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Interactive Visual Analysis of Heterogeneous
Scientific Data across an Interface
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Abstract—We present a systematic approach to the interactive visual analysis of heterogeneous scientific data. The data consists of
two interrelated parts given on spatial grids over time (e.g., atmosphere and ocean part from a coupled climate model). By integrating
both data parts in a framework of coordinated multiple views (with linking and brushing), the joint investigation of features across the
data parts is enabled. An interface is constructed between the data parts that specifies (a) which grid cells in one part are related to
grid cells in the other part, and vice versa, (b) how selections (in terms of feature extraction via brushing) are transferred between the
two parts, and (c) how an update mechanism keeps the feature specification in both data parts consistent during the analysis. We also
propose strategies for visual analysis that result in an iterative refinement of features specified across both data parts. Our approach is
demonstrated in the context of a complex simulation of fluid–structure interaction and a multi-run climate simulation.

Index Terms—Interactive visual analysis, heterogeneous scientific data, coordinated multiple views.
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1 INTRODUCTION

COMPUTATIONAL simulation is used in science and
engineering to investigate dynamic processes and

complex phenomena. Interactive visual analysis enables
the user to explore and analyze data in a guided human–
computer dialog. Using proven interaction schemes such
as linking and brushing, a powerful information drill-
down process is supported [1]. Visual analysis is based
on concepts such as coordinated multiple views, inter-
active feature specification via brushing, focus+context
visualization, and on-demand data derivation [2].

Scientific data in a traditional application scenario is
usually given in a coherent form. It can be considered,
to a certain degree, as a table with rows and columns
that contains multiple data attributes (given in relation
to space and time). We call this a single-part scenario. In
practice, however, we increasingly often find model and
data scenarios that are more heterogeneous. They consist
of two or more individual data parts that are related to
each other. The data parts are, for example, computed
with different simulation models, given on various data
grids, with different dimensionality (e.g., 2D/3D data).
Such multi-part scenarios present us with the challenge
of integrating multiple data parts in the analysis.

Dynamic flow, for instance, is traditionally simulated
with a rigid boundary. In modern fluid–structure inter-
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actions (FSIs), however, a movable or deformable struc-
ture interacts with an internal or surrounding fluid flow.
These simulations are becoming more popular and be-
long, with respect to both modeling and computational
issues, to the most challenging of multi-physics prob-
lems [3]. Fluid and solid parts are usually modeled indi-
vidually on spatially adjoining grids that are connected
by a so-called interface1. The latter represents the physical
boundary between the two parts and enables them to
influence each other during the simulation (compare to
airplane wings or turbine blades that are deformed by
the surrounding flow). Also in the climate system, as
another multi-part scenario, atmosphere, ocean, ice, and
land interact with each other. Ocean and atmosphere,
for example, interact by means of thermal absorption,
precipitation, and evaporation [4]. To understand such
dynamic processes, the climate components are usually
modeled individually and then coupled in the simula-
tion, often with additional coupler modules.

Creating a coherent visualization from heterogeneous
data that consists of two parts (e.g., atmosphere and
ocean, or fluid and structure) is a challenge for visual
analysis. How can we investigate feedback between the
two data parts? The analyst is, for example, interested in
areas of an ocean model that are influenced by adjacent
hot areas in the atmosphere. The corresponding regions
are first selected in the atmosphere via brushing. This
feature then needs to be transferred to the ocean part
where it can be related to ocean features and further
analyzed. In our analysis framework, we realize this
feature transfer by an interface that connects the two

1. The term interface is used in many disciplines such as chemistry,
physics, biology, or computer science. According to the Oxford English
dictionary, it denotes “a point where two things meet and interact”,
e.g., the surface that connects two physical materials, a biological cell
and another material, or a human and a computer (user interface).
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data parts similar to a fluid–structure interaction. Our in-
terface is designed such that the data parts can be given
on different grids (e.g., 2D/3D, unstructured, hybrid),
with different resolutions or time-scales.

Another example that can be considered a multi-
part scenario is hierarchically organized scientific data.
A data part with higher data dimensionality can be
related to a part with lower dimensionality, and vice
versa. Multi-dimensional scientific data signifies that
different attributes (e.g., temperature, pressure) are mea-
sured or simulated with respect to an m-dimensional
data domain. The domain (i.e., the independent data
dimensions) can be 2D or 3D space, time, but also input
parameters to a simulation model. In climate research or
engineering, for instance, so-called multi-run simulations
have become an important approach to assess simulation
models [5], [4]. They are used to evaluate the variability
of a model and to better understand how sensitively
the model reacts to its input parameters (sensitivity
analysis [6]). The values of certain input parameters are
varied. Simulation outputs (runs) are then computed
for many combinations of the parameters. This leads to
multi-run data where a collection of values exists per
space/time location [7] (one value for each run).

The analysis of such higher-dimensional scientific data
is generally challenging. A natural attempt in such a sit-
uation is to reduce the data dimensionality, for instance,
by computing statistical aggregations along selected in-
dependent dimensions (e.g., averaging with respect to a
spatial axis, the time axis, or the input parameters of the
simulation). In practice, often only the aggregated data
is further analyzed.

In this paper, we demonstrate that it is useful to inte-
grate both the original multi-run data and the aggregated
data part (with lower dimensionality) into the visual
analysis. Similar to the simulation of a fluid–structure
interaction, we construct an interface as a bridge between
the two data parts. During the visual analysis, the inter-
face is used to transfer selections (features specified via
brushing) between the parts. Thus, complex relations can
be investigated within and across the two data parts.

Corresponding to the multi-part scenarios described
above, we have researched this problem and present the
following contributions with this paper:

• We propose the construction of an interface that
enables the joint visual analysis of heterogeneous
scientific data that consists of two data parts.

• We propose strategies for visual analysis where the
analyst works with both data parts simultaneously.

• We demonstrate the usefulness of our approach in
the context of a fluid–structure interaction and a
multi-run climate simulation.

2 RELATED WORK

The integration of abstract data from multiple sources
is common in information visualization (e.g., in relational

databases [8], or web data [9]). North et al. [8] pro-
pose flexible visualization schemas built upon the snap-
together visualization model, which enable the user to
create multiple-view visualizations analogous to rela-
tional data schemas. Polaris/Tableau [10] supports the
exploration of data cubes, where data is given at dif-
ferent hierarchical levels. These approaches deal with
heterogeneous abstract data. In this paper, we present
a visual analysis approach for heterogeneous scientific
data usually given on grids over time. Cross-filtered
views [11] allow interactive drill-down into relationships
between multiple data attributes, also across multiple
data sets. Brushing filters between pairs of views can be
enabled/disabled. Cross-filtered views are neutral with
respect to the data dimensionality and also support the
derivation of new data attributes. With our approach,
we account for the heterogeneity of the independent
dimensions of space and time, similar to scenarios with
multi-run data. Features can also be transferred between
non-overlapping data parts such as spatially adjoining
physical materials or interacting climate components.
While the data is filtered with cross-filtered views, our
approach leads to a joint focus–context discrimination
that is related across heterogeneous data parts.

The area of coordinated multiple views has been steadily
developing over the past fifteen years (see Roberts [12]
for an overview). XmdvTool [13] allows the analysis
of complex relations in multi-variate data using combi-
nations of brushes in multiple views. SimVis [14] and
WEAVE [15] are just two examples that realize the
concept of a visual analysis framework for scientific
data. Multiple linked views are used to simultaneously
show, explore, and analyze different aspects of multi-
variate data. The views are used next to each other and
include 3D views of volumetric data (grids, also over
time), but also attribute views such as 2D scatterplots,
function graph views, or histograms. Interesting subsets
of the data are interactively selected (brushed) directly
on the screen, the relations are investigated in other
linked views (compare also to the XmdvTool [13]).

In some systems, the result of a smooth brushing
operation [16] is reintegrated within the data in the form
of a synthetic degree-of-interest data attribute DOI j ∈ [0, 1]
for every data item j (compare to the DOI attribution for
generalized fisheye views by Furnas [17]). This data at-
tribution represent the first interpretation level, ranging
from data to knowledge [18]. Logical combinations of
brushes in multiple linked views enable the specification
of complex features in a hierarchical feature definition
language [14]. The DOI attribution is used in all linked
views to visually discriminate interesting features from
the rest of the data in a focus+context visualization
style [19]. Our framework is based on these concepts,
extending the analysis capabilities to scenarios with het-
erogeneous scientific data. We connect the two data parts
by an interface that transfers fractional DOI information
between the parts. Complex features can be specified via
(smooth) brushing within and across the data parts.
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According to Fuchs and Hauser [20], scientific data
stemming from different modalities (e.g., different simu-
lation models, or measurements) can be fused at different
levels in the visualization pipeline. In multi-block flow
visualization, for instance, simulations are performed on
multiple grid types with different resolutions [21]. Since
the blocks do not represent different physical materials,
a feature transfer across the blocks would not make
sense. In the visualization, the blocks are usually fused
at the data level (e.g., by constructing one hybrid or
unstructured grid). In VisIt, for instance, data from dif-
ferent meshes are evaluated onto a common mesh (cross-
mesh field evaluation [22]). Since the data is fused at the
data level, it can be considered as a single-part scenario
according to our terminology. Treinish [23] proposes a
uniform data model that adjusts to the data structure and
how the data is processed. Using such a data-/model-
centric approach, data from different sources can be
fused (or correlated), thus avoiding unnecessary inter-
polation or resampling to a common mesh. With our ap-
proach, fusion is performed at the feature/interpretation
level [18] instead of the data level.

The treatment of multi-run data is rather new to the
visualization community [7]. Information visualization
techniques (e.g., parallel coordinates, scatterplot matri-
ces) are used in combination with statistics to improve
the understanding of the model output from multi-run
simulations [24]. Nocke et al. [25] propose a system of
coordinated multiple views to analyze a large number of
tested model parameters and simulation runs. Statistical
aggregations of the multi-run data are visualized, e.g.,
using linked scatterplots, graphical tables, or parallel
coordinates. In their approach, however, the data is
given in a coherent data part. Potter et al. [26] propose
a framework that consists of overview and statistical
visualizations for analyzing multi-run data. Matković et
al. [5] visualize multi-run data as families of data sur-
faces with respect to pairs of independent data dimen-
sions. Projections and aggregations of the data surfaces
are analyzed at different levels (e.g., a 1D profile or
single value per surface). In our work, we propose a
more general interface concept that connects data items
between two parts of scientific data and supports the
transfer of fractional DOI information. This approach
can also be used for multi-run data. In recent work [27],
we have integrated traditional and robust estimates of
statistical moments in the visual analysis of such data,
where we also utilize the interface described here.

Kao et al. [28] visualize distributions over 2D multi-
run data, where the distribution can apparently be rep-
resented by statistical parameters. For other cases, they
propose a shape descriptor approach [29] constructing a
3D volume with the probability density function (PDF)
of the data as voxel values. Mathematical and procedural
operators [7] are proposed to transform the distribution
data into a form where existing visualization techniques
can be applied (e.g., pseudocoloring, streamlines, or
isosurfaces). This operator approach is very promising
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Fig. 1. The basic structure of the fluid–structure interaction:
(a) simulated fluid volume with temperature mapped to color,
and (b) temperature distribution in the solid part of the data.
Both data parts are connected via an interface that relates cells
sharing a common face between fluid and solid.

due to its flexibility. However, it is not integrated in a
visual analysis framework that would enable the analyst
to interactively specify features within the transformed
data. Recently, Potter et al. [30] extend the box plot [31] to
include additional statistics. The resulting summary plot
depicts different characteristics of multi-run data, how-
ever, it cannot be placed in a dense manner. In our multi-
run example, we use carefully designed glyphs [32] to
visualize aggregated data properties in a 3D context.

3 SAMPLE ANALYSIS OF AN FSI SCENARIO

Fluid–structure interactions (FSIs) are complex multi-
physics problems and currently an important topic in
simulation research. In such scenarios, a solid structure
interacts with a surrounding fluid flow, for example, by
exchanging heat and/or being deformed. The variety of
FSI occurrences is abundant and ranges from bridges,
flexible roofs, or offshore platforms to micropumps and
injection systems, from parachutes to airbags, to blood
flow in arteries or artificial heart valves [3]. In the
following, the study of heat transfer in an FSI scenario is
used to illustrate our proposed methodology. Motivated
by this example, we later come up with a more general
approach that can also be applied in other scenarios with
heterogeneous data such as multi-run data.

In our example, data from a multi-physics simula-
tion of warm water flow through a cooler aluminium
foam is investigated. The main goal of the domain
experts is to understand how the micro structure of
the simulated foam influences its thermal behavior. This
knowledge can then be used to derive approximated
models of the foam which can be applied within larger
scale simulations. A more in-depth understanding of the
flow characteristics through the simulated domain can
help the application experts to experiment with different
foam structures. This eventually leads to more desirable
thermal properties of the foam structure.

The modeled domain contains two types of physi-
cally different materials, i.e., water and aluminium. The
underlying multi-physics simulation, therefore, gener-
ates two spatially disjoint result volumes (see Fig. 1 (a)
and (b)). Both 3D volumes are connected by an interface
which identifies common faces between fluid and solid
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Fig. 2. Visual analysis of heat transfer using the bidirectional transfer of user-specified features: (a) vortical regions within the flow
volume are selected via the λ2 criterion [33]. Only fluid regions (b) in the vicinity of the solid and solid regions (d) in the vicinity of
vortical flow are visible. In (c, e) statistical properties of selected regions are shown over time.

grid cells (illustrated in Fig. 1). During the simulation,
the fluid and solid part can interact with each other via
the interface, and exchange properties such as heat.

In the visual analysis, we integrate both data parts,
fluid and structure. Vortices are very important in un-
derstanding flow characteristics such as heat exchange,
which is the primary focus for this example. We are
interested in the thermal behavior in the structure part in
the vicinity of vortical flow. Since the two data parts do
not spatially overlap, a selection of vortex regions in the
fluid (specified via brushing) needs to be transferred to
the neighboring areas in the solid part. For this purpose,
we construct an interface between the data parts that is
similar to the one used in the simulation. The interface
is created in advance to the visual analysis, and can
be saved and loaded together with the data. Grid cells
that are located in the boundary region between fluid
and solid are automatically correlated (the technological
details are given in Sec. 4). During the visual analysis,
user-specified features within these regions are instantly
exchanged between the data parts via the interface. The
interface can, for instance, be employed to investigate
relations between flow phenomena and the resulting
temperature changes within the nearby solid.

In Fig. 2 (a), vortex regions within the fluid part have
been selected using the λ2 criterion [33]. Color is mapped
to the value of λ2 with lower values, indicating stronger
vortical properties, mapped as red. In Fig. 2 (b), the
λ2 selection has been restricted to fluid cells in the
vicinity of the aluminium foam using the interface2. In
order to derive quantitative properties from this selected
region, the fluid temperature within it has been averaged
and plotted as a green curve over time [34] (see Fig. 2 (c)).

2. The fully selected solid region has been transferred onto the
neighboring fluid part where it is combined with the vortex feature.

Some context is provided by plotting the overall average
temperature within the fluid as a black curve and the av-
eraged temperature in the vicinity of the solid as a brown
curve (standard deviations are encoded as filled areas
in the background). Since the aluminium foam is being
warmed by the fluid, the averaged fluid temperature
in the vicinity of the foam (brown curve) is lower than
the averaged overall fluid temperature (black curve). As
indicated by the green and brown curves, it is notable
that the fluid temperature close to the solid is warmer
when measured in regions of vortical flow.

The next step of the analysis deals with the solid por-
tion of the simulation data. The feature transfer mech-
anism over the interface works bidirectionally. Thus, it
is possible to project the previously defined selection of
vortical flow (λ2 criterion) onto solid regions in their
vicinity. These regions are selected in Fig. 2 (d), tem-
perature is encoded in color. The solid portions in the
vicinity of vortical fluid (green curve in Fig. 2 (e)) are
warmer than the average temperature in the solid (black
curve) and also warmer than the remaining solid part in
the vicinity of the fluid (brown curve). This is a strong
indicator for a direct relation between turbulent flow
around the simulated foam structure and the heating
process within the structure.

4 INTERACTIVE VISUAL ANALYSIS ACROSS
AN INTERFACE

Motivated by the previous example of a fluid–structure
interaction, our goal is to enable the joint interactive
visual analysis of heterogeneous scientific data. The data
consists of two parts (e.g., multi-run and aggregated
data or data from a coupled climate model) that are
both integrated into the visual analysis. Visual analysis
is often based on the concept of user-specified interest
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per data item (resulting from feature specification via
brushing). Such markups represent the first level of se-
mantic abstraction, ranging from data to knowledge [18].
Our idea is to use a synthetic degree-of-interest (DOI)
attribution [16] as a common level of data abstraction
between two related parts of scientific data. In order to
exchange the fractional DOI information, we construct
an interface that connects individual grid cells between
the data parts (similar to the fluid–structure interac-
tion scenario). Such an abstract coordination space is
also implicit in the model-view-controller pattern (see
Boukhelifa and Rodgers [35], for instance).

Based on the data state reference model [36], our inter-
face consists of the following four components illustrated
in Fig. 3 and described in the following sections:

• the interface describes the structural relation between
the two data parts (see Sec. 4.1). That is, it specifies
which of the grid cells in the one data part are
related to certain other cells in the other part, and
vice versa. The structural relation can be generated
automatically (e.g., in a pre-processing step), and is
saved and loaded together with the data parts.

• during the visual analysis, the transfer of DOI infor-
mation represents the functional aspect of the inter-
face. It specifies how the fractional DOI information
is exchanged between the data parts (see Fig. 3 (b)
and Sec. 4.2). In our fluid–structure scenario, for
example, a vortex feature specified in the fluid part
is automatically transferred to the solid part where
it can be further refined. The feature transfer works
in both directions between the data parts.

• the automatic update of feature specification represents
the dynamic aspect of the interface, which ensures
consistency of the features and interactive frame
rates during visual analysis. That is, the order in
which the DOI information is transferred and up-
dated between the data parts where multiple pro-
cesses run in parallel (see the arrows illustrating the
update process in Fig. 3 (c)).

• we also propose strategies for visual analysis across an
interface, i.e., the interactive and iterative refinement
of features that are specified within and between the
two data parts (see Fig. 3 (d) and Sec. 4.4).

4.1 The Interface (structural relation)

As stated above, the interface specifies the structural
relation between the individual grid cells of two parts
of the scientific data (see Fig. 3). This relation needs to
be generated once for a particular scenario (e.g., in an
automatic pre-processing step), and can be saved and
loaded. During the visual analysis, the structural relation
is then used when transferring features between the data
parts. In order to make the interface suitable for different
scenarios with heterogeneous data, we need to consider
that the two data parts can be given on various kinds of
grid, with different data dimensionality, and for possibly
different time steps. For all cells in one of the data parts
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DOI transfer (how)

analysis strategies
(feature refinement)      

data part1 data part2

6.  combine
DOI1+DOI’2
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Fig. 3. In our visual analysis scenario, two parts of the scientific
data are connected through an interface: the interface (a) spec-
ifies which cells in the two data parts are related to each other,
(b) it specifies how the user-specified degree-of-interest (DOI)
information is transferred between the data parts. Moreover,
it (c) considers dynamic aspects between multiple processes
to enable interaction during visual exploration, and (d) enables
novel analysis strategies for iterative feature refinement.

(at a given time step), the interface stores a collection
of references to all related cells (and the corresponding
time step) in the other part. This allows, for instance, grid
cells at a given timestep to be connected to grid cells at
multiple time steps, and vice versa (e.g., when the data
parts are given for different time intervals). Furthermore,
a weight value is assigned to each relation between two
cells. This weight determines the amount of influence
a related data item has on the item in question. In the
FSI scenario, for instance, it may be desirable that fluid
and structure cells that are located farther apart have
less influence than cells that are relatively close to each
other. To make the interface as flexible as possible, the
relations are separately specified in both directions. In a
symmetric scenario, this can also be simplified.

There are three possible ways that data items can be
related across different parts of the data [8]: one-to-one,
one-to-many, and many-to-many. A one-to-one relation
exists also in a traditional multi-variate dataset (single-
part scenario) or when different data parts are given for
the same grids/time steps. This relation is, therefore,
not discussed in further detail here. In the following,
we describe the many-to-many relation that exists, for
instance, in a FSI simulation. The one-to-many relation
is then described in the example of a multi-run scenario.

Many-to-many relation between two data parts
This kind of relation emerges, for instance, between
spatially neighboring data parts such as a FSI simulation.
Also in a coupled atmosphere–ocean model simulation,
the two models spatially adjoin at the ocean surface
and exchange properties through a coupler module (e.g.,
temperature, precipitation, evaporation). Since the two
data parts do not spatially overlap, our approach is to
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data part2

data part1

boundary layer

Fig. 4. Many-to-many relation between two spatially adjoining
data parts: (a) a grid cell in one of the data parts can be related
to multiple grid cells in the other data part, and vice versa.
The weights of the grid cells related to a certain cell (blue) are
encoded in red. The different data parts can represent fluid and
structure, atmosphere and ocean, or fluid and fluid.

consider the DOI transfer similar to a diffusion process of
the features at the boundary between the data parts. This
is in agreement, for instance, with the oceanographers’
concept of the upper ocean layer that is influenced by
the atmosphere (influence is decreasing with depth).

As shown in Fig. 4, the relationship between grid cells
sharing a common boundary between the data parts can
be translated into a many-to-many interface. The N data
items that are close to the boundary layer are connected
to M data items which lie in their vicinity in the second
data part, and vice versa. As illustrated for the blue grid
cell in Fig. 4, the influence of the related grid cells (i.e.,
the weight values encoded in red) decreases with the
spatial distance between the cells.

An interface such as the one used in the fluid–structure
interaction example can be automatically constructed as
follows (see Fig 4): For every cell i in data part1 that is
within a certain distance distmax to the boundary surface,
all grid cells in data part2 that are within a distance
distmax to cell i are added to the collection of related cells.
The individual weights for the related cells are, for exam-
ple, specified as a function of the distance dist i,j between
the cells and an importance value of the cell CI j , i.e.,

wj = CI j
distmax − dist i,j

distmax
.

CI j is usually proportional to the actual volume of
the grid cell, giving larger cells a higher influence than
smaller ones. In some cases, however, the opposite may
be desirable. In simulation, for instance, smaller cells
are often used in regions of special interest. In such a
case, smaller cells can then receive a higher importance
value CI j than larger cells.

One-to-many relation between two data parts

This kind of relation exists, for example, between data
parts that are specified at two different hierarchical lev-
els. Examples are scale space representations of scientific
data where data is given at different resolutions [37]
or multi-run and aggregated data that are given with
different dimensionality. In the latter case, the higher
dimensional data part represents the original multi-run
data (with additional independent dimensions for the
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input parameters to the simulation). In Fig. 5 (a) and (c),
a collection of N values exists for the same data attribute
for every grid cell (e.g., 100 temperature values per cell
for a simulation with 100 runs). To analyze the distri-
bution of values, statistical properties such as mean or
standard deviation can be computed with respect to the
run dimension (or another independent data dimension).
The result of this aggregation represents the second data
part given at a lower dimensionality. In Fig. 5 (b) and (d),
every single cell in the aggregated data part is, therefore,
related to the N cells in the multi-run data that share the
same space and time, and vice versa.

4.2 Transfer of Degree-of-Interest Information

The DOI transfer represents the functional aspect of the
interface. It is based on the structural relation between
the two data parts (see Sec. 4.1). For every data item i
in one data part, the transferred DOI ′

i is computed
from the related data items in the other part, and vice
versa. This transferred DOI information is then com-
bined with the local one in the data part (e.g., logical
AND/OR). Since the DOI transfer works bidirectionally,
we need to ensure that the transferred feature is not
transferred back, which would lead to inconsistencies in
the feature specification (see also Sec. 4.3). We propose
three different ways of transferring the DOI information:
(1) weighted sum, (2) maximum (or minimum) weighted
DOI value, and (3) maximum (or minimum) DOI value
without weighting. Depending on the user’s needs, one
can switch between these options during the visual anal-
ysis. This opens up interesting opportunities for analytic
procedures (see also Sec. 4.4).

With the first approach, the weighted sum of the
DOI values of related cells is computed for every data
item i: DOI ′i =

1∑
j
wj

(∑
j wj ·DOI j

)
. For the one-to-

many relation (e.g., when working with hierarchically
organized data parts) this represents the transfer of the
average of the related DOI values. For the many-to-
many relation this kind of DOI transfer can be seen as
a diffusion of the DOI information across the interface.
For cases in which data is given in a continuous form,
the process is similar to integrating over the weighted
DOI values of the related cells. This weighted transfer
is well suited for examining the degree to which the
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Fig. 6. Relating complex features that are specified in a hierar-
chical manner. Yellow arrows represent node invalidations and
blue arrows represent updates.

related cells are part of the focus in the other data part
(e.g., 20 out of 100 related cells are selected). However,
it has the drawback that isolated DOI features are de-
emphasized due to averaging of the DOI values, e.g.,
when only one of the related cells has a maximum
DOI value and all other cells are part of the context.

In order to preserve such DOI peaks, we suggest also
to allow the maximum of the weighted DOI values of re-
lated cells to be transferred, i.e., DOI ′

i = maxj(wj ·DOI j).
As a third alternative, the user can choose to neglect
the weight values, and transfer the maximum value of
the related DOI information only. This can be useful, for
instance, in order to preserve features even though only
a few related cells have large DOI values, or relatively
low weights. Examples are grid cells in a FSI scenario or
multi-model simulation without considering the actual
inter-cell distance or cell importance. The three methods
for DOI transfer are suitable for different stages of a
visual analysis, which is discussed in section 4.4.

4.3 Automatic Update of Feature Specification

In this section, we describe dynamic aspects of interlink-
ing two data parts. During the visual analysis, the fea-
ture specification is automatically updated by multiple
threads to ensure consistency and responsiveness of the
application. Features can be specified by logical combi-
nations of brushes within and across views. In our frame-
work, the resulting DOI information within an attribute
view (e.g., scatterplot, histogram) is represented as a leaf
node in a hierarchical feature definition language [14].
The nodes are combined by logical AND/OR-operations
in order to specify three levels of focus (see Fig. 6). The
different focus levels and the context are encoded in
color in every attribute view [19]. The DOI information
is thus defined at every node in the feature tree and a
flag indicates whether the information is currently up-
to-date. As soon as the DOI information at a certain tree
node becomes outdated (e.g., when altering a brush in
a view), all update processes are suspended. The out-of-
date event is propagated up to the tree root (see the flash
symbols 1–3 in Fig. 6). Update threads are then restarted,
and the feature specification is updated in a depth-first
manner, starting with the deepest node in the tree that
is out-of-date (steps 4, 5, and 8 in Fig. 6).

The feature trees in two data parts can be related by
exchanging the DOI information of two nodes given at
the same hierarchy level (e.g., nodes A and B in Fig. 6).
The naı̈ve approach is to set the related node B out-of-
date after the DOI information in node A is updated
(i.e., after step 5)—this is then propagated up to the tree
root in data part2 and starts the corresponding update
threads. This approach works well as long as the data
parts are related only in one direction. If the relation
is established in both directions, node A would also be
set out-of-date after node B is updated (illustrated in
step 10). This would cause an endless loop of updates. To
avoid this problem, we do not set node B out-of-date in
step 6. Instead a synchronized update of nodes A and B
is performed in step 5. Subsequently, only the parent
node of B is set out-of-date (step 7).

The sequence of events as to how the related nodes A
and B exchange their DOI information is illustrated by
arrows in Fig 3 (c). First, the feature specification in
node A (DOI1) and node B (DOI2) is updated, combining
the DOI information of the respective child nodes. When
exchanging the features via the interface, we need to
ensure that the transferred DOI information is not trans-
ferred back. This would lead to inconsistencies in the
feature specification. In steps 3 and 4 in Fig. 3 (c), there-
fore, the DOI information is first transferred between the
data parts (see DOI′1 and DOI′2) and stored temporarily.
After that, the transferred DOI can be combined with the
local one (steps 5 and 6 in Fig. 3 (c)). During this process,
all operations are performed by the threads of only one
data part (potential updates of the feature specification
in the other data part are suspended).

After nodes A and B have exchanged their DOI infor-
mation as described above, only the parent node of B is
set out-of-date (step 7 in Fig. 6). This restarts the update
threads in the feature tree in data part2. Since node B
itself has not been set out-of-date, steps 9 and 10—
leading to an endless loop—are not performed.

4.4 Strategies for Visual Analysis

Interactive visual analysis enables the user to enter
a visual dialog with the data. The employed proce-
dure usually follows Shneiderman’s information seeking
mantra [1] (overview first, zoom and filter, details-on-
demand) or Keim’s recent modification for visual anal-
ysis [38] (analyze first, show the important, zoom, filter
and analyze further, details-on-demand). The analysis
process usually takes place in a single-part scenario.
When this is extended to two data parts, the pattern
has to be adapted accordingly. Additional iteration loops
are introduced between the data parts as illustrated in
Fig. 3 (d). With spatially adjoining data parts, for exam-
ple, features are iteratively specified in one data part by
brushing. The relations of the features—transferred by
the interface—are also inspected in the other data part,
e.g., in the spatial context using a 3D view or in attribute
views (compare to the FSI scenario in Sec. 3). At a certain
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point, the analysis moves over to the other data part,
possibly also with certain iterations, before it can go back
to the first data part, and so on.

We have worked through several analysis scenarios
with two hierarchically related data parts (Sec. 5 de-
scribes one such analysis of multi-run climate data).
From these scenarios, we see that it is useful to have
views that show the data at the aggregated and detail
level next to each other. The analysis usually starts at the
aggregated level (overview first). Statistical properties—
computed from the data part given with more detail
(e.g., the multi-run data)—are investigated at this level.
Interesting data characteristics can be selected such as
distributions that have a high variability or contain ir-
regularities such as outliers. While interactively brushing
the aggregated properties, the collections of related data
values are instantly highlighted in another view at the
detail level. After several iterations at the aggregated
level, the analysis continues in the data part that is given
with more detail. The features can be further refined here
(e.g., selecting/excluding individual data values that are
outliers). The relations are again checked in both data
parts, and so on.

An analysis pattern with respect to the DOI transfer
is to begin with a maximum transfer first. This is inde-
pendent of the quantitative influence which the related
data items have on each other (e.g., the distance between
cells in a FSI scenario). That is useful, for instance, not
to “lose” features in cells with small weight values due
to averaging. Such a maximum DOI transfer enables
the analyst to look up where features co-exist in both
data parts. At a certain stage of the analysis, the analyst
decides to change to a weighted DOI transfer. This
results in a more quantitative analysis of the relations
between the data parts, i.e., the degree to which the
features co-exist. With two hierarchically related data
parts (one-to-many), one can investigate how many of
the related cells (e.g., in the multi-run data part) are
part of the focus. For spatially neighboring parts, the
weighted DOI transfer also gives an indication of how
close or distant the related cells are. For scenarios with
FSI or coupled climate models, this transfer corresponds
to the physical properties of a diffusion process.

Another important aspect of related analysis proce-
dures is that data attributes can be transferred across
the interface as well (compare to data transformations in
the data state reference model [36]). Using an integrated
data calculator module with a respective graphical user
interface, additional data attributes can be derived from
existing ones that are possibly located in the other data
part. To do so, the structural relation between the data
items in the data parts is used (see Sec. 4.1). The new
attributes are thereafter available for full investigation in
all linked views. We will benefit from this mechanism in
the demonstration (Sec. 5), where statistical attributes are
derived from multi-run data during the visual analysis.

5 ANALYSIS OF MULTI-RUN CLIMATE DATA

The visual analysis of heterogeneous scientific data is
exemplified in the context of a climate data analysis.
We investigate data from a multi-run simulation of a
prominent palaeoclimatic cold event. The anomaly was
caused by a meltwater outburst from Lake Agassiz, an
immense glacial lake located in the center of North
America. About 8200 years ago, the lake drained due
to climate warming and melting of the Laurentide Ice
Sheet. The investigated data stems from the CLIMBER-2
coupled atmosphere–ocean–biosphere model that sim-
ulates a cooling of about 3.6 K over the North At-
lantic [39].

With a sensitivity analysis, an important goal for the
climate modelers is to better understand the variability
of a simulation model with respect to certain model
parameters. Identifying those parameters that have the
most influence can help to validate the model and also
guide future research efforts [6]. Multiple simulation
runs are computed with varied initial parameters. In our
case, two diffusivity parameters of the ocean model are
altered, one horizontal (diff h) and one vertical (diff v),
with ten variations each. This leads to a dataset with
a total of 100 (10 × 10) runs. For each run, the data is
given for 500 years on 2D sections (latitude × depth)
through the Atlantic, Indian, and Pacific ocean. In the
following, we present a selection of results from a visual
sensitivity analysis of the ocean part of the CLIMBER-2
model based on the input parameters diff h and diff v.

5.1 Basic Setup for the Visual Analysis

Since the number of independent dimensions in the
multi-run ocean data is already challenging (5 dimen-
sions, i.e., a 2D section for each ocean, time, and two
run parameters with 10 × 10 runs), a traditional visual
analysis is difficult. Reducing the data dimensionality
can help, for instance, by computing statistical aggre-
gates along an independent data dimension. Such an
example is to consider averages over time instead of all
the individual data values. For the ocean data, we com-
pute statistics with respect to the two run-dimensions.
The aggregated data properties are reintegrated in our
framework through an attribute derivation mechanism.
The result is stored in a separate data part with lower
dimensionality than the original data (i.e., a 2D section
per ocean over time).

For the visual analysis, we connect the data part that
contains the multiple runs and the aggregated data part
by an interface. The interface is created automatically
during the data conversion and is loaded together with
the data parts at the beginning of the analysis session. As
discussed in section 4.1, a one-to-many relation is estab-
lished between each aggregated cell and the collection of
multi-run values given for the same space and time (see
Fig. 5 (c) and (d)). Brushing, for instance, an aggregated
cell also selects the related distribution of values in the
multi-run data (at the same timestep). Since the two data
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parts are connected by the interface, we can go back and
forth between the original data and aggregated statistics
during the visual analysis.

In the following analysis, we first familiarize ourselves
with the data by means of an overview visualization
(in the aggregated data part). This is based on glyphs
showing derived statistical properties computed from
the multi-run data. In the aggregated part, we are able
to identify certain cells which contain interesting outliers
(with respect to a sensitivity analysis). The selection is
automatically transfered via the interface to the multi-
run data part. The feature is further investigated and
refined, which is also reflected back to the aggregated
data part. In the analysis, the parameter settings that
lead to the selected outliers can be identified.

Firstly, we want to obtain an overview of the multi-
run ocean data. At every timestep, statistical proper-
ties are computed from each distribution of multi-run
values per grid cell. We are, for instance, interested
in distributions where the outputs from different runs
have a high variation. For this purpose, we compute
the quartile information that is commonly represented in
box plots [31]. The three quartiles divide the collection
of 100 values per grid cell—one value per run—into
four equally populated parts: 25% of values are smaller
than the lower quartile q1, 50% are smaller/larger than
the median q2, and 25% of the values are larger than
the upper quartile q3. The median is a robust estimate of
the center of a distribution (as compared to the mean)
and the interquartile range (IQR = q3 − q1) is a more
robust estimate for the standard deviation [40]. Carefully
designed glyphs, placed as billboards in 3D, can be used
to represent multiple properties per grid cell [32].

The glyphs provide qualitative information about the
data distribution with respect to the multiple runs. In
Fig. 7 (a), four statistical properties are represented per
aggregated cell at timestep 100: the median temper-
ature is encoded in color3, the interquartile range is
mapped to the overall glyph size, the upper glyph shape
represents the distance q3 − q2, and the lower shape
shows q2 − q1. Large interquartile ranges have been
brushed, opacity represents the respective DOI values.
The upper and lower shape of the glyphs are based on
super ellipses [32]. Each shape represents an attribute
by changing from a star (small value), to a diamond,
to a circle, and a box representing a large value (see
the glyph legend in Fig. 7 (a)). Even though the figure
may contain some visual cluttering, it gives a qualitative
overview about the data distribution over all runs (at the
given timestep). We see a couple of interesting locations
(larger glyphs) where the corresponding distribution of
multi-run values have a high variation. The upper/lower
glyph shapes also provide information about the skew-
ness of the distribution. Due to its horizontal symmetry,
the glyph shape can usually be mentally reconstructed

3. The color maps are based on the work of Brewer [41]. Discrete
maps are chosen to allow more quantitative statements about the data.
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Fig. 7. Multi-run climate data at timestep 100 given for two hier-
archical levels: (a) glyph-based visualization of four aggregated
properties from the multi-run data (color, overal size, upper/
lower glyph shape). (b) the original multi-run data on 2D cross
sections through the Atlantic, Indian, and Pacific ocean. The run
parameters are encoded in one of the spatial dimensions (run
axis). Camera settings in both views are synchronized.

when the glyph is partially occluded. The user can also
zoom and rotate the visualization.

Fig. 7 (b) depicts the multi-run data part at the same
timestep. For each run, temperature is shown on a
cross section through the Atlantic, Indian, and Pacific
ocean. The 2D sections (latitude × depth) are hierarchi-
cally arranged next to each other. The two run dimen-
sions of the data are embedded by (re-)using one of the
spatial dimensions of the visualization (denoted as run
axis). The location r along the run axis is determined
by the input parameters to the simulations, i.e., r =
diff h · steph + diff v · stepv, where steph is chosen slightly
larger than 10 · stepv. This leaves some space between
cross sections resulting from different settings for diff h

(illustrated in Fig. 7 (b)). Both step sizes can be specified
by the user. During interaction, the camera settings for
the aggregated and multi-run view are synchronized.

5.2 Outlier analysis in the aggregated data part

As a next step, the influence of the ocean diffusivity
parameters on the simulation output is investigated.
We focus on grid cells that contain interesting multi-
run outliers. These are values resulting from individual
runs that strongly diverge from the output of other runs
(for the same grid cell and timestep). Identifying such
outliers can be useful for finding possible errors in the
model or unsuitable settings for the model parameters.
We compute additional data properties from the multi-
run data using the integrated data derivation mechanism
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Fig. 8. Analyzing cells that contain at least 10% of outliers: (a) scatterplot showing the percentage of total outliers (x-axis), and a
measure to determine how the outliers are distributed (y-axis), i.e., are more located above q3 (upper outliers) or below q1 (lower
outliers). Aggregated outlier properties are depicted using glyphs (b), the selected cells are also shown for the multi-run data (c).

of our framework. The resulting properties are stored in
the aggregated data part. We create a 2D scatterplot that
can answer two questions per multi-run distribution:

• what percentage of the multi-run values given for a
grid cell/distribution represent outliers (x-axis), and

• how are the outliers distributed (y-axis). That is, are
more outliers located above q3 or below q1, are they
equally distributed, etc.

Univariate measures of outlyingness often consider the
distance of the samples to the data center, normalized by
the standard deviation. Such measures can be estimated
in a classical or a robust way [40]. Data values that lie
more than 1.5 × IQR away from the upper or lower
quartile are often considered as “mild” outliers, and
values that differ by more than 3×IQR are considered as
“extreme” outliers [42]. At this stage of the analysis, we
consider mild and extreme outliers as equally important.
In Sec. 5.3, however, we treat them differently.

For each distribution of multi-run values at a timestep,
we derive the percentage of upper outliers (% data values
≥ q3 + 1.5 × IQR) and lower outliers (% data values
≤ q1 − 1.5× IQR). The scatterplot in Fig 8 (a) shows ag-
gregated properties for all grid cells and timesteps4. The
percentage of total outliers per grid cell (at a timestep) is
mapped to the x-axis. A measure that expresses whether
there are more upper or lower outliers is represented
on the y-axis (i.e., upper minus lower outliers). In the
view, the number of data items per rectangle is encoded
by its luminance and the DOI values are represented
by color (pure red represents a maximal DOI value).
Grid cells with certain outlier characteristics can be
investigated via brushing: Data items at (0, 0) contain
no outliers according to the chosen measure. Items along
the diagonals contain either only upper or lower outliers.
Items located on the x-axis (y = 0) contain the same
number of upper and lower outliers. Using a smooth
brush [16], we focus on grid cells where more than
10% of the multi-run values diverge strongly from the
rest (with a transition to cells containing no outliers,

4. Since the point size in this plot has been increased, it is similar to
a 2D histogram using colored rectangles to represent the bar height.

illustrated as an orange gradient below Fig. 8 (a)). While
brushing these aggregated characteristics, the selection
is instantly transferred to the multi-run data part via
the interface. The spatial relation of the feature can be
investigated in Fig. 8 (b) and (c).

The glyphs in Fig. 8 (b) depict the derived outlier char-
acteristics at timestep 60. Color represents the median
temperature and the overall glyph size represents the
percentage of total outliers per cell (at the timestep).
The upper and lower glyph shape shows the percentage
of upper and lower outliers, respectively. In Fig. 8 (c),
the corresponding deviation of multi-run values from
the median temperature is visualized. A group of cells
with mainly upper outliers (round upper glyph shape)
is visible in the north of the Atlantic (see red ellipses
in Fig. 8 (b) and (c)). Another group of cells with many
lower outliers is located north of the Iceland-Faroe-Ridge
in the Atlantic (see the blue ellipses). By changing the
depicted timestep, one can observe that the feature with
lower outliers propagates northwards and downwards
near the seabed over time. The feature also extends
over the north pole to the other parts of the arctic sea
(not visible at this timestep). At a later stage of the
simulation, an increasing number of runs results in such
lower (cooler) outliers compared to the rest (blue ellipses
in Fig. 8 (b) and (c)). We further investigate this feature.

We focus on cells that contain more lower than upper
outliers. To allow such a relative selection, the data
mapped to the y-axis in Fig. 8 (a) is normalized. The
respective data attribute (upper minus lower outliers)
is, therefore, divided by the corresponding percentage of
total outliers (x-axis). The resulting scatterplot is shown
in Fig. 9. For each column of total outliers (x-axis),
the combinations of upper and lower outliers are now
equally distributed on the vertical axis (this is illustrated
for the example of 12% total outliers in Fig. 9). Accord-
ingly, it is now possible to brush the ratio between upper
and lower outliers. Data items that (1) contain at least
10% of outliers at a timestep (x-axis), and that (2) have
at least 75% lower outliers—compared to the percentage
of upper outliers—are in full focus (see also the smooth
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extension of the brush where the DOI linearly decreases,
illustrated as orange gradients in Fig. 9). The respective
feature is further analyzed in the following section.

5.3 Outlier analysis in the multi-run data part

Up to now, our analysis was mainly based on aggregated
properties. Since both data parts are connected through
an interface, we can go back to the original multi-run
data and further refine our selection of lower outliers.
In the following, the model sensitivity with respect to
the input parameters, diff h and diff v , is investigated
for the specified feature. Our goal is to identify (1) the
grid cells with the specified outlier characteristics, and
(2) the parameter settings that result in such outliers. A
measure of outlyingness is thus derived in the multi-run
data part, which also allows us to differentiate between
mild and extreme outliers. For each multi-run value xj ,
the deviation from the center of the corresponding dis-
tribution is normalized by the interquartile range, i.e.,
xj−(q1+q3)/2

IQR . Values inside [q1, q3] are thereby mapped to
the interval [−0.5, 0.5]. Note that the median does not
have to be zero on this scale.

The scatterplot in Fig. 10 shows the described measure
of outlyingness for the multi-run data (y-axis), and the
corresponding deviation from the median temperature
per distribution (x-axis). We brush multi-run values that
represent extreme outliers with a smooth transition to
mild outliers (see the illustration on the right of Fig. 10).
In the scatterplot, such extreme outliers are vertically
located above or below ±3.5 and deviate by more than
3 × IQR from the upper or lower quartile, respectively.
Mild outliers are located above or below ±2.0. In Fig. 10,
different levels of focus+context [19] are discriminated
in color: the context is shown in black, data items only
selected in the local view are encoded in blue, and
items selected in both data parts are highlighted in red.
Since the interface works bidirectionally, the maximum
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Fig. 10. Outliers are brushed using derived attributes in the
multi-run data part: mild outliers are vertically located above
or below ±2.0 and extreme outliers are located above or be-
low ±3.5. Features selected in multiple views are highlighted
in red (focus), features only selected in the current view are
depicted in blue, and context information in black.

DOI value per multi-run distribution is also transferred
to the related grid cell in the aggregated data. Aggre-
gated cells where the related distribution contains only
mild outliers accordingly receive a low DOI value.

As a next step, multi-run values that are relatively
similar to the median temperature of the correspond-
ing distribution are excluded from the selection (with
a smooth brush on the x-axis in Fig. 10, not shown
here). This is to account for distributions with a very
small interquartile range, where the chosen measure of
outlyingness becomes less significant (as compared to
larger interquartile ranges).

In the following, we investigate the temporal evolu-
tion of the previously specified feature of lower outliers
(aggregated data part) that has been refined in the multi-
run data part to also identify the parameter settings
causing these outliers. Fig. 11 shows the aggregated
and multi-run data at three different timesteps, repre-
sented as columns. The aggregated outlier properties
are visualized in the top row. A diverging color map
is used for the multi-run data (middle row) to encode
the deviation from the median temperature per grid cell.
A view from above (bottom row) is used to identify the
input parameter settings resulting in the selected outliers
(diff v settings are also color-coded).

At timestep 60, the selected multi-run values strongly
deviating from the rest of the distribution are visible
north of the Iceland-Faroe-Ridge (see the blue ellipses
in Fig. 11 (b) and (c)). Since the corresponding diff v and
diff h settings are spatially encoded in the visualization,
we can see that these outliers mainly result from larger
diff v settings5 (see the inset in Fig 11 (c)). At this stage of
the simulation, multi-run values that are also simulated
with larger values for the horizontal ocean diffusivity
(diff h) deviate earlier from the other runs. For these

5. These runs are located on the right side each, because diff v input
values are encoded with a smaller step size than diff h values.
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grid cells and run settings, the model changes from its
standard behavior to another climate condition.

At year 120 the feature of lower outliers (blue ellipse
in the north of the Atlantic) has also propagated to the
other parts of the arctic sea (green ellipses in the Indian
and Pacific ocean). After extending over the north pole,
it is propagating southwards (indicated with arrows). It
is still only larger settings for diff v that produce these
outliers (see upper part of Fig 11 (f)). On the other hand,
a condition has established in the southern region in all
three oceans where a few runs constantly result in dif-
ferent output values to the rest (see red ellipses). These
outliers result from large diff h settings and are, therefore,
represented to the right of each ocean. A similar behavior
is also visible at year 250 (see the red ellipses in Fig 11 (h)
and (i)). At this stage of the simulation, the outliers
previously visible in the north have already disappeared.
A condition has been established in the north where the
runs mainly result in similar outputs.

Over the investigated timespan, certain runs in the

northern Pacific also produce a larger number of lower
outliers (see the orange ellipses in Fig. 11). These outliers
result mainly from smaller settings for diff h and diff v

(e.g., see the inset in Fig. 11 (i)). As a next step, we
change our selection in the aggregated data part to select
grid cells that contain more upper than lower outliers.
A similar analysis is performed, where the parameter
settings producing these upper outliers are investigated.
Due to space limitations, this is not shown here.

In summary, we performed a visual sensitivity anal-
ysis of a multi-run climate simulation. In our analysis
framework, multi-run and aggregated data were inte-
grated and related by an interface, which supports the
investigation of features across both data parts. Statisti-
cal properties were computed from the distributions of
multi-run values. Based on these properties, interesting
outlier characteristics could be brushed in the aggregated
data part. The feature was automatically transferred to
the multi-run data via the interface where it was further
investigated. Individual runs that substantially deviate
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from the other values of the distribution could be iden-
tified together with the corresponding input parameter
settings. By connecting both data parts via the interface,
the analyst can go back and forth between multi-run and
aggregated data, which enables a powerful analysis.

6 CONCLUSION AND FUTURE WORK

The joint visual analysis and exploration of heteroge-
neous scientific data is a crucial and challenging task.
In this paper, we propose a systematic approach to the
interactive visual analysis of two heterogeneous parts
of scientific data. Analogous to the related simulation
scenarios, we construct an interface between the data
parts which connects data items in the one part to data
items in the other, and vice versa. We propose different
ways of how a user-specified degree-of-interest attribu-
tion can be transferred between the data parts. Instead of
performing fusion between the parts at the data level—
this is often not practical in scenarios including multi-run
simulation data or fluid–structure interactions—we per-
form the fusion on the first semantic/interpretation level
explicitly represented as user-specified features [18]. Our
approach is demonstrated in two visual analysis sce-
narios with heterogeneous scientific data, which were
conducted in collaboration with domain researchers.

For data parts specified at hierarchically different lev-
els, the integration of derived statistical attributes in the
analysis process has shown great potential. It enables the
analyst to work simultaneously in both—the data part
containing the actual data, and the aggregated data part
representing summary information. The analyst can go
back and forth in an iterative manner, analyzing the data
at different hierarchical levels. Relations between these
data parts can thereby be identified through the visu-
alization and iteratively refined. Such a tight integration
of a computational and interactive analysis methodology
agrees well with the requirements for prototypic visual
analytics solutions [38].

In future work we will focus on extending our ap-
proach to scenarios with multiple data parts (e.g., given
at multiple aggregated levels). We also aim at further
integrating statistical properties, yielding quantitative
results into our visual analysis framework. Here again,
we want to show how visual analysis and statistics can
interact in a feedback loop to gain in-depth insight into
the data. We also want to identify further analytical
patterns that involve our interface.
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