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and M. Eduard Gröller, Member, IEEE Computer Society

isovalue k (low energy)

25
6

2560

0

is
ov

al
ue

 l 
(h

ig
h 

en
er

gy
)

1 2 3 4

5 6 7

1

2

3
4

5

6

7

Fig. 1. Iterative control point specification for similarity-based classification of a dual energy CT (DECT) angiography data set. The
individual steps are numbered from 1 to 7.

Abstract—The combination of volume data acquired by multiple modalities has been recognized as an important but challenging
task. Modalities often differ in the structures they can delineate and their joint information can be used to extend the classification
space. However, they frequently exhibit differing types of artifacts which makes the process of exploiting the additional information
non-trivial. In this paper, we present a framework based on an information-theoretic measure of isosurface similarity between different
modalities to overcome these problems. The resulting similarity space provides a concise overview of the differences between the
two modalities, and also serves as the basis for an improved selection of features. Multimodal classification is expressed in terms of
similarities and dissimilarities between the isosurfaces of individual modalities, instead of data value combinations. We demonstrate
that our approach can be used to robustly extract features in applications such as dual energy computed tomography of parts in
industrial manufacturing.

Index Terms—Multimodal data, volume visualization, surface similarity.

1 INTRODUCTION

Imaging modalities have different advantages and disadvantages typ-
ically related to the physical principles they use to scan a specimen.
They may suffer from different kinds of artifacts, can be differently
affected by noise, may be able to distinguish different materials or tis-
sues, and can have differences with respect to contrast and resolution.
In order to gain insight into the phenomenon under investigation, it is
essential to integrate this information effectively. The work presented
in this paper focuses on the analysis and fusion of two registered vol-
ume data sets of the same specimen. While the data generated by
each modality may be visualized separately, it is difficult to mentally
integrate multiple three-dimensional sources, particularly if spatial re-
lationships are important. Thus, the effective visual fusion of multiple
volume data sets has long been an active area of research. As discussed
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Institute of Computer Graphics and Algorithms, Vienna University of
Technology, E-mail: {haidacher|bruckner|groeller}@cg.tuwien.ac.at.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

by Cai and Sakas [4], this combination can occur at different stages.
At the extreme ends of the spectrum, the two data sets are treated sep-
arately and are only blended at the image level, or, conversely the
data values at each position are combined at the very beginning of
the pipeline to form a single merged volume. Most commonly visual
fusion is performed during the rendering phase which provides spa-
tial integration and allows for a flexible mapping of data attributes to
optical properties [24].

While straightforward blending can be an effective technique in 2D
slice views, it has many disadvantages in 3D visualization. In par-
ticular, the projection of multiple volumetric data sets onto a single
2D image can quickly lead to visual clutter. Hence, it is important to
provide the user additional guidance about the spatial similarities and
differences between the individual modalities to enable goal-directed
selection of features. Approaches which attempt to identify correspon-
dences based only on the frequency of data values, however, suffer
from the fact that data value ranges of corresponding structures of
interest may differ significantly. In order to address this challenge,
we propose multimodal surface similarity as a measure for identifying
similarities and dissimilarities between two volumetric scalar fields.
Instead of collecting statistics about the frequency of data values, we
quantify spatial similarities between isosurfaces across two modali-
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Fig. 2. Data sets containing the same structures with different value
ranges (supplementary data). The histograms show the distributions of
the data values.
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Fig. 3. Two synthetic data sets which represent complementary data.
Data set 2 contains structures which are different from data set 1.

ties, i.e., how much does knowledge about one surface tell us about the
others. By generating a multimodal similarity map, which encodes the
similarity between all combinations of isosurfaces from two modali-
ties, we can provide a concise overview of the differences between two
scalar fields. This information can then be used to guide the identifica-
tion of structures of interest. Based on this concept, we present a novel
method for feature classification in similarity space which enables the
user to easily take advantage of the complementary information pro-
vided by two modalities.

The remainder of the paper is structured as follows. In Section 2 we
review related work on the visualization of multimodal volume data
and other approaches connected to our work. Section 3 provides back-
ground information on the types of data we focus on. In Section 4,
the general concept of multimodal surface similarity is introduced. In
Section 5, we show how multimodal surface similarity can be used in
the visualization process. Results obtained with our approach are pre-
sented in Section 6. Section 7 discusses implementation details. The
implications of our approach as well as its limitations are discussed in
Section 8. Finally, the paper is concluded in Section 9.

2 RELATED WORK

As mentioned in the introduction, two volumes can be fused in differ-
ent stages of the visualization pipeline [13, 14]. The fusion in image
space is covered by the field of image processing [37]. The draw-
back of the fusion in image space is the loss of 3D information. For
the fusion in volume space, the spatial information of the data sets
can be used to improve the fusion quality. The first methods for vol-
ume fusion were based on extracted surfaces. Levin et al. [27] gen-
erated a surface model from an MRI scan and mapped PET-derived
measurements onto this surface. Evans et al. [10] generated an inte-
grated volume visualization from the combination of MRI and PET.
Noz et al. [29] introduced a framework for 3D registration and fusion
of CT/MRI and SPECT data sets based on a polynomial warping tech-
nique. These works mainly focused on the combination of anatomical
and functional modalities. A more general approach for the fusion of
modalities was introduced by Zuiderveld and Viergever [42]. For this
method an additional segmentation of the volumes is necessary to de-
cide which one to show at a given sample point. Heinzl et al. [16]
introduced a processing pipeline for surface extraction in dual energy
CT.

Alternatively, fusion can be performed without an intermediate fea-

ture extraction step. A straightforward method is fusion by linear
intermixing of the data values. Such an approach is used for volu-
metric CSG construction where different volumetric parts are fused
into a single object [36, 11, 8]. Hong et al. [17] describes how fusion
techniques in volume space can be efficiently implemented using the
graphics hardware. Eusemann et al. [9] have shown that this intermix-
ing can be improved for dual energy CT by adapting the intermixing
ratio to different tissues. A case study on visualization of multivariate
data where multiple values are present at each sample point was pre-
sented by Kniss et al. [24]. In this work the idea of multi-dimensional
transfer functions for assigning optical properties to a combination of
values was used. Akiba and Ma [1] used parallel coordinates for the
visualization of time-varying multivariate volume data. Multimodal
visualization of medical data sets by using multi-dimensional trans-
fer functions was discussed by Kniss et al. [25]. Kim et al. [22] pre-
sented a technique which simplifies transfer function design by letting
the user define a separate transfer function for each modality. Their
combination defines a two-dimensional transfer function. Haidacher
et al. [15] defined a data fusion and transfer function space for multi-
modal visualization based on the information content of the individual
modalities which aims to reduce the loss of information. In contrast
to our method, this approach is only based on the global frequency
distribution of values and not on structural similarities between the
individual modalities.

In our approach, we use information theory [31] to measure similar-
ities between the different modalities, but it has been applied to many
aspects of visualization [35]. In flow visualization, for instance, Xu
et al. [39] used information theory to select meaningful streamlines.
Feixas et al. [12] presented an information-theoretic approach for op-
timal viewpoint selection. Chen and Jänicke [7] discussed a general
information-theoretic framework for scientific visualization.

For many applications, such as industrial CT [16], surfaces are of
particular interest. Surfaces can be used to represent the interfaces
between different materials. In order to extract a stable isosurface, the
selection of the isovalue is crucial. Khoury and Wenger [21] use the
fractal dimension to measure how stable an isovalue is. The lower the
dimension, the less noisy the corresponding isosurface is. The contour
tree [6] is used to topologically analyze volume data. It is able to
encode the nesting relationships of isosurfaces. Takahashi et al. [32]
employed a volume skeleton tree to identify isosurface embeddings
in order to provide additional structural information. Kindlmann and
Durkin [23] introduced a transfer function space in which the gradient
magnitude is used as additional classification dimension. Interfaces
between materials show up as arches in this transfer function space.
In LH histograms, introduced by Šereda et al. [34], the highest and
lowest value along a local streamline in the gradient field are used for
the classification. Sample points at interfaces between materials form
clusters in this space, which represent stable surfaces.

Bruckner and Möller [3] introduced similarity maps which repre-
sent the similarity of isosurfaces for different isovalues. For the mea-
surement of the similarity mutual information is used. In a similarity
map clusters with high mutual information can be detected. In our ap-
proach we extend the idea of the similarity maps to multimodal data.
The resulting multimodal similarity maps are used for analysis, fusion,
and classification of multimodal data.

3 MULTIMODAL VOLUME DATA

There are different reasons for seeking to combine the information
from multiple modalities. In medicine, for instance, it is frequently
desired to simultaneously depict anatomical and functional data. Func-
tional data contains information about physiological activities, such as
metabolism or blood flow, within a certain tissue or organ. Anatomical
imaging modalities, on the other hand, present structural information
and typically provide higher resolution. In other fields, such as non-
destructive testing, multiple industrial CT scans with different param-
eters are used for scanning an object. These parameters can affect the
contrast and amount of artifacts in different regions. Thus, the goal
in this case is to combine the advantages of different scans in order to
obtain a better visualization of the object.



distance fields joint distance histogram

0
1

0 1

isovalue k

is
ov

al
ue

 l

k0 N

0
M

multimodal similarity map

l

calculate
mutual

information

generate
joint distance

histogram

generate
distance fields

data sets

isovalue = k

isovalue = l

da
ta

 s
et

 2
da

ta
 s

et
 1 Dk

Dl

D (x)k

D (x)l

Fig. 4. Pipeline for the generation of a multimodal similarity map. The illustration shows which steps are necessary to calculate the similarity of
isosurfaces for the isovalues k and l.

For the further description of our approach we will differentiate be-
tween two types of multimodal data which are depicted in this section.
We will introduce synthetically generated data sets which represent
the two different types of multimodal data sets. The data sets are all
3D data sets, where the slices are duplicates of the same image with
a size of 512× 512 pixels. To investigate the influence of noise on
our method, we added Gaussian white noise with a standard deviation
σ = 1.5% (SNR = 17.6) to one modality. In the subsequent sections
the synthetic data sets are used to highlight the properties of multi-
modal similarity maps.

Supplementary Data
Multimodal data is often used to eliminate the drawbacks of a cer-
tain imaging modality. This is necessary when one modality contains
undesirable noise or other artifacts in certain regions. In this case a
second modality is used to compensate for these artifacts. In this pa-
per we will refer to this type of data as supplementary data. Basically
both modalities depict the same structures, but disadvantages of one
modality may be compensated by the other and vice versa. An exam-
ple for supplementary data is dual energy CT. It is used in medicine
and industrial applications. The most common artifacts in CT scans
in general are noise-induced streaks, beam hardening, partial volume
effects, aliasing, and scattered radiation [2, 18]. Due to the fact that
different energy levels have different attenuation characteristics, some
of these artifacts appear prominently only in one energy level. Hence
it is desired to reduce artifacts by the fusion of CT data sets of different
energy levels.

We generated two synthetic data sets in order to simulate multi-
modal data with supplementary characteristics. In Figure 2 these two
data sets and their histograms are depicted. Due to scaling reasons the
frequency of background points with a value of zero is omitted in the
histograms. On the right side of Figure 2, data set 2 with additional
Gaussian white noise is shown. Both data sets contain four squares
with gradually changing data values from left to right. Their value
ranges are different in both data sets to simulate the effects of varying
attenuation characteristics in modalities such as dual energy CT.

Complementary Data
In some cases, it is also advantageous to combine the information of
modalities with more distinct characteristics. In such a scenario, a sig-
nificant amount of information differs or is not represented in one of
the modalities. We will refer to this type of multimodal data as com-
plementary data. Complementary data is commonly encountered in
medicine. Modalities such as CT and MRI measure different physical
characteristics of the human body, and thus there are substantial dif-
ferences between two such scans of the same patient. An even more
pronounced example is the combination of anatomical and functional
modalities, such as CT and PET. There is only a rough correspondence
between the two modalities, as CT images contain no functional infor-
mation at all.

We will use the synthetic data sets illustrated in Figure 3 to represent
complementary data. Data set 1 contains four squares while data set 2
contains two squares and a circle. The missing square and the circle
in data set 2 represent the complementary nature of the data. With the
circle we want to show how differences in shape are depicted in the

multimodal similarity map. The missing square is used to show the
effect if one object is completely omitted from one modality. In the
next section these synthetic data sets are used to explain multimodal
surface similarity measurement.

4 MULTIMODAL SURFACE SIMILARITY

Isosurfaces are important features in volumetric data. An isosurface
of a volumetric scalar field f : R3→ R is the locus of all points in the
scalar field at which f attains an isovalue k:

Lk =
{

x ∈ R3 : f (x) = k
}

(1)

In many cases, different material types correspond to different value
ranges in the data set. For example, in medical CT data sets there are
typically well-defined intensity ranges associated with soft tissue, fat,
and bone. The important characteristic parameter is the intensity iso-
value which defines an isosurface representing the boundary of a par-
ticular region. Isosurfaces, however, also exhibit a significant amount
of redundancy and small variations caused by noise and partial volume
effects will result in many similar isosurfaces. Histograms and other
isosurface statistics [5, 30] can be used to obtain a better characteri-
zation of a data set by depicting distributions of isosurface properties
over the range of data values. They are limited, however, in that they
treat each isosurface in isolation and therefore cannot capture the spa-
tial relationships between multiple structures.

As an alternative, the measure of isosurface similarity was intro-
duced by Bruckner and Möller [3] to quantify how much information
two isosurfaces have in common. They used a matrix of isosurface
similarity for all combinations of isovalues within a single data set
as the basis for identifying relevant isovalues. We will refer to this
method as self similarity maps since the measurement of the similar-
ity is between isosurfaces of a single data set. For multimodal data,
in particular, it is difficult to investigate differences and similarities
based on isosurface statistics as the order and range of corresponding
data values may vary significantly. Thus, in order to characterize the
correspondences between multiple modalities, we extend the idea to
multimodal similarity maps which quantify the similarity between all
combinations of isosurfaces from two scalar fields.

In the following, we first briefly revisit isosurface self similarity
maps as presented by Bruckner and Möller [3] and then describe our
extension to multimodal data.

4.1 Self Similarity Maps
A common measure for similarity is mutual information. Mutual in-
formation is a basic concept from information theory, measuring the
statistical dependence between two random variables or the amount of
information that one variable contains about the other. It is a partic-
ularly attractive measure because no assumptions are made regarding
the nature of this dependence and because of its robustness against
perturbations [38]. Therefore, mutual information has been applied
in many areas including shape registration [19], multi-modality fu-
sion [15], and viewpoint selection [33]. The mutual information of
two discrete random variables X and Y can be defined as [40]:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (2)
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Fig. 5. Multimodal similarity maps for supplementary data.
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Fig. 6. Multimodal similarity maps for complementary data.

where H(X ,Y ) is the joint entropy and H(X) and H(Y ) are the
marginal entropies of random variables X and Y . Since the mutual
information is limited by the average marginal entropies, it can be nor-
malized to a value range in [0,1] by [26]:

Î(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
(3)

As a measure of isosurface similarity, Bruckner and Möller [3] pro-
posed the normalized mutual information of the respective isosurface
distance fields. For a given isovalue k and an isosurface Lk the distance
field Dk can be defined as follows [20]:

Dk(x) = min
∀y∈Lk

d(x,y) (4)

where d is a distance measure between the points x and y. To measure
the similarity between two isosurfaces Li and L j, the distance fields
for both isosurfaces Di(x) and D j(x) are used as discrete random vari-
ables X and Y for the calculation of the mutual information based on
Equation 3. This leads to a single quantity between 0 and 1 which ex-
presses the similarity between isosurface Li and isosurface L j. Higher
values mean that the isosurfaces are considered to be more similar.

If we consider N different isovalues V = {k1, ...,kN} then the self
similarity map can be defined as an N×N matrix SSM(i, j). Each ele-
ment (i, j) of the matrix represents the normalized mutual information
for a combination of isovalues i and j.

4.2 Multimodal Similarity Maps
In this paper, we extend the concept of isosurface similarity maps to
multimodal data. Instead of investigating the similarity of isosurfaces
in a single data set, we explore the similarity of two different data sets
representing the same object. The isosurfaces of both modalities are
represented by:

L̇k =
{

x ∈ R3 : ḟ (x) = k
}

L̈l =
{

x ∈ R3 : f̈ (x) = l
}

(5)

where k and l are the two isovalues, and ḟ and f̈ are the scalar-valued
functions representing the two modalities. Based on the two isosur-
faces, two distance fields Ḋk and D̈l can be generated:

Ḋk(x) = min
∀y∈L̇k

d(x,y) D̈l(x) = min
∀y∈L̈l

d(x,y) (6)

Figure 4 illustrates how the mutual information for a combination
of isovalues l and k is calculated. The first step is the generation of
the distance fields Ḋk and D̈l for the isosurfaces L̇k and L̈l . In the next
step the distances Ḋk(x) and D̈l(x) for each point x in the volume space
are used to generate a joint distance histogram. The joint distance his-
togram represents the joint probability for a point x to have the distance
Ḋk(x) to isosurface L̇k and D̈l(x) to isosurface L̇l . In Figure 4 an exam-
ple of a joint distance histogram is shown for two identical isosurfaces.
In this case, all points x in the volume space have the same distance to
L̇k and L̈l .

Finally, the mutual information is calculated based on Equation 3.
The joint and marginal probabilities for the calculation of the joint and
marginal entropies can be directly retrieved from the joint distance
histogram. For the example in Figure 4 the mutual information of
isosurfaces for the isovalues k and l is maximal since the isosurfaces
are identical.

To generate the entire multimodal similarity map, the steps in Fig-
ure 4 are repeated for every possible combination of isovalues in both
modalities. If we assume that modality 1 has N different isovalues V̇ =
{k1, ...kN} and modality 2 has M different isovalues V̈ = {l1, ..., lM}
then the multimodal similarity map can be defined as an N×M matrix
MSM(i, j). Each entry of the multimodal similarity map represents
the similarity between the isosurface L̇i of modality 1 with the cor-
responding isovalue i and the isosurface L̈ j of modality 2 with the
corresponding isovalue j. On the right side of Figure 4 the complete
multimodal similarity map for the example data sets is shown. The
dark line represents the combinations of isovalues i and j which re-
sult in identical isosurfaces L̇i and L̈ j . For all other combinations of
isovalues the similarity of their corresponding isosurfaces is lower.

Figures 5 and 6 show the multimodal similarity maps for the syn-
thetic data sets introduced in Section 3. Dark regions denote a high
similarity in these figures. For both types of multimodal data, the sim-
ilarity maps for the combination of data sets without noise and with
noise are shown.

For the supplementary data in Figure 5, both data sets contain four
squares at the same locations. In the MSM each of the squares is
represented by a rectangular area of higher similarity. In Figure 5 cor-
responding squares and rectangular regions are emphasized by colored
frames. The band with the maximum similarity represents the combi-
nations of isovalues k and l at which both data sets represent exactly
the same isosurfaces. Due to different value ranges in both data sets
this band does not follow the diagonal of the multimodal similarity
map. In contrast to self similarity maps, multimodal similarity maps
are not symmetrical along the main diagonal. If we investigate the
influence of noise in the multimodal similarity map on the right side
of Figure 5, it can be seen that the band with the higher similarity is
expanded. The expansion of the band gets smaller the higher the data
values are. This is due to a higher SNR and therefore a smaller impact
of the noise on the similarity measurement for higher data values.

In Figure 6 the multimodal similarity maps for our complementary
test data sets are shown. The regions in which both data sets con-
tain contradictive information are clearly visible in the similarity map.
In contrast to Figure 5, the lower left rectangular area (red frame) in
Figure 6 has a considerably lower similarity. Furthermore the band
with maximum similarity is missing since there are no isosurfaces for
the corresponding isovalues in data set 2 as one square is completely
omitted in data set 2. In the same area of the multimodal similarity
map with the noisy data set we get a higher variation of similarity val-
ues. This is due to the similarity between the square in data set 1 and
structures generated by the noise in the background areas of data set 2.

Another interesting area in the multimodal similarity map of Fig-
ure 6 is the rectangle in the upper right corner (cyan frame). This
rectangular area represents the similarity between the square in one
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Fig. 7. Clipping plane through a (a) CT and (b) MRI scan of a human
brain.
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Fig. 8. Comparison of (a) a fused transfer function space [15], (b) a dual
histogram, and (c) a multimodal similarity map for selection guidance.
Region 1 classifies brain tissue and region 2 classifies the cranial bone.

data set and the circle in the other data set. Because of the different
shapes of the objects the isosurfaces are similar but not identical. In
the similarity map this can be seen by the expanded band of maximum
similarity.

5 SIMILARITY-BASED MULTIMODAL VOLUME VISUALIZATION

In this section, we discuss how the additional information provided
by multimodal similarity maps can guide the process of exploring and
analyzing multimodal volume data. It directs the user towards regions
of high similarity or dissimilarity among the two modalities. We first
show how salient regions in the similarity map can assist the user in
identifying features. Next, we describe a simple approach for provid-
ing insight into the spatial differences in a multimodal data set by au-
tomatically identifying the most similar isosurfaces in two modalities.
Finally, we present a novel approach for similarity-based classification
of multimodal volume data.

5.1 Similarity-Based Exploration
Multimodal similarity maps can be used to enable better selection of
features in multimodal volume data in a straightforward manner. As
the coordinate system of the similarity map is defined by the data val-
ues in both modalities, a simple approach is to allow the user to select
a region of interest (e.g., by specifying a rectangular selection) and to

(a) (b) (c)

Fig. 9. Selection of brain tissue (a) without similarity weighting, (b) with
similarity weighting, and (c) using the method of Haidacher et al. [15]
after manually adjusting their δ weighting function to achieve the optimal
result.

restrict the visualization to data values which lie within this range. The
color and opacity maps are defined separately for each modality.

To demonstrate the advantages of similarity maps over other tech-
niques, we choose a common example: the combination of CT and
MRI data. While CT offers a standardized scale for identifying cer-
tain types of tissue, MRI provides significantly higher contrast in soft
tissue regions. Figure 7 shows (a) a CT and (b) an MRI data set each
rendered using a simple linear color map. MRI depicts more details
in the brain tissue. But bone, due to its low water content, cannot be
distinguished from air. In the CT scan, on the other hand, bone can be
clearly identified.

We compare our method with the multimodal transfer function
space presented by Haidacher et al. [15] as well as a simple dual his-
togram. The transfer function space of Haidacher et al. [15] presents a
fused data value on the horizontal axis and a fused gradient magnitude
on the vertical axis. The fusion is performed based on point-wise mu-
tual information. However, in contrast to our approach this measure is
not based on spatial information, but only on the estimated probabil-
ity of occurrence of a data value combination. In the dual histogram,
the frequency of each data value combination is represented by the in-
tensity of the corresponding pixel with darker regions corresponding
to higher frequencies. The resulting parameter spaces are depicted in
the top row of Figure 8, where (a) shows the fused transfer function
space, (b) depicts the dual histogram, and (c) presents the multimodal
similarity map. It can be seen that all methods give a salient repre-
sentation for regions corresponding to brain tissue. However, both the
fused transfer function space and the dual histogram fail to give a clear
indication of bone as they do not take into account spatial information.
The data value ranges corresponding to bone are vastly different in
CT and MRI data. Using the multimodal similarity map, on the other
hand, a region corresponding to bone can be easily identified. The
middle and bottom rows of Figure 8 show 3D visualizations of the
data value ranges corresponding to the highlighted selection regions.
In the case of the fused transfer function space and the dual histogram,
the selection rectangle for bone had to be placed by trial-and-error.

The previous example employed a binary selection in the multi-
modal similarity map. In order to exploit the information provided by
the similarity map we can further use the similarity directly to modu-
late the opacity of a sample within the selected region:

A′(x) = A(x)
MSM( ḟ (x), f̈ (x))−MSMmin

MSMmax−MSMmin
(7)

where A′(x) is the modulated opacity, A(x) is the original opacity, and
ḟ (x) and f̈ (x) denote the data value of modality 1 and modality 2,
respectively, at a sample position x. MSMmin and MSMmax are the
minimum and maximum similarity values in the selected region. The
result of this weighting is an enhancement of similar structures in both
modalities while dissimilar structures are suppressed.

Figure 9 illustrates the effect of this weighting. In Figure 9 (a)
no weighting is applied, while Figure 9 (b) shows the result obtained
with weighting. For comparison, Figure 9 (c) depicts the method of
Haidacher et al. [15] after manually adjusting their δ weighting func-
tion. The selected regions used for the fusion correspond to the regions
for the brain in Figure 8. The results in Figure 9 show that similarity
weighting produces comparable results to Haidacher et al. [15] without
the necessary user interaction for the adjustment of the δ windowing
function.

This example illustrates how multimodal similarity maps can be
used to provide assistance in identifying features across multiple
modalities. A main advantage over the method of Haidacher et al. [15]
is that the original data values can be retained instead of combining
them during preprocessing. Furthermore, we do not introduce a new
transfer function space which may be unfamiliar to users and difficult
to understand.

5.2 Maximum Similarity Isosurfaces
With the multimodal similarity map we gain information about the
similarity of certain combinations of isovalues. The multimodal sim-
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ilarity maps for the examples in Section 4 have shown that combina-
tions of isovalues for isosurfaces with a high similarity can be iden-
tified easily even if their ranges differ significantly. In many appli-
cations, such as industrial CT, users want to compare how well the
object of interest is depicted in both modalities. Finding the isovalues
which best represent the structure of interest in both scans, however,
is difficult and requires time-consuming manual tuning.

Using the multimodal similarity map, we can automatically identify
the isovalue for the isosurface in one modality which maximizes the
similarity to a specific isosurface from another modality. If we assume
that a user has specified an isovalue k for an isosurface in one modality,
the isovalue k̂ with the most similar isosurface in the second modality
can be obtained by:

k̂ = argmax
j

MSM(k, j) (8)

Using this simple approach, it is possible to specify an arbitrary
isovalue in either modality and instantly visualize the corresponding
isosurfaces from both modalities. A typical setup may depict these
isosurfaces side-by-side in linked views enabling the user to quickly
identify the spatial differences between two volumetric data sets by
browsing through the range of isovalues.

Figure 10 depicts an example for a dual energy CT scan. Due to
the different attenuation characteristics for different energy levels, the
value ranges in both data sets are different. This can be seen in the
multimodal similarity map in the center of Figure 10. The images in
the bottom row show isosurfaces for isovalues k1 and k2 in modality
1. The top row shows the isosurfaces for the same isovalues in modal-
ity 2. The middle row shows the isosurfaces in modality 2 for the
isovalues k̂1 and k̂2 with the maximum similarity to k1 and k2. The
isosurfaces for k̂1 and k̂2 match the isosurfaces in modality 1 much
better than the isosurfaces for the naive selection of isovalues.

5.3 Similarity-Based Classification
Selection of simple regions in the multimodal similarity map, as de-
scribed in the Section 5.1, allows quick exploration of multimodal
data. This approach can be useful when only few specific features are
of interest. For generating more complex visualizations, which depict
multiple volumetric structures and take advantage of the additional in-
formation provided by multiple modalities, classification in the joint
data space is necessary. The multimodal similarity map also opens up
new avenues to assist in this process. Our idea is to use a nearest neigh-
bor classifier in similarity space to determine the optical properties of

a sample. Intuitively, instead of trying to relate the two modalities in
terms of their data values, we instead classify samples, i.e., combina-
tions of data values from both modalities, according to their similarity
to a set of user-specified isosurfaces from both modalities.

We assume two continuous three-dimensional scalar fields ḟ , f̈ :
R3 → R which represent two co-registered input volumes. For mul-
timodal volume visualization, we assign a color and opacity to ev-
ery point x ∈ R3 in space based on the value of these functions. Our
method takes as input a set of isovalue pairs hi = (ḣi, ḧi) where ḣi, ḧi
correspond to isovalues of ḟ and f̈ respectively. Each pair of isovalues
has an assigned color ci, opacity αi, and optional weight wi.

For two data values k ∈ ḟ and l ∈ f̈ , we evaluate their multimodal
similarity to the i-th isovalue pair in the following manner:

ṡi(k) = MSM(k, ḧi) s̈i(l) = MSM(ḣi, l) (9)

where MSM is the multimodal similarity map. This means that ṡi is
the similarity of the isosurface k of ḟ and the isosurface ḧi of f̈ and s̈i
is the similarity of the isosurface l of f̈ and the isosurface ḣi of ḟ .

Based on the similarities ṡi and s̈i we can now define a combined
measure si of similarity between hi and the two isovalues k ∈ ḟ and
l ∈ f̈ in multimodal similarity space:

si(k, l) = ṡi(k)s̈i(l) (10)

The rationale behind this choice is that we interpret the similarities
ṡi(k), s̈i(l) as independent probabilities of k being similar to ḧi and l
being similar to ḣi. Thus, the joint probability of (k, l) being similar to
hi is the product ṡi(k)s̈i(l). Alternatively, we could consider ṡi and s̈i as
the membership functions of two fuzzy sets and si as the membership
function of their intersection. In this case, another possible definition
would be si(k, l)=min(ṡi(k), s̈i(l)) [41]. In our experiments, we found
that both approaches lead to similar results.

Having defined a measure of closeness between two points in sim-
ilarity space, we now let each pair of isovalues hi to determine the
optical properties of points that are closer to hi than to any other iso-
value pair h j (i 6= j). This means a pair of data values (k, l) with k ∈ ḟ ,
l ∈ f̈ will assume the color and opacity of the isovalue pair hm(k,l)
which maximizes si(k, l):

m(k, l) = argmax
i

si(k, l)wi (11)

where wi is a weight which allows additional control over the influence
of the isovalue pair hi. During rendering, we can now evaluate this
maximum for every sample location x ∈ R3 in space:

mx = m( ḟ (x), f̈ (x)) (12)

Thus, mx denotes the index of the isovalue pair which maximizes the
similarity to the data value ḟ (x), f̈ (x) at the sample location x. To
visually encode the similarity of the sample to hmx , we additionally
weight the sample opacity based on the similarity smx . The color C(x)
and opacity A(x) at the sample position x are then simply:

C(x) = cmx A(x) = αmx smx (13)

In practice, in order to obtain crisp boundaries, it is convenient to
define an additional threshold t which specifies the minimum similar-
ity of a sample with any of the isovalue pairs in order to be visible. If
smx < t, the sample is considered to be fully transparent.

In volume rendering, it is common to evaluate a local illumination
model using the normalized gradient of the scalar field as the normal
vector. To enable volume shading, we can combine the gradient infor-
mation of both modalities using a similarity-based weighting:

g(x) =
ṡmx( ḟ (x))∇ ḟ (x)+ s̈mx( f̈ (x))∇ f̈ (x)

ṡmx( ḟ (x))+ s̈mx( f̈ (x))
(14)
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Fig. 11. Classification based on multimodal surface similarity for sup-
plementary data (a) without noise and (b) with added noise.
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Fig. 12. Classification based on multimodal surface similarity for com-
plementary data (a) without noise and (b) with added noise.

5.4 Classification Specification
The described classification is equivalent to a generalized Voronoi de-
composition of similarity space, i.e., using non-Euclidean distances
defined by our similarity measure. Every sample, which is a pair of
values from the two modalities, is assigned to the most similar iso-
value pair which determines its color and opacity. We also visual-
ize this classification on the similarity map itself by simply evaluating
Equation 11 for each location, i.e., each combination of data values, in
the similarity map and coloring the corresponding pixel accordingly.
When depicted on the two-dimensional similarity map, where the co-
ordinate system is defined by data values, these regions may be discon-
nected and non-convex (see, for example, Figures 11 and 12 which are
discussed in detail below). Furthermore, based on the structure of the
similarity map, the site, i.e., the isovalue pair that defines a region may
not be contained within this region. While this may initially sound
counter-intuitive, the following situation exemplifies such a case: As-
sume two isosurfaces for ḣi and ḧi which are highly dissimilar. There
will likely be other isosurfaces they are more similar to than to each
other.

To provide an additional means for manipulating the classification
regions instead of directly modifying the isovalues themselves, we de-
fine a user-specified control point ci = (ċi, c̈i) for each isovalue pair hi,
which can be freely moved. hi is initialized with ci and is then used to
compute the similarity-weighted centroid of the region it defines. The
isovalue pair hi is then moved to the position of the centroid:

hi =

∑
(k,l)∈R(ci)

(k, l)sm(k,l)(k, l)

∑
(k,l)∈R(ci)

sm(k,l)(k, l)
(15)

where R(ci) = {(k, l)|m(k, l) = i} is the similarity-space region as-

signed to ci. This essentially corresponds to one iteration of Lloyd’s
algorithm [28]. Note, however, that we do not perform the full relax-
ation since our goal is not to perform a full centroidal decomposition
of the similarity space. Instead, our aim is for regions to follow their
control points.

Based on this approach, we developed a simple user interface for
similarity-based classification of multimodal volume data. The user
is presented with the multimodal similarity map and can interactively
add and remove control points, move them on the similarity map, and
change their colors and opacities. When moving control points they
behave similar to well-known ”magic wand”-type selection tools – the
regions they define snap to clusters in the similarity map. Slightly
modifying a control point will, in accordance with the structure of the
similarity map, not cause major changes of the classification result.

Figures 11 and 12 show examples of our classification approach
using the previously introduced synthetic data sets. The colored re-
gions encode the nearest neighbors, in similarity space, of each of the
white-outlined points for isovalue pairs hi in the corresponding color.
This means a point on the similarity map is assigned to a region if it is
more similar to the corresponding isovalue pair than to any other one.
This also means that during volume rendering a sample with the corre-
sponding value combination will be assigned the respective color and
opacity (see Equation 13). The control points ci are depicted as the
slightly larger points with dark outlines. It can be seen that in regions
of high similarity the control points ci will be close to the correspond-
ing isovalue pairs hi, but in other areas this is not necessarily the case.
Figure 11 (a) illustrates that our approach is successful in identifying
the correspondences between both data sets. By placing control points
along the band of maximum similarity, the resulting regions will sub-
divide the map such that all rectangles in the data are assigned the
user-specified color even though their data value ranges vary. Small
perturbations in the placement of the control points leave the resulting
classification unaffected. Adding noise to one of the data sets has little
effect on the visual result, as shown in Figure 11 (b). Figure 12 shows
that this approach makes it possible to easily exploit complementary
information from both data sets. The red square, which is only present
in one data set, as well as the blue circle and orange square can all
be separated. This enables the generation of a combined visualiza-
tion which contains all these features. Using a conventional approach,
where the user defines a 1D transfer function for each modality and the
results are blended, it is much more difficult to separate the features,
since their corresponding data value ranges significantly vary. The ad-
ditional weights wi used in Equation 11 therefore allow to control the
sizes of the respective regions and can be interactively modified. In
Figures 11 and 12 all weights wi are set to one.

6 RESULTS

An application for which our similarity-based classification approach
is particularly suitable is the study of industrial parts where the goal
is to detect manufacturing defects. Dual energy CT is of interest in
such scenarios, since different materials can cause scanning artifacts
at certain energy levels. The low energy scan typically has high pre-
cision but is affected by severe artifacts, while the high energy scan
is nearly artifact-free but suffers from reduced precision and noise. It
is desirable to combine the advantages of both energy levels, i.e., to
generate a visualization which uses the global structure from the high
energy scan to remove the artifacts from the low energy scan while
preserving subtle details. Heinzl et al. [16] presented a processing
pipeline for extracting surfaces from dual energy CT scans. With our
similarity-based classification approach it is now possible to directly
visualize structures which exhibit high surface similarity between both
modalities. An example is given in Figure 13. Figure 13 (a) shows the
low energy scan of a 400 Volt power connector rendered using a con-
ventional 1D transfer function. It is not possible to find an opacity
setting which suppresses all artifacts but leaves the surface intact. In
Figure 13 (b) the corresponding high energy scan, also rendered using
a 1D transfer function, is shown. This result gives a better impres-
sion of the actual surface, but is noisy and lacks details. Using our
similarity-based classification approach, as shown in Figure 13 (c),
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Fig. 13. Similarity-based fusion of a dual energy CT scan of a power
connector. The low-energy scan (a) and the high-energy scan (b) pro-
vide supplementary information which can be used to remove most of
their respective drawbacks, as shown the similarity-based classification
(c). The corresponding similarity map (d) shows the placement of the
control points. In the image to its right the opacity of the outer surface
has been reduced to reveal the interior parts of the connector.

we can remove the artifacts by choosing control points which select
regions of high dissimilarity and setting their opacity to zero. The fea-
ture of interest, the outer surface of the connector, is similar in both
data sets. Since the opacity of a sample is based on the global surface
similarity of its data values to the isosurface pair, holes and artifacts in
the low energy scan can be remedied using information from the high
energy scan. Figure 13 (d) shows the similarity map together with
the specified control points. The image to the right of the similarity
map uses the same control points as Figure 13 (c), but the opacity of
the outer surface has been lowered to reveal the interior parts of the
connector.

Furthermore, our approach can be used to assist the classification
of ambiguous structures. One example is CT angiography, where it
is desired to clearly separate contrast-enhanced blood vessels from
bone. In a single modality scan this is typically not possible as the
data values of the contrast agent partially overlap with lower-density
bone regions and cartilage. This is illustrated in Figure 14 (a), where
it was attempted to specify different colors for bones and vessels using
a 1D transfer function on a low energy CT scan of the lower extrem-
ities. While it is also not possible to achieve this separation using a
high-energy scan, as shown in Figure 14 (b), it can be seen that the
classified structures are slightly different in both modalities. Using
similarity-based classification, we can therefore achieve a better sepa-
ration, as depicted in Figure 14 (c). The corresponding similarity map
is shown in Figure 14 (d). In order to illustrate how regions in the simi-
larity map correspond to structures of different ossification levels, they
have been assigned different colors in the rightmost image. Vessels are
orange and different bone structures are white, blue, and green.

A further example is shown in Figure 1. In this case, a dual energy
CT data set of a human head is used. The similarity map, shown on
the bottom right, provides good guidance for iteratively selecting the

individual tissues numbered from 1 to 7. The information provided
by the two energy levels is sufficient to allow differentiation between
bone (selected in step 3), major vessels (step 4), and minor vessels
(step 5).

7 IMPLEMENTATION

The calculation of the multimodal similarity map is a preprocessing
step which is implemented in C++ and runs on the CPU. It has to be
performed only once for a single multimodal data set. After the pre-
processing step the multimodal similarity map is simply represented as
a two-dimensional image. During rendering, the similarity of a com-
bination of isovalues from the two modalities can be retrieved by a
single lookup in a 2D texture.

The user interface for our similarity-based classification approach
was implemented using the Qt toolkit. The user-interface widget gen-
erates a set of isovalue pairs, colors, and weights, which are passed to a
GPU-based volume renderer implemented in GLSL. In the shader, the
similarity between the data values at the current sample point and each
isovalue pair is determined using two texture lookups (see Equations 9
and 10) and the maximum is computed. While this is more expensive
than a conventional transfer function lookup, the additional costs are
limited due to the fact than only few control points will be required in
many applications. In our implementation, for a typical number of five
control points, the average render time increases by a factor of approxi-
mately 1.4 compared to a single conventional transfer-function lookup.
The color and opacity of the maximally similar isovalue pair then de-
termines the color and opacity of the current sample, as described in
Section 5.3. The gradient vectors of both modalities are computed by
central differences, combined with Equation 14, and used to evaluate
a local illumination model if shading is enabled.

8 DISCUSSION

As shown in our examples, multimodal surface similarity can provide
a useful tool for the visual analysis of multimodal volume data. How-
ever, isosurface similarity as a measure is only useful in cases where
there is some correspondence between features and isosurfaces. For
example, in data where textures or patterns are of central importance,
isosurface similarity will likely fail to provide valuable insights. While
this is a clear limitation of our approach, we want to emphasize that
also the lack of distinct structures in a multimodal similarity map pro-
vides additional information to the user. As our approach deliberately
avoids to position itself as a new technique central to the visualization
process, the lack of distinct features (like the lack of distinct features
in a histogram) simply means that little additional guidance can be
provided for the particular data set. However, in our experiments we
found that even for challenging data combinations, such as CT and
PET, which exhibit little correspondence, multimodal surface similar-
ity is still able to assist in finding joint data value ranges which corre-
spond to joint structures of interest.

The computation time for the multimodal similarity map of two data
sets is approximately twice the computation time of a self similarity
map for a data set of the same size. This is due to the lack of symme-
try. As reported by Bruckner and Möller [3], a feasible strategy to limit
the duration of this pre-processing step is to use downsampled versions
of the distance transforms (which are computed at the original data set
resolution) for the mutual information computation. The computation
times for all data sets used in this paper are given in Table 1. The sec-
ond column in the table lists the downsampling rate for the respective
volume which is automatically chosen to limit the computation time to
approximately one minute. Even though downsampling is performed
quite aggressively, a distance field is a rather redundant representation
and the downsampled version essentially acts as a shape descriptor
and is not used for precise spatial measurements. To the results of
Bruckner and Möller [3] we can also add information about additional
experiments on the effects of quantization in the value domain. We
found that for real-world data a quantization to 8 bits results in practi-
cally no structural differences in the similarity map, as exemplified in
Figure 15.
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Fig. 14. Similarity-based classification of blood vessels in a dual energy CT angiography scan of the lower extremities. When using only the
information from the low energy scan (a) or the high energy scan (b), it is not possible to separate blood vessels and bones. Using multimodal
similarity (c) this can be achieved. The corresponding control points are shown on the similarity map (d) where different colors have been assigned
to vessels and bones of different densities.

Table 1. Computation times for the multimodal similarity maps shown
in the paper as measured in an Intel Core i7 950 CPU with a clock
rate of 3.07 GHz and 12 GB RAM. The first column reports the data
type and size. The second column gives the downsampling rate for
the distance fields. The last column gives the total computation time
for the similarity maps which is the sum of the computation times for
all distance transforms (third column) and the mutual information of all
isovalue combinations (fourth column).

Data Set Downsample Distance Mutual TotalRate Transform Information

Supplementary
2 28.57s 32.97s 61.54s

512×512×6

Complementary
2 21.17s 32.41s 53.58s

512×512×6

CT-MRI
4 4.64s 32.86s 37.50s

256×256×128

Industrial DECT
16 2.12s 12.08s 14.20s

425×551×895

Head DECT
16 2.62s 11.30s 13.92s

512×512×575

Extremities DECT
16 2.86s 14.55s 17.41s

512×512×855

Another limitation of our work is that the described approach only
considers data sets consisting of two modalities. While this applies to
many application scenarios, a solution for a larger number of modal-
ities would be desirable. A multi-dimensional similarity map of sim-
ilarities between all isovalue combinations of the respective data sets,
however, would be computationally infeasible. A potential solution
could be to only consider pair-wise similarities between the individual
modalities resulting in a matrix of multimodal similarity maps. The
investigation of whether such an approach is effective is an interesting
topic for future research. Furthermore, our technique could also be
applied to investigate time-dependent data by generating a set of simi-
larity maps between subsequent time steps. Temporal similarity maps
could help to identify stable features and to pinpoint discontinuities.

A further limitation of similarity maps in general is that they do
not contain frequency information, i.e., small structures which exhibit
high similarity receive the same prominence as very large regions with
a similar degree of similarity. This can be regarded as an advantage
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Fig. 15. A comparison between the multimodal similarity map with a
isovalue precision of 8 bits (a) and 12 bits (b) for the data set shown in
Figure 1.

with respect to histograms, where large regions tend to dominate and
logarithmic scaling is typically required. It can also be a drawback
since data value combinations which do not occur at all are not clearly
indicated. Ideally, a combination of both types of information would
be desired, but identifying a good visual encoding for this purpose is
not straightforward and remains an area of future research.

9 CONCLUSION

In this paper, we introduced multimodal surface similarity maps as a
tool for the investigation of multimodal volume data sets. The mul-
timodal similarity map provides an overview of the differences and
similarities between the isosurfaces of two modalities in a compact
manner. The analysis of parameter spaces is an increasingly important
topic for knowledge discovery in scientific data. Our approach showed
that spatial similarity information can assist the visualization process
by guiding the selection of features. By exploiting similarity informa-
tion, we introduced a novel way for the interactive classification and
visualization of multimodal volume data.
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