
NoNoise - Music Library Visualization

Manuel Keglevic∗

Vienna University of Technology
Thomas Schulz†

Vienna University of Technology

November 6, 2011

Abstract

In order to navigate through music libraries the
common practice is to browse through lists of meta
data. However, for libraries with thousands of songs
a visual view of the library is more practical for
browsing. There are standalone applications for
music library visualization which use content-based
features of the songs. These applications usually
lack usability and features compared to sophisti-
cated music players. We combine the positive as-
pects of both areas by providing a library visualiza-
tion plug-in for an existing successful music player
(i.e. Banshee Media Player). Our plug-in enables
the user to browse a two-dimensional point repre-
sentation using different levels of abstraction to ac-
complish the goal of creating a playlist containing
songs he or she wants to listen to.

1 Motivation

With the growing success of digital music stores
like iTunes Store or Amazon MP3 and the pop-
ularity of portable music players, personal digital
music libraries become larger and larger. The typ-
ical approaches for browsing these libraries (e.g.
∗e-mail:manuel.keglevic@gmail.com
†e-mail:thomas.schulz@student.tuwien.ac.at

searching for artist/track/genre/etc. or browsing a
text view showing artist name, track title and some-
times album title) are based on meta data. However,
meta data is likely to be incorrect or inaccurate (e.g.
genres). Thus these text views are useful if you have
a properly tagged music library and know which
meta data you are looking for, but they do not pro-
vide a good interface for browsing the library, not
knowing what exactly you are looking for.

Considering all this we decided to create a visual-
ization view of the music library which is based on
content data rather than meta data. The goal for this
visualization was to be able to interactively browse
through the music library and discover tracks you
are currently in the mood for, while removing large
areas of tracks you do not want to listen to at the
moment. Finally it should be possible to use the vi-
sualization to create a playlist which contains only
tracks that you want to listen to.

During our research we found some standalone vi-
sualization applications which had an integrated
music player [4, 6]. However we came to the con-
clusion that hardly anyone would install an addi-
tional application just to visualize their music li-
brary and that no one would use these standalone
applications as their main music player, because
of their lack of usability and features. So instead
of implementing a standalone application with re-

1



duced usability we decided to implement a plug-in
for an existing player and focus on the visualization.
This also has the advantage that an existing player
already has a user group which can simply test our
visualization by enabling our plug-in.

The next step was to choose a music player. The
factors that most affected our decision were the
popularity of the player, its usability and the pos-
sibilities for writing an extension. We finally de-
cided in favor of Banshee Media Player [1] because
it is the default player in Ubuntu since 11.04 and,
in contrast to most other popular players, it uses
mono/C# [5] for its extensions instead of a script
language.

We chose to use clutter-sharp [2, 3] to implement
the main view of our plug-in, because it offers high-
level access to OpenGL. Both the visualization it-
self and the user interface are implemented using
clutter-sharp.

2 Data Processing

Before we can start with the visualization, we have
to transform the available data (i.e. the tracks) into
data which can be represented in two dimensions.
Since meta data is often incorrect and inaccurate
(e.g. genres or different ways of writing the same
artist name or track title) we focus on content-based
data. Using web services to get homogeneous meta
data would be an alternative solution. However,
most web services have query limits per user which
makes it impossible to use them for a music player
plug-in.

To get content-based data for each track, we have
to analyze the music library. This is done using a
slightly modified version of the Banshee Mirage [8]
plug-in. This plug-in uses Mel-Frequency Cepstral

Coefficients (MFCCs) to compute the similarity be-
tween two tracks. Since we want to get absolute
data for each track and not just relative similarity to
one seed track, we cannot use the similarity value
computed by Mirage. Instead we use information
from the MFCC matrix.

As the MFCC matrix is rather big (1291× 20) we
only use certain vectors instead of the entire ma-
trix. Depending on the user settings we either use
its mean, squared mean, median, minimum or max-
imum vector.

This yields a 20-dimensional vector for each track
in the music library, so we still have to reduce
the dimensionality some more. For this task we
use Principal Component Analysis (PCA). From the
PCA we get two vectors which point in the direction
of the larges variance. We then use these vectors as
basis vectors to compute two-dimensional coordi-
nates for each track.

Since the analysis of the music library takes about
2 to 2.5 seconds per track (6 to 7 hours for 10000
tracks) we have to store the data from the analysis
in a database. For this we use an sqlite database
with three tables. One table is used to store the five
different vectors of the MFCC matrix, another ta-
ble stores the two-dimensional coordinates from the
PCA and the third table is used as an interface to the
Banshee database and thus stores its track ids.

3 GUI

There are three main areas of interaction with our
visualization:

• Navigation: the visible viewport can be
moved using the mouse (dragging). Addition-
ally, two buttons can be used to zoom in or out.

2



Filtering of the visible songs is done using the
standard Banshee search area.

• Selection and removal: in selection mode,
songs can be selected using free-form selec-
tion. Selected songs can either be cleared
(i.e. unselected), removed or added to a
playlist. Removed songs can be shown again
using ‘reset’.

• Playback and playlist generation: double
clicking a song plays it (in case of a cluster
all songs are added to a hidden playlist). Us-
ing ‘playlist’ all selected songs are added to a
new playlist named ‘NoNoise’.

Additionally, to update the PCA data stored in the
database the menu ‘Tools→ NoNoise’ can be used
to start and pause scanning of the music library.

The user interface is shown in Figure 1. The zoom
buttons are located in the upper left corner. At
the top are all the other buttons. The info box in
the upper right corner shows information about the
circle under the cursor (i.e. songs in the cluster).
When points are selected, a similar info box, which
contains the information of the selected points, is
shown in the bottom right corner. In the bottom left
corner there is a status bar which shows important
information.

4 Visualization

Our main goals for the visualization were simplic-
ity and scalability. First of all, an intuitive user in-
terface and visualization are important to quell the
fears of users about trying something new. In gen-
eral music players are designed for a broad audi-
ence of users who might be overwhelmed by com-
plex interaction patterns. Secondly, music libraries

with a size of 10000-20000 songs are not excep-
tional, therefore the visualization must stay infor-
mative and computationally efficient even for such
a number of songs.

In the visualization every song is represented by a
translucent white circle. The position of the circle
is determined by the PCA coordinates stored in the
database. However, to maintain scalability cluster-
ing is used to provide a level of detail depending on
the size of the currently visible area. For simplic-
ity we chose not to encode information about the
cluster into the size or color of the circle.

To decrease computational effort the coordinates of
the songs are stored in a quadtree. This also enables
efficient viewport clipping for further performance
optimization.

4.1 Clustering

When visualizing a large number of songs various
abstraction levels are needed to allow a fine-grained
transition from detailed information about the rela-
tionship between a handful of songs to the general
structure of the whole music library. We chose to
use multiple clustering levels to enable this transi-
tion. However, there were several requirements for
the clustering algorithm.

Firstly, as previously noted, we chose not to en-
code information about the clusters (for example
the number of songs) into their visible representa-
tions. This means, in order not to falsify the visual-
ization at each abstraction level the number of songs
in the clusters should be equal.

Secondly, performance is crucial. The clustering
levels have to be recomputed every time the PCA
coordinates change. In order to allow the user to

3



Figure 1: Banshee with NoNoise view.

change the PCA feature set, this cannot be precom-
puted.

Hence, after testing common clustering algorithms,
we chose to use a modified hierarchical cluster-
ing. To guarantee that for each clustering level the
number of songs in a cluster is always the same,
the clusters of the previous level are clustered pair-
wise (using the euclidean distance) in each clus-
tering step. To minimize the error introduced by
this modification an optimal solution would be to
minimize the accumulated distance between these
pairs. However, this problem is NP hard and al-
though this can be approximated using a heuristic
the computational effort is still too high for big mu-

sic libraries. Therefore, we always choose the clos-
est pairs first for clustering. The main advantage of
this method is that the songs are already stored in
a quadtree which allows an efficient search for the
nearest neighbor.

For simplicity, we think it is important that the vi-
sualization changes gradually and only as much as
necessary. Hence, instead of recalculating the posi-
tion of the clusters using the barycenters, we keep
the position of one of the previous clusters. As a
result, instead of removing all old circles and intro-
ducing new ones at different positions, half of the
circles are faded out and the rest stays the same.
The clustering of an area is shown in Figure 2.

4



Figure 2: Comparison of two clustering/zoom levels.

4.2 Performance optimization

When testing our visualization with 5000-10000
songs we identified two major performance bottle-
necks:

• Allocation of clutter actors (needed for render-
ing)

• Movement of the viewport

First of all, the allocation of 5000 clutter actors (one
for each song) takes about 11s. Secondly, even
though all these songs are never visible at once, be-
cause they are either clustered or outside the view-
port, moving the viewport around is not smooth
anymore.

To overcome these problems, we use a pool of 3000
actors. Every time a song is newly visible, an al-
ready allocated free actor is assigned to this song,
moved to the right position and shown. Similarly,
when a song is moved out of the viewport the asso-

ciated actor is freed again. The test, if a song lies
inside the viewport or outside is efficiently done us-
ing the quadtree.

This way, the rendering performance of the visual-
ization is in O(n logn) with n being the number of
songs in the library.

5 Problems

The biggest problem we encountered writing this
plug-in was the lack of documentation of both
clutter-sharp and Banshee. Although clutter is well
documented in C, it is not always obvious how to
translate this documentation to clutter-sharp. Addi-
tionally, some clutter functions are simply not part
of clutter-sharp or computationally expensive. Ban-
shee itself is not documented at all (there are some
rare inline comments), which means that even sim-
ple things like getting a song object using its id can
take some painful days.

5



Another problem was the absence of music analysis
libraries for C#/mono. There is a huge number of
free-to-use libraries for C, but we did not find any
C# library which was suitable for us. The only vi-
able option for us was to use parts of Mirage. How-
ever, this yields one big cluster rather than several
small ones. Even though neighboring songs sound
similar, songs of the same artist or genre may spread
across the domain.

6 Results and Future Work

A crucial point for our visualization is that simi-
lar songs are clustered together such that they are
visually distinct from each other. As shown in Fig-
ure 3 on the left, songs of different genres (Coun-
try, Reggae and Hardstyle) are separated into dif-
ferent clusters (green, grey and red circles respec-
tively) with the exception of two clusters (dark red)
containing songs of two genres. However, adding a
single Classical music compilation to the library re-
duces the x-axis space available for the other three
genres by approximately 60%. Therefore, the sepa-
ration of the genres is not as clear anymore. For ex-
ample, as shown in Figure 3, Hardstyle and Reggae
would not be visually distinct without the additional
coloring.

In bigger libraries the songs are spread across
the domain and form one big cluster rather than
forming visually distinct clusters containing simi-
lar songs. In order to improve this, other features
of the songs, which enable meaningful clustering,
have to be used.

However, music information retrieval is a research
area of its own and extracting these features re-
quires a whole new project. Yet, after working on
this project we are even more intrigued with mu-

sic visualization and are looking forward to seeing
further work in this area.

References

[1] Banshee. URL: http://banshee.fm/.

[2] Clutter. URL: http://www.clutter-proje
ct.org/.

[3] Clutter-sharp. URL: http://www.clutter-
project.org/blog/2007/04/clutter-s

harp-bindings.

[4] Anita Lillie. MusicBox. URL: http://thesi
s.flyingpudding.com/.

[5] Mono. URL: http://www.mono-project.c
om/.

[6] Elias Pampalk. Islands of Music. URL: http:
//www.ofai.at/~elias.pampalk/musi

c/index.html.

[7] Christoph Rüegg. Math.NET. URL: http://
www.mathdotnet.com/.

[8] Dominik Schnitzer. Mirage. URL: http://h
op.at/mirage/.

6



Figure 3: Comparison of our visualization with different libraries using the median vector without song
duration. On the left, Country (green), Reggae (grey) and Hardstyle (red) and on the right additionally
Classical music (blue). Colors were added manually for distinction of the genres. Used albums: Kitty,
Daisy & Lewis - Smoking In Heaven (Country), Bob Marley - Legend (Reggae), Dj Exorzist - Hardstyle
Constructor 2011/2 (Hardstyle), The Top 100 Masterpieces Of Classical Music Vol. 8 (Classical music).

7


