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1. Introduction and Related Literature

This paper is a report about a project practical course (“Pro-
jektpraktikum”) done at the Institute for Computer Graph-
ics and Algorithms of the Vienna University of Technol-
ogy. Advisor: Stefan Jeschke. The goal of this course was
to implement a texture synthesis algorithm and analyze its
performance and visual quality. Two papers form the theo-
retical foundation of this project: “Texture Optimization for
Example-based Synthesis” by Kwatra et al [KEBK05] and
“Patchmatch: A randomized Correspondence Algorithm for
Structural Image Editing” by Barnes et al [BSFG09].

1.1. Texture Optimization for Example-based Synthesis

The technique proposed in this paper [KEBK05] works on
the whole image at once. It defines a metric for similar-
ity between two images, which is called texture energy.
The algorithm then tries to minimize it iteratively. In short,
this energy compares local neighborhoods of the input tex-
ture to patches in the synthesized image (the terms patches
and neighborhoods are used interchangeably). In contrast to
region-growing methods this energy is a global metric for
the whole texture.

The texture energy is defined formally as follows:

Et(x;
{

zp
}
) = ∑

p∈X†

‖xp− zp‖2 (1)

In this notion X is the set of all pixels of the synthesized
texture and Z would be the example texture. The lower case
x and z are the vectors of the pixels of X and Z respectively.
xp and zp are vectors of length w, which contain some pixels
of x and z. These correspond to little regions in an image.
The index p indicates the pixel p which is the center of the
current patch (or region). The similarity metric works as fol-
lows: Take two patches - one of the synthesized and one of
the input texture - and take the Euclidean norm of the two.
(Basically the distance between the two vectors consisting
of w pixels) Do this for all patches of the synthesized texture

and sum up all the distances. It is not necessary to perform
these steps for every pixel, (not every pixel is the center of
a patch). Kwatra et al claimed that using only every w

4 pixel
increases both visual quality and performance. (X† is the set
of pixels of the output texture which are centers of those
neighborhoods which are taken into account with the energy
function) Image synthesis can be carried out by minimizing
this texture energy. At first an initial guess of the output tex-
ture has to be made; each neighborhood in the output texture
is assigned randomly to a neighborhood of the sample tex-
ture. After this initialization step the algorithm progresses
iteratively:

• The new output texture (x) is determined by taking all
neighborhoods of the sample texture (zp) (which are cur-
rently chosen) and combine them so that the texture en-
ergy is minimized.

• The new neighborhoods of the sample texture are com-
puted by finding the nearest neighbor of every patch in
the output texture (xp) in the sample texture.

These steps are repeated until a fixed number of times or
if the neighborhood of the sample texture does not change
anymore. The idea of not taking every pixel of the output
texture into account has two positive effects: On the one
hand it reduces the number of computations, since the near-
est neighbor search (which is quite expensive) is not used
that often. On the other hand the quality of the synthesized
texture is greater as well: By using fewer patches, each pixel
is influenced by a smaller number of neighborhoods which
produces better results when areas overlap that do not fit to
each other. As a result these regions are less blurry.
In order to improve the convergence of the optimization pro-
cess one can adapt the energy metric 1 of the algorithm:
The Euclidean norm performs similar to a least square ap-
proximation of the synthesized texture. Fitting a line in an
over-determined system is quite prone to outlier. Similarly
a single non-fitting pixel can deteriorate the speed of con-
vergence significantly. To address this problem a different
distance metric can be used: Coleman et al [CHK∗80] sug-
gested a method called “Iteratively reweighted least squares”
(IRLS) which is used by Kwatra et al. This adds a weight-
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term wp to every item in the sum of the texture energy. These
weight terms are computed for every neighborhood with for-
mula 2:

ωp = ‖xp− zp‖r−2 (2)

Et(x;
{

zp
}
) = ∑

p∈X†

ωp‖xp− zp‖2 (3)

A possible value for r would be 0.8 according to Kwatra.
The wp terms are obtained in iteration n and used in iter-
ation n+ 1 in equation 3. The energy function can be fur-
ther tweaked by weighting each pixel of a patch with respect
to its distance to the neighborhood center with a Gaussian
bell curve. Kwatra et al propose a multi-resolution synthe-
sis pipeline for further optimizations of the texture genera-
tion process: The first step would be to synthesize a coarse
texture (a texture which is bigger than the sample texture
but smaller than the desired output texture). This intermedi-
ate result gets upsampled to a higher resolution and is then
used as the input for the synthesis algorithm. Of course this
represents a much better estimation as a random assignment
and leads to a better convergence. These steps can be re-
peated until the final resolution is achieved. At each reso-
lution the synthesis can be run with different neighborhood
sizes w (first rather big patches - e.g 32x32 - and succes-
sively smaller ones - down to 8x8). The big advantage of
this approach is that large patterns and structures of the sam-
ple texture are captured by the algorithm.
The benefits of having a general minimization algorithm as
a synthesis algorithm become clear in an application of this
technique: In order to implement an additional feature la-
beled “Controllable Synthesis” the texture energy metric is
the only element (in essence) that has to be extended. The
goal thereof is that the output texture will be similar to the
appearance of the sample texture and satisfy some other cri-
terion as well. In particular they experimented with flow
fields: Instead of generating only one image, a whole se-
quence of textures is created which represents an animated
texture whose flow corresponds to the input flow field.
In general this texture optimization algorithm produces high
quality images. Both fine grained patterns and large struc-
tures are synthesized successfully. The additional method of
controllable synthesis underlines the flexibility of this opti-
mization technique, which can be applied to a wide range
of applications. The computational complexity is mainly de-
pendent on the nearest neighbor search, which is done M

w2

times per iteration. (M denotes the number of pixels of the
synthesized texture and w the size of the neighborhood) The
complexity of one NN-search call depends on w2. So even
relatively small output textures (2562) take minutes on the
CPU.

1.2. Patchmatch: A randomized Correspondence
Algorithm

The central idea behind Patchmatch [BSFG09] is an ap-
proximate nearest neighbor algorithm. This outperforms the
brute force NN-search and can be applied to many image
editing problems. Besides explaining this technique Barnes
et al analyze certain properties of images and try to exploit
those for image editing tools. Similar to texture optimiza-
tion, (and as the name suggests) Patchmatch is a patch based
algorithm that works on neighborhoods in the output texture
which refer to a neighborhood in the sample. This is advan-
tageous since the number of NN-searches is minimized. A
huge advantage of this algorithm is that it is aware of the nat-
ural structure of images. Usually images have large contigu-
ous areas, so instead of processing each pixel independently
Patchmatch tries to propagate good matches throughout the
neighborhood.
The Patchmatch NN-algorithm works as follows: The gen-
eral idea is to create a nearest neighbor field (NNF), which
stores offsets (like pointers) from one image to the other:
Given a patch-center coordinate in the output texture a and
its corresponding patch-center coordinate in the sample tex-
ture b, the offset would be b− a. These offset are stored in
the aforementioned NNF, which is basically a vector-field
with the same size as the output image A. The NN-algorithm
itself works on the NNF and tries to optimize it according
to a certain distance metric. Patchmatch consists of 3 parts:
Initialization, Propagation and Random Search. (See figure
1; the latter two are repeated until some halting criterion)

Figure 1: The three stages of the Patchmatch NN-search.
[BSFG09]

In general the Initialization works like the bootstrap
in the Kwatra paper: Each patch in the output texture is
assigned to a neighborhood in the sample image. These
evenly distributed random offsets ensure that at least some
patches have a good offset from the beginning which can
be distributed over the rest of the image in the next steps.
The original Patchmatch works sequentially for every pixel:
on odd iterations it starts on the top left corner (0,0) and

submitted to COMPUTER GRAPHICS Forum (9/2011).



Daniel Prieler / Project Practical Course 3

proceeds pixel by pixel to the bottom right corner. On even
iterations it goes the other way round from the bottom right
to the top. For every pixel it executes the Propagation and
the Random Search steps:

Propagation tries to distribute good offsets over the
image: therefore the offsets of 2 neighbors are compared to
the old offset of the pixel. So at the coordinates (x,y) the
neighbors at (x−1,y) and (x,y−1) are checked: The offsets
of the neighbors are added to the current position (x,y) to
determine a candidate neighborhood in the sample texture.
Then the distance between this neighborhood and the patch
in the output-texture centered about (x,y) is computed.
Now, the offset which has produced the smallest distance is
taken and stored in the NNF for the position (x,y). Thus,
if some patch center to the left (on odd iterations) has a
perfect matching its offset is propagated to its neighbors,
creating a coherent region. On subsequent iterations the
Propagation phase is once (on odd iterations) executed from
the left upper corner down to the right lower corner of the
image. On even iterations it reverses its direction and starts
at the bottom right corner. Therefore it checks the neighbors
at position (x + 1,y) and (x,y + 1). A possible distance
function would be the Euclidean distance between the pixels
of one patch of the sample image to the pixels of a patch of
the synthesized texture.

In order to not get stuck into minima the algorithm has a
Random Search phase: After analyzing the neighborhood
of a pixel, the found offset is compared to random selected
offsets which are computed with equation 4.

ui = v0 +wα
iRi (4)

The best offset of the Propagation phase (v0) is used as
a point of origin for computing some random pointers into
the sample texture: ui is the new candidate vector, w denotes
the maximal image dimension and R is a random vector be-
tween [−1,−1] and [1,1] and α is a miniaturization factor
(typically 0.5). In other words it chooses a candidate off-
set by looking for a random vector in starting at offset v0 in
a search window which has the size of the whole sample-
image (at the beginning) and halves every iteration. This is
done until the search window is below one pixel. Like in the
propagation phase, the candidate offsets are tested with the
distance function against the original offset.
These steps lead to fast convergence of the NNF; accord-
ing to Barnes et al 4-5 iterations suffice in most cases. The
reason for this is that good offsets are passed on to other pix-
els across the image. The only prerequisite is that there are
at least some good offsets after the initialization step. Even
though it is very unlikely that a specific pixel gets a good
offset, there is a good chance that at least one patch receives
a perfect match: Given two images A and B (size of A =

size of B = M), the probability that one specific patch has a
good offset would be 1

M . Therefore the chance that no sin-
gle pixel out of M has a good offset would be (1− 1

M )M . So
for large M the probability that at least one pixel is assigned
to a good offset is 1− (1− 1

M )M , which converges to 1− 1
e ,

which is approximately 63.2%. Furthermore the probability
of at least one correct assignment during the Random Search
phase is 1− (1− C

M )M (where C denotes the number of pix-
els around a patch center) which is relatively high. The com-
plexity is substantially smaller than with a naïve brute force
NNF: Propagation is O(M ∗ p2) (where p is the width of a
patch), random search is O(M ∗ lg(M) ∗ p2). This is a mas-
sive speedup compared to O(p∗M2), especially with bigger
images (big values for M).
This approximation NNF-algorithm performs reasonably
well for real-world images. Problems which do not need a
perfect nearest neighbor match such as image retargeting,
reshuffling and image completion are ideal areas of appli-
cation for this technique. Barnes et al mention a GPU im-
plementation which executes the algorithm in parallel. Of
course certain adjustments have to be done since the algo-
rithm, especially the Propagation phase is a sequential prob-
lem. According to them the implementation running on a
graphics card is about 7 times faster than on the CPU, which
on the other hand should be about 20 times faster than pre-
vious approaches.

2. Implementation

The overall aim of the project was to implement the Patch-
match nearest neighbor search (optionally like the CPU-
implementation proposed in the paper) as a parallel algo-
rithm on the GPU. It then should be used for texture syn-
thesis, similar to the texture optimization method proposed
by Kwatra. Due to the fact that the randomized NN-search
is much more efficient than the brute force implementation
used by Kwatra high performance gains are expected. But
in contrast to the global texture optimization technique the
Patchmatch algorithm does not optimize the whole image at
once but only on patch level. This will produce certain arti-
facts and in general a lower visual quality.
The major problem implementing the Patchmatch algorithm
on the GPU was to parallelize the Propagation phase: In the
Patchmatch NN-search each pixel tries to improve its offset
by looking at its two neighbors. After finding the optimal
solution in this tiny neighborhood the next pixel can rely on
the fact that its predecessor has the best offset it can get (at
least in this iteration in the Propagation phase). If run as a
pixel shader, every pixel gets processed in parallel. There-
fore, a pixel can only evaluate its neighbors offset of the last
iteration. But the problem is that after the iteration the neigh-
bors may already have a different offset. So the offsets are
not necessarily coherent over a certain region. The Random
Search algorithm is not as bad, since it does not rely on the
closest neighborhood. This phase may determine an offset
which is relatively far away from the current pixel, so it is
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Figure 2: Left side whithout seed-initialization, right side with seeds

no problem if they do not share the same offset after a spe-
cific iteration.
A possible approach is to extend the search space during
the propagation phase for every pixel. Instead of just check-
ing offsets in a certain direction (e.g. only left and upper
neighbor pixel) a whole neighborhood around every pixel
is analyzed. Barnes et al suggested using the jump flood
scheme [RT06]. Instead of testing every pixel in a - for ex-
ample 8x8 - neighborhood only certain pixels depending on
their logarithmically distance from the center are checked.
This ensures that the closest neighborhood is inspected thor-
oughly; the outer regions are sampled in a more sparse way.
Of course this method does not eliminate the aforementioned
problem of the parallel Propagation phase but it ensures that
a quite large area is checked in each iteration. This is nec-
essary for the actual propagation of good offsets: In the se-
quential case a perfect offset can be carried over the whole
image in a single iteration. In this parallel approach a pixel
can adopt a possible perfect offset only if it is within its reach
- the search space of the propagation phase. (Of course it
could randomly hit a perfect match during the random search
phase but this is not guaranteed.) So the worst case propaga-
tion speed of a perfect offset would be the width of the search
space per iteration.
During evaluating the implementation a certain behavior
could be observed: Even though the output texture was ini-
tialized with random offsets covering the whole sample im-
age, the algorithm got stuck at some parts of the input tex-
ture. This effect increases if the sample image has relatively
large contiguous areas: (See image 2) In this case many dif-
ferent patches of the output texture tend to point to those ar-

eas in order to minimize their own distance. Since the global
distance of the whole image is not taken into account this
leads to very bad synthesis results.
Instead of assigning only random offsets to the nearest
neighbor field some seeds were planted into the synthesized
texture: In this case seeds are pixel that are fixed and should
not move during the synthesis process. These seeds are also
distributed randomly across the image (typically with a prob-
ability of 0.001) During the NN-search the seeds are guaran-
teed to contribute to the patch distance with a negative num-
ber. Therefore patches that contain seeds have a very low
distance and pass on their offsets. The overall effect of this
method is that there are fixed points in the output texture and
the rest of the image has to adjust itself them. The density of
seeds affects the quality of the synthesized texture and can
be tweaked according to the size of the patterns in the input
image. This procedure ensures (probabilistically) that a wide
range of different areas of the input sample are in the output
texture.

3. Results

The overall visual quality of the synthesized textures is de-
pendent on the size of the patterns contained in the input tex-
tures. This method tries to form patches (contiguous regions)
and propagate their offsets to other pixels. In contrast to Tex-
ture Optimization this technique does not work on the global
image: The neighborhoods are not aware of their neighbors
and do not take them into account during the iterations.
Figure 2 demonstrates the difference between synthesis with
(right) and without (left) seeds: In the left image the algo-
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Figure 3: meshwork; left without seeds, right with seed-initialization

Figure 4: levoy-pattern; hard seams between patches defined by random seeds on the right side
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Figure 5: The right picture is an error map of the left synthesized texture.

rithm found a certain patch in the sample image which fitted
very well to the majority of the output-patches. Once stuck
in this state, it won’t try other patches because its distance is
already vanishingly small. On the right side the synthesized
texture was initialized with about 1100 seeds (at a resolution
of 10242) which produced a drastically better result. In this
case the algorithm was run twice as often on the left side as
on the right. This effect is even greater with input images
with large contiguous areas. Textures with a regular pattern
benefit from the fixed seeds as well. This is demonstrated in
figure 3 which consists of a regular meshwork.

The drawback of this technique is that the patches around
a seed are fixed before the actual synthesis procedure and
will not change their position. This leads to regions which
do not fit to each other and seams between adjacent patches.
Figure 5 illustrates this problem: White areas in the error
map are pixel regions which fit well to each other (= the
distance of this patch is quite small). The grey and darker
pixel indicate a greater patch distance, mismatches between
neighborhoods. Thus, the algorithm sometimes produces
slightly better results without seed initialization. Figure 4 is
an example for this effect: The borders between neighbor-
hoods are clearly visible and produce unpleasent seams in
the output texture (right side). Without seeds, the image has
an overall blurry impression but does not have sharp borders
between patches.
In figure 6 the Patchmatch synthesis is compared to an im-
plementation of Kwatra’s Texture Optimization. Both im-
ages (5122) are created using a 642 input sample. This partic-
ular sample texture is quite hard for patch-based synthesis al-
gorithms due to the distinct lines which should be consistent

over the whole image. Kwatra’s method produces blurred ar-
eas where those lines do not fit together. The texture gener-
ated with the Patchmatch algorithm has clearly visible bor-
der areas between patches with incorrect pixels. The visual
quality of Kwatra’s method is in general better: The syn-
thesized textures have a more consistent appearance and the
neighborhoods blend into each other much better.

Figure 7: incorrect pixels between patches

When using the Patchmatch algorithm, the borders be-
tween patches often have certain pixels that converge very
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Figure 6: Comparison of an implementation of Kwatra’s method (left) with Patchmatch-synthesis (right)

slowly. Due to the parallel implementation, a pixel near the
border of two patches changes its offset in each iteration:
In one iteration it may adopt the offset of a neighbor x and
in the next iteration (in the meantime the other pixels have
changed as well) from a different neighbor. Some of the
neighbors have a similar behavior, which causes the general
low convergence in those areas. Figure 7 shows a detail from
a hearts-pattern. The wrong pixels in the center are clearly
visible and are corrected very slowly (this is the result after
30 iterations).
The major advantage of this texture generation method is the
execution speed. Especially with bigger textures it is much
faster than the Kwatra implementation. Synthesizing a 5122

texture takes about 15.8 seconds with the Kwatra-method
and about 10.3 seconds with the Patchmatch (about 25 itera-
tions). The difference gets bigger with the size of the synthe-
sized textures: One Patchmatch iteration for a 10242 texture
takes about 0.8 seconds. Without the seed-initialization the
shader execution time is slightly better (about 0.7 seconds).
In most cases the nearest neighbor field converges after 20-
30 iterations. A 10242 texture takes 52.5 seconds with Tex-
ture Optimization, so at this resolution the Patchmatch is ap-
proximately twice as fast. The algorithms were tested on a
Nvidia GTX 570.

4. Texture Tool

The texture tool which was used for synthesizing the shown
images is an application which starts as a console applica-
tion (see figure 9). There the name of the input file has to be
specified. (The file itself should be in the /Media/ folder of
the application) Afterwards it can be specified if the texture

should be synthesized with the Patchmatch algorithm or with
an implementation of Kwatra’s Texture Optimization. Then
the application sets up a DirectX context and opens an addi-
tional window (see image 10). The main frame of this win-
dow is used to display a texture (output texture by default);
on the right there are 5 GUI-elements: The slider is used to
change the tiling-rate. If it has a different value than 1, the
current texture is tiled according to the value of the slider.
If the checkbox below is activated the image which is used
for the current synthesis procedure is shown. The upper but-
ton switches between the output texture and the error map.
Right below, the button labeled “Next pass” invokes the next
Patchmatch-iteration. Note that if not using the Patchmatch
algorithm all three buttons have no effect at all. The last but-
ton simply batches 9 iterations. The last generated texture is
saved in the /Media/ folder with the name “testOutput.jpg”.

Figure 9: Command line interface

submitted to COMPUTER GRAPHICS Forum (9/2011).



8 Daniel Prieler / Project Practical Course

Figure 8: Two different wall textures generated from a 1282 sample to 10242

Figure 10: Main window of the Texture Tool
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