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Fig. 1. Interactive ray-casting of the temperature distribution in an exhaust manifold that was simulated using a state-of-the-art CFD
solver on a complex grid composed of general polyhedral cells. Red color indicates warm, green cool regions. The complex structure
of the underlying mesh is illustrated through cell faces. The cells in this mesh are not only tetrahedra or other predefined cell types,
but also are very general, often non-convex, polyhedra with non-planar faces, which our approach can nevertheless visualize directly.

Abstract—This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the
need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have
an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids
in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing
such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting
using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face
records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a
mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This
bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with
real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages.

Index Terms—Volume rendering, unstructured grids, polyhedral grids, GPU-based visualization.

1 INTRODUCTION

Unstructured grids are a very important representation for volume
data, such as the results of computational fluid dynamics (CFD) sim-
ulations computed using finite volume methods. Over the years, the
complexity of the grids produced by state-of-the-art meshers and sim-
ulation packages, such as OpenFOAM [2] or STAR-CCM+ [3], has in-
creased tremendously. The volume meshes used nowadays in complex
multi-physics simulations, for example, consist not only of an arbitrary
combination of fixed cell types, such as tetrahedra, hexahedra, and oc-
tahedra, but contain a significant number of essentially arbitrary poly-
hedral cells. These cells can have an arbitrary number of faces, each of
which can consist of an arbitrary number of vertices. Cells can be non-
convex and even degenerate, while their faces can be non-convex and
non-planar. Moreover, different regions of a mesh are often generated
using different meshing strategies. Taking all of these properties into
account in visualization systems has become very important. How-
ever, most existing unstructured-grid visualization-methods are con-
strained to tetrahedral meshes for performance reasons and simplic-
ity of implementation. Thus, these approaches have to tetrahedralize
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more complex grids before visualization. However, for meshes with
complex cells, the increased number of cells resulting from tetrahe-
dralization is a significant burden for visualization performance and
memory usage. Moreover, a given tetrahedralization is not unique and
introduces linearization artifacts when interpolation is used, since the
original cells are split up into separate, piecewise linear constituents.

Existing visualization systems that are not constrained to just tetra-
hedra still only support a small number of convex cell types [32], or
essentially perform point splatting [48]. In this paper, we introduce
the first interactive visualization approach for extremely complex un-
structured grids, which takes into account all of the properties of state-
of-the-art volume meshes outlined above.

A major practical problem of complex meshes composed of general
polyhedral cells is that their representation requires very flexible data
structures. In order to be able to traverse these data structures for inter-
active visualization, e.g., during ray-casting, a lot of additional infor-
mation is usually stored. Commonly, efficient traversal of mesh topol-
ogy is facilitated by using both per-cell information, e.g., a list of faces
a cell is composed of, as well as per-face information, e.g., pointers to
the cells a given face connects. All this information consumes a signif-
icant amount of memory and book-keeping overhead for meshes with
general polyhedral cells. In principle, either one of these two types of
information is redundant. Nevertheless, it is usually incorporated for
performance reasons. In contrast, as a basis for a variety of interactive
visualization algorithms, we propose a very compact representation
for such grids, which is purely face-based while still allowing for ef-
ficient traversal. Building on this data structure, we have developed a
very flexible, interactive GPU ray-casting method. We note that, for
similar reasons, state-of-the-art volume meshers have also switched to



purely face-based grid representations [2, 3]. In this regard, our contri-
bution is the development of an augmented face-based data structure
that is almost as compact as these original mesh representations, but
whose goal is efficient visualization instead of raw data storage. In
summary, the main contributions of this paper are:

• A very compact, purely face-based data structure for complex
unstructured grids composed of general polyhedral cells. This
TSFSL representation specifically targets direct visualization al-
gorithms, such as ray-casting, not only raw data storage.

• A very efficient GPU ray-casting approach that operates directly
on the proposed TSFSL representation, with full support for do-
main decomposition (in this work, using a kD-tree and bricking).

2 RELATED WORK

We discuss previous work in two distinct fields of research. First, our
novel volume rendering approach for arbitrary unstructured grids is
related to a multitude of volume visualization methods. Second, our
method is based on a novel grid representation, which in turn is related
to research conducted in the corresponding research areas.

Unstructured-grid volume-rendering: Unstructured grid render-
ing approaches can be categorized as either object-order methods that
iterate over the cells of a mesh, or image-order methods that accumu-
late data for each image pixel. Both classes require different mesh rep-
resentations. The Projected Tetrahedra algorithm [36], which is the ba-
sis of many object-order techniques, does not require connectivity in-
formation between neighboring cells. However, the sorting step neces-
sary to composite individual cells in visibility order is very costly. This
has resulted in several approaches that improve sorting performance
by utilizing cell-to-cell connectivity information [37, 38, 47]. Object-
order methods such as HAVS [11] instead utilize a hybrid CPU/GPU
sorting scheme, or avoid sorting by using special order-independent
optical models [43, 48], and thus do not require storing cell connectiv-
ity. With the exception of complex approximation techniques [30], all
these methods are limited to tetrahedral grids. Image-order approaches
such as ray-casting [16, 42] compute the final image pixel by pixel, by
casting viewing rays through the mesh. For rendering performance,
cell-to-cell connectivity information is used to traverse the grid. Thus,
no sorting step is necessary, which compensates for the slower ren-
dering performance of ray-casting. However, since cell-to-cell con-
nectivity is required to traverse the mesh, memory consumption has
always been a limiting factor of these methods. Therefore, differ-
ent data-organization schemes have been developed to minimize the
memory footprint [13, 31, 44]. Marmitt et al. [28] provide a more de-
tailed overview of ray-casting techniques. Since some ray-casting and
cell-projection approaches require a convex volume boundary, convex-
ification methods have been proposed [22, 34]. We avoid the need for
this by employing a method similar to depth peeling [6, 14, 44].

All mentioned rendering methods target tetrahedral grids and can-
not easily be generalized to polyhedral cells, which have become
increasingly relevant in state-of-the-art simulation packages [1, 3].
Thus, several approaches have been developed to deal with more com-
plex cell types. Callahan et al. [10] propose a level-of-detail extension
to HAVS that selectively removes triangles from a tetrahedral grid.
The resulting mesh comprises polyhedral cells and can be rendered
by using piecewise linear interpolation. Contrary to the proposed ap-
proach, HAVS does not support more complex interpolation methods
because only face-to-vertex connectivity information is stored. Lévy
et al. [26] extend the half-edge data structure by incorporating addi-
tional links for representing general polyhedral cell complexes in a
Circular Incident Edge List (CIEL). They propose isosurface extrac-
tion, as well as slice-based volume rendering algorithms, using CIEL.
The main drawback of the CIEL data structure is the high memory
consumption of storing half-edges with additional links, as stated by
the authors. Additionally, parallelizing CIEL-based volume rendering
is difficult, because a single global active edge list has to be maintained
during rendering. Adaptive sampling of grid cells of different sizes is
also not possible. This is a significant limitation, since the cell sizes
in unstructured grids used for simulation can vary by several orders of

magnitude. Muigg et al. [32] have introduced the first GPU ray-caster
that renders more general cells directly. However, for reasons of mem-
ory addressing and alignment, their overall data layout targets grids
with only a small number of different cell types. Cell faces are also
limited to triangles or planar quadrangles, and only convex cells are
supported. Space-time discontinuous Galerkin simulations are based
on even more complex grids containing non-convex curvilinear cells.
Üffinger et al. [39] have proposed a volume rendering algorithm for
such grids and the corresponding simulations, which not only contain
a simple scalar value but a polynomial of varying degree per cell. This
polynomial representation allows for using fewer cells to resolve spa-
tially small features. However, that work focuses mainly on solving
problems related to the polynomial representation of the scalar data
volume and uses a very basic grid representation. Resampling tech-
niques create a regular [46], or semi-regular [35], grid representation
from the original unstructured volume that can be rendered efficiently.

In order to tackle large data volumes, and for parallel render-
ing, many approaches developed for structured grids employ a spa-
tial subdivision scheme such as octrees [7, 24, 45]. Such brick-
ing methods have also been applied in the context of unstructured
meshes [32, 33, 40]. Progressive rendering and streaming is also used
to cope with large grids [9]. Besides GPU-based unstructured-grid
rendering-approaches, highly optimized CPU algorithms have also
been developed for volume rendering of scalar data defined on tetra-
hedral [17] and hexahedral grids [29], as well as point clouds [12].

Unstructured-grid representations: Data structures for represent-
ing 2D regular complexes, such as the winged-edge data-structure [5],
and the half-edge data-structure [41], are the foundation of many vol-
umetric mesh representations (see Kettner [21] for an overview). Both
CIEL [26] and the data structure proposed by Bru and Teillaud [8]
are direct extensions of half-edges to 3D grids. The former is highly
optimized for isosurface extraction and slice-based volume rendering,
and stores redundant linking information in order to speed up traver-
sal. The latter is an extensible general purpose data structure, which
stores only one additional link per half edge in a minimal configu-
ration. However, if necessary, additional linking information can be
stored per face, vertex, cell, and half facet. There are two major draw-
backs of using such data structures for GPU ray-casting. First, the use
of an explicit half-edge representation increases the memory footprint,
because 2n+m half-edges per edge have to be stored and addressed
(with n and m being the number of internal and external faces incident
to an edge, respectively). This increased memory consumption does
allow for greater flexibility with regard to edge-based queries. How-
ever, these are not required for ray-casting methods. Instead, for ray-
casting one needs fast access to all faces of each cell. This is the sec-
ond drawback of half-edge representations: In order to sequentially ac-
cess all faces of one cell, without adding additional data, all half edges
of that cell must be traversed. This requires using a stack or queue, as
well as a way of marking already visited half-edges (e.g., a hash ta-
ble), since the underlying half-edge graph contains an arbitrary num-
ber of cycles. This is especially problematic for GPU-based visualiza-
tion. There are also grid representations that are specifically targeting
meshes from numerical simulations (e.g., CFD or FEM), which often
contain only a limited number of cell types. For example, Alumbaugh
and Jiao [4] propose an array-based half-face data structure (AHF),
which is capable of representing such volumetric meshes. Similarly
to our work, half faces corresponding to one cell are packed in mem-
ory in order to reduce the number of necessary links. However, the
lack of flexibility with respect to cell types (only a predefined set with
small variation in face count should be used), and the need to utilize
additional cell-to-vertex connectivity-data, makes the AHF mesh rep-
resentation unsuitable for coping with more general polyhedral grids.
The simplest type of unstructured mesh contains only tetrahedral cells.
Mesh data structures optimized for this case are highly efficient with
respect to memory used per tetrahedron. Examples include tetrahedral
strips [44], the Compact Half Face (CHF) data structure [23], and its
extension proposed by Gurung and Rossignac [18]. Since such algo-
rithms exploit topological properties of tetrahedral cells, a straightfor-
ward generalization to arbitrary polyhedra is not possible.
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Fig. 2. Comparison of the most common representation of unstructured grids (a), with our basic TSFL (b) and extended TSFSL (c) data structures.
In (a), for every cell a list of faces is stored, and every face stores which two cells it connects. In contrast, our data structure (b) stores only faces
and two links per face, completely avoiding explicit per-cell storage. These two links reference the next face of the cell in front of the face ( ffl), and
behind the face ( fbl), respectively. The face normals are indicated by red arrows in the figure. Additionally, each link requires a boolean flag ( fff , and
fbf , respectively) to indicate whether the cell is in front or behind of the next face that it is linked to. Here, blue and green colors indicate the front
and back half spaces, respectively. Figure 6 gives pseudo code for efficient traversal of the TSFSL data structure, shown in (c), during ray-casting.

3 POLYHEDRAL GRID REPRESENTATION

In order to develop an efficient representation and corresponding data
structure for arbitrarily complex polyhedral grids, we first consider the
basic requirements that such a representation has to support. The most
important operation is efficient traversal of the grid topology, for ex-
ample marching from cell to cell along a given ray in ray-casting. For
this, one has to be able to determine which cells are intersected by a
ray in what order. To achieve this efficiently, all state-of-the-art un-
structured grid ray-casters rely on an adjacency graph of cell-face-cell
connectivity (see Figure 2(a)). One must also be able to obtain sample
values at arbitrary positions within each cell via interpolation. In tetra-
hedral meshes, this can naturally be done via barycentric interpolation.
For more complex polyhedra, mean value interpolation [15, 20] can be
used. This, however, requires data from all faces of the enclosing cell
for every sample. Finally, determining the entry face through which a
ray enters the mesh must be efficient. Current unstructured-grid ray-
casting-methods usually achieve this by using GPU rasterization of the
mesh boundary, storing a face ID in each pixel.

Thus, our representation must support the following operations:

1. Query all faces of an individual cell: Provide efficient means for
enumerating all faces of a given cell.

2. Query neighboring cell across a face: Given a cell and one of its
faces, enable fast access to the neighboring cell across this face.

These fundamental operations are not only sufficient for ray-casting,
but for all algorithms that require traversing the grid from cell to cell
in some order. Examples include the computation of stream, path, and
streak lines or surfaces, vortex-core extraction-techniques, and many
other visualization algorithms. With the exception of tetrahedral strips
and CIEL, all data structures used by previous ray-casting approaches
employ an explicit cell representation. This is simple and efficient
for tetrahedral grids, where each cell has four vertices and four faces.
When the number of faces per cell is not constant, however, a more
complex representation must be used in order to allow each cell to
contain an arbitrary number of links to faces comprising its boundary.

3.1 Standard Unstructured-Grid Representation
Figure 2(a) illustrates the most common data structure for representing
unstructured grid topology. This example depicts three cells composed
of six faces in total, where each face knows which two cells it connects
(face-to-cell connectivity, column ”Faces”), and each cell knows all of
its comprising faces (cell-to-face connectivity, column ”Cells”). With
this information, querying all faces of an individual cell, as well as
traversing from one cell through one of its faces to its adjacent cell, is
trivial. Note, however, that only one of the two types of connectivity
is really required to represent the entire mesh and to allow reconstruc-
tion of the other type. In principle, it is trivial to reconstruct face-to-
cell information from cell-to-face information, and vice versa. The
advantage of storing redundant connectivity is that it allows for fast
cell-face-cell traversal, which is crucial for many visualization algo-
rithms. Thus, the trade-off is sacrificing memory for higher traversal

performance. Naturally, for complex cells the memory footprint of
redundant topology information rises rapidly.

3.2 TSFL/TSFSL Unstructured-Grid Representation
In contrast to the standard representation outlined above, the flexible
data structure we introduce in this paper does not store any redun-
dant connectivity information at all. However, it still allows for very
efficient grid traversal and supports the two required fundamental op-
erations described above. This is achieved by representing all con-
nectivity through lists of faces comprising the mesh, without any ex-
plicit cell representation. Furthermore, we have separated the actual
face-geometry data, such as how many and which vertices make up a
face, from the representation of mesh topology. This enables a very
compact representation of polyhedral meshes generated by different
meshing approaches that employ a wide variety of cell characteristics.

3.2.1 Two-sided face lists (TSFL)

We only store mesh faces, and exploit the fact that each face has at
most two adjacent cells. Therefore, if we think of linking all faces
of a given cell together, then any given face can be a part of at most
two separate face lists. That is, a face is part of two face lists when
it connects two cells, or is part of only a single face list when it is a
boundary face. Therefore, it is sufficient to reserve only two link fields
per face, including some additional information per link as described
below. Because of the two sides of each face and their respective lists,
we call the resulting data structure Two-Sided Face Lists (TSFL).

Face links: Consider Figure 2(b), which depicts six faces, each of
which has two links to other faces. The front link ffl links to another
face of the cell located in its front half space; the back link fbl links
to another face of the cell in its back half space. Each cell is then
only represented implicitly as one cycle in the directed graph whose
vertices are the cell faces, and whose edges are these front and back
links, respectively. This representation has obvious similarities to the
winged edge data structure for surface meshes [5]. However, instead
of linking edges in adjacency order, we link the faces comprising a
cell in arbitrary order, storing only minimal linking information that
is sufficient to support the two queries required above. This arbitrary
linking differentiates TSFL from other half-edge/face data structures,
where each link represents a specific geometric relation.

Face link flags: In order to enumerate all faces of a cell, the front
and back links alone are not sufficient. For example, consider enumer-
ating the faces of the cell in front of face f in Figure 2(b). At every
step of following a face link, one has to know whether to follow the
front link or the back link, respectively. It is not possible to orient face
normals consistently with respect to every cell. This problem can be
solved by augmenting every link field with a boolean flag that indi-
cates whether the cell whose faces are being enumerated is in the front
or back half space, respectively, of the face that the link refers to.

Cell-face-cell traversal: The TSFL representation, consisting of
the per-face front link ( ffl) with its boolean flag ( fff ), and the per-face
back link ( fbl) with its boolean flag ( fbf ), is sufficient for complete



enumeration of all faces of any cell in the entire mesh, and for travers-
ing from any cell across any of its faces to the respective adjacent cell.
That is, cell-face-cell traversal is performed by intentionally following
the link corresponding to the opposite half space of a face, thus step-
ping from the cell on one side of the face to the cell on its other side.
In the remainder of this paper, we will further use the notation that the
two values that the two boolean flags ( fff , fbf ) can assume are + and
−, to indicate the front and back half space of a face, respectively.

3.2.2 Two-sided face sequence lists (TSFSL)

We now introduce an important refinement of the TSFL representation,
which results in the construction of the Two-Sided Face Sequence Lists
(TSFSL) data structure that we use in the remainder of this work. A
TSFSL is constructed from a TSFL by storing selected sequences of
linked faces in adjacent memory locations without storing actual links.
This significantly optimizes access and traversal speed, and reduces
the overall memory footprint. One of the main advantages of storing a
mesh via both cell and face arrays, as in Figure 2(a), is that references
can be stored sequentially in memory and thus allow for fast access.
For example, enumerating all faces of cell 3 in the figure simply scans
the array [c,d,e]. The same enumeration in the TSFL data structure
involves more effort, because for each face additional linking infor-
mation must be read from memory. This introduces a large number
of random memory accesses that reduce performance on architectures
that prefer coherent memory accesses, such as GPUs. It also inher-
ently incurs memory access latency, because the next face can only be
visited after the corresponding link has been fetched from memory.

The TSFSL data structure overcomes these problems to a large ex-
tent. Considering the mesh shown in Figure 2(b), we can observe se-
quences of faces that are connected by arrows of the same color. Note
especially the cell with faces (c,d,e). Here, within the cell only front
links have to be followed since all faces are facing toward the cell.
The occurrence of such face sequences can be exploited by storing
their faces sequentially in an array without links. If this sequence is
stored consecutively in memory as [c,d,e], we can drop the front links
and flags entirely. This does not result in any loss of information, since
the storage location itself now implicitly encodes these links. If face
sequences are constructed using front links, which we have chosen to
do, this immediately implies that the back links and flags have to be
retained, because they are then required to connect to adjacent cells.
This also implies that all face sequences can be constructed by collect-
ing all the faces of each cell that are facing toward it.

We guarantee at most one face sequence per cell, by putting all
faces that are facing toward it into the same sequence. This is possible
because the order in which the faces of a cell are linked is arbitrary.
Guaranteeing at least one face sequence per cell is also possible, be-
cause simply flipping a face’s normal allows removing it from one
sequence and adding it to the sequence of the cell on the opposite side.
Together, this allows guaranteeing exactly one face sequence per cell.
We use the following two-phase face sequence generation algorithm:
The first phase starts with an initially empty face sequence si for each
cell ci. Then, the number of faces ni assigned to each si is tracked,
while assigning each face to the sequence with the lower ni (outside
the mesh, ni = ∞). For all meshes that we tested, creating sequences
this way was already sufficient. However, in general this may produce
empty sequences with ni = 0. In order to guarantee ni > 0 every-
where, we process each empty si in a second phase. For each such
si, we pick a neighboring cell c j based on two conditions: ci has to
be connected to c j through a face that is not flagged as used, and n j
has to be the maximum among the neighbors that fulfill the first con-
dition. Because ni = 0, the face connecting ci to c j is assigned to s j .
By re-assigning this connecting face to si, ni is increased from zero
to one, and n j is decreased by one. The face is then flagged as used.
This face re-assignment is repeated as long as n j = 0. If n j �= 0, all
flags that identify faces as used are cleared. After each iteration of this
algorithm, the number of empty face sequences is reduced by one.

See Figure 2(c) for an illustration of how face sequences can be de-
fined in this example. Faces within a sequence are shown connected
without arrows. Note that the last link efl and flag eff have to be re-
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tained, in order to connect the end of the face sequence with subse-
quent faces of the cell. In the example of sequence [c,d,e], all faces
of the cell are in one face sequence. This is not true in general, as can
be seen in the face sequence [a, f ]. Also shown in Figure 2(c) is the
face b, which is considered as a face sequence of length one, since it
cannot be connected to a longer face sequence.

In the following, we summarize four important properties of the
TSFSL representation that result from its construction:

1. The face list corresponding to any given cell contains exactly one
face sequence, which contains all the faces that are facing toward
the cell. This sequence can, however, be of length one.

2. The front links/flags for faces in the sequence are not stored, with
the exception of the last face in the sequence.

3. The back links/flags must be stored for all faces in the sequence.
4. All faces facing away from a cell are not part of this cell’s face

sequence, but of the sequence of the cell they are facing toward.

A crucial consequence of this construction is that all face sequence
lists of an entire mesh can be stored back-to-back in a single 1D array.

Memory savings of the TSFSL representation: In order to quan-
tify the memory savings resulting from face sequences, we count the
number of links that can be discarded, in comparison with the TSFL
structure. For a sequence containing n faces, n− 1 links can be re-
moved. For a mesh containing c cells, with f internal and b mesh
boundary faces, the average face sequence length is ( f + b)/c, be-
cause each face belongs to exactly one face sequence, which in turn
corresponds to exactly one cell. Thus, on average ( f +b)/c−1 links
can be omitted per cell, which amounts to omitting f + b− c links
in total over the entire mesh. Note that with an increasing average
number of faces per cell, (b+2 f )/c, the number of links that can be
discarded increases. Overall, the number of links stored in the TSFL
representation is equal to b+ 2 f , whereas the TSFSL representation
thus contains only f +c links. For comparison, the standard approach
depicted in Figure 2(a) must store 2( f + b) links from faces to cells,
and b+ 2 f links from cells to faces. It is interesting to note that the
number of links stored in our data structure depends on the number of
cells, whereas this is not the case in the standard approach. In order
to directly compare both numbers, we can use the property that the
number of faces per cell is at least 4 (i.e., cells are at least tetrahedra),
and thus: (b+2 f )/c ≥ 4. From this follows that (b+2 f )/4 ≥ c. An
upper bound for TSFSL can be defined as f + c ≤ 3 f /2+ b/4. For
the “worst” case of a tetrahedral mesh this is still smaller than either
the number of face-to-cell or cell-to-face links required in the standard
representation. Relative memory savings increase as the average num-
ber of faces per cell goes up. Actual memory consumption numbers
and comparisons for real-world meshes are reported in Section 5.3.
3.3 Face Geometry and TSFSL Storage
In addition to storing mesh topology in the TSFSL data structure, the
geometry of each face must also be stored. Conceptually, we com-
pletely separate mesh topology from face geometry. This enables
adapting the geometry representation to a variety of characteristics
of real-world meshes and the corresponding meshing algorithms and
tools, which can also vary between different mesh regions or zones.
Despite the important conceptual separation, we can interleave the ac-
tual storage of face geometry in memory (denoted below abstractly as
fg for face f ) with the TSFSL records of the corresponding faces. This
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improves memory-access coherency. The TSFSL representation stores
n+1 face links/flags for a face sequence of n faces. Interleaving this
storage with actual face geometry, a face sequence of faces [a,b,c] is
stored in memory as [(abf ,abl),ag,(bbf ,bbl),bg,(cbf ,cbl),cg,(cff ,cfl)].
Note that the front link/flag of the last face in the sequence is stored af-
ter the corresponding face geometry. We will call it the face sequence
terminator (denoted as ti in Figure 3). Given this memory layout, the
face sequence can be traversed by alternately reading a link/flag tuple
and face geometry, until the sequence terminator is read. As above,
one of the most important observations to make here is that all faces
of a mesh are stored as part of a face sequence. This is possible be-
cause every face of the mesh is part of exactly one face sequence. This
sequence is the one corresponding to the cell in the front half space
of the face. The faces’ back links, also stored in the sequence, refer-
ence faces at non-sequential storage locations, which in turn are part
of other face sequences. Therefore, the entire mesh can be stored in a
single 1D array, as illustrated in Figure 3.

Face geometry records: The actual geometry storage format of fg
can be arbitrary, with the restriction that its size can either be inferred
implicitly (e.g., if all faces use an equal amount of memory), or can be
derived from a small header at the start of fg. Our current implemen-
tation supports two fixed-size face geometry representations, which
can store three or four vertex indices. A variable-sized version stores
the number of vertices of each face in addition to its vertex IDs. The
former are used for meshes (or bricks, see below) that only contain tri-
angle and quad faces. The latter is used for more complex polyhedral
meshes, for example the mesh shown in Figure 1. A more detailed de-
scription is given in the context of ray-face intersection in Section 4.3.

4 RAY-CASTING OF TSFSL MESHES

For efficient ray-casting of large TSFSL meshes, the grid is subdivided
into bricks that are the leaves of a kD-tree (Section 4.1). Bricks are ren-
dered individually, and composited in front to back order (Sections 4.2
and 4.3). The mesh in each brick is represented by a single 1D TSFSL
array. Figure 4 gives an overview of the resulting ray-casting pipeline.

4.1 Bricking
We employ a domain decomposition of the entire mesh into bricks.
Reasons are: scalability, memory management, adaptivity with respect
to characteristics of the contained cells, coarse-grained culling, and the
potential for direct parallelization across multiple GPUs. The brick
geometry corresponds to the leaves of a kD tree, which is built using
criteria similar to previous work [32]. However, we avoid explicitly
clipping cells against brick boundaries. Instead, each brick is assigned
a submesh that comprises all cells that are entirely or partially inside
the brick boundary. Ray-casting is performed brick by brick in front-
to-back visibility order, determined using the kD tree. In the following,
the ray-casting procedure is described considering a single brick.

4.2 Ray-Setup Stage
The first step of ray-casting is to determine the positions where rays
enter each brick. The most important part of this step is determin-

ing the ID of the face through which a given ray enters the first cell.
This can be done very efficiently by encoding IDs in colors and ras-
terizing the grid boundary accordingly. In previous GPU ray-casting
approaches [13, 32, 42, 44], the triangle mesh representing the volume
boundary had to be stored explicitly in a format suitable for fast raster-
ization (e.g., in OpenGL vertex buffer objects). We avoid permanently
storing this redundant representation for the whole mesh. Instead, each
brick’s submesh boundary is extracted on-the-fly from the TSFSL data
structure before a brick is rendered, and immediately discarded after-
ward. The size of the buffer for storing this temporary boundary ge-
ometry needs only be large enough to accommodate the largest brick
of the mesh. The submesh boundary geometry is generated on-the-fly
using a GPU geometry shader. The faces of the triangulated boundary
are computed from an array of boundary face IDs stored with the brick
data (see Figure 4). Details on using a geometry shader for computing
this triangulation are provided in Section 5.1.

Special care has to be taken when bricking is used. The spatial sub-
division requires that the submesh in each brick must only contribute
to the volume rendering integral inside the brick boundary for correct
compositing. Previous options for doing this include either explicitly
clipping cells against the brick boundary, or rasterizing one quad per
cell that is large enough to cover the projection of the cell/clipping
plane intersection in screen space [32]. The former approach requires
storing explicit geometry for the resulting cuts, which is very costly for
general polyhedral cells and usually involves triangulating the cut. The
latter approach requires discarding fragments outside of the cell using
face geometry information. However, for a complex cell and face ge-
ometry, the inside/outside test for discarding fragments becomes very
expensive. Given these drawbacks of previous approaches for com-
plex polyhedral cells, we use a different approach. Before the actual
rendering passes for each brick, we perform a setup-rasterization step
that traverses rays in order to find the entry positions of rays into cells
inside the brick. This setup step is illustrated in Figure 5. Instead of
rasterizing the volume boundary and the cell/brick-boundary intersec-
tions separately, we rasterize the unmodified volume boundary of the
submesh that intersects a given brick, without clipping it. This raster-
izes faces completely within the brick boundary, faces intersected by
the brick boundary, and faces completely outside the brick boundary.
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Fig. 5. Instead of explicitly clipping cells against brick boundaries (grey
rectangle), the ray-setup stage of each brick determines ray-start posi-
tions by traversing rays from boundary-cell faces to the brick boundary.



During this rasterization, a setup ray is cast for each fragment. If the
start position is already in the brick (ray (0) in Figure 5), the frag-
ment immediately writes out the ID of the face that is being rasterized.
For all other rays, the ray start position is outside the brick boundary,
where we distinguish the following cases:

1. Rays may enter the brick without first leaving the corresponding
submesh (ray (1) in Figure 5). At that point, these rays terminate
and write out the face ID of the last face they intersected.

2. Rays may leave the submesh before they enter the brick (ray (2)
in Figure 5). These rays terminate without writing a face ID.

3. Rays that do not intersect the brick boundary at all (in the area
marked with (3) in Figure 5). These rays terminate immediately.

Note that since the entire submesh boundary is rasterized, this proce-
dure also determines correct entry positions in non-convex areas, with
respect to both non-convex mesh and cell boundaries. For example,
ray (4) in Figure 5 determines and writes out the correct intersection
and start position at the brick boundary, whereas ray (2) is correctly
discarded, as described above.

The output of the ray-setup stage is a ray-setup image that for every
pixel stores a face ID and flag that identify the cell where the corre-
sponding ray must start for volume ray-casting (Section 4.3). The face
ID is encoded as a color, and the alpha channel is used for the flag. We
deal with rays exiting and re-entering non-convex meshes by utilizing
an approach that is similar to depth peeling [32, 44]. The grid is pro-
cessed in depth layers corresponding to successive front-facing mesh
boundary faces. For each depth layer, a ray-setup image is generated.
However, the full ray-setup stage is only required for the first depth
layer, since for all subsequent layers the ray start positions are already
guaranteed to lie inside the brick. For these layers, simply clipping the
submesh boundary to the brick’s bounding box is sufficient.

4.3 Ray-Casting
After the ray-setup stage described above, the main volume ray-casting
pass is executed. In this pass, a ray is generated for every pixel where
the flag in the ray-setup image is �= 0, i.e., where the ray has been de-
termined to intersect the mesh, and the pixel’s face ID is valid. Volume
ray-casting proceeds in a loop from sample to sample along each ray,
repeatedly carrying out the following three main tasks:

1. Mesh traversal, for traversing the mesh topology along a ray cell
by cell, using the TSFSL data structure (Section 4.3.1).

2. Ray-face intersection, for determining the next face intersected
by the ray, also for non-convex faces and cells (Section 4.3.2).

3. Sampling and interpolation, for determining sample values via
interpolation within the current cell (Section 4.3.3).

4.3.1 Mesh traversal
The algorithm is illustrated in pseudo code in Figure 6. The outer loop
(lines 3-27) traverses the mesh along a ray by stepping from cell to cell
through shared faces. The inner loop (lines 6-23) iterates over all faces
of the current cell using the TSFSL data structure, and computes the
next intersection of a ray with a cell face. Because we do not store ex-
plicit cell information, both of these tasks are performed by following
face links: Either by stepping from one side of a face to the other side
by following the opposite-side front/back link, or by iterating over all
faces of a cell, in turn invoking the ray-face intersection (Section 4.3.2)
for every encountered face. Mesh traversal is started at the face spec-
ified in the color channel of the ray-setup image: startFace. The flag
stored in the alpha channel is used to decide whether to initially fol-
low front or back links: cellInFrontOfStartFace. The result of the
inner loop is the face through which the ray leaves the cell, as well as
the flag indicating whether the next cell is in front or behind this face.
Note that non-convex cells can be entered and exited multiple times.

Before traversal is continued in the outer loop, the entire ray seg-
ment between the entry and exit faces of the inner loop is sampled
and composited. The exit face and negated flag resulting from the in-
ner loop completion then become the input to the next iteration of the

outer loop. The simple operation of logically negating the flag before
the next loop iteration is what performs the step from one cell to the
next. The outer loop terminates when the ray has exited the brick.

4.3.2 Ray-face intersection
The inputs to the ray-face intersection algorithm are: a face ID, a ray
direction v and origin o, and a boolean flag s that indicates whether
the face normal should be flipped for the intersection test as described
below. The output is the distance to the intersection, or ∞ if there is no
intersection. An intersection with a face is only reported when the lo-
cal face normal nx, at an intersection point x, points in the same direc-
tion as v, i.e., nx · v > 0. If s is true, the face normal is flipped for this
comparison. This test, together with a check whether the intersection
is further down the ray than the cell entry position, correctly handles
faces that are viewed edge-on. It also avoids erroneous detection of
intersection with the face through which the ray has entered the cell.
In the case of orthogonal projection, we further simplify the compu-
tations for ray-face intersection by transforming all vertices of a brick
from world space to view space, and performing intersection in the lat-
ter. The ray direction then is (0,0,−1), which reduces the required 3D
ray-triangle intersections to computing 2D barycentric coordinates for
o transformed and projected into view space. The involved dot product
reduces to a single multiplication. For further optimization, our sys-
tem integrates three different types of face geometry representations at
a per-brick granularity (see also Section 3.3). Each type employs its
own optimized ray-face intersection:

1. For purely tetrahedral bricks, the three vertex indices of each
triangle are stored, which makes the ray-face intersection trivial.

2. For bricks with cells where all faces are either triangles or quads
(e.g., a mixture of tetrahedral, hexahedral, and octrahedral cells),
quads are decomposed on-the-fly into two triangles. The ray-face
intersection is then carried out separately for these two triangles.
Note that this case includes non-planar faces.

3. For bricks containing cell faces with more than four vertices, i.e.,
an arbitrary number of vertices describing possibly highly non-
planar faces, we use the general strategy described below.

For efficiency reasons, our system triangulates cell faces with more
than four vertices when a mesh is loaded, instead of triangulating them

1: function MESHTRAVERSAL
2: Read startFace and cellInFrontOfStartFace from ray-setup images
3: repeat � This loop traverses all cells along a view ray
4: currentFace← startFace, dmin← ∞
5: cellInFrontOfFace← cellInFrontOfStartFace
6: repeat � This loop iterates over all faces of a cell
7: d← RayFaceIntersection(currentFace , cellInFrontOfFace)
8: if d < dmin then
9: dmin← d

10: minFace← currentFace
11: cellInFrontOfMinFace← cellInFrontOfFace
12: end if
13: if cellInFrontOfFace then � Go to next face of cell
14: advance currentFace along face sequence
15: if sequence terminator reached then
16: cellInFrontOfFace←GETFRONTFLAG(currentFace)
17: currentFace←GETFRONTLINK(currentFace)
18: end if
19: else
20: cellInFrontOfFace←GETBACKFLAG(currentFace)
21: currentFace←GETBACKLINK(currentFace)
22: end if
23: until currentFace = startFace
24: Perform sampling between startFace and minFace
25: startFace← minFace
26: cellInFrontOfStartFace←¬cellInFrontOfMinFace
27: until startFace is boundary face or ray exits brick
28: end function

Fig. 6. Pseudo code for mesh traversal during ray-casting using the
TSFSL data structure (see Section 4.3). Note that a face in this context
simply denotes a face reference (ID), not actual face geometry data.



1,538K / 1,631K / 4,707K
17,044K (~8.5 byte/tet)
tets/pyramids/wedges/hexas
4/1.7%
4.0s

82K / 324K / 441K
4,095K  (~7.0 byte/tet)
general (non-convex) polyhedra
1/0%
1.7s

17K / 68K / 91K
851K  (~7.0 byte/tet)
general (non-conv.) polyh.
1/0%
1.0s

HeaterExhaust ManifoldCooling Jacket

Cells/Vertices/Faces:
Tetrahedra:
Celltypes:
Bricks/Cell Overhead:
TSFSL Creation Time:

Mixer

1,362K / 7,432K / 8,869K
89,417K  (~7.5 byte/tet)
general (non-convex) polyhedra
10/8.6%
9.0s

Fig. 7. The data sets used to evaluate our TSFSL ray-casting approach, with mesh statistics. Timings for ray-casting are given in Table 2.

on-the-fly during ray-casting. For this purpose, arbitrary triangulations
can easily be integrated into our system. We have done extensive ex-
periments with triangulations based on either a triangle strip or a tri-
angle fan. Only the latter has turned out to work very well in practice.
A very important consideration for face triangulations is that in com-
plex real-world meshes the faces are often non-planar, ranging from
slightly non-planar to extremely non-planar. In the meshes that we
have examined, a triangle strip decomposition of each face has turned
out to be infeasible. These meshes contain at least some faces that
are so highly deformed that they cannot be decomposed into triangle
strips without introducing mesh inconsistencies. Our current approach
therefore decomposes each face into a triangle fan around the cen-
troid of all face vertices. Such a triangulation is symmetric, while the
triangle strip decomposition is not. Ray-face intersection during ray-
casting is then performed by intersecting the ray with each triangle of
the fan individually. A drawback of triangle fans around the centroid
is that an additional centroid vertex has to be stored per face. Nat-
urally, general ray-face intersections are costly. Therefore, for each
face we also store the squared radius r2 of a bounding sphere centered
at the centroid. Full ray-face intersection is only performed when the
ray’s intersection with the face’s bounding sphere is non-empty. This
test is also performed in screen space which reduces the ray-sphere
intersection to simply computing the squared distance between the ray
position and face centroid in 2D screen space. The proposed triangle-
fan face-decomposition is not feasible for faces which do not contain
their centroid or are not star-shaped. To cope with such faces, a more
general face-geometry representation, such as an actual triangle mesh,
could be used. However, none of the real-world meshes that we have
evaluated actually contained such faces.

4.3.3 Sampling and interpolation
The final component of ray-casting is obtaining values at sample po-
sitions by using different interpolation schemes. We switch between
two different interpolation methods on a per-brick basis:

1. For vertex-centered data, we employ mean value interpolation in
the interior of complex cells [32], and barycentric interpolation
in purely tetrahedral cells, as well as on all triangular faces.

2. For cell-centered data with a constant scalar value per cell, we
employ piecewise constant interpolation. This is very useful in
practice, because in many cases real simulation data from state-
of-the-art packages [1, 2, 3] can be cell-centered. Thus, this sim-
ple approach generates visualizations that are an adequate repre-
sentation of the simulation results.

For mean value interpolation, we allow the user to enable two differ-
ent optimizations during interaction that slightly reduce image quality
while increasing rendering performance significantly. First, we can
fall back to linear interpolation along a ray segment between cell-
ray entry and exit positions. Second, we can use an adaptive scheme,
which alternatively uses either linear interpolation along a ray seg-
ment or inserts one mean-value sample at the segment’s center. Sub-
sequently, linear interpolation between entry, center, and exit points
is used. The additional mean-value sample is only used when the
ray-segment length exceeds a user defined threshold. Even for high
quality visualizations, we found it to be sufficient to use one mean-
value sample at the center of each ray segment within a cell. This

can be attributed to the nature of mean value interpolation, which de-
viates most strongly from linear behavior in the cell interior, whereas
it quickly converges toward barycentric interpolation at the cell faces.
Note that in the case of non-convex polyhedra, mean value interpo-
lation can generate negative weights for faces whose exterior side is
facing toward the sample position. In order to solve this, positive
mean value interpolation could be used instead [27]. However, this
would come at the expense of smoothness, since positive mean value
coordinates are not guaranteed to remain smooth within non-convex
polytopes.

As an additional consideration, using complex interpolation meth-
ods for cells that are smaller than one image pixel in the final visualiza-
tion is a waste of processing resources. Thus, we automatically enable
piecewise constant interpolation for bricks where all cells project to
one image pixel or less. These bricks are determined by storing their
maximum cell size and calculating the corresponding projected size at
the distance of the brick corner closest to the view plane.

5 RESULTS

We discuss important implementation details, give results for complex
real-world meshes, and compare our approach with previous work.

5.1 Implementation
This section discusses details of how the TSFSL representation and
additional mesh data are stored in memory, as well as our TSFSL ray-
casting implementation.

Memory layout: Our ray-casting system is implemented in
OpenGL and GLSL. The entire TSFSL data structure for each brick
is stored in a single 1D 32-bit integer texture. Each face is represented
by a 32-bit int header followed by the vertex index data. The header
contains a 24-bit address for the face’s back link, 6 bits for the size
of the following vertex data, and two additional flag bits. One is the
back flag for the back link, and the second flag indicates whether the
face is the last in the sequence. If the latter bit is set, the integer value
following the face vertex data is the face sequence terminator. As in
the face header, the int of the face-sequence terminator is split into a
24-bit address for the front link, and one bit front flag. In the case of
cell-centered data, the terminator is followed by a 32-bit int address-
ing the cell corresponding to the face sequence that is terminated. If
triangle-fan face-decomposition is used, we store all vertex indices of
a face, starting with the center vertex, as 32-bit int indices. For triangle
and quad faces, each vertex is a single 32-bit int.

Ray-casting: Two different kinds of temporarily derived data are
generated before ray-casting each brick (see Section 4): First, all ver-
tex positions are transformed into view space by utilizing the transform
feedback capabilities of current GPUs. Then, the mesh boundary con-
taining b faces is triangulated on-the-fly by a geometry shader. The
input primitives for this shader are b points, for each of which only a
single integer index is stored. This index is the address of a face in the
TSFSL data structure that is subsequently triangulated according to
the current face-triangulation settings. On current GPUs, we are lim-
ited to generate triangle strips in the geometry shader. We therefore
generate the triangle-fan decompositions of complex cell faces by in-
serting degenerate triangles. This approach is preferable to restarting
a new strip after each triangle since fewer vertices have to be emitted
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Fig. 8. Comparison of the influence of different sampling strategies on image quality. The three bottom-row inlays depict the differences between
two neighboring images, respectively, with difference-color values scaled by a factor of 16. The additional inset at the top of the image labeled
”adaptive” depicts the regions using mean value interpolation (colored in blue).

by the shader. After depth peeling has been performed for a brick,
the triangulation data as well as the transformed vertex positions are
discarded. This approach is feasible because the overall mesh is pro-
cessed brick by brick, each of which contains only a fixed maximum
of cells/faces/vertices. The shading effects visible in Figure 7 are gen-
erated by applying limb darkening [19].

5.2 Data Sets

In order to demonstrate the usefulness of our new volume-
visualization algorithms we have selected the four representative data
sets depicted in Figure 7, which range from fairly small to reason-
ably large in size. Among these four data sets, two different config-
urations of our ray-casting approach have to be employed in order to
cope with different cell characteristics. In order to compare memory
requirements and rendering performance, we provide the number of
tetrahedra into which the mesh can be decomposed. The tetrahedral-
ization scheme taken to derive this number is selected based on the
face-triangulation approach used for the respective mesh. Each sub-
triangle of an interior face results in two tetrahedra made up of the
triangle vertices and the cell centroid of either the cell in front or be-
hind the triangle. Sub-triangles of boundary faces only generate one
tetrahedron. Although this is not the tetrahedralization resulting in the
minimum number of cells, we have used it to obtain result images that
are comparable with our results, which use mean value interpolation.

The heater, manifold, and mixer data sets have been created by the
same simulation package [3] and therefore share common mesh char-
acteristics. All meshes comprise general polyhedral cells with often
highly non-planar faces. We cope with this by utilizing a triangle fan
decomposition of each face. Note that as soon as more complex cells
are present, the number of tetrahedra generated by tetrahedralization
can increase between one to two orders of magnitude when compared
to the original cell decomposition. The cooling jacket data set [25]
contains only a fixed set of cell types (tetrahedra, quadratic pyramids,
triangular prisms, and hexahedra), which again can be non-convex.
The mixer and the cooling jacket data sets are decomposed into four
and ten bricks, respectively, due to their size. The increase of the num-
ber of cells that have to be stored due to bricking is shown in Figure 7.

5.3 Evaluation and Discussion

The evaluation of the methods proposed in this work is complex and
will be performed in multiple parts. First, we compare the memory re-
quirements of the TSFSL mesh representation to other data structures
that have been used to perform volume rendering. Next, we evaluate
the rendering performance of different quality and sampling settings,
and discuss their impact on the resulting image quality.

5.3.1 Memory Consumption

This comparison is difficult since to our knowledge there exist only
four other GPU volume renderers capable of directly rendering con-
vex polyhedral cells [10, 26, 32, 39]. Three of those [10, 26, 39] can
process non-convex cells without requiring subdivision. The HAVS
level-of-detail extension has been included in this list since it can cope
with polyhedral cells on a basic level. It is, however, limited to piece-
wise linear interpolation along ray segments within a cell because only
face-to-vertex connectivity data is available to the GPU. We compare

the memory requirements of our TSFSL structure with different state-
of-the-art representations by giving the number of bytes per tetrahe-
dron in Table 1. For non-tetrahedral meshes, this is computed by di-
viding the overall memory consumption by the number of tetrahedra
in an equivalent tetrahedralization. The memory overhead that is in-
troduced by our technique due to bricking is included in these figures.

The hybrid ray-casting algorithm [32] is optimized for meshes con-
taining only few cell types and requires convex cells composed of tri-
angular or planar quadrangular faces. Slicing-based volume rendering
on CIEL is mainly executed on the CPU, because only the slice raster-
ization is performed on the GPU, and thus requires basically no GPU
memory. The per-tetrahedra memory consumption for CIEL has been
estimated based on the overall memory consumption stated in the cor-
responding publication. Scalar data are represented as polynomials
in the case of the higher-order finite-elements visualization technique
(HOFEV) [39]. Therefore a direct comparison to the other techniques
in Table 1 would be biased toward techniques dealing with conven-
tional CFD data. In order to avoid this biasing, we have compared the
memory required to store only topology information. In the case of
data sets such as the heater or the manifold, the TSFSL representation
uses 34% less memory than the topology data structure employed by
HOFEV. For simpler data sets, such as the cooling jacket, this differ-
ence is 24%. Similarly to TSFSL, HAVS uses face data to represent
a volume mesh. Only three vertex indices per face as well as vertex
positions and scalar data are stored in GPU memory. This results in
very competitive memory requirements on the GPU side. However, a
significant amount of memory is used to perform efficient face sorting
on the CPU. The per-tetrahedra memory figures are based on our four
test data sets. In summary, Table 1 clearly shows that our GPU-based
data structure is superior with respect to memory consumption to most
state-of-the-art grid representations for volume rendering. Only HAVS
utilizes a data representation on the GPU that is equally efficient.

5.3.2 Rendering Performance

Besides the memory footprint, the actual rendering performance of
our ray-casting approach has to be evaluated. However, we note that
the main goal of this work is to reduce the memory that is necessary
to represent an unstructured mesh, while still allowing for efficient
ray-casting. A major reason for this rationale is that recent develop-
ments in graphics hardware indicate that computing speed is growing
far more rapidly than on board memory size. Table 2 compares the per-
formance of an object-order volume-rendering-method (HAVS) and a
state-of-the-art GPU-based tiled ray-casting method (TRC) to TSFSL
volume rendering. All tests have been performed by rendering into a
1024x768 view port on a Core 2 Quad CPU at 2.8 GHz with 8 GB of
RAM and an NVIDIA Geforce 480 GTX with 1.5 GB of memory. The
different results listed for ray-casting with TSFSL are due to different
quality and sampling settings. The rows labeled high quality (HQ)
represent results generated by using the full 1024x768 render target.
HAVS and TRC create output images with the same resolution. The
low quality (LQ) figures were measured when rendering only 512x384
images that were subsequently scaled to 1024x768 while also only per-
forming ray-casting for one depth peel per brick. The disproportion-
ately strong performance increase between the HQ and the LQ modes
for the manifold data set is caused by the fact that the data set consists
of a thin layer of geometry representing solid parts surrounding fluid



Algorithm Cell Types Byte/Tet
TSFSL general (non-convex) cells ∼ 7 - 9
HARC [42] tetrahedra only 160
TRC [6] tetrahedra only 144
HARC-Partial [13] tetrahedra only 96
Hybrid Rayc. [32] convex cells (few celltypes) ∼ 45 - 80
CIEL [26] general (non-convex) cells ∼50 CPU
VF-Ray-GPU [31] tetrahedra only 38
Tet. Strips [44] tetrahedra only ∼15

HAVS [11] tetrahedra only ∼ 7 - 9 GPU
∼118-149 CPU

Table 1. Memory footprint comparison of TSFSL with state-of-the-art un-
structured grid rendering approaches (measured in bytes/tetrahedron).

cells. Thus, terminating the ray-casting after one depth peel skips a
considerable part of the overall data volume. When working with the
mixer data set, the memory requirements for HAVS exceeded the 8 GB
of RAM installed in the workstation used for benchmarking. There-
fore, no conclusive results were measured due to constant swapping
operations by the operating system. When assuming linear scaling in
the number of grid triangles, rendering the mixer data set with HAVS
should require around 16 seconds.

5.3.3 Interpolation and Image Quality
We have evaluated four different sampling strategies. The fastest is
piecewise-constant sampling using cell-centered data. We note that all
four test data sets originally contain cell-centered data, and therefore
this sampling approach properly represents the original simulation re-
sults. However, if smoothed results are desired for presentation pur-
poses, vertex-centered data can be visualized. Our rendering system
uses barycentric interpolation at cell faces. Results stated in the rows
labeled as ”linear” have been generated by using linear interpolation
between ray entry and exit positions of a cell. In order to generate
higher quality images, one mean-value sample is used at the midpoint
between ray entry and exit position. Performance figures for this sam-
pling strategy are given in the rows denoted as ”mean value”. As can
be expected, the complex computations necessary per cell face incur
a severe performance hit on the overall rendering time. This is es-
pecially prominent for data sets containing general polyhedral cells
(heater, manifold, and mixer). The main differences between images
generated by the fast ”linear” quality setting and the ”mean value”
option lie in regions where large cells are located (see image quality
comparison in Figure 8). Therefore, we propose a fourth ”adaptive”
sampling strategy that is controlled by a user defined threshold θ . Re-
construction using mean value interpolation is only used if the length
of a viewing-ray segment within a cell is greater than θ . Otherwise the
much faster linear reconstruction is used within a cell. The user has the
option to choose two out of the four sampling strategies in their HQ
or LQ configurations for rendering preview images during interaction,
and presentation quality visualizations when interaction has stopped.

When compared to HAVS, our high-quality TSFSL methods are
only faster for reasonably large data sets such as the cooling jacket.
Here, the main limiting factor for HAVS is the number of triangles
(∼53Mio), which have to be sorted by the CPU. Also note that the
HAVS algorithm generates rendering artifacts on current generation
graphics hardware since it performs reading from and writing to the
same texture target within one GPU program. This operation results
in undefined behavior in OpenGL and in DirectX. The tiled ray-casting
approach scales similarly to our low quality volume rendering imple-
mentations. However, it requires much more GPU memory (see Ta-
ble 1), and the publicly available open source implementation has not
been able to load the cooling jacket nor the mixer data set (even though
a 64 bit binary has been used).

Image Quality: Figure 8 compares the image quality of the dif-
ferent sampling strategies that are supported by our rendering frame-
work. The transfer function used throughout the comparison repre-
sents a worst case scenario, which highlights the differences between
the sampling methods. This is because it comprises a nearly opaque

Algorithm Heater Manifold Cooling J. Mixer
TSFSL HQ 124ms 156ms 172ms 1.8s
(cell-centered) LQ 48ms 49ms 65ms 512ms
TSFSL HQ 145ms 181ms 192ms 2.2s
(linear) LQ 50ms 49ms 68ms 579ms
TSFSL HQ 1.3s 1.7s 1.2s 28.1s
(mean value) LQ 343ms 226ms 325ms 6.4s
TSFSL HQ 261ms 303ms 222ms 2.9s
(adaptive) LQ 91ms 56ms 81ms 742ms
HAVS [11] 125ms 604ms 2.8s -
TRC [6] 150ms 170ms - -

Table 2. Performance measures and comparison with state-of-the-art
unstructured grid rendering approaches. Rows labeled HQ correspond
to high rendering quality (1024x768), and rows labeled LQ correspond
to low rendering quality (512x384).

region and a completely transparent region without a smooth transi-
tion in between. Figure 8(a) depicts the fastest sampling strategy for
vertex-centered data, which interpolates linearly between ray-cell en-
try and exit positions. The adaptive sampling method is used in Fig-
ure 8(b). The linearization artifacts introduced by the first approach
are reduced by incorporating one mean-value sample for ray segments
that are longer than a user defined threshold θ . If θ is chosen to be
larger than the diameter of the largest cell, then only the linear approx-
imation is used, whereas if θ is set to zero, a mean-value sample is se-
lected for every ray segment. The viewing rays for which mean-value
samples have been computed are highlighted in the inset as blue re-
gions. Figure 8(c) shows a result image where one mean-value sample
has been used per ray segment within a cell. In order to qualify dif-
ferences between visualizations we have included difference images
that have been scaled up by a factor of 16. They clearly show how lin-
ear interpolation and the adaptive sampling strategy differ in regions
where mean-value samples have been included. Naturally, the largest
differences between the adaptive sampling scheme and always using
one mean-value sample show up in regions composed of small cells.
The number of mean-value samples per ray segment within a cell is
limited to one in all our sampling strategies. Additional samples only
marginally add to the overall image quality. This is illustrated in Fig-
ure 8(d). Here, two mean-value samples have been computed per ray
segment. The difference image between Figures 8 (c) and (d) barely
shows any distinguishable features.

6 CONCLUSIONS

We have presented a compact, face-based representation for general
unstructured grids that does not store redundant information. Our two-
sided face sequence list (TSFSL) representation is flexible enough to
support the efficient traversal of rays from cell to cell, as well as en-
abling efficient access to all information required for high-quality in-
terpolation, such as mean value schemes. These are the two crucial
components required for volume visualization via ray-casting, as well
as other important visualization algorithms. In order to demonstrate
the feasibility of the TSFSL representation in practice, we have pre-
sented a complete GPU-based unstructured-grid ray-casting pipeline.
Our system can handle large data sets via bricking, and is able to ef-
ficiently cope with both non-convex mesh boundaries and non-convex
polyhedral cells, even in the presence of highly non-planar faces.
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