Volume Analysis Using Multimodal Surface Similarity

Martin Haidacher, Stefan Bruckner, and M. Eduard Gröller

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Multimodal data:

- Same object, different acquisition techniques
- One modality evens out drawback of the other

Multimodal data:

- Same object, different acquisition techniques
- One modality evens out drawback of the other

Multimodal visualization:

- Side-by-side view
 - Difficult for comparison of both modalities
- Volumetric fusion

Differences and/or similarities between modalities vanish through fusion

- Using similarity information to analyze and visualize multimodal data
 - Similarity of isosurfaces for combinations of isovalues

Multimodal Similarity Map (MSM)

Multimodal Similarity Map (MSM)

MSM Calculation

Martin Haidacher

MSM Calculation

MSM Example

Applications for multimodal similarity map:

- Similarity-based exploration
 - Multimodal similarity map as guidance map
- Maximum similarity isosurfaces
 - Comparison of isosurfaces from two modalities
- Similarity-based classification
 - Directly classify multimodal data based on the multimodal similarity map

- The multimodal similarity map can be used to detect important structures
 - E.g. regions of high similarity
- Guidance map for the classification

Similarity-Based Exploration

Martin Haidacher

Similarity-Based Exploration

Similarity-Based Weighting

Use similarity value to manipulate opacity

Similarity-Based Weighting

Use similarity value to manipulate opacity

- Using multimodal similarity map to find most similar isosurface
 - One isovalue for one modality is given
 - Lookup in the MSM provides isovalue for most similar isosurface in modality 2
- Useful for finding differences in both modalities
 - E.g. artifacts

Maximum Similarity Isosurfaces

- Classify multimodal data directly in the multimodal similarity map
- Individual transfer functions are not necessary
- User defines set of control points
- Combination of isovalues is classified with control point which is most similar
 - Metric is based on similarity values

- Generate clusters based on user-specified control points c_i
- Calculate the cluster centroids h_i and use these points to finally generate the clusters
- The original control point c_i is the centroid of this cluster
 - More intuitive user interaction

Martin Haidacher

- Multimodal similarity map can be used to analyze multimodal data
 - Detect similarities/differences in two modalities
- A sub-sampled version of the volumes can be used for calculation
 - Reduce calculation time to seconds
- MSM can either be used as guidance map in an existing framework or to classify multimodal data directly

