VYVoRMD

Volume rendering on mobile devices.

Manuel Hochmayr, BSc
e0627715@student.tuwien.ac.at

ABSTRACT

Nowadays volume rendering is a very important topic. There are many programs for PC
that render volumes very fast and display all kind of information the user is interested
in. However portable devices have also become very popular these days, but there are
almost no real-time volume render programs for them. Due to hardware improvements
in the mobile sector, e-mail, browsing and games have gone portable- so now real time
volume rendering.

VoRMD is a project about volume rendering on a mobile device. [t was planed to do a
comparison between OpenGL ES 2.0 and WebGL and their performances on doing a
volume rendering on a mobile device. Because of the lack of support of WebGL on
mobile web browsers, the WebGL part was dropped. The new goal was implementing a
volume-rendering framework in OpenGL ES 2.0 with GLSL for an Andorid 2.3 device.
The program supports Android 2.3 devices having a GPU chip with 3D texture extension.
[t is possible to load volumes in “.dat” format and transfer function images in “.png
“format. It uses 4 different kinds of shader, MIP, averaging, composition and XYZ slicing,
for calculating and displaying a volume file. All that is done in real time on the device.
The user can use touch input to rotate and scale the volume. Furthermore the program
adapts the sampling rate according to the frame rate, to allow better interaction when
transforming the volume.

GOAL:

The original goal of the project was to implement a simple volume renderer on a mobile
phone with Android 2.3. It should only use a MIP (maximum intensity projection) shader
to do a rendering with OpenGL ES 2.0 and WebGL. WebGL was somehow working on
the device by downloading FireFox mobile. However it was not possible to integrate the
FireFox mobile window into the app and there was no texture 3D support in WebGL.
Therefore the original goal was dropped and a new one was formulated which was now
implementing a framework for volume rendering in OpenGL ES 2.0. The framework
should support 4 different kinds of shaders MIP, Averaging, Compositing and Slicing in X
Y and Z direction. Furthermore loading different volumes and transfer functions and
adaptive sampling as well should be possible.

TECHNOLOGY:

VoRMD targets an Android 2.3 device. For developing the program Eclipse with Android
SDK 10, for the Java part and NDK r6 were used. The user interface uses standard
Android interface components. An overlay is used to display the Ul which is not the best

VoRMD Manuel Hochmayr 1



solution but acceptable. Furthermore for development a HTC Desire HD with Adreno 205
GPU was used. The GPU supports the texture 3D extension of OpenGL ES 2.0.

.dat fileformat:

The first 6 bytes are the header of the file. The first two bytes are the width, the next two
are the height and the last two bytes are the depth of the volume. The rest of the file
describes the volume. A data set has the size of 16 bytes, however only 12 of them are
used. For further information visit:

https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp1.html

PROGRAM

Start

You can open the program by simply clicking the VoORMD icon on your Android
menu screen. The program will start and a standard volume will be loaded -
lobster.dat. In the middle of the screen you can see the actual volume. On the left
hand side top corner an orientation cube is visible. The cube helps orientating
when rotating and scaling the volume. Pressing the dz plus and dz minus buttons
on the left and right hand side corner can change the sampling rate.

Figure 1: Start screen

The menu

VoRMD

Pressing the Menu button on your mobile device opens the menu. It will show up
at the bottom of the screen. There are 4 different options to select. Pressing
Load... the load menu opens. Via this menu volumes and transfer functions can be
loaded by simply finding them by a separate file chooser window. To load own
volumes one have to simply put them on a SD-Card of the mobile phone. This can
be done for the transfer function as well. The next option in the menu is shader.
By clicking it a window with all 4 different kinds of shaders to choose appear.

Manuel Hochmayr 2



Load... Select shading Options Quit

Load volume...

Load transferfunction image...

Figure 2: Menu and Loading screen

MIP (Maximum intensity projection): To calculate the volume the
maximum intensity of the sight of view ray of the pixel is taken.

Averaging: The averaging amount of a ray will be taken by adding all the
intensities up and divide them by maximum number of steps. It uses the
transfer function for colour as well.

Compositing: Uses phong shading and a transfer function for the final
image.

Slicing: One can slice through the volume in XY and Z direction.

@ Select shading

MIP

Averaging

Compositing

Slicing

Figure 3: Shader menu

Next is the option menu. In the option menu FPS calculation and adaptive
sampling can be turned on and off. The last item in the menu toolbar is the quit
button. By pressing it, the program will be closed.

Touch input and adaptive sampling

The program supports two different gestures. One finger touch and movement to
do a rotation in all 8 directions and two fingers for scaling. When the volume is
touched, adaptive sampling will be activated. It tries to adapt the step size
according to the current frame rate. This is done by simply dividing 60 (wanted
frames) by the current frame rate times an appropriate sample distance of 0.005.
This will only be done when interacting with the volume.

VoRMD Manuel Hochmayr



RESULTS:

The following volumes were tested with the program. The rendering was tested on a
HTC Desire HD with an Adreno 205 GPU with all 3 shaders, a step size of 0.002,adaptive
sampling on and with a scale factor of 1

lobster.dat - A lobster
X:120,Y:120, Z:34 - 979kb.

MIP:
Rotating (left/right) ~8.1 to ~9 FPS
Finalizing the image with the chosen step size (sight from the top): ~1.51 fps

Averaging:
Rotating (left/right): ~7.82 - ~8.1 FPS

Finalizing the image with the chosen step size (sight from the top): ~1.92 fps

Compositing:
Rotating (left/right): ~7.84- ~8.88 fps

Finalizing the image with the chosen step size (sight from the top): ~0. 78fps

Figure 4: Lobster rendered using MIP, average and compositing

skewed head.at - Human head
X:184,Y:256,7:170 - 9MB.

MIP:
Rotating (left/right) ~8.34 - ~8.94 FPS
Finalizing the image with the chosen step size (sight from the front): ~1.9 fps

Averaging:
Rotating (left/right): ~7.73 - ~8.1 FPS

Finalizing the image with the chosen step size (sight from the front): ~2.23 fps

Compositing:
Rotating (left/right): ~7.87- ~8.1 fps

Finalizing the image with the chosen step size (sight from the front): ~1. 35fps

VoRMD Manuel Hochmayr



Figure 5: Skewed head rendered with MIP, average and composition. The last image was scaled as well

stagbeetle.dat - A stag beetle
X:277,Y:277 ,7:164 - 25MB.

MIP:
Rotating (left/right) ~7.7 to ~7.9FPS
Finalizing the image with the chosen step size (sight from the top): ~1.81 fps

Averaging:
Rotating (left/right): ~7.44 - ~7.76 FPS

Finalizing the image with the chosen step size (sight from the top): ~1.14 fps

Compositing:
Rotating (left/right): ~7.44- ~7.58 fps

Finalizing the image with the chosen step size (sight from the top): ~1. 22fps

Figure 6: Stag beetle rendered with MIP, average and composition. Average image is very dark

PROBLEMS

One of the main issues was the OpenGL extensions of the mobile phone. First there were
problems with the 3D textures methods. The linker was not able to find them. However
simply defining the API entry manually was not enough. It is important to add the -IEGL
lib to the android. mk file to do that.

Another problem was that non-power of two textures were not working even though the
phone has the extension for non-power of two textures. After rescaling the volume
texture it was possible to render the volume for the first time. However the texture
slices where shifted (Figure 7). To avoid that it is important to use a power of two
texture and unsigned int texture coordinates and not float coordinates otherwise one
will encounter an interpolation problem of the texture coordinates and get shifted slices
as aresult.

VoRMD Manuel Hochmayr 5



The last problem concerns the shader. After observing a problem with a very high step
size, the volume was not rendered properly and parts were missing (Figure 8), I found
out that the iteration steps in the shader are limited to 256. To avoid this limitation a
second “for” loop was implemented, which means performance loss.

Figure 8: Iteration limitation

CONCLUSION

This project shows that it is possible to do a volume rendering in real time on a mobile
device using different shaders and a transfer function with accurate speed. However it is
still too slow for more powerful features and practical use. With faster hardware the
program can be improved by adding an interactive transfer function menu. Another
improvement could be to avoid the second loop in the shader or to completely avoid
loops in it.

SOURCES

Files:
https://www.cg.tuwien.ac.at/courses/Visualisierung/Angaben/Bsp1.html

Display of Surfaces from Volume Data
Marc Levoy

IEEE Computer Graphics and Applications,
Vol. 8, No. 3, May, 1988, pp. 29-37.

VoRMD Manuel Hochmayr 6



