Screen -Space Triangulation for
Interactive Point Rendering

Reinhold Preiner

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Motivation

= High-quality point rendering mostly implies some
kind of continuous surface reconstruction

= Using Point Properties for rendering
= point normals (local surface orientation)
= splat radii (connectivity)

Motivation

= Huge point clouds: time-consuming Preprocessing

i1

f - | Dar’
| / ¢
f J,I y ——

s St. Stephans Cathedral Domitilla Catacomb
460 Million Points 1.9 Billion Points
Normal Est.: ~ 17h Normal Est.: ~ 21h

Motivation

m Can we achieve comparable quality on rendering without
precomputed attributes?

s > Our Approach: Reconstruct normal and connectivity info
on-the-fly during rendering in screen-space on the GPU

s Advantages
= No time-consuming preprocessing
s Saves memory for storing attributes (normals, radii)

» Rendering/Reconstruction independent from data layout
(Hierarchical, Out-Of-Core, ...)

s Possible Applications
s Fast on-site preview of scanned point clouds
= Instant rendering of 4D point streams

3 |

Overview of Our Approach

= |nput: Point data projected to screen
= Position
= Color (optional)

s Output: Reconstructed frameI buffers
= Depth
= Normal
= Color (optional)
v

m Use for further deferred shading,
illumination, ...

Surface reconstruction - FAQ

= Given a surface sample = which X S
neighbors to use for reconstruction? .

= KNN, FDN, ...
m robust statistics, LMS ...

Surface reconstruction - FAQ

= Given a surface sample = which ¢ « °
neighbors to use for reconstruction?

= KNN, FDN, ...
m robust statistics, LMS

= Given a local neighborhood - how to reconstruct surface?
m surface fitting, forward search, ...

Surface reconstruction - Our Approach

= Given a surface sample = which
neighbors to use for reconstruction?

= KNN, FDN, ...
m robust statistics, LMS ...

-> Screen-Space Nearest Neighbor Search

= Given a local neighborhood - how to reconstruct surface?
m surface fitting, forward search, ...

-> Normal Estimation & Triangulation

-> Screen -Space Nearest Neighbor Search

Input:
= projected point buffer
= Initial search radius r

How to quickly find and store k nearest neighbors of
each point Q in the input buffer?

Divide screen space region around Q in 8 segments

Storing nearest neighbor
of each segment in
2 RGBA Textures

Neighbor Tex 2

R2|G2[B2 | As

R1]G1|BiAs

Neighbor Tex 1

\
’
N %
7/
\\ ,
8 L]

= Pass 1: for each P;, render search splat of radius r
= Store min. world space distances d;, at pixel Q
m Pass 2: Render Search Splats P;again
= Compare distance P,Q with saved d.

-> Screen -Space Nearest Neighbor Search

Neighbor Tex 1

.,

Q

2

- Normal Estimation

= Lookup the neighbor points and calculate normal

Neighbor Tex 2

R2 Gz Bz A2

R1|[G1|B1|A;

Neighbor Tex 1

Neighbor Buffers

Poin Normal Buffer

Point Position Buffer

o %

-> Triangulation

= Triangulation in Geometry Shader

Sparse Input Buffers Neighbor Buffers Final Buffers

R2| G2 B2 | Az

Depth

_ IR

Color

Depth Buffer

1+1

\\ Input Points Depth Culled Input Pointsj

; %

Search Radil

= Maintain a search radius buffer
= Adapt radii over time

= Start with initial search radius r,
m Define increase factor a > 1

= Frame I
If #neighbors too small (e.g. < 3)
lpg =1 O
else

r.,; = max(distance(neighbor ,)),k=1...8

. *

Algorithm - Summary

1) Project points to screen

= Depth cull with depth buffer
from previous frame

2) Update search radii

3) Perform neighbor search
4) Normal estimation

5) Triangulation

Results

Comparison to point splatting

15 .

Results

Gauss Splats (Precomputed)

Results

Normalestimation only locally = noise sensitive

precomputed Normals

k

Conclusion / Outlook

= Interactive rendering without precomputation
» Quality comparable to Gauss splats

= Drawbacks
= Temporal Coherence Artifacts, Flickering
= Some degrees of freedom (r, o)
= Normal estimation only local

= Future Work
» Introduce denoising of normals by geometry-aware filter
= Estimate absolute radii per frame (get rid of TC, r, and a)
m —> Instantly estimate good splat radii > Gauss splatting?

’ #*

