
Normal Estimation Of Very Large
Point Clouds

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Stefan Marek
Matrikelnummer 0026455

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Associate Prof. Dipl.Ing. Dipl.Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.Ing. Claus Scheiblauer

Wien, 04.02.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

i

Abstract

This diploma thesis introduces methods for external sorting and fast k nearest
neighbor searching for very large point clouds. Very large point clouds are datasets
that can not be processed in main memory. This leads to certain requirements for
any used reconstruction technique. The most important ones are out-of-core mem-
ory management and sequential data handling algorithms. The paper “Stream-
Processing Points” by Renato Pajarola shows a way to design a framework which
allows to process a subset of very large point clouds. A subset is defined as a
spatially continuous region holding a predefined number of points. This diploma
thesis is based on the aforementioned paper and improves on the stream process-
ing pipeline presented therein. The proposed algorithm for searching the k nearest
neighbors has a complexity of O(N ∗ log(M)), where N are all points in the point
cloud and M are all points in main memory, which is similar to current state of the
art algorithms for in-core processed data sets.

ii

Kurzfassung

In dieser Diplomarbeit werden Methoden vorgestellt um extern sortieren und
um schnell die k nächsten Nachbarn in sehr großen Punktwolken finden zu kön-
nen. Wobei sehr große Punktwolken jene Datensätze sind die nicht komplett im
Hauptspeicher verarbeitet werden können. Das führt zu einigen Anforderungen die
von solchen Methoden erfüllt werden müssen. Die wichtigsten Anforderungen sind
out-of-core Speicherverwaltung und sequentielle Datenverarbeitungsalgorithmen.
Die Arbeit “Stream-Processing Points” von Renator Pajarola zeigt einen Weg, um
einen Entwurf so zu gestalten, dass nur eine kleine Menge der großen Punktwolke
verarbeitet wird. Eine kleine Menge ist dabei definiert als eine räumlich kontinuir-
liche Region die eine vordefinierte Menge an Punkten beinhält. Diese Diplomarbeit
basiert auf der vorher genannten Arbeit und verbessert den darin vorgestellten Da-
tenstrom Verarbeitungsablauf. Der vorgeschlagene Algorithmus um die k nächsten
Nachbarn zu finden hat eine Komplexität von O(N ∗log(M)), wobei N alle Punkte
in der Punktwolke und M alle Punkte im Hauptspeicher sind, was gleich ist zu den
im Hauptspeicher verarbeitenden Algorithmen die Stand der Technik sind.

Contents

Abstract i

Kurzfassung ii

Contents iii

1 Introduction 1
1.1 Point Definition . 2
1.2 Point Based Computer Graphics . 2
1.3 Content creation pipeline . 3
1.4 Contribution . 9
1.5 Overview . 9

2 Previous Work 11
2.1 Out-Of-Core Data Structures . 11
2.2 Normal Estimation . 15
2.3 External Sorting . 17
2.4 K Nearest Neighbor Graph . 23
2.5 Summary . 33

3 External Sorting with LRU Cache 39
3.1 AVL Tree . 40
3.2 LRU Cache . 42
3.3 Contribution . 44

4 Point Streaming Framework 45
4.1 The Basic Idea . 46
4.2 Local Operators . 46
4.3 A Point Streaming Assembly . 47
4.4 A Case Study . 51
4.5 Improvements . 53
4.6 Contribution . 57

iii

iv CONTENTS

5 Implementation Details 59
5.1 Thread Pooling . 59
5.2 Memory Management . 59

6 Results 63
6.1 Dragon . 64
6.2 Hanghaus of Ephesos . 65
6.3 Stephansdom . 66
6.4 Domitilla . 66

7 Conclusion and Summary 79
7.1 External Sorting . 79
7.2 Point Streaming Framework . 80

A UML Class Diagram 81

List of Figures 83

List of Tables 85

Bibliography 89

CHAPTER 1
Introduction

This diploma thesis describes ways for external sorting and fast k nearest neighbor
searching in a huge unprocessed point cloud. Unprocessed point clouds in this diploma
thesis are a set of points that are sampled by a scanning process. Very often objects are
scanned by a laser range scanner and the result is a point cloud. Those point clouds
have only spatial information together with color information from a conventional cam-
era. The relevant datasets in this diploma thesis are point clouds that have more points
than will fit in main memory. This fact will lead to the requirement that out-of-core
methods have to be found in order to process the point cloud. This means that only a
fraction of the whole point cloud can be processed at a time. Also those methods can
only take the locality of the data into account.

Recent developments show that points as rendering primitive are enough to visualize
the point cloud [WS09], [LW85]. However if a more accurate surface estimation is
needed then more than just the point coordinates are required. This means that so called
surface elements [HPG00], [LRZ02], [MBK05] have to be used.

Surface elements consist of the point coordinate and additional information like the
normal vector that gives the orientation of the point together with a radius which defines
the propagation of that point in a three dimensional space.

Those surface elements are oriented points and can be used to splat the point onto the
screen space with respect to their true orientation and propagation in the object space.
In order to compute normals from an unprocessed point cloud the nearest neighborhood
graph has to be found first. To be able to process very large point clouds that do not
fit inside the main memory of the computer, this diploma thesis uses the framework
suggested by [PS04], which allows to process subsets of huge point clouds that can be
processed inside the main memory. This approach divides the process in two stages.
First the point cloud is sorted along the main axis. Then the point streaming operators
are applied sequentially to each of the sorted points. This diploma thesis will follow this

1

2 CHAPTER 1. INTRODUCTION

suggestions and improves the computation of the nearest neighborhood graph and the
external sorting part.

The following introduction first defines how a point is defined in context of this
diploma thesis and gives a short introduction into the content creation pipeline.

1.1 Point Definition
A point has many definitions and is very much related to a given coordinate system and
the n-dimensional space it exists in. Without a defined coordinate system a point would
be dimensionless. Coordinate systems are defined as a system for mapping coordinates
to each n-tupel of a given n-dimensional space. These coordinates are furthermore
called points. A point in a geometrical coordinate system has always a spatial meaning,
which describes the exact position of that point inside the given coordinate system.
Points in this master thesis will be used as 3-tuples of the Euclidean space, which are
defined by a three dimensional Cartesian coordinate system. The term point will also
be used to specify a rendering primitive which consists of a three dimensional spatial
vector. A rendering primitive shows the exact position in a Cartesian coordinate system
and optionally a color vector and a normal vector.

A valid point cloud is defined as a set of points, where no point has the same po-
sition as any other point in the given set of points. One element in a point cloud is
basically a sampled surface point of a three dimensional geometric object. The term
point cloud stands for a set of points which are related in a geometrical way. Those
datasets are mostly acquired by using 3D-Scanners or by parametric surface equations
which describe the shape of the surface best.

1.2 Point Based Computer Graphics
The work by [LW85] introduces the point as rendering primitive and discusses the dif-
ferent challenges one has to overcome when working with point based computer graph-
ics. Therefore the different stages of the rendering pipeline for point based computer
graphics are described.

The work by [HPG00] defines the term surfel and shows a way to splat points from
the object onto the screen space. The term surfel stands for surface elements. It defines
oriented points that can be interpreted as surface representation at a given position in a
three dimensional space. The surfel are projected onto the screen space by rendering a
depth image of the points into z-buffer. This is called visibility splatting and can be seen
in Figure 1.1

[LRZ02] and [MBK05] go one step further by expanding the idea with elliptical
weighted average (EWA) surface splatting. The algorithm consits of two rendering

1.3. CONTENT CREATION PIPELINE 3

Figure 1.1: Visibility spatting [HPG00].

passes. The first pass is the same as the afore mentioned visibility splatting. The second
pass applies an EWA filter on each of the splatted points. This EWA filter is a Gaussian
filter that scales the point splats to the proper size.

1.3 Content creation pipeline
In order to reconstruct surface features the following content creation pipeline has to be
considered. The content creation pipeline in Figure 1.2 shows which stages from the
acquisition to the final surface reconstructed point cloud have to be considered.

• The first and most basic stage in the pipeline scans an environment and produces
a point cloud from the acquired data. This stage specifies the quality of the point
cloud and is therefore the most important stage in the pipeline.

• The second stage is the surface reconstruction stage. This stage tries to reconstruct
the surface locally for any point in the point cloud.

• The third stage is the processing and modeling stage. At this stage the user can
select what parts of the point cloud are outliers and what parts have to be remod-
elled.

• The last stage is the rendering stage where the point cloud is rendered in an graph-
ically based editor.

3D-Acquisition

There are many ways to sample the environment for spatial information and the quality
of the resulting data is very much related to the used method and the specific field the

4 CHAPTER 1. INTRODUCTION

Figure 1.2: 3D content creation pipeline.

acquired data will be used. This thesis is related to datasets given by non-contact reflec-
tive optical shape acquisition methods, especially to those given by active triangulation
and time of flight. The Figure 1.3 shows some of the scannable objects.

The most popular 3D-scanners for optical triangulation are laser range scanners.
Those types of 3D-scanner measure the time needed to send a laser beam from an emit-
ter to a solid surface of an object and from the surface to a sensor. This information
will be used to calculate the distance by using optical laser triangulation which can be
formulated by a set of basic trigonometric equations as can be seen in Figure 1.4.

Another 3D laser range scanner is the time of flight scanner. A time of flight laser
scanner measures the time for one round trip of a laser pulse. Figure 1.5 shows one
round trip from a time of flight scanner to the object and back.

Another information which can be achieved by the scanning process is the color
or texture of the sampled points. This task is done by a conventional camera which
is positioned near the emitter and takes a picture from each view. The picture will be
mapped as texture onto those parts of the point cloud where the view matches.

In the acquisition process there is always an error in measurement which has to be
taken into account in any of the following steps of the content creation pipeline.

Surface Reconstruction

Once a point cloud has been acquired, surface features have to be reconstructed if this
information is not stored with the spatial information [TWG04].

The most basic surface feature is given by the k nearest neighbor graph. It defines
the direct neighborhood of a point inside the point cloud. The framework suggestions
by [PS04] can be used to implement a stream processing pipeline which allows to keep

1.3. CONTENT CREATION PIPELINE 5

Figure 1.3: Examples of scannable objects.

just a small portion of the whole point cloud in main memory. Stream processing of
points divides the reconstruction process in two two stages.

• The partitioning stage stores all points in a database ready data structure. For
example a binary space partition (BSP) tree.

• The scanning stage traverses all points sequentially in a specific order and finds
the neighborhood for each point.

This enables to find strategies that keep only a fraction of the whole dataset in main
memory while the rest is stored out-of-core. With this information on hand reconstruc-
tion methods like [MAS01] or [MN03] can be used.

There are many more ways to reconstruct a valid surface description. But those
methods are dedicated to datasets that have to be processed in main memory. One
method to gather a point cloud dataset is by using parametric surfaces that fit the shape
of the model best. Those ways of calculating a point cloud assumes that there is a really
good mathematical description of the model, which is often not given and hard to find.

6 CHAPTER 1. INTRODUCTION

Figure 1.4: Emitter - Object - Sensor Triangulation.

There is also the possibility to approximate isosurfaces from implicit surface equations.
One technique that leads to a iso-surface reconstruction is to use the marching cube
algorithm [LC87]. This method needs to first voxelize the point cloud. Which means
it needs to build a uniform grid around the point cloud. Then implicit surfaces can
be found for each grid cell. Uniform grids are distribution depended and therefore
this method is only usefull for point clouds with uniform sampling like it is given in
medical data sets. The standard method for surface reconstruction in point clouds is
moving least squares. The algorithm has two stages. First a local reference domain is
computed. After that a local bivariate polynomial approximation to the surface in a local
neighborhood has to be found [MAS03]. The reference domain can be computed by
using weighted total linear least squares. The polymonial approximation of the surface
can be found by computing the coefficients of a polynomial approximation so that the
weighted least squares error is minimized. (see Figure 1.6)

Processing and Modeling

In this step the point cloud is altered by a user guided post processing step. User guided
selection tools help the user to mark regions of interest and delete points [Sch09] or add
content like textures [MZG02].

1.3. CONTENT CREATION PIPELINE 7

Figure 1.5: The image shows the round trip for one point of a time of flight scanner.

Rendering

The rendering step is a very well discussed topic in computer graphics. But there are
just a few strategies that can be used for very large point clouds. Some of them are
mentioned in the following list.

• QSplat

[RL00] uses a bounding volume hierarchy to render very large meshes and point
clouds. Therefore the bounding sphere for a model has to be computed. The
bounding sphere is successivly reduced and the correspoding points are stored
within the smaller bounding volume. This strategy leads to a binary tree where
each node has a bounding sphere together with additional information of the child
nodes like the average color of the points in the leaf nodes. Figure 1.7 shows the
binary tree representation together with the memory layout of the nodes. This
method allows to render only those points that are in the view frustum by testing
the bounding volumes against the view frustum.

• Sequential Point Trees

[CDS03] uses an octree to build a sequential linearized list of points. Those points
are stored together with (rmin, rmax) values. These values are used to decide
wether an interval in the list is drawn or not based on the visibility of the points

8 CHAPTER 1. INTRODUCTION

Figure 1.6: The image shows the reconstruction procedure of the moving least squares
algorithm. Where H is the reference domain and g the polynomial approximation. First
the reference domain H for the point r has to be found where the point q is the projection
of the point r onto the reference domain H. Then a local polynomial approximation g to
the heights fi of points pi over H is computed [MAS03].

Figure 1.7: Breadth first traversal of the binary tree together with the tree node memory
layout [RL00].

from a view point. This strategy allows to find the level of detail for a point cloud
based on how much space the points will consume in screen space.

• Instant Points

[WS09] concentrates on the performance of the rendering part by using a smart
implementation of the sequential point tree data structure [CDS03]. The octree is

1.4. CONTRIBUTION 9

divided into inner and outer octrees. Both with a constant recusion depth. Each
of the outer octree nodes manages an inner octree node. The points are managed
by the inner octrees. The Figure 1.8 shows the octree representation for the outer
and inner octree. The outer octree represenation takes care of the out-of-core
management and the view frustum culling. The inner octree nodes are drawn
whenever they are visible.

Figure 1.8: Nested octree representation [WS09].

This work was implemented in the Scanopy point rendering system [WS09] .

1.4 Contribution
In this diploma thesis an external sorting algorithm and an efficient neighborhood algo-
rithm, which enables to reconstruct the surface normals, was developed. The external
sorting algorithm is developed as tree based sorting algorithm. In order to keep only
those points in memory that are necessary to distribute the points in the buckets of the
leaf nodes, a least recently used (LRU) cache is used. This strategy allows to use the
whole main memory as second level cache. Furthermore the file accesses are reduced,
because the points are kept in the cache as long as the buckets are updated with new
points. The neighborhood algorithm is implemented both memory and I/O efficient
and was developed as an operator in the framework suggested by [PS04]. It improves
the existing k nearest neighborhood operator by [PS04] in that it works with arbitrary
sampling densities. The memory efficiency comes from the fact that only those points
that contribute to the direct neighborhood are kept in main memory. The I/O efficiency
comes from the fact that the read and write operations are handled sequentially on the
point stream. The normal estimation operator is implemented following the linear least
squares regression.

1.5 Overview
• Chapter 1 This chapter gives a brief introduction.

10 CHAPTER 1. INTRODUCTION

• Chapter 2 Previous work will show the techniques available for processing point
clouds out-of-core.

• Chapter 3 External Sorting shows a way to sort point clouds externally.

• Chapter 4 Point Streaming framework introduces the point streaming framework
and its local operators.

• Chapter 5 Gives a short overview into the implementation details.

• Chapter 6 Shows some results.

• Chapter 7 Summarizes all our efforts and concludes this diploma thesis.

CHAPTER 2
Previous Work

2.1 Out-Of-Core Data Structures
Most of the previous work is dedicated to in-core processing of point clouds. Out-of-
core algorithms for reconstructing point clouds are an active research topic. Estimating
the normals from point clouds is a well discussed topic in computer science [MAS01],
[HHS92]. But those works show their results on data structures that are completely
processed in main memory. Nevertheless the results of those works also apply to out-
of-core algorithms. For example the work by [PS04] relies on least squares regression
to compute the normals.

The most basic concern in out-of-core methods is how to find the direct neighbor-
hood that allows to reconstruct surface features. There are several approaches that can
handle this task out-of-core. Out-of-core approaches strongly depend on the locality of
the underlying data and can not take global information into account. In order to find
the direct neighborhood for points residing currently in memory, any database ready
data structure can be used that supports range queries and stores the data distribution
independent.

The approach by [MBH07] builds an out-of-core octree and solves the poisson equa-
tion per octree level by using an adaptive marching cube algorithm. Therefore the par-
titioned data is streamed along the x axis by traversing the octree at each level as can be
seen in Figure 2.1.

The work by [JSV07] is a database approach. The point cloud is partitioned in a disk
based quad-tree. The key values are the distance values between the different quadtree
cells. A range query simply searches for cells with distance values inside a spherical
range.

The r-tree data structure [Gut84] enables the usage of very efficient range queries.
It is the preferred database data structure for geometrically based datasets because of its

11

12 CHAPTER 2. PREVIOUS WORK

Figure 2.1: Streaming along the x axis of the octree level [MBH07]. The blue octree
nodes are stored in main memory.

highly efficient space partitioning. Range queries can also be handled very efficiently.
The main difference to disk based approaches like [JSV07] is that points are partitioned
in rectangular regions.

The kd-tree based approach is proposed in several papers [Moo91] [Ben75] [Mou10].
The main reason for the wide usage of this data structure is that the range queries for
finding the k nearest neighborhood in a point cloud is very efficient. The main disad-
vantage is that it has to be built in-core. A kd-trie like [Sam06] achieves similar results
to the kd-tree approach. The lsd-tree [AHW89] is a variation to the kd-trie that enables
to build a semi-balanced kd-trie by using the locality of the data only. It also has the
ability to be used as out-of-core data structure because all points are stored in files at
the leaf nodes of the tree. Figure 2.2 shows how the lsd tree manages the nodes where
internal nodes are all nodes in main memory and external nodes are all nodes that are
kept persistent. All inner nodes are directory nodes and the leaf nodes store the buckets
with the point information.

Another efficient method that can be used to solve the problem of finding the k
nearest neighbor graph is called grid file [JNS84]. This data structure partitions the
points in a grid and stores the points in a file. One file can store the points of more

2.1. OUT-OF-CORE DATA STRUCTURES 13

Figure 2.2: The different level of a lsd tree [AHW89].

than one grid cell. This smart usage of files allows to keep the disk with a very low
fragmentation overhead. The range query to find the nearest neighborhood for a point
can be achieved in constant algorithmic complexity. Nevertheless the direct access to a
grid cell comes with the cost of a file access. Figure 2.3 shows how the grid file data
structure partitions the three dimensional space.

Figure 2.3: The image shows how the grid file partitions the three dimensional space
[JNS84].

The work by [MC08] partitions the point cloud by sorting the points with respect to
their Morton key. All points that are sorted with respect to their Morton order are also

14 CHAPTER 2. PREVIOUS WORK

partitioned in a quad tree (see Figure 2.4).

Figure 2.4: The smallest quadtree box containing two points will also contain all points
lying between the two in Morton order [MC08].

The k nearest neighborhood for any point in Morton order can be found by a simple
binary search. First the first k next points in morton order are take as approximation
of the radius in which the nearest neighbors are situated. Then a binary search over
the whole point cloud searches if points are inside the nearest neighborhood radius.
Furthermore the binary search refines the nearest neighborhood radius whenever a point
is inside the searching range. This strategy is an in-core approach and therefore only
useful if all points can be stored in main memory.

2.2. NORMAL ESTIMATION 15

2.2 Normal Estimation

Estimating normals from a point cloud is a well discussed topic in computer graphics.
This diploma thesis uses the method of linear least squares regression analysis. The
main goal in least squares regression analysis is to fit an observation X to a model
function f(X).

The observationX = {x1, x2...xm} consists of m n-dimensional vectors. The model
function f(X) = Y = {Y1...Ym} in the case of linear least squares regression is a hyper

plane of the form
m∑
i=1

βi ∗xi = Yi, where βi are the coefficients of the hyper plane, xi are

the vector coordinate values from the model data and Yi are the values from the model
function evaluation f(Xi). The main goal is to find the coefficients that minimize the
squared residual errors min

X
(Y − β ∗X)2 . In the following sections two kinds of linear

least squares fitting and their numerical solution will be discussed [Ebe09] [WHP02].

Ordinary Linear Least Squares Fitting

Ordinary linear least squares fits the model data X to a planar model function f(x, y) =
A ∗ x + B ∗ y + C = z, with (A,B,C) as the plane coefficience. This means the
squared residual errors will be minimized orthogonal to the z axis. This will lead to
the following minimization problem min

X
(A ∗ x + B ∗ y + C − z)2. Furthermore the

first partial derivative of the system of linear equations from the minimization problem
n∑

i=1

(A ∗ xi + B ∗ yi + C − zi)
2 = (0, 0, 0) leads to a system of linear equations, 2 ∗

n∑
i=1

(A ∗ xi +B ∗ yi +C − zi) = ∇f(x, y) = (0, 0, 0) which are called normal equations

of the least squares problem.

n∑

i=1

x2i
n∑

i=1

xi ∗ yi
n∑

i=1

xi
n∑

i=1

xi ∗ yi
n∑

i=1

y2i
n∑

i=1

yi
n∑

i=1

xi
n∑

i=1

yi
n∑

i=1

1

 ∗
AB
C

 =

n∑

i=1

xi ∗ zi
n∑

i=1

yi ∗ zi
n∑

i=1

zi

 (2.1)

This linear system of equations can easily be solved by the inverse of the matrix
A ∗ x = b => x = b ∗ A−1. The inverse of an overdetermined system of linear
equations can be solved by Cramer’s rule. The normal vector can be easily calcluated
from the plane coefficients.

16 CHAPTER 2. PREVIOUS WORK

Orthogonal Linear Least Squares Fitting

If the squared residual errors have to be measured orthogonal to the model function then
the following normal equations can be used to solve the problem. The error function
E(A,N) for the least squares minimization is given by the following equation.

E(A,N) =
m∑
i=1

(N · Yi)2 = NT (
m∑
i=1

YiY
T
i)N = NTM(A)N (2.2)

Where Yi = Xi−A, Xi are the sample points and A is a point on the hyper plane. N
is a unit vector on the hyper plane. NTM(A)N is a quadratic form whose minimum is
the smallest eigenvalue of M(A). The normal equations for a three dimensional vector

space are given by M(A) = (Xi−A)∗ (Xi−A)T = with A = (a, b, c) = 1/m∗
n∑

i=1

Xi.

M(A) =

n∑

i=1

(xi − a)2
n∑

i=1

(xi − a) ∗ (yi − b)
n∑

i=1

(xi − a) ∗ (zi − c)
n∑

i=1

(xi − a) ∗ (yi − b)
n∑

i=1

(yi − b)2
n∑

i=1

(yi − b) ∗ (zi − c)
n∑

i=1

(xi − a) ∗ (zi − c)
n∑

i=1

(yi − a) ∗ (zi − c)
n∑

i=1

(zi − c)2

(2.3)

These normal equations can be solved by any eigensystem solver. The normal vector
is given by the eigenvector with the smallest eigenvalue. In fact the matrix is symmetric
and positive semi-definite which means that all values are greater or equal zero and
the upper matrix has the same values than the lower matrix. This leads to a number
of possible algorithms that can solve the eigenvalue problem efficiently. An often used
algorithm is the QR algorithm [WHP02]. The algorithm can solve the problem inO(n2)
complexity. Therefore it is used in this diploma thesis to solve the eigenvalue problem
and furthermore to find the normal of the least squares plane.

2.3. EXTERNAL SORTING 17

2.3 External Sorting

Problem Field

The challenge of sorting n-elements externally is not mainly given by the overall algo-
rithmic complexity, but by the number of I/O disk accesses. Whenever the size of a
given dataset is larger than the main memory, only a portion can be kept in main mem-
ory and the rest has to be stored externally. This external memory storage can be one
or more hard disks. Disk I/O is the slowest possible access in any system architecture.
Keeping disk I/O access as small as possible is therefore the main concern. There are
many techniques to keep the I/O disk access as small as possible. The simplest and
most effective is to read and write pages. The size of one page is given by the system
architecture. Another way to reduce the number of I/O accesses is to use asynchronous
file access techniques. The following two sections will give a brief overview of the two
most important strategies to solve the problem of sorting a very large dataset out-of-core
in O(n ∗ log(n)) overall complexity.

Merge Sort

Merge sort follows a divide and conquer strategy. First it divides the dataset into k
blocks and sorts all the blocks. Secondly it merges any two sorted blocks to one larger
block until there is only one block left.

In-place Merge Sort

The simplest implementation of a merge sort algorithm is the in-place merge sort. The
Algorithm 1 handles the sorting procedure in two steps. First it recursivly divides the
elements in two sub arrays until there is only one element left. Then it merges the sub
arrays into element arrays twice as large until only one array is left.

Algorithm 1 Inplace Merge Sort
Require: A valid point stream.
Ensure: A valid sorted point stream.

1: Recursivly call Inplace Merge Sort with the left half until only one element is left.
2: Recursivly call Inplace Merge Sort with the right half until only one element is left.
3: Merge the left and right half of the point stream sorted into a temporary array (see

Algorithm 2).
4: Copy the temporary array into the point stream.

18 CHAPTER 2. PREVIOUS WORK

3 6 9 8 5 1 2 7

3 6 9 8 5 1 2 7

3 6 9 8 5 1 2 7

3 6 9 8 5 1 2 7

3 6 8 9 1 5 2 7

3 6 8 9 1 2 5 7

1 2 3 5 6 7 8 9

Figure 2.5: Inplace Merge Sort

External Merge Sort

External merge sort is the generalization of the in-place merge sort. The most basic
implementation of external merge sort is called two way merge sort (see Algorithm 3).
At the first pass N pages are read into main memory and made persistent for example
by using memory mapped files. One page consists of a fixed number of elements. Each
of the N pages have to be sorted according to their key values. The next pass takes two
pages and merges them into a two times bigger page. The merge step has to be repeated
until N/2 passes have been executed.

A more generalized formulation of the two way merge sort algorithm is called k way
merge sort (see Algorithm 4). The main difference to the two way merge sort is that in

2.3. EXTERNAL SORTING 19

Algorithm 2 Merge
Require: Two arrays with at least one element.
Ensure: One merged array.

1: while The first and second array is not empty. do
2: if The first element of the first array is smaller than the first element of the second

array. then
3: Insert the first element from the first array into the merged array.
4: Remove the first element from the first array.
5: else
6: Insert the first element from the second array into the merged array.
7: Remove the first element from the second array.
8: end if
9: end while

10: while The first array is not empty. do
11: Insert the first element from the first array into the merged array.
12: Remove the first element from the first array.
13: end while
14: while The second array is not empty. do
15: Insert the first element from the second array into the merged array.
16: Remove the first element from the second array.
17: end while

Figure 2.6: Merge Sort.

each pass B pages are read into main memory. B stands for the number of buffers that
are used to merge the pages. As a consequence the merge passes are reduced to N/B.

20 CHAPTER 2. PREVIOUS WORK

3, 5 6, 1 9, 3 8, 2 5, 4 1, 8 2, 9 7, 6

3, 5 1, 6 3, 9 2, 8 4, 5 1, 8 2, 9 6, 7

1, 3

5, 6

2, 3

8, 9

1, 4

5, 8

2, 6

6, 9

1, 2

3, 3

5, 6

8, 9

1, 2

4, 5

6, 6

8, 9

1, 2 1, 2 3, 3 4, 5 5, 6 6, 6 8, 9 8, 9

Input Stream

Pass 0

Pass 1

Pass 2

Pass 3

1 page runs

2 page runs

4 page runs

8 page runs

Figure 2.7: Two way merge sort with a page size of two elements.

Algorithm 3 Two-Way Merge Sort
Require: A valid point stream.
Ensure: A valid sorted point stream.

1: Divide all elements into N pages and sort each page.
2: while Merge pass counter < N/2 do
3: while There are pages left. do
4: Read two pages into main memory.
5: Merge the two pages sorted into a temporary array (see Algorithm 2).
6: Copy the temporary array into the point stream.
7: end while
8: end while

Distribution Sort
Distribution sort is another very effective method of sorting externally. The main idea
is to distribute all elements into k buckets and sort the buckets in main memory as can

2.3. EXTERNAL SORTING 21

Algorithm 4 k-Way Merge Sort
Require: A valid point stream.
Ensure: A valid sorted point stream.

1: Divide all elements into N pages and sort each page.
2: while Merge pass counter < N/B do
3: while There are pages left. do
4: Read B pages into main memory.
5: Merge the B pages sorted into a temporary array (see Algorithm 2).
6: Copy the temporary array into the point stream.
7: end while
8: end while

be seen in Algorithm 5.

Figure 2.8: Distribution Sort.

There are many in-place variations of the bucket sort. For example radix sort [Sed92]
and counting sort [Knu98] are variations of the bucket sort. One of the major drawbacks
of the bucket sort is that the distribution of the points into the buckets can not be par-
allelized. The sorting part of the strategy can be parallelized. The distribution part in
combination with a LRU cache is very efficient.

22 CHAPTER 2. PREVIOUS WORK

Algorithm 5 Bucket Sort
Require: A valid point stream.
Ensure: A valid sorted point stream.

1: while There is a point in the point stream. do
2: Find the bucket for the active point.
3: if There is no bucket in the bucket list. then
4: Create a new bucket.
5: Insert the bucket into the bucket list.
6: end if
7: Insert the active point into the found bucket.
8: end while
9: while There is a bucket in the bucket list. do

10: Sort the elements in the bucket.
11: Copy the bucket into the point stream.
12: end while

2.4. K NEAREST NEIGHBOR GRAPH 23

2.4 K Nearest Neighbor Graph

Problem Field
Finding the k nearest neighborhood graph is a challenging problem. The graph itself
is a directed asymmetric minimum spanning forest. Which means any vertex in the
tree has k nearest neighbors which are linked asymmetrically. The edges of the near-
est neighborhood graph are given by the Euclidean distance between the vertices. In
order to build such a graph the Euclidean distance values between the vertices have to
be calculated first. Only those vertices with the minimum Euclidean distance are the
nearest neighbors to a point. This task is non trivial because finding the edges in a
graph is potentially of O(n2 ∗ log(n)) complexity. The problem of finding the k nearest
neighbor graph is equal to finding the nearest neighbors for any point in a point cloud.
This is because the edges in the k nearest neighborhood of a point are the same edges
for that point in the k nearest neighborhood graph. Therefore this chapter shows how
the k nearest neighborhood graph is constructed. The following introduction into the k
nearest neighbor graph shows how such a graph can be constructed in O(n ∗ log(n))
complexity with minimum space requirement.

Definitions

Figure 2.9: kNN - graph with four neighbors.

• The k nearest neighbor graph KNNG(pi), i = 1 . . . n is a directed (asymmetric)
minimum spanning forest for a given set of points P = {p1, p2, ..., pn} ∈ Rd.

• The k nearest neighbors of any point pi in the set P are all points pj, i 6= j, with
minimum Euclidean distance from pi.

• k stands for the number of minimum weighted edges connecting the vertex pi
with the nearest neighbors pj, j = 1 . . . n, i 6= j.

24 CHAPTER 2. PREVIOUS WORK

• The weight is given by the Euclidean distance between two vertices distance(pi, pj) =∑
(pj − pi)2, i 6= j.

Construction

The construction of a k nearest neighbor graph is a non trivial task. Donald Knuth
[Knu98] called the problem of finding the k nearest neighbors post-office problem. The
main goal is to find the nearest post-office locations for any given post-office. Typically
the construction process has to overcome two stages.

• The partitioning stage stores all points in a database ready data structure. For
example a binary space partition (BSP) tree.

• The scanning stage traverses all points sequentially in a specific order and com-
putes surface features like the normal vector.

Brute Force

The greedy way to solve this problem is shown in the following Algorithm 6. It divides
the problem in two subproblems. The first step calculates the Euclidean distances be-
tween all points. The second step finds the k nearest neighbors by sorting the Euclidean
distance values in ascending order and store the first k elements. The algorithm has
O(n2 ∗ log(n)) complexity and needs O(n2) space.

Algorithm 6 Brute Force
Require: A valid point cloud.
Ensure: Any point has k nearest neighbors.

1: for all pi ∈ P, i = 1 . . .n do
2: for all pj ∈ P, j = 1 . . .n do
3: Compute the Euclidean distance di(pi, pj), i 6= j.
4: end for
5: Sort the Euclidean distance values in increasing order.
6: Store the first k points of the sorted Euclidean distance values.
7: end for

2.4. K NEAREST NEIGHBOR GRAPH 25

Brute Force With Heap

The sorting step can be avoided by using a maximum heap that stores the k nearest
neighbors immediatly and rejects all points with Euclidean distance greater than the
already found maximum Euclidean distance value (see Algorithm 7). The maximum
heap is a binary tree with the property that all elements at any level of the binary tree
have to be greater than the elements at all lower binary tree level. The heap enhancement
of the brute force algorithm leads to a complexity of O(n2 ∗ log(n)) and needs O(n ∗ k)
additional space.

Algorithm 7 Brute Force With Heap
Require: A valid point cloud.
Ensure: Any point has k nearest neighbors.

1: for all pi ∈ P, i = 1 . . . n do
2: for all pj ∈ P, j = 1 . . . n do
3: Update the maximum heap with pj (see Algorithm 8).
4: end for
5: end for

Algorithm 8 Heap Update
Require: Two valid points pi and pj , i 6= j. The point pi is the center point and pj is

the new point to be updated.
Ensure: The k nearest neighbor points for the point pi are in heap order.

1: if The heap is full then
2: if distance(pi, pj) ≤ distance(pi, pmax), i 6= j then
3: Remove the maximum value of the maximum heap (see Algorithm 9)
4: Insert pj in the maximum heap (see Algorithm 10).
5: end if
6: else
7: Insert pj in the maximum heap (see Algorithm 10).
8: end if

26 CHAPTER 2. PREVIOUS WORK

The heap data structure is very powerful when it comes to keep values in a specific
order. One major advantage of the heap data structure is that it can be implemented
as an implicit data structure (see Figure 2.10). This allows to use any container with
random access to its elements. Because of that the access to parent and child elements
is accomplished in constant complexity O(1).

50

40 30

35 25 20

50 40 30 35 25

15

15 20

Figure 2.10: A heap and its corresponding implicit representation as array.

The following two Algorithms 9 and 10 will ensure that the afore mentioned binary
heap property is intact at all time. The heap data structure is always balanced and
therefore the following heap remove and heap insert algorithms are accomplished with
O(log(n)) complexity.

The heap remove Algorithm 9 ensures that the elements are in heap order after the
first element is removed. The first element will be replaced by the right most leaf node.
Afterwards the new root element will test if the right or leaft child node is greater than
the root node. If the right or left child node is greater than the parent node then the
corresponding child node will be swapped with the parent node. This procedure will
repeat until there is no more child node or if the parent node is greater than the child
nodes (see Figure 2.11).

2.4. K NEAREST NEIGHBOR GRAPH 27

Algorithm 9 Heap Remove
Require: A valid heap.
Ensure: First heap element is removed.

1: Remove the first heap element.
2: Replace the first element with last element in heap order, which is the right most

leaf node.
3: Start with first heap element.
4: while The element has a child. do
5: if The left and right child element is greater than the element. then
6: Swap the element with its child element.
7: Find the new child element.
8: else
9: The heap is in order (return).

10: end if
11: end for

The heap insert Algorithm 10 ensures that the elements are in heap order after the
element is inserted at the left most leaf node position. After the element is inserted it
will be tested against the parent node. If the parent node is less than the child node then
the two nodes will swap their position. This procedure will be continued until the parent
node is greater then the child node or the root node is reached (see Figure 2.12).

Algorithm 10 Heap Insert
Require: A valid element.
Ensure: The element is inserted in heap order.

1: Insert element at last leaf element.
2: while The element has a parent. do
3: if The element is greater than the parent element. then
4: Swap the element with its parent element.
5: Find the new parent element.
6: else
7: The heap is in order (return).
8: end if
9: end for

28 CHAPTER 2. PREVIOUS WORK

Uniform Grid

A uniform grid is the simplest data structure that stores the values in an n-dimensional
array. It enables the fastest way of nearest neighbor searching possible (see Algorithm
11). The direct neighborhood of a grid cell can be found in constant complexity O(1)
by a simple lookup in the n-dimensional array (see Figure 2.13). The search for the
neighborhood inside the grid cell has O(M) complexity where M is the number of
points in the grid cell. Each point stores a maximum heap that manages the k nearest
neighborhood for that point.

Algorithm 11 Uniform Grid Search For Nearest Neighborhood
Require: A valid point cloud.
Ensure: Any point has k nearest neighbors.

1: for all pi ∈ P , i = 1 . . .n do
2: Search in the grid cell where the point is situated (see Algorithm 12).
3: if The point pi does not have k nearest neighbors. then
4: Increase the search range from the grid cell where the point is situated in each

direction by one.
5: while The grid borders have not reached and the point pi does not have k

nearest neighbors. do
6: Search in all grid cells up to the grid cell search range (see Algorithm 12).
7: Increase the search range by one cell in each direction.
8: end while
9: end if

10: end for

Algorithm 12 Uniform Grid Cell Search For Nearest Neighborhood
Require: A valid point pi.
Ensure: All points in the cell are tested against the given point.

1: for all Points pj in the grid cell. do
2: if There are more than k elements in the maximum heap. then
3: Remove the maximum point from the heap (see Algorithm 9).
4: end if
5: Insert the current point pj into the maximum heap (see Algorithm 10).
6: end for

2.4. K NEAREST NEIGHBOR GRAPH 29

N Dimensional Range Searching

There are many data structures that allow to setup range queries in a n-dimensional
space. In fact any binary space partitioning (BSP) tree data structure can be used. One
of the most important data structures when it comes to searching for the nearest neigh-
borhood of a point is the kd-tree [Ben75] [Sam06]. The kd-tree is a binary space par-
titioning tree which allows to partition a point cloud according to its distribution in the
n-dimensional space where it is situated in (see Figure 2.14). The insertion method (see
Algorithm 13) is the same as in any binary space partition tree. The space is subdivided
into hyper planes and the points are located either left or right from the hyper plane. The
complexity of the insertion method is logarithmic O(log(n)) if the kd-tree is balanced.

Algorithm 13 Insert Into KD-Tree
Require: A valid point.
Ensure: The point is inserted into the kd-tree.

1: Start with tree node as root node.
2: while The tree node is not a leaf node. do
3: if The point is left from the tree node. then
4: Set tree node as left node.
5: else
6: if The point is right from the tree node. then
7: Set tree node as right node.
8: end if
9: end if

10: end while
11: Insert point pi into the kd-tree at the found tree node.

30 CHAPTER 2. PREVIOUS WORK

Another way to insert elements in a kd-tree is to completely build the kd-tree instead
of sequentially inserting elements into the kd-tree. In fact the build Algorithm 14 is
the prefered strategy because it guarantees a balanced binary tree which is important
for any search strategy. The build kd-tree Algorithm 14 has an overall complexity
of O(n ∗ log(n)) if the method for finding the splitting node is to find the median at
the current splitting axis. The median can be found with linear complexity O(n), if a
selection algorithm (e.g. STL nth_element) is used.

Algorithm 14 Build KD-Tree
Require: A valid point cloud.
Ensure: A valid kd-tree.

1: Find the splitting node at the current axis.
2: Set the splitting value for the median node.
3: Build KD-Tree using the left node of the found median node.
4: Build KD-Tree using the right node of the found median node.

The Algorithm 15 shows how the goal of searching for the k nearest neighborhood
can be achieved by using a kd-tree.

Algorithm 15 KD-Tree Search For Nearest Neighborhood
Require: A valid point cloud.
Ensure: Any point has k nearest neighbors.

1: Build a valid kd-tree. (see Algorithm 14)
2: for all pi ∈ P , i = 1 . . .n do
3: Search KD-Tree for point pi starting from the kd-tree root. (see Algorithm 16 or

17)
4: end for

2.4. K NEAREST NEIGHBOR GRAPH 31

The search kd-tree Algorithm 16 inspects only those subtrees that are inside the
spherical range query. In order to keep the spherical range distance as small as possible
the algorithm starts with a value that is set to infinity. As soon as k elements are stored
in the heap, the spherical range distance will be set to the maximum distance the heap
currently stores. The spherical range distance is given by the distance between the point
pi and the maximum neighborhood point pmax. This simple but effective strategy allows
to traverse only those values that are inside the current maximum distance.

Algorithm 16 KD-Tree Search
Require: A valid kd tree and a valid point pi. Start with point pj as root node.
Ensure: k nearest neighbors.

1: if The point pj is on the right side from the point pi. then
2: Call search kd-tree with left child from pj .
3: if The point pj is inside the given spherical range. then
4: Call search kd-tree with the right child from pj .
5: end if
6: else
7: Call search kd-tree with the right child from pj .
8: if The point pj inside the given spherical range. then
9: Call search kd-tree with left child from pj .

10: end if
11: end if
12: if The current point pj is inside the spherical range. then
13: if There are more than k elements in the maximum heap. then
14: Remove the maximum point from the heap (see Algorithm 9).
15: Insert the current point pj into the maximum heap (see Algorithm 10).
16: Set the search radius to the maximum distance between the point pi and the

maximum point in the heap.
17: else
18: Insert the current point pj into the maximum heap (see Algorithm 10).
19: end if
20: end if

Another effective way to search for the k nearest neighborhood is shown in the work
by [Mou10]. This search strategy concentrates on finding the nearst neighbor and than
give an estimate of the range radius from the distance of the point to the nearest neighbor
(see Algorithm 17). Therefore the following inequality will be used distance(p, qi) ≤
k ∗ (1 + ε) ∗ distance(p, qj), i 6= j, ε ≥ 0. This means that the range radius for the k
nearest neighborhood will be k times one plus epsilon times the distance from the point
p to the nearest neighbor qj . The value ε has to be greater or equal zero. Any point

32 CHAPTER 2. PREVIOUS WORK

qi whose distance to the point p is less or equal the estimated radius will be a nearest
neighbor. The main disadvantage in this solution is that the estimation of the range
radius is distribution dependent.

Algorithm 17 KD-Tree Approximated Nearest Neighbor Search
Require: A valid kd tree and a valid point pi. Start with point pj as root node.
Ensure: k nearest neighbors.

1: if The point pj is on the right side from the point pi. then
2: Call search kd-tree with left child from pj .
3: if The point pj is inside the given spherical range. then
4: Call search kd-tree with the right child from pj .
5: end if
6: else
7: Call search kd-tree with the right child from pj .
8: if The point pj inside the given spherical range. then
9: Call search kd-tree with left child from pj .

10: end if
11: end if
12: if The current point pj is inside the spherical range. then
13: Update the heap from the point pi with the new point pj (see Algorithm 8).
14: Compute the new range radius rnew = k ∗ (1 + ε) ∗ distance(pi, pj).
15: if rnew < rangeradius then
16: Set the range radius to rnew.
17: end if
18: end if

One Dimensional Range Searching

Another efficient way of dealing with the problem of finding the k-nearest neighborhood
is to use one dimensional hash keys. In order to get one dimensional hash key values
from n-dimensional coordinates the coordinates have to be mapped to unique one di-
mensional values. This can be achieved by building a binary space partitioning tree like
a quad tree or by bit interlacing the corrdinate values.

The unique key in binary space partitioning trees is given by the binary decision
paths from the root to the node where the point is stored (see Figure 2.15). The code
given by the binary paths decision codes is often called morton code or z-order. The
morton order can be used as a unique hash key.

The unique key can also be achieved by bit interlacing the coordinate values. For
example by storing the keys in a two times bigger value. The odd bits in the key stores
the bits from the x coordinate bits and the even bits store the y coordinate bits.

2.5. SUMMARY 33

In the work by Timothy M. Chan [Cha06] the partitioning stage is reduced to sorting
the points by a locality preserving hash code between two points. The comparison op-
erator used in the sorting and binary search procedure uses another way of calculating
the unique hash code. This approach computes the Morton code by XORing the coor-
dinate values between two points. After that it finds the axis with the minimum of all
XORed values. This found axis gives the position value where the coordinates will be
compared.

While this approach works only for integer values, the work by [MC08] shows a
way how to implement the strategy parallelized for floating point values.

The interesting part in the binary search is that the first k elements before and after
any point in the sorted stream give an estimation of the radius in which all nearest
neighbors exist. This estimated radius is refined by a simple binary search on all Morton
ordered elements.

Algorithm 18 Parallel Construction of k-Nearest Neighbor Graphs
Require: A valid point cloud.
Ensure: Any point has k nearest neighbors.

1: Sort in morton order.
2: for all pi ∈ P , i = 1 . . .n do
3: Binary search k nearest neighborhood for point pi (estimate and refine radius).
4: Update the maximum heap of the point pi with the new elements (see Algorithm

8).
5: end for

2.5 Summary

The algorithm 8 is the most efficient way to store the nearest neighborhood. The al-
gorithm 16 provides the prefered searching strategies for point clouds with arbitrary
sampling density. The algorithms 17 and 11 can be used in order to find the nearest
neighborhood in uniform sampled point clouds.

34 CHAPTER 2. PREVIOUS WORK

40 30

35 25

20

15

40

30

35 25

20

15

40

3035

2520 15

Figure 2.11: Heap Remove

2.5. SUMMARY 35

50

40 30

35 25 2015

50

40 30

35 25 2015

45 50

40 30

35

25 201545

50

40

30

35

25 2015

45

Figure 2.12: Heap Insert

36 CHAPTER 2. PREVIOUS WORK

px,ypx−1,y px+1,y

px,y+1

px,y−1px−1,y−1

px−1,y+1

px+1,y−1

px+1,y+1

Figure 2.13: Grid neighborhood for the point px,y.

p2

p1

p3

p4

p5

p6

p1

p2 p3

p4 p5

p6

Figure 2.14: Space partitioning from kd-tree.

2.5. SUMMARY 37

x

y

z

x

y

1

0

0

1

1

morton code: 1 0 0 1 1z

Figure 2.15: Morton code from BSP paths.

CHAPTER 3
External Sorting with LRU Cache

In order to find the nearest neighborhood and furthermore the normals the point cloud
has to be sorted first. This is because the streaming approach is a two step process.
First the point cloud has to be sorted along the main axis and then a plane is swept
along this axis. The main axis is the axis with the widest spread. In this diploma
thesis a tree based distribution sort (see Algorithm 19) strategy, to sort the point cloud
externally, was developed. This approach is a distribution sort variant (see Chapter 2.3).
The distribution sorting strategy distributes all points into buckets. After all points are
distributed the buckets are sorted in parallel or one by one. Buckets are buffer with a
fixed amount of storable points. The tree based distribution sort improves this strategy
in that it uses an AVL tree to distribute the points into the buckets. First the point is
read from the input stream. Then an insertion leaf node in the balanced binary search
tree has to be found. The search key is given by the position value at the main axis. A
balanced binary search tree (e.g. AVL tree) guarantees a complexity of O(log(n)) for
the find, insertion and removal procedure. Each of the leaf nodes contain buckets with a
fixed amount of storable points. Whenever the bucket of a leaf node is full this leaf node
has to be split into two new leaf nodes. The splitting strategy is to take the median of
the leaf node bucket and distribute the points into two new buckets. Each of the newly
created buckets contains half of the points. This leads to a guaranteed splitting policy of
50 percent full buckets at any leaf node. The points inside the nodes of the AVL tree are
managed by a least recently used (LRU) cache, so only nodes that have recently been
visited hold their points in memory. After all points have been inserted the buckets are
sorted. The last step is to traverse all nodes inorder and write the sorted buckets in a
new point stream.

39

40 CHAPTER 3. EXTERNAL SORTING WITH LRU CACHE

Algorithm 19 Tree Based Sorting
Require: A valid point stream.
Ensure: A valid sorted point stream.

1: while There is an existing point in the stream. do
2: Read point from sorted stream.
3: Find an insertion leaf.
4: if bucket in the insertion leaf is not full then
5: Insert into leaf node bucket.
6: else
7: if The least recently used cache is full. then
8: Copy the least recently used bucket to the disk file.
9: end if

10: Create two new leaf nodes.
11: Split insertion node bucket into the two new leaf node buckets.
12: Balance the binary search tree (see Algorithm 20).
13: Register the two new buckets in the least recently used cache.
14: Insert the new point into the left or right leaf node bucket.
15: end if
16: end while
17: Sort all buckets.
18: Build a valid sorted point stream.

3.1 AVL Tree

As mentioned before the complexity of O(log(n)) can only be guaranteed if the binary
search tree is balanced. The AVL tree [TO96] is a self balancing binary search tree. It
guarantees that the height difference between any left and right sub tree is at most one.
Therefore it is one of the best trees to guarantee the proposed logarithmic complexity.
The balancing strategy (see Algorithm 20) of the AVL tree is the fundamental operation.

Algorithm 20 AVL-Tree Balance
Require: A valid tree node.
Ensure: A balanced AVL tree.

1: while The tree node has a parent. do
2: Call balance tree node (see Algorithm 21).
3: Set the parent node as the new tree node to be balanced.
4: end while
5: Call balance tree node (see Algorithm 21).

3.1. AVL TREE 41

There are four cases for balancing an AVL tree which have to be considered when-
ever a tree node is inserted or removed.

• Rotate left dominant (see Figure 3.1).

• Rotate right dominant (see Figure 3.2).

• Rotate left and right dominant (see Figure 3.4).

• Rotate right and left dominant (see Figure 3.3).

The Algorithm 21 shows how the four cases have to be used in order to keep an
AVL tree in balance.

Algorithm 21 AVL-Tree Balance Tree Node
Require: A valid tree node.
Ensure: A balanced sub tree.

1: Compute the height difference between the left and right sub tree.
2: if The height difference is plus two. then
3: Compute the height difference of the right sub tree.
4: if The height of the right subtree is minus one. then
5: Rotate the sub tree left node to the right (see Figure 3.3).
6: Rotate the sub tree root node to the left (see Figure 3.3).
7: else
8: Rotate the sub tree root node to the left (see Figure 3.2).
9: end if

10: else
11: if The height difference is minus two then
12: Compute the height difference of the left sub tree.
13: if The height of the left subtree is one then
14: Rotate the sub tree right node to the left (see Figure 3.4).
15: Rotate the sub tree root node to the right (see Figure 3.4).
16: else
17: Rotate the sub tree root node to the right (see Figure 3.1).
18: end if
19: end if
20: end if

42 CHAPTER 3. EXTERNAL SORTING WITH LRU CACHE

B

C

A

cr

br

al ar

B

A C

al ar br cr

-2

-1

==>

Figure 3.1: Rotate left dominant.

A

B

C

al

bl

cl cr

B

A C

al bl cl cr

+2

+1

==>

Figure 3.2: Rotate right dominant.

3.2 LRU Cache

In order to keep only those buckets in main memory that are recently updated a simple
but effective least recently used cache was implemented. This least recently used cache
is basically a linked list which updates the status of any recently used bucket whenever
an element is inserted. Therefore the bucket has to be removed from its current position
and reinserted into the first position of the list (see Figure 3.5).

Furthermore whenever there are too many buckets in main memory the least recently
used bucket will be made persistent (flushed to disk file) and removed from the list.
This least recently used bucket is always on the last position of the list. This simple but
effective strategy allows to keep only those buckets in main memory that are recently

3.2. LRU CACHE 43

A

B

C

al

bl

br cr

B

A C

al bl br cr

+2

+1

A

C

B

bl br

cr

+2

-1

==> ==>

Figure 3.3: Rotate right and left dominant.

B

C

A

cr

br

al bl

B

A C

al bl br cr

-2

-1

C

A

Bal

bl br

-2

+1

==>==>

Figure 3.4: Rotate left and right dominant.

used by the tree insertion procedure (see Algorithm 19). The speed enhancement that
comes from the least recently used cache strongly depends on the distribution of the
points in the input stream. If the points are in a geometrically sense close together then
the least recently used cache strongly speeds up the process. This is the case, because
the nodes of the AVL tree that have been visited for the previous points will also be
visited for the next points, so only few I/O accesses occur during the insertion process.
If the points are further away then the least recently used cache will lead to no or very
low speed enhancement because the points in the nodes have to swapped in and out of
memory more often.

44 CHAPTER 3. EXTERNAL SORTING WITH LRU CACHE

p1 p2 p3 p4 p5 p6

Figure 3.5: LRU Cache upadate procedure for an active point p4.

3.3 Contribution
Tree based sorting is a simple and effective method to sort point clouds externally. The
AVL tree allows to find the bucket in which a point has to be inserted with O(log(n))
complexity. The LRU cache keeps only those buckets in main memory that are recently
updated. All buckets that store points which are far away from the recent points are
kept persistent. The sorting stage sorts all the buckets parallel by using several threads.
The number of available threads is dependent on the number of threads supported by
the CPU. That means if the CPU allows to process the sorting stage in more than one
thread, then all threads will be used to sort the buckets in parallel. The main advantage
in this approach is that the main memory is used as second level cache because of the
LRU cache. The LRU cache takes advantage of the spatial relationship of the points in
that it keeps only those buckets in main memory that are recently updated. This is not
possible in a merge sort approach. To the knowledge of the author of this diploma thesis
there is no similar approach that takes advantage of the spatial relationship of the points.

CHAPTER 4
Point Streaming Framework

Estimating normals in a very large point cloud is a non trivial task, thats because it
relies on finding the nearest neighborhood for any point in the point cloud. The nearest
neighborhood of a point is useful not only for normal estimation but also for many
other tasks. For example it is useful for surface reconstruction, fairing and many more.
In this chapter an approach to process a very large amount of point based datasets is
shown. The main focus is laid on finding the nearest neighborhood for any point in
the point cloud. The main concern in finding the k nearest neighborhood (kNN) is to
find a data structure that can handle range query requests for the kNN of a single point
with O(k ∗ log(M)) complexity. K are the nearest neighbors and M is the number
of points managed by the data structure. Several data structures with the required time
complexity exist for in-core processing of point clouds [Sam06] [Mou10] [Cha06]. Out-
of-core data structures on the other hand are not that easy to find. The kd tree for
example can handle the range query in the proposed complexity but if used as out-of-
core data structure [AHW89] the range queries have to handle lots of disc accesses.
This means the process of finding the nearest neighborhood for any point becomes very
slow because each point has to handle a significant large number of I/O requests. Point
streaming is another possibility to handle the problem with reduced I/O accesses. This
approach divides the process for finding the k nearest neighborhood into two steps. The
first step sorts the point cloud along an axis. This task is discussed in Chapter 3. The
second step processes the points sequentially. This strategy allows to find the k nearest
neighborhood by reading the points one by one and searching in main memory for the
nearest neighborhood without any I/O disk accesses being involved. Even better it is
possible to build a kd tree in memory. Which means that the search can be handled
with the proposed complexity of O(k ∗ log(M)). But this solution depends on the
locality of the data. The locality can be guaranteed if the points are sorted along one
direction. As mentioned in the work by [PS04], points can then be processed in a

45

46 CHAPTER 4. POINT STREAMING FRAMEWORK

streaming fashion, where operators work on the points that are currently held in main
memory. The following chapter gives a short overview of the used point streaming
framework and introduces the operator that was developed in this diploma thesis.

4.1 The Basic Idea
The following strategy for finding the k nearest neighborhood and the normal for any
point in a stream is based on the work by [PS04] by Renato Pajarola. It shows a con-
venient way to build a framework for stream processing of points in three dimensions.
In the Algorithm 22 the top level of the framework is shown where so called local op-
erators θ are applied to any point in the point stream. Any local operator implements a
specific task in the framework. The read operator reads points from the input stream.
The k nearest neighborhood operator finds the nearest neighborhood for any point in
the point cloud. The normal estimation operator computes the normal for the points.
The write operator writes points to the output stream. These are only four examples for
local operators there are many more tasks that can be implemented as local operators.
For example a surface reconstruction operator a fairing operator and many more. Local
operators are connected by a first in first out (FIFO) queue which allows a deferred pro-
cessing of the points. This diploma thesis follows the design suggestions of the work by
[PS04] and improves on the k nearest neighborhood operator.

Algorithm 22 The Main Algorithm
Require: A valid point stream. A set of local operators θ1...θn.
Ensure: Any point has a normal.

1: Sort the point cloud P along the axis with the widest spread (main axis).
2: for all pi ∈ P do
3: Call the local operators θn(...(θ1(pi))).
4: end for

First the point stream is sorted along the main axis. The main axis can be chosen to
be the axis with the widest spread. Then the local operators θ are called sequentially for
any point in the stream.

4.2 Local Operators
Any implementation of a local operator has to take the following definitions into ac-
count.

Definition 1. A local operator θ(pi) performs a function on point pi that computes or
updates a subset of attributes Ai associated with pi. As function parameters, θ(pi), only

4.3. A POINT STREAMING ASSEMBLY 47

accepts pi, Ai and a set of points pi ∈ Ni within close spatial proximity to pi (and all
their associated attributes Aj) [PS04].

The meaning of this formal definition is that any operation that is performed on any
point can only take those points in consideration that are in main memory at the time
this point is active. Points are in main memory if they are referenced by any other point
in main memory and if they are not fully processed by all local operators.

Definition 2. A local operator θk(pi) is streamable, if it is computed in one single in-
vocation on pi and not called recursively on points pj ∈ Ni. Additionally the FIFO
semantic of its Queue Qk ensures no interference between consecutive operators Qk+i

[PS04].

This second definition states that stream operators can only be called sequentially.
Recursions within the operator cascade is not allowed. Furthermore the local operators
are linked by a first in first out queue (FIFO queue). All elements that are fully processed
within a local operator are stored in a FIFO queue. The next operator in the operator
cascade will fetch all processed elements from the previous operator by withdrawing
the elements from the FIFO queue.

4.3 A Point Streaming Assembly
The following Algorithm 23 shows how the local operators are used within this diploma
thesis. The point streaming assemply is a concatination of the local operators as they
are called in the sequence. In this diploma thesis four local operators are implemented.
Those operators are discussed in the corresponding subsections of this chapter.

Algorithm 23 A Point Streaming Assembly
Require: A valid point stream. A read operator θ1. A k nearest neighbor operator θ2.

A normal estimation operator θ3. A write operator θ4.
Ensure: point stream has normals

1: External sort the point cloud P along the axis with the widest spread (main axis).
2: for all pi ∈ P do
3: Call θ4(θ3(θ2(θ1(pi))))
4: end for

External Sorting
The sorting step guarantees that all elements are sorted in one axis direction. This can
also be seen as sorting a stack of planes. The sorting operator was developed as tree
based distribution sort (see Chapter 3).

48 CHAPTER 4. POINT STREAMING FRAMEWORK

Read Operator
The read operator reads all points from the sorted stream sequentially.

Algorithm 24 Read Operator
Require: A valid sorted point stream.
Ensure: Point pi is in main memory.

1: if There is an existing point pi in the sorted stream. then
2: Read point pi from sorted stream.
3: Insert point pi into the FIFO queue.
4: end if

K Nearest Neighbor Operator
The k nearest neighbor operator is the heart of any point streaming assembly. The
following algorithms show a fast and efficient way to solve the problem of building a
k nearest neighbor graph. The efficiency in this solution comes from the fact that only
a fraction of the whole point cloud is kept in main memory while the rest can reside
out-of-core. Also the I/O file access is reduced to read and write one point after the
other from the input stream and into the output stream sequentially.

The simplest algorithm that solves the problem is shown in the algorithm 25. The
basic idea in this solution is to use a doubly linked list (z-list) to search for the nearest
neighbors. The z-list stores all points sorted along the z axis.

The search phase is divided into two stages.

• The first stage searches active left from any point pi along the z axis.

• The second stage searches passive right from the point pi along the z axis.

The active search finds the neighborhood for a point pi by updating the heap of that
point with any point in the z-list. The heap stores only k points and rejects all elements
that are greater than the maximum distance in the heap. All points in the z-list are left
from the point pi and therefore only points in the direct neighborhood on the left side
can be found.

The passive search updates the heap of the neighborhood points by the current ac-
tive point pi. The active point pi is always right from the points in the neighborhood
list. Therefore as soon as the neighborhood points are found in the active stage their
neighborhood will also expand by the point pi on the right side along the z axis.

The last step is that the newly read point pi has to be inserted into the front of the
z-list.

4.3. A POINT STREAMING ASSEMBLY 49

Figure 4.1: Sweeping a plane along the sorted z-axis [PS04]. All points in the active set
are left from the point on the sweeping plane along the sorted z axis. The point on the
sweeping plane is always right from all points in the active set along the sorted z axis.

Algorithm 25 Basic KNN Operator
Require: The previous read operator has valid points in the FIFO queue.
Ensure: Any point has k nearest neighbors.

1: while There is a point pi in the previous FIFO queue. do
2: Remove point pi from previous FIFO queue.
3: for all points pj in the z-list do
4: if The heap has k elements. then
5: if The distance(pi, pj) > distance(pi, pmax) with pmax being the maximum

point in the maximum heap. then
6: Remove point pj from the z-list.
7: Insert point pj into the FIFO queue.
8: else
9: Update the maximum heap of the point pi with the point pj (see Algorithm

8).
10: end if
11: else
12: Insert into the maximum heap of the point pi with the point pj (see Algo-

rithm 10).
13: end if
14: end for
15: for all points pj in the maximum heap of point pi do
16: Update the heap from the point pj with the point pi (see Algorithm 8).
17: end for
18: Insert the point pi into the z-list.
19: end while

50 CHAPTER 4. POINT STREAMING FRAMEWORK

Normal Estimation Operator

The normal estimation operator computes the normal vector. In this diploma thesis the
QR Algorithm [WHP02] is used that solves the system of normal equations from the
orthogonal linear least squares fitting in O(n2) complexity.

Algorithm 26 Normal Estimation Operator
Require: The previous k nearest neighborhood operator has valid points in the FIFO

queue.
Ensure: Point pi has a normal vector.

1: while There is a point pi in the previous FIFO queue. do
2: Remove point pi from previous FIFO queue.
3: Compute the normal vector for the point pi.
4: Insert point pi into the FIFO queue.
5: end while

Write Operator

The write operator first releases all references a point holds to its nearest neighbors and
then writes the points to the output stream.

Algorithm 27 Write Operator
Require: The previous normal estimation operator has valid points in the FIFO queue.
Ensure: Point pi is stored in disk file.

1: while There is a point pi in the previous FIFO queue. do
2: Remove point pi from previous FIFO queue.
3: Write point pi into stream.
4: end while

4.4. A CASE STUDY 51

4.4 A Case Study
In this section a simple case study for the k nearest neighborhood operator is shown.
The sampling distance is uniform along the z-axis and the x and y values are all the
same. The neighborhood graph operator has to find two neighbors for each point.

The first three steps in the case study can be seen in Figure 4.2. The first step starts
with one point p1. This point is singular and finds no neighbors. In the second step
the point p2 is inserted. The active search finds the point p1 as direct neighbor on the
left side. The passive search updates the point p2 in the neighborhood heap of the point
p1 on the right side. The green half circle in the Figure 4.2 is the active search radius
and the red circle is the passive search radius. The search radius is the length from the
active point to the farthest away point in the found list of points. In this case this is the
length from point p2 to the point p1. The event horizon is now at the plane l2. The event
horizon is the position of the sweeping plane at the active point. In this case this is the
plane l2 at the point p2.

The third step inserts the point p3. The event horizon is moved to the event plane
l3. The active search finds the points p1 and p2 and the passive search updates the point
p3 in the neighborhood heap of point p1 and point p2. The passive search radius for the
point p1 is widened to the point p3.

p1 p2 p1 p2 p3z-axis

l1 l2 l1 l2 l3

x,y - axis

p1

l1

Figure 4.2: The first three steps of the case study.

The fourth step in the case study can be seen in Figure 4.3. The event horizon is now
at l4 and the event point that triggered the new event is inserted as point p4. After the
neighborhood points are found, they are updated as seen before. A cleanup step clears
the active points list. Point p1 and point p2 are outside the search range and therefore

52 CHAPTER 4. POINT STREAMING FRAMEWORK

there is no need for the active search step to traverse those points whenever a new event
point triggers a new search phase. This is because if the passive search range radius (red
line) is less than the active search range radius (green line) of the event point p4 then
those points can not make a contribution to any search step that follows.

p1 p2 p3 p4 p1 p2 p3 p4

l1 l2 l3 l4 l3 l4

Figure 4.3: The fourth step of the case study.

The fifth step inserts point p5 and finds the points p3 and p4 as can be seen in Figure
4.4. After those points are updated with point p5 the cleanup step clears the point p3
from the active list. This fifth step is repeated until there is no more event point.

p1 p2 p3 p4 p5

l1 l2 l3

p1 p2 p3 p4 p5

l2 l3

Figure 4.4: The fifth step of the case study.

4.5. IMPROVEMENTS 53

4.5 Improvements
The following discussion shows how the basic k nearest neighbor operator can be im-
proved. Therefore three operators will be introduced that can be used instead of the
basic operator. All three operators were developed in this diploma thesis and tested for
their practicability when working with real life point cloud datasets. After the introduc-
tion of the operators a short summary concludes in what cases the introduced operators
are useful.

KD-tree Operator
The basic Algorithm 25 has one major disadvantage. If there are many points in the
z-list, the algorithm tends to become slow. In fact the active searching procedure has
O(M ∗ log(k)) complexity, with M being the number of points in the z-list and k the
number of nearest neighbors. This is because the search has to visit all points in the list
and insert them into the binary maximum heap. In order to speed up the process the
algorithm has to be enhanced by a search in the x and y axis directions.

The Algorithm 28 describes a way to speed up the process of finding the k nearest
neighborhood by using a kd-tree search. As in the basic algorithm the active point is
inserted in a z-list, but it is also managed by a kd-tree. This enables to search the points
for the k nearest neighborhood inO(k∗log(M)) complexity, with k being the number of
nearest neighbors and m being the number of points in the kd-tree. In order to guarantee
the complexity ofO(k∗log(M)) the kd-tree has to be as balanced as possible. Balancing
a kd-tree is a non-trivial task, in fact the only known strategy to balance a kd-tree is to
fully rebuild it (see Algorithm 14). The following advanced Algorithm 28 uses a
simple but effective strategy to keep the kd-tree balanced with an amortized complexity
of O(M ∗ log(M)).

Whenever a constant number of points are removed from the kd-tree the kd-tree
will be completely rebuild. This method is similar to the well known mark and sweep
garbage collection algorithm [RJ96]. Points will be marked as removable, whenever
a deallocation of that point occurs. After a constant number of points are marked as
removable those points are really deleted within a sweep procedure. In this case the
sweep procedure is given by the rebuild algorithm.

This method is similar to the one introduced by Pajarola and Boesch [PB09] which
has been developed in parallel to the work in this diploma thesis.

Uniform Grid Operator
The simplest implementation of a local operator that finds the k nearest neighborhood is
to use a uniform grid for the x and y axis. The grid cells store the points in a z-list. The
n-dimensional space will be divided into sub-spaces of equal size in the x and y axis

54 CHAPTER 4. POINT STREAMING FRAMEWORK

Algorithm 28 KNN Operator
Require: The previous operator has valid points in the FIFO queue.
Ensure: Any point has k nearest neighbors.

1: while There is a point pi in the previous FIFO queue. do
2: Remove point pi from previous FIFO queue.
3: Search nearest neighborhood for point pi in the kd-tree (see Algorithm 16).
4: for all points pj in the maximum heap of point pi do
5: Update the heap from the point pj with the point pi (see Algorithm 8).
6: end for
7: for all points pj in the z-list do
8: if The distance(pi, pj) > distance(pi, pmax) with pmax being the maximum

point in the maximum heap. then
9: Remove point pj from the z-list.

10: Mark the point pj as removed.
11: Insert point pj into the FIFO queue.
12: end if
13: end for
14: The recently read point pi will be inserted into the kd-tree (see Algorithm 13)

and the z-list.
15: Rebuild the kd-tree as soon as a constant number of points are marked as remov-

able (see Algorithm 14).
16: end while

direction. Regardless of the coarseness of the grid, this solution will always be distribu-
tion dependent. This means if the dataset has regions that are sampled very densely in
comparison to all other regions then only a few cells will store the whole information.
In the case of datasets with densly sampled regions the grid solution will perform as bad
as the afore mentioned basic k nearest neighborhood operator (see Algorithm 25). But
if the point cloud is uniformly sampled then this solution will perform faster then the
basic operator.

KD-tree Region Operator
The following k nearest neighborhood operator is different from the above (see Algo-
rithm 30). While all the above operators search for the k nearest neighborhood one
point after the other, the region operator reads and processes point regions along the z
axis direction.

The first step in the algorithm reads a complete region into the main memory. This
region will be merged together with the previously read region. The two regions together
are building a kd-tree. The z distance of one region has to be large enough or else the

4.5. IMPROVEMENTS 55

Algorithm 29 KNN Grid Operator
Require: The previous operator has valid points in the FIFO queue.
Ensure: Any point has k nearest neighbors.

1: while There is a point pi in the previous FIFO queue. do
2: Remove point pi from previous FIFO queue.
3: Search nearest neighborhood for point pi in the uniform grid (see Algorithm 11).
4: Find the grid cell where the point has to be inserted.
5: The recently read point pi will be inserted into z-list of the uniform grid cell.
6: end while

neighborhood will not find the k nearest neigborhood for all the points. If the region is
too small than the search step will fail to find all k nearest neighbors. The decision how
great the distance has to be depends on the distribution of the points in the point cloud.
This means this method works best for point clouds with a nearly uniform sampling
rate.

The active search step searches for the neighborhood sequentially point by point in
the z axis direction left from the point. This search is different from the previous search
strategies. It starts with a search range radius that is set to infinity. As soon as the
first nearest neighbor is found the search radius will be set to the approximate distance
value distance(p, qi) ≤ k ∗ (1 + ε) ∗ distance(p, qj), i 6= j, ε ≥ 1 (see Section 2.4).As
mentioned in the previous section K Nearest Neighbor Graph subsection Construction
the approximation is distribution dependent. This means if the point cloud was sampled
with a nearly uniform sampling rate then this method is very fast and accurate. A nearly
uniform sampling rate will enable to find all the k nearest neighborhood by the approxi-
mation distance(p, qi) ≤ k ∗ (1+ ε) ∗ distance(p, qj), i 6= j, ε ≥ 1. If the sampling rate
is not nearly equal this strategy will not find the k nearest neighborhood for all points or
it will find nearly all points in the whole region as nearest neighbors.

The last step in the algorithm is the passive search step (see Algorithm 8), which is
the same as in the afore mentioned algorithms.

Conclusion
The basic k nearest neighbor operator shows a way to process points sequentially and
independent of the distribution of the point cloud. But this operator is not practicable
because the active search phase will take far too long to search in the list for nearest
neighbors. This fact leads to three optimizations for the problem.

The kd-tree operator improves the basic k nearest neighbor operator by partitioning
the space in the x and y axis using a kd-tree. The points are managed in the z-axis
direction by a list and in the x and y axis by a kd-tree. The active search phase is
searching in the kd-tree for the nearest neighbors. The implementation of this operator

56 CHAPTER 4. POINT STREAMING FRAMEWORK

Algorithm 30 KNN Region Operator
Require: The previous operator has valid points in the FIFO queue.
Ensure: Any point has k nearest neighbors.

1: while There is a point pi in the previous FIFO queue. do
2: Remove the point pi from the previous FIFO queue.
3: Store the point in a new region (array).
4: end while
5: Read from the previous operator as long as a distance from the last region to the

new region in the z direction is reached.
6: Build the kd-tree with the previus region and the new region.
7: Search nearest neighborhood for point pi in the kd-tree (see Algorithm 17).
8: for all points pj in the maximum heap of point pi do
9: Update the heap from the point pj with the point pi (see Algorithm 8).

10: end for

shows great results. It can handle arbitrary distributions of the point cloud sampling
while keeping only a small fraction of the point cloud in main memory. This operator is
the prefered strategy for solving the problem of finding the k nearest neighborhood. All
point clouds in the results section where tested with the implementation of this operator.

The uniform grid operator is the logical extension to the basic k nearest neighbor
operator. The underlying space is partitioned at the x and y axis using a uniform grid.
Each grid cell manages a z-list to the points it containes. The active search is reduced
to a simple lookup in which cell the point belongs and the eight neighbor cells. This
operator works well for uniformly sampled point clouds. But real point clouds are not
uniformly sampled and therefore this operator is not practicable either. When testing this
operator with real life point clouds only a few regions were updated at a time while the
rest were completely empty. This happens regardless of the coarseness of the grid. The
reason for this is that points in real life point clouds tend to be clustered with different
sampling density.

The kd-tree region operator follows a different strategy to search for the nearest
neighborhood in that it processes regions instead of points. Therefore a region is read
along the z-axis and merged with the previously read region into a kd-tree. The active
search phase follows an approximative k nearest neighbor strategy. The first point inside
the search region has to be found. The distance to this point is used as an approximation
for the k nearest neighbor search distance. This means the new search range is given
by k times the distance to the first point. The kd-tree region operator is distribution
depended because it assumes that the k nearest neighbors have nearly the same distance
than the distance to the first point. Therefore this strategy is only useful if the sampling
distance between the points is nearly uniform.

4.6. CONTRIBUTION 57

4.6 Contribution
Point streaming allows to keep only a fraction of the whole point cloud in main memory
while the rest of the point cloud can be kept persistent. The kNN operator is the most
time consuming operator because it has to find the k nearest neighborhood graph. Four
kNN operator were developed within this diploma thesis. The kd tree operator turned
out to be both efficient and accurate when it comes to the normal estimation that is
based on the k nearest neighborhood for any point in the point cloud. This operator is
able to partition the space adaptive to the point cloud. Furthermore it is able to find
the k nearest neighborhood independent of the distribution of the point cloud which
is an improvement to the k nearest neighbor operator that is used by Pajarola [PS04].
Another very important aspect of this operator is that it allows to use a simple garbage
collection strategy. This garbage collection strategy together with reference counting
is the core of the algorithm which allows to keep only those points in memory that can
contribute to the nearest neighborhood of any newly added point. The kNN operator has
an overall complexity of O(N ∗ log(M)) where N is the total number of points and M
is the number of points in the kd tree. The developed operator is similar to the k nearest
neighbor operator by Pajarola and Boesch [PB09].

CHAPTER 5
Implementation Details

This chapter will focus on some implementation details that were chosen in the imple-
mentation of the algorithms of the previous chapters.

5.1 Thread Pooling
Thread pooling is used by the external sorting algorithm. Once all points are distributed
into buckets they have to be sorted one by one. This task of sorting the buckets can
be split up into several threads, which are managed by a thread pool. The thread pool
allows to distribute the threads to the available hardware threads [Jam08] on the central
processing units (CPUs). Each hardware thread takes one sorting job at a time and stops
if there is no more bucket to be sorted.

5.2 Memory Management
As mentioned before memory management is a hugh part of handling very large point
clouds. Therefore several strategies to handle this issue were implemented.

External Sorting
The main issue in the sorting procedure is to keep only those parts in main memory that
are necessary to distribute a new point into the corresponding bucket. Therefore each
bucket allocates one MB. Whenever this space is exhausted an additional mega byte
will be allocated. Each bucket can have up to eight mega byte before it will be split.
This simple but effective strategy prevents memory fragmentation and enables very fast
allocations from the available heap.

59

60 CHAPTER 5. IMPLEMENTATION DETAILS

Intrinsic List
The LRU cache implementation is basically a doubly linked list that removes the least
recently used bucket from the end of the list and reinserts an activly updated bucket at
the beginning of the list. The doubly linked list is implemented as intrinsic list. An
intrinsic list is a list that stores the linkage pointer to the previous and next list node in
the data element itself. In the case of the LRU cache implementation the data elements
are the buckets. The buckets store the link to the next and previous bucket. This intrinsic
list strategy allows to keep the memory allocation of the list nodes at a minimum. The
bucket can be seen as a list node and is allocated once when it is created together with
the avl tree node. As a consequence the memory allocation is stable because the list
node will not be allocated at insertion into the list but at the time of insertion into the
avl tree.

Memory Pool
The point streaming framework implementation sequentially reads points from the sorted
point stream. Therefore each point has to be allocated whenever it is read from the
stream. In order to keep the number of memory allocations as low as possible a mem-
ory pool was implemented that manages the allocations and deallocations for each point.
The concept of memory pooling is to preallocate as many elements as necessary and
handle allocations and deallocations within one pool of elements. Therefore the ele-
ments have to be linked in a singly linked list and whenever an element will be allo-
cated that element will be withdrawn from the pool. The deallocation of an element is
to simply link the element within the pool.

Reference Counting
Whenever a node is referenced in the nearest neighbour heap, this node can not be
deleted on kd-tree removal, else the point would not exist. It has to be in memory as
long as the reference exists. The k nearest neighborhood consists of one center point
and k edges to the nearest neighbor point. This means the points can not be simply deal-
located when they are removed from the z-list. Once a point falls out of the range and
furthermore is removed from the z-list it can be marked as deletable. Whenever there
is a range search inside the kd-tree those points will be ignored. The exact time when
a removable point can be deallocated is defined as whenever there are no more edges
to that point in the k nearest neighborhood graph. In order to keep only those elements
in memory that are referenced within the k nearest neighbor graph, the references will
be counted. And as soon as the reference counter is null the point will be deallocated.
As mentioned above the deallocation strategy of the point is to return the point into the
memory pool.

5.2. MEMORY MANAGEMENT 61

There are 4 cases were the reference counter to a point will be updated:

• The point is read from the input stream.

• The point is written into the output stream.

• On nearest neighbor heap insertion.

• On nearest neighbor heap removal.

With this strategy the points have a controlled lifecycle that starts whenever a point
is read from the input stream and stops whenever there are no more references to that
point.

CHAPTER 6
Results

This chapter shows a few results and a discussion on the quality of the results which
can be expected, with respect to the quality of the point cloud data. The selected point
clouds in the following test samples consist of one or more scan positions. Each scan
position shows an area of the whole point cloud and consists of millions of points.
Most of the point clouds that where scanned by the laser range scanner showed massiv
z-noise of about +/ − 10 standard deviation. Also some of the scan positions suffer
from bad registration which leads to additional noise in the corresponding areas. As a
consequence the distribution dependent k nearest neighborhood operators (grid operator,
kd region operator) achieve bad results. Only the distribution independent adaptive k
nearest neighborhood operators (kd tree operator) reach sufficient speed and accuracy.
On point clouds with such a high z-noise, only a neighborhood of 20 points or more
results in a homogenous orientation of point normals. The following images shows the
reconstructed normals. The normals are false color coded by applying RGB colors with
respect to the scalar values of the normal vector.

The algorithms were tested with the smaller point clouds on an Intel Core2 Duo
E6400 system with 2 GHz, 2 GB RAM and a Seagate Barracuda 250 GB hard disk
drive rotating at a speed of 7200 RPM. The Domitilla and Stephansdom point clouds
were tested on an Intel Core2 Quad Q6600 system with 2.4GHz, 4 GB RAM and an
RAID0+1 with 4 Western Digital VelociRaptor 300 GB that are rotating at 10.000 RPM.

The Table 6.1 shows the used datasets and how many points it contains.
The Table 6.2 lists the total timing in seconds for the external sorting step.
Figure 6.1 shows a comparison of the time needed to process the four k nearest

neighborhood operators each executed with 20 neighbors.
The Table 6.3 lists the time needed to process the point streaming step.
The Table 6.4 outlines how much time the k nearest neighbor operator needs to

process the k nearest neighborhood for all points.

63

64 CHAPTER 6. RESULTS

Name Number of Points Scan Positions
Domitilla 1,921,537,902 1,826
Stephansdom 460,811,539 193
Hanghaus 8,537,584 1
Dragon 3,609,600 1

Table 6.1: The table shows the used datasets and how many points they contain.

Name Timings in seconds
Domitilla 37,579
Stephansdom 5,040.63
Hanghaus 22.35
Dragon 8.14

Table 6.2: The table lists the total timing in seconds for the external sorting step.

Name Timings in seconds
Domitilla 87,903.90
Stephansdom 64,521.80

Table 6.3: The table lists the time needed to process the very large point clouds with 20
neighbors.

6.1 Dragon

The dragon point cloud is the smallest point cloud used to show results. It was post
processed to a point where it has nearly uniform sampling.

Figure 6.2 shows a comparison of the time needed to process the kd-tree based k
nearest neighborhood operator with 10, 20, 30 or 40 nearest neighbors.

Figure 6.3 shows the Dragon point cloud processed with 10 nearest neighbors.
There is visually no difference between a nearest neighborhood of 10, 20, 30 or 40
points.

Name Timings in seconds
Domitilla 76,968.90
Stephansdom 61,822.50

Table 6.4: The table outlines how much time the k nearest neighbor operator needs to
process the k nearest neighborhood for all points with 20 neighbors.

6.2. HANGHAUS OF EPHESOS 65

Figure 6.1: The bar plot shows a comparison of the time needed to process the four k
nearest neighborhood operators each executed with 20 neighbors.

6.2 Hanghaus of Ephesos

The Hanghaus point cloud consists of several scans combined to a single point cloud
and has not been post processed by any reconstruction procedure.

The Figure 6.4 compares the time needed to process 10, 20, 30 or 40 nearest neigh-
bors. As expected the time to process 10 nearest neighbors is the smallest. But the time
needed to process 20 nearest neighbors is the most efficient compared to all others.

The following Figure 6.5 shows the effect of different k nearest neighbors. The left
most top Figure shows the k nearest neighborhood processed with 10 nearest neighbors.
The right most top Figure shows the k nearest neighborhood processed with 20 nearest
neighbors. The left most bottom Figure shows the k nearest neighborhood processed
with 30 nearest neighbors. The right most bottom Figure shows the k nearest neigh-
borhood processed with 40 nearest neighbors. As can be seen in the visual results the
biggest change is between 10 and 20 nearest neighbors, while the difference between 20
and 30 or 40 nearest neighbors is small. As a consequence all the following very large

66 CHAPTER 6. RESULTS

Figure 6.2: The bar plot shows a comparison of the time needed to process the kd-tree
based k nearest neighborhood operator with 10, 20, 30 or 40 nearest neighbors.

point cloud data sets are processed with 20 nearest neighbors.

6.3 Stephansdom
The Stephansdom point cloud (see Figure 6.6) is a raw data set directly from the acqui-
sition step and consists of 193 scan positions. It shows huge z-noise (see Figure 6.9)
and suffers from small registration errors of the different scan positions (see Figures 6.7
and 6.8).

6.4 Domitilla
The Domitilla point cloud (see Figure 6.11) is the biggest point cloud that was tested
with this point streaming approach. It consists of nearly two billion points that come
directly from the acquisition step. The z-noise is as bad as in the Stephansdom point

6.4. DOMITILLA 67

Figure 6.3: Dragon point cloud with 10 nearest neighbors.

cloud (see Figure 6.13 and 6.12). The small registration errors can accumulate to about
half a meter between the points of two local neighboring scans. This is because it is very
hard to find reference points in the underground of the Domitilla.

68 CHAPTER 6. RESULTS

Figure 6.4: The bar plot shows a comparison of the time needed to process the kd-tree
based k nearest neighborhood operator with 10, 20, 30 or 40 nearest neighbors.

6.4. DOMITILLA 69

Figure 6.5: Hanghaus with 10, 20, 30 and 40 nearest neighbors.

70 CHAPTER 6. RESULTS

Figure 6.6: Outside view of the complete Stephansdom point cloud.

6.4. DOMITILLA 71

Figure 6.7: View on the altar of the Stephansdom point cloud.

72 CHAPTER 6. RESULTS

Figure 6.8: View from the main entrance to the altar.

6.4. DOMITILLA 73

Figure 6.9: The floor area of the Stephansdom point cloud shows huge z-noise.

74 CHAPTER 6. RESULTS

Figure 6.10: View on the complete Domitilla point cloud.

6.4. DOMITILLA 75

Figure 6.11: View from the Domitilla underground in direction of the Basilika.

76 CHAPTER 6. RESULTS

Figure 6.12: View on a gallery inside the catacomb.

6.4. DOMITILLA 77

Figure 6.13: View on the Basilika Apsis.

CHAPTER 7
Conclusion and Summary

In this diploma thesis a strategy for stream processing points was presented. The main
concern in any out-of-core application is to keep the number of I/O disk access as low as
possible. The reason for this is simply that the read and write access is more expensive
compared to any other memory access. In order to achieve the goal of minimizing
the number of I/O disk access a divide and conquer strategy was used in this diploma
thesis. First the points are sorted along the axis with the widest spread. This leads to a
partitioning of the space equal to sorting x,y planes along the z axis. Then the points are
read from the sorted stream and processed sequentially. For this a smart concatenation
of local operators is used. Any of these operators implement one specific task. The most
important operator implements a way to manage the points in a k nearest neighbor graph.
This k nearest neighborhood is used by any following operator to estimate normals and
other local surface features of the points.

7.1 External Sorting
For this diploma thesis a distribution sort variant was developed, namely the tree based
sorting algorithm. This technique has the major advantage that a LRU cache can be
used. The LRU cache is managing the buckets of the tree in the availabe RAM. When-
ever there is an overflow of the available RAM the LRU cache drops the least recently
used bucket. This allows to keep only those buckets in main memory that were recently
used. The efficiency in this solution comes from the simple fact that the used point
clouds consists of many scan positions. From each of the scan position only a fraction
of the whole point cloud was scanned. Those scan positions are read sequentially into
the sorting procedure and therefore the points are geometrically close together. This
strategy is optimized for point clouds in which the scan positions are close together. If

79

80 CHAPTER 7. CONCLUSION AND SUMMARY

the scan positions are not in a spatial sense close together then a merge sort can achieve
similar results.

7.2 Point Streaming Framework
The improvements section of the Chapter 4 showed 4 possible solutions for the k near-
est neighborhood operator. The list based operator was a simple implementation that
stores and searches the elements in a doubly linked list. The kd tree based operator in
the discussion showed that a kd tree that manages the points will lead to great speed
enhancement. The grid based operator manages the values in the x, y plane efficiently
if the point cloud was sampled uniformly. The region based operator uses a distribution
dependent approximation for the search radius to estimate how large a region has to be
in order to get all nearest neighbors.

If the points in a point cloud are nearly uniformly sampled then the grid or the
region based operators are preferred. This is because they have nearly no algorithmic
overhead. The point sampling in the point clouds that came directly from the laser scans
was completely non uniform and therefore the kd tree based operator achieved the goal
of finding the nearest neighborhood best.

The kd tree operator is an improvement to the k nearest neighbor operator that is used
by Pajarola [PS04] in that it works for point clouds that have non uniform sampling of
the points. The developed kd tree operator is similar to the k nearest neighbor operator
by Pajarola and Boesch [PB09].

APPENDIX A
UML Class Diagram

Sort Tree

AVL Tree

Sort Tree Node

AVL Tree Node

1 0..n
manages

Range File Buffer

1
1

stores

Buffer

DataReader

External Sorting Main

1 1
manages

1
1

manages

LRU Cache

1
0..n

managesFile

Figure A.1: UML class diagram for the external sorting part of the diploma thesis.

81

82 APPENDIX A. UML CLASS DIAGRAM

Streaming NodeStreaming Node Allocator

Range Node

Buffer Element

Range Node Allocator

Buffer Element Allocator

0..n

0..1

teaches to

0..n

0..1

teaches to

Read Operator0..n 0..1
teaches to

Write Opertor

KNN Operator

Normal Operator

OperatorSetup

KD Tree 0..n0..1
teaches to

n1
manage

Figure A.2: UML class diagram for the point streaming framework part of the diploma
thesis.

List of Figures

1.1 Visibility spatting [HPG00]. 3
1.2 3D content creation pipeline. 4
1.3 Examples of scannable objects. 5
1.4 Emitter - Object - Sensor Triangulation. 6
1.5 The image shows the round trip for one point of a time of flight scanner. . . 7
1.6 The image shows the reconstruction procedure of the moving least squares

algorithm. Where H is the reference domain and g the polynomial approxi-
mation. First the reference domain H for the point r has to be found where
the point q is the projection of the point r onto the reference domain H. Then
a local polynomial approximation g to the heights fi of points pi over H is
computed [MAS03]. 8

1.7 Breadth first traversal of the binary tree together with the tree node memory
layout [RL00]. 8

1.8 Nested octree representation [WS09]. 9

2.1 Streaming along the x axis of the octree level [MBH07]. The blue octree
nodes are stored in main memory. 12

2.2 The different level of a lsd tree [AHW89]. 13
2.3 The image shows how the grid file partitions the three dimensional space

[JNS84]. 13
2.4 The smallest quadtree box containing two points will also contain all points

lying between the two in Morton order [MC08]. 14
2.5 Inplace Merge Sort . 18
2.6 Merge Sort. 19
2.7 Two way merge sort with a page size of two elements. 20
2.8 Distribution Sort. 21
2.9 kNN - graph with four neighbors. 23
2.10 A heap and its corresponding implicit representation as array. 26
2.11 Heap Remove . 34
2.12 Heap Insert . 35
2.13 Grid neighborhood for the point px,y. 36

83

2.14 Space partitioning from kd-tree. 36
2.15 Morton code from BSP paths. 37

3.1 Rotate left dominant. 42
3.2 Rotate right dominant. 42
3.3 Rotate right and left dominant. 43
3.4 Rotate left and right dominant. 43
3.5 LRU Cache upadate procedure for an active point p4. 44

4.1 Sweeping a plane along the sorted z-axis [PS04]. All points in the active set
are left from the point on the sweeping plane along the sorted z axis. The
point on the sweeping plane is always right from all points in the active set
along the sorted z axis. 49

4.2 The first three steps of the case study. 51
4.3 The fourth step of the case study. 52
4.4 The fifth step of the case study. 52

6.1 The bar plot shows a comparison of the time needed to process the four k
nearest neighborhood operators each executed with 20 neighbors. 65

6.2 The bar plot shows a comparison of the time needed to process the kd-tree
based k nearest neighborhood operator with 10, 20, 30 or 40 nearest neighbors. 66

6.3 Dragon point cloud with 10 nearest neighbors. 67
6.4 The bar plot shows a comparison of the time needed to process the kd-tree

based k nearest neighborhood operator with 10, 20, 30 or 40 nearest neighbors. 68
6.5 Hanghaus with 10, 20, 30 and 40 nearest neighbors. 69
6.6 Outside view of the complete Stephansdom point cloud. 70
6.7 View on the altar of the Stephansdom point cloud. 71
6.8 View from the main entrance to the altar. 72
6.9 The floor area of the Stephansdom point cloud shows huge z-noise. 73
6.10 View on the complete Domitilla point cloud. 74
6.11 View from the Domitilla underground in direction of the Basilika. 75
6.12 View on a gallery inside the catacomb. 76
6.13 View on the Basilika Apsis. 77

A.1 UML class diagram for the external sorting part of the diploma thesis. . . . 81
A.2 UML class diagram for the point streaming framework part of the diploma

thesis. 82

84

List of Tables 85

List of Tables

6.1 The table shows the used datasets and how many points they contain. . . . 64
6.2 The table lists the total timing in seconds for the external sorting step. . . . 64
6.3 The table lists the time needed to process the very large point clouds with

20 neighbors. 64
6.4 The table outlines how much time the k nearest neighbor operator needs to

process the k nearest neighborhood for all points with 20 neighbors. 64

List of Algorithms

1 Inplace Merge Sort . 17
2 Merge . 19
3 Two-Way Merge Sort . 20
4 k-Way Merge Sort . 21
5 Bucket Sort . 22
6 Brute Force . 24
7 Brute Force With Heap . 25
8 Heap Update . 25
9 Heap Remove . 27
10 Heap Insert . 27
11 Uniform Grid Search For Nearest Neighborhood 28
12 Uniform Grid Cell Search For Nearest Neighborhood 28
13 Insert Into KD-Tree . 29
14 Build KD-Tree . 30
15 KD-Tree Search For Nearest Neighborhood 30
16 KD-Tree Search . 31
17 KD-Tree Approximated Nearest Neighbor Search 32
18 Parallel Construction of k-Nearest Neighbor Graphs 33
19 Tree Based Sorting . 40
20 AVL-Tree Balance . 40
21 AVL-Tree Balance Tree Node . 41
22 The Main Algorithm . 46
23 A Point Streaming Assembly . 47
24 Read Operator . 48
25 Basic KNN Operator . 49
26 Normal Estimation Operator . 50
27 Write Operator . 50
28 KNN Operator . 54
29 KNN Grid Operator . 55
30 KNN Region Operator . 56

87

Bibliography

[AHW89] Hans-Werner Six Andreas Henrich and Peter Widmayer. The lsd tree: spa-
tial access to multidimensional point and non-point objects. Technical report,
FernUniversität Hagen, Universität Freiburg, 1989.

[Ben75] John Louis Bentley. Multidimensional binary search trees used for associative
searching. Technical report, Stanford University, 1975.

[CDS03] Christian Vogelgsang Carsten Dachsbacher and Marc Stamminger. Sequen-
tial point trees. SIGGRAPH ’03 ACM SIGGRAPH 2003 Papers, 22:657 – 662,
7 2003.

[Cha06] Timothy M. Chan. A minimalist’s implementation of an approximate nearest
neighbor algorithm in fixed dimensions. Technical report, School of Computer
Science, University of Waterloo, 5 2006.

[Ebe09] David Eberly. Least squares fitting of data. Technical report, Geometric Tools,
LLC, 2009.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
In INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, pages
47–57. ACM, 1984.

[HHS92] Tom Duchamp John McDonald Hugues Hoppe, Tony DeRose and Werner
Stuetzle. Surface reconstruction from unorganized points. Technical report,
Department of Computer Science and Engineering, Department of Mathemat-
ics, Department of Statistics, University of Washington, 1992.

[HPG00] J. van Baar H. Pfister, M. Zwicker and M. Gross. Surfels: Surface elements
as rendering primitives. Technical report, ETH Zürich, Switzerland, MERL,
Cambridge, MA., 2000.

[Jam08] James Reinders (INTEL). on processors, cores and hardware threads, 2008.

89

90 BIBLIOGRAPHY

[JNS84] H. Hinterberger J. Nievergelt and K. C. SEVCIK. An adaptable, symmetric
multikey file structure. Transactions on Database Systems, Vol. 9, No.1, March
1984, 99:38–71, 1984.

[JSV07] Hanan Samet Jagan Sankaranarayanan and Amitabh Varshney. A fast all near-
est neighbor algorithm for applications involving large point-clouds. Comput-
ers Graphics 31 (2007), pages 157–174, 2007.

[Knu98] Donald E. Knuth. The Art of Computer Programming. Addison-Wesley Long-
man, Amsterdam, 10 1998.

[LC87] William E. Lorenson and Harvay E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. Technical report, General Electric
Company, Corporate Reasearch and Development, 1987.

[LRZ02] H. Pfister Liu Ren and M. Zwicker. Object space ewa surface splatting:
A hardware accelerated approach to high quality point rendering. Techni-
cal report, Carnegie Mellon University, Pittsburgh, ETH Zürich, Switzerland,
MERL, Cambridge, MA., 2002.

[LW85] Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical report, Computer Science Department, University of North Car-
olina, 1985.

[MAS01] Daniel Cohan-Or Shachar Fleishman David Levin Marc Alexa, Jo-
hannes Behr and Claudio T. Silva. Point set surfaces. Vis ’01 Proceedings
of the conference on Visualization 01, 99:21–28, 2001.

[MAS03] Daniel Cohen-Or Shachar Fleishman David Levin Marc Alexa, Jo-
hannes Behr and Claudio T. Silva. Computing and rendering point set surfaces.
Technical report, TU Darmstadt, ZGDV Darmstadt, Tel Aviv University, ATT
Labs, 2003.

[MBH07] Randal Burns Matthew Bolitho, Michael Kazhdan and Hugues Hoppe. Mul-
tilevel streaming for out-of-core surface reconstruction. Eurographics Sympo-
sium on Geometry Processing 2007, pages 69–78, 2007.

[MBK05] Matthias Zwicker Mario Botsch, Alexander Hornung and Leif Kobbelt.
High-quality surface splatting on todays gpus. Technical report, Computer
Graphics Group, RWTH Aachen Technical University, Computer Graphics
Group, Massachusetts Institute of Technology, 2005.

[MC08] P. Kumar M. Connor. Parallel construction of k-nearest neighbor graphs for
point clouds. Technical report, Department of Computer Science, Florida State
University, 2008.

BIBLIOGRAPHY 91

[MN03] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy point
cloud data. Technical report, Stanford Graphics Laboratory, Stanford Univer-
sity, 2003.

[Moo91] Andrew W. Moore. An intoductory tutorial on kd-trees. Technical report,
Carnegie Mellon University, 1991.

[Mou10] David M. Mount. Ann programming manual. Technical report, Department
of Computer Science and Institut of Advanced Computer Studies, University
of Maryland, College Part, Maryland, 2010.

[MZG02] Oliver Knoll Matthias Zwicker, Mark Pauly and Markus Gross. Pointshop3d:
An interactive system for point-based surface editing. Technical report, ETH
Zürich, 2002.

[PB09] Renato Pajarola and Jonas Boesch. Flexible configurable stream processing of
point data. Technical report, Visualization and Multimedia Lab, University of
Zürich, 2009.

[PS04] Renato Pajarola and Miguel Sainz. Stream-processing point data. Technical
report, Department of Computer Science, University of California, 3 2004.

[RJ96] Rafael Lins Richard Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, 7 1996.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. Technical report, Stanford University, 2000.

[Sam06] Hanan Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006.

[Sch09] Claus Scheiblauer. Domitilla catacomb walkthrough dealing with more than
1 billion points. Technical report, Department of Computer Graphics, Vienna
University of Technology, 2009.

[Sed92] Robert Sedgewick. Algorithmen in C++. Addison-Wesley, 1992.

[TO96] P. Widmayer T. Ottmann. Algorithmen und Datenstrukturen. Spektrum,
Akademischer Verlag, 1996.

[TWG04] R. Keiser-S. Heinzle S. Scandella T. Weyrich, M. Pauly and M. Gross. Post-
processing of scanned 3d surface data. Proceedings of Eurographics Sympo-
sium on Point-Based Graphics 2004, pages 85–94, 2004.

92 BIBLIOGRAPHY

[WHP02] William T. Vetterling Brian P. Flannery William H. Press, Saul A. Teukol-
sky. Numerical Recipes in C++, The Art of Scientific Computing. Cambride,
University Press, 2002.

[WS09] Michael Wimmer and Claus Scheiblauer. Instant points. Technical report,
Department of Computer Graphics, Vienna University of Technology, 2009.

