying cluster points is

very low. Merging extends the ex-

isting geometry from the polygon

border to the plane intersection line

if the relative size of the new part is

small. Both operations have very low complexity since all

polygons are planar and have a low number of triangles.

The combined polygonal 3D model is textured by stitch-

ing together the photos selected in the image projection step

(Section 3.2) using Poisson image blending.

4. Results

We have tested our approach on several input data sets. All

point clouds have been created with PMVS [FP09] from ori-

ented images. Figure 5 shows the input point cloud, the seg-

mentations and the final 3D model for each test data set. The

second data set Castle-P19 is a publicly available multi-view

test data set [SvHG∗08]. Table 1 lists the number of input

points, input images, planar segments, and the computation

time for generating the triangle meshes. The reconstructions

for the data sets Library and Octagon have been done fully

automatically, whereas for the other data sets some parame-

ters in the processing steps have been adjusted manually.

5. Conclusion

We have presented a fully automatic pipeline for generat-

ing low-poly 3d models of buildings using a point cloud and

additional information from oriented images. The method is

divided into a planar segmentation of the point cloud, and a

subsequent polygonization of the point segments. Optional

Points Images Segments Time (s)

Library 253126 21 19 91

Castle-P19 330165 19 23 105

Manor 179278 21 10 68

Octagon 560092 27 19 82

Table 1: Detailed numbers about the data sets in Figure 5.

manual interventions are very simple and do not need so-

phisticated knowledge of parameters.

Due to the coarse approximation of buildings as planar

polygons, small features are not reconstructed in detail. This

is largely compensated by the generated textures, and can

be additionally enhanced by advanced texturing techniques

such as normal or displacement mapping. Moreover, the low

geometric complexity might be desired in various applica-

tions, or a starting point for further manual modeling.
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