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Motivation

= High-quality point rendering mostly implies some
kind of continuous surface reconstruction

= Using Point Properties for rendering
= point normals (local surface orientation)
= splat radii (connectivity)



Motivation

= Huge point clouds: time-consuming Preprocessing
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s St. Stephans Cathedral Domitilla Catacomb
460 Million Points 1.9 Billion Points
Normal Est.: ~ 17h Normal Est.: ~ 21h



Motivation

m Can we achieve comparable quality on rendering without
precomputed attributes?

s > Our Approach: Reconstruct normal and connectivity info
on-the-fly during rendering in screen-space on the GPU

s Advantages
= No time-consuming preprocessing
s Saves memory for storing attributes (normals, radii)

» Rendering/Reconstruction independent from data layout
(Hierarchical, Out-Of-Core, ...)

s Possible Applications
s Fast on-site preview of scanned point clouds
= Instant rendering of 4D point streams
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Overview of Our Approach

= |nput: Point data projected to screen
= Position
= Color (optional)

s Output: Reconstructed frameI buffers
= Depth
= Normal
= Color (optional)
v

m Use for further deferred shading,
illumination, ...




Surface reconstruction - FAQ

= Given a surface sample = which X S
neighbors to use for reconstruction? .

= KNN, FDN, ...
m robust statistics, LMS ...



Surface reconstruction - FAQ
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neighbors to use for reconstruction?

= KNN, FDN, ...
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= Given a local neighborhood - how to reconstruct surface?
m surface fitting, forward search, ...



Surface reconstruction - Our Approach

= Given a surface sample = which
neighbors to use for reconstruction?

= KNN, FDN, ...
m robust statistics, LMS ...

-> Screen-Space Nearest Neighbor Search

= Given a local neighborhood - how to reconstruct surface?
m surface fitting, forward search, ...

-> Normal Estimation & Triangulation



-> Screen -Space Nearest Neighbor Search

Input:
= projected point buffer
= Initial search radius r

How to quickly find and store k nearest neighbors of
each point Q in the input buffer?

Divide screen space region around Q in 8 segments

Storing nearest neighbor
of each segment in
2 RGBA Textures
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= Pass 1: for each P;, render search splat of radius r
= Store min. world space distances d;, at pixel Q
m Pass 2: Render Search Splats P;again
= Compare distance P,Q with saved d.

-> Screen -Space Nearest Neighbor Search

Neighbor Tex 1

.,

Q

2



- Normal Estimation

= Lookup the neighbor points and calculate normal

Neighbor Tex 2
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-> Triangulation

= Triangulation in Geometry Shader

Sparse Input Buffers Neighbor Buffers Final Buffers
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Depth Buffer
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Search Radil

= Maintain a search radius buffer
= Adapt radii over time

= Start with initial search radius r,
m Define increase factor a > 1

= Frame I
If #neighbors too small (e.g. < 3)
lpg =1 O
else

r.,; = max( distance(neighbor ,)),k=1...8
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Algorithm - Summary

1) Project points to screen

= Depth cull with depth buffer
from previous frame

2) Update search radii

3) Perform neighbor search
4) Normal estimation

5) Triangulation




Results

Comparison to point splatting
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Results

Gauss Splats (Precomputed)




Results

Normalestimation only locally = noise sensitive

precomputed Normals
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Conclusion / Outlook

= Interactive rendering without precomputation
» Quality comparable to Gauss splats

= Drawbacks
= Temporal Coherence Artifacts, Flickering
= Some degrees of freedom (r, o)
= Normal estimation only local

= Future Work
» Introduce denoising of normals by geometry-aware filter
= Estimate absolute radii per frame (get rid of TC, r, and a)
m —> Instantly estimate good splat radii > Gauss splatting?
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