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Abstract

Digital image synthesis is used in many industrial applications. One goal of this disci-
pline is the physical correct simulation of natural phenomena such as the color of the blue
sky or refraction in translucent materials. To accomplish this goal the usage of spectral
data for the representation of color information is indispensable. For this purpose different
methods were developed over the years. These methods face the challenge of accurately
representing complex data (e.g. fluorescent light sources). My work compares these meth-
ods using the color difference formula CIEDE2000 as well as a large data set for testing
(NCS atlas), and answers the question whether the application of low pass filters during
sampling rate conversions does, or does not influence the accuracy of the representation
methods.
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Kurzfassung

Digitale Bildsynthese wird in vielen industriellen Anwendungen eingesetzt. Ein Teil-
bereich dieser Disziplin ist die physikalisch korrekte Darstellung natürlicher Phänomene
wie beispielsweise die Farbe des blauen Himmels, oder korrekte Lichtbrechung. Die diesen
Phänomenen zugrundeliegenden physikalischen Effekte erfordern, dass bei der Verarbeitung
von Farbinformationen deren spektrale Eigenschaften berücksichtigt werden. Hierfür wur-
den über die Jahre einige Methoden entwickelt. Diese stehen vor der gemeinsamen Heraus-
forderung, komplexe Daten (z.B. fluoreszierende Lichtquellen) möglichst genau darzustellen.
Meine Arbeit vergleicht diese Verfahren mithilfe der Farbdistanzformel CIEDE2000 und
eines großen Testdatensatzes (NCS Farbatlas) und geht der Frage nach, welchen Einfluss
Tiefpassfilter bei der Veränderung der Abtastrate der Daten haben.
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CHAPTER 1
Introduction

The goal of realistic image synthesis is the physical correct generation of high quality images
of three dimensional scenes on the computer. Computer generated images are widely used in
industrial applications and the entertainment industry. For example, they allow product de-
signers to know how a combination of different materials will be perceived under different
lighting conditions. A correct computer created prediction makes building a prototype obso-
lete [Johnson and Fairchild, 1999].

Correct predictions about the behavior of certain physical effects, such as scattering, are
dependent on information contained in the spectral appearance of a given color or light source.
Hence, the color representation technique used in an application influences the quality of the re-
sult. Traditional representation techniques of color information, like RGB values [Smith, 2001],
do not contain any spectral information, hence they are not suitable for generating realistic im-
ages which involve effects dependent on this information [Peercy, 1993]. In order to simulate
these effects correctly other color representation methods which preserve spectral information
are needed [Johnson and Fairchild, 1999].

The term “spectral” in this context includes realistic image synthesis and spectral represen-
tations of color information [Devlin et al., 2002]. Spectral implies that color information retains
the information about the spectral wavelength distribution of the color.

Spectral color information is obtained by the usage of spectrophotometers and data usually
consists of 40 sample points or more, depending on the sampling rate of the device. These
sample points are the scientific representation of a color and its light intensity distributed along
the visible spectrum [Nassau, 2001]. The information of this distribution, usually given as an
indexed list of sample values along the spectrum between 380nm and 720nm [Hunt, 1991],
allows to correctly simulate spectral effects. Usually, an application does not utilize the whole
number of available sample points of a given spectrum of a color or a light source. In order to
reduce storage requirements and calculation costs, fewer sample points or compression methods
are used.

This reduction introduces certain issues for spectral representation methods which have to
be dealt with. Spectral information, especially high frequent details, may be lost or become

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: This image shows an example of realistic image synthesis. The scene is composed
of a simple chessboard scene and involves light scattering (sky color) and refraction (translucent
queen and pawns).

falsified [Devlin et al., 2002]. Combined with the requirement of efficiency, preserving spectral
information leads to a trade-off between speed, compactness and accuracy.

All methods in literature working with spectral information have in common that they were
tested against the Gretag Macbeth [McCamy et al., 1976] color checker to test their accuracy,
compactness and calculation costs [Sun, 2000]. These three tested properties influence each
other, have an impact on the quality of the resulting image of a given project and also influence
the economic costs. For example, for a project consisting of thousands of images like a computer
generated movie scene, they affect the need for storage and calculation capacity to complete the
project in time. The need for storage and calculation capacity results in different operational and
rental costs for used computer hardware.

1.1 Motivation

The purpose of my work is to find answers to the following questions:
Question 1: How accurate do methods for the representation of spectral information work

when a large data set is used for testing?
My work’s contribution to this question is a ranking of the representation methods sorted by
the average color difference to reference values derived from dense sampled initial data. This
reference data consists of the spectral data from the whole NCS atlas [Hunt, 1991] with its 1,930
entries, which is much larger than the normally used Gretag Macbeth color checker data set. I
reviewed the representation methods under the perspectives of accuracy and compactness.

Question 2: Does the application of low-pass filters during sampling rate conversion influ-
ence the accuracy of the representation methods?
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Since the usage of digital filters for preparing the spectral data has no impact on performance
at application runtime, it could be a valuable tool to improve accuracy without reducing com-
pactness or increasing calculation costs. My work gives a specific answer for each tested filter
whether it has a positive impact on the accuracy of a method, and which filter is best suited for
this task.

This work is structured as follows. The chapters “Color theory”, “Wavelength dependent ef-
fects” and “Digital signal processing” are a baseline review of the knowledge needed to work
with the topics of this work, such as conversion formulas and physical backgrounds.

In the chapter “Rendering of wavelength dependent effects” I review literature on the topic
of spectral data representation for realistic image synthesis.

The results of this work are reviewed and discussed in the chapters “Results” and “Conclu-
sion”.





CHAPTER 2
Color theory

The human eye is able to distinguish between 10 million colors [Hunt, 1991]. Any perceived
color is a visual sensation dependent on three components: the involved lighting, the illuminated
objects and the observer. The same color of an object is different under different lighting con-
ditions. For example, under artificial light the color of an object is different compared to the
color of the same object under daylight [Hunt, 1991]. This difference is subjectively smaller for
a human observer, because the human visual system is able to adapt to different lighting condi-
tions. Nassau [Nassau, 2001], thus defines the term color in his marvelous book about color in
this way:

“The term color is properly used to describe at least three different aspects of reality.
First, it describes a property of an object [...] Second, it describes a characteristic of
light rays [...] And third, it describes a class of sensations, as in the brain’s interpretation
of specific manner in which the eyes perceives light [...]” [Nassau, 2001, p.3]

Nassau also states that these aspects are not properly distinguished in every application, yet it is
important to keep their differences in mind.

The observer and his visual system both influence color perception. Therefore, color
theory does not only involve material sciences, but also physiology and psychology as well
[Nassau, 2001].

The question of how colors will be perceived is important in product design, architecture,
dyeing, paint technology and illuminating engineering. To answer this, it is necessary to be able
to measure and compare colors [Hunt, 1991]. This chapter gives an overview on the topics of
color theory. It starts with the basic theory, continues with human perception and concludes with
color systems.

5



6 CHAPTER 2. COLOR THEORY

Figure 2.1: This figure shows the design of Newton’s experiment which he used to prove that
sunlight is a composition of all spectral colors. He split a small beam of sunlight with a prism into
its spectral colors. A second prism is used to recombine the rainbow colored display of colors back
into a beam of sun light. Newton’s experiment also shows the concept of additive color mixing, or
in other words the mixing of colored light beams [Nassau, 2001].

2.1 Color and light

Isaac Newton (1643-1727) discovered the spectral nature of light during his well known prism
experiments in the year 1666 [Hunt, 1991]. Newton’s prism experiments involved the redirection
of a beam of sunlight through a small hole into a dark room. There, the beam hit a prism and
was split into a rainbow colored display of spectral colors which Newton called a spectrum
[Hunt, 1991]. In his second experiment (shown in figure 2.1), Newton added a prism which
recombined these spectral colors back into sunlight. Newton concluded from this experiment
that white light is a composition of all colors of the spectrum [Hunt, 1991].

After this experiments, Newton tried to further split the spectral colors with the same tech-
nique. This was realized by an additional aperture which separated one spectral color from the
spectrum. The result of this experiment was that a spectral color could not be split any further
by a prism [Hunt, 1991]. This property of the spectral colors, i.e. that it could not be split any
further, lead Newton to label them basic colors. Newton arranged the spectral colors he discov-
ered in a circle (depicted in figure 2.2) which is known as Newton’s color wheel and grouped
the colors into the (basic) spectral colors red, orange, yellow, green, blue, indigo and violet
[Hunt, 1991].

Newton’s experiments also introduced the concept of mixing colored light beams, today
known as additive color mixing (see figure 2.3), where, the mixture of complementary colored
light beams produces the color white. The absence of all light beams results in the color black.
The term complementary colors is related to color ordering systems and describes two colors
which are oppositionally aligned in these systems (see figure 2.11 for an example and details).

The other known type of color mixing, subtractive color mixing (see figure 2.3) works in
a different way. Subtractive color mixing does not involve colored light beams, but instead
colored surfaces which absorb light to produce their perceived color. There the mixture of
complementary surface colors produces a color near to black. The reason for this is the fact, that
for example, a green surface is perceived green because the surface absorbs all colors except
green. So if different complementary colors are mixed together, every color is absorbed and
only a nearly black surface remains [Nassau, 2001].

A color can be represented as an optical spectrum composed by different vibrations (intensi-
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Figure 2.2: Newton’s color circle shows the arrangement Newton choose for the spectral colors
he discovered. The seven spectral colors are: indigo, violet, red, orange, yellow, green and blue.
The number of seven relates to an analogy to seven notes in music [Nassau, 2001].

Figure 2.3: Additive color mixing (left image) is the mixing of colored light beams and results in
the color white when all colors are present.
Subtractive color mixing (right image) is the mixture of surface colors, and is different to additive
color mixing. A surface color results from light absorbance or, in other words, from the color
which is not absorbed. When all colors are mixed together the mixture results in the absorbance
of all colors and in a color near black [Nassau, 2001].
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Figure 2.4: This spectral power distribution (SPD) depicts the color green and was taken from the
Gretag Macbeth color checker. The illustration was extended by including the spectral distribution
of visible colors. The sample spectrum has its dominant wavelength at 500nm which corresponds
to the hue of the color green. The absence or presence of other dominant wavelengths influences
the pureness of the color. If only one dominant wavelength is present than the resulting color
features a high pureness.

ties) and their corresponding frequencies (wavelengths). Although frequencies are usually given
in hertz (Hz) this unit is not used in color science, because it results in large unhandy numbers
when used in context with colors. Instead nanometers (nm) are used to describe the main bands
of a spectrum [Nassau, 2001].

The topic of color also involves a theoretical approach to light. Light’s nature is explained
by Kurt Nassau [Nassau, 2001] in his book about color:

“The best we can say is that light (as well as any other form of radiation) usually acts
as it were a transverse electromagnetic wave [...] but that under certain circumstances it
also can act as if it were a particle, [...] Just as gravity does not need a medium for its
propagation, neither does electromagnetism.” [Nassau, 2001, p.25]

A very important aspect of light is that the result of any mixture of light is perceived as one
single color and that some combinations of spectral distributions also produce colors which are
not part of Newton’s spectral colors [Nassau, 2001].

Intensities and wavelength distribution of light are measured by highly sophisticated spec-
trophotometers. These instruments provide spectral data with high precision (down to 5nm
sampling interval and below) [Nassau, 2001].

Besides the scientific representation of light it is also important to keep in mind that light is
basically a visual sensation of the (human) eye. In other words, the sensation of a color is not
only determined by its wavelength composition or involved light sources, but also by its observer
[Hunt, 1991].
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Figure 2.5: The human eye. The cornea which is a curved surface provides the optical power
for perception. The lens dynamically adjusts itself depending on the viewing distance. The iris
controls the light passing through the pupil and controls how much light reaches the retina. Cornea
and lens project an inverted image on the light-sensitive surface of the retina. Sharpest vision is
possible in the fovea. At the blind spot, where no vision is possible, the nerves leave the eye.
Rods and cones are distributed around the fovea and relate their name to their shape. Cones
provide the visual system with the ability to perceive colors and rods provide the visual system
with monochromatic information even under dark light conditions [Hunt, 1991].

2.2 Human perception

The human visual system consists of the eye (illustrated in figure 2.5), its nerves and the pro-
cessing of the output of the nerves in the brain. The sensors in the human eye are distinguished
by their shape into rods and cones. Rods provide the visual system with monochromatic infor-
mation (even under poor lighting conditions). Cones, which are further distinguished by their
response behavior, provide the visual system with color information [Hunt, 1991].

It is assumed [Hunt, 1991] that three different types of cones with different spectral sensitiv-
ities exist. They have their maximum spectral sensitivities at the colors of yellow-orange, green
and blue-violet and are captioned R,G,B. Since their caption is misleading they are called ρ, γ
and β. Their sensitivity behavior is depicted in figure 2.6.

Color perception works by processing the response of the cones (see figure 2.7). It may
result in the same color perception, although different spectral distributions are involved in the
process, which is related to the different spectral sensitivity distributions of the cones. The effect
of equal color perception of different colors is well known as metamerism and is an important
challenge for the color and print industry [Hunt, 1991].

Metamerism describes the equivalent perceptional appearance of colors which possess a
different spectral appearance. The appearance of these colors varies under different lighting
conditions and the human eye cannot distinguish between them at least at one lighting condition.
Metamerism is described by the metameric index which assigns a high index when a pair of
colors are perceptually equivalent under certain lighting conditions, and perceptually different
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Figure 2.6: Spectral sensitivity distribution of the cones (ρ, γ and β) in the human eye. The
dashed line shows the spectral sensitivity of vision based on the stimuli of the rods [Hunt, 1991].
The assumed composition of cone and rod output is shown in figure 2.7.

under other lighting conditions. If a pair of colors appears perceptually equivalent under all
lighting conditions it has a metameric index equal to zero [Johnson and Fairchild, 1999].

Human perception can be summarized as a composition of three different sensations: bright-
ness, which describes the intensity of the light that reaches the eye; Hue, which describes the
perceived hue; and colorfulness, which describes how pure a perceived color is. In literature, the
perceived bandwidth by a human observer is set between the wavelengths of 400nm (violet) and
700nm (red) [Nassau, 2001]. The three different sensations of human perception (brightness,
hue and colorfulness) are necessary to specify a color. An example color is given in figure 2.4
to show these elements.

The human visual system is able to adapt to different lighting conditions. Even if there
are great differences in light intensity, as for example, daylight compared to artificial lighting
in a room, the human eye is able to adapt to perceived intensity and color. The result of this
adaption is that objects are perceived in the same color, although the illumination is different.
For example, a green apple is perceived in the same color in daylight at noon and in a room in
the evening [Hunt, 1991]. This adaption is called color constancy and is an important topic in
color science.

The assumption that human perception relates to the stimuli of three different kinds of cones
leads to the theory, that it is possible to obtain their response curves. The commission interna-
tionale de l’eclairage (CIE) did this in an empiric way, which lead to the RGB color system and
the response curves depicted in figure 2.9. They conducted the so called color matching exper-
iments (CME). They assumed that the input of the rods in the human eye may be neglected for
pure color vision if lighting is sufficient for it. The setup for the color matching experiments ba-
sically consists of a device which enables the test subject to mix colored light beams (red, green
and blue) (see figure 2.8 for details). The test subject is instructed to mix the colors together
to produce a desired color stimuli [Hunt, 1991]. It turned out that in order to produce certain
targeted color stimuli in that way, the colors red and green had also to be subtracted from the
mix of colored light beams. Because this would require in certain cases something like negative
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Figure 2.7: This image shows a simplified representation of the widely assumed connection be-
tween cone and rod output, which results in human perception. It is assumed that the connection
of the output results in an achromatic signal A and three color difference signals C1, C2 and C3.
The achromatic signal is composed of the output of all rods and cones. The different occurrence
of cones is simply represented by the term 2ρ+ γ+ β/20 +S where S denotes the scotopic input
of the rods. Physiological studies indicate that the output of color difference signals is further
processed as two signals C1 and C2 − C3 because of the fact C1 + C2 + C3 = 0 [Hunt, 1991].

light which does not exist, the light beams which have to be subtracted are instead added to the
targeted color [Hunt, 1991].

The results of the CME lead to the CIE RGB color matching functions r(λ),g(λ) and b(λ)
(plotted in figure 2.9) and the CIE RGB color space. The values for a given color forR,G andB
are calculated by using the equations 2.1, 2.2 and 2.3 [Hunt, 1991]. Equation 2.4 [Hunt, 1991]
is the luminance composed of the stimuli of R,G and B. The luminance L result is given in
candelas per square meter (cd/m2) when Pi is given in watts per steradian and per square meter,
and k is chosen correctly. Pi denotes the amounts of power sampled throughout the spectrum and
ri, gi and bi are the corresponding power levels of the color matching functions [Hunt, 1991].

R = k(P1r1 + P2r2 + P3r3 + ...) (2.1)

G = k(P1g1 + P2g2 + P3g3 + ...) (2.2)

B = k(P1b1 + P2b2 + P3b3 + ...) (2.3)

L = 1.0000R+ 4.5907G+ 0.0601B (2.4)

The main disadvantage of CIE RGB is the presence of the negative red and green compo-
nents. This disadvantage was eliminated by mathematically transforming the color space, which
resulted in a new color space called CIE XYZ.
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Figure 2.8: Color matching experiment setup which consists of three monochromatic lights R
(700nm),G (546.1nm) and B (435.8nm). The light beams are mixed together by a test subject to
produce a desired color stimuli C. Negative color components are added to the color stimuli C
because there is no negative light [Hunt, 1991].

Figure 2.9: Color matching functions for the CIE 1931 standard colorimetric observer which were
obtained by color matching experiments. This plot also shows the negative components of red and
green.

The transformation from CIE RGB to CIE XYZ is given in the equations 2.5,2.6 and 2.7
[Hunt, 1991]. There, x(λ),y(λ), z(λ), r(λ), g(λ) and b(λ), denote the color matching functions
of both color spaces. The color matching functions x(λ),y(λ) and z(λ), which are the most
important spectral functions in colorimetry, are plotted in figure 2.10 [Hunt, 1991].

x(λ) = 0.49 r(λ) + 0.31 g(λ) + 0.20 b(λ) (2.5)

y(λ) = 0.17697 r(λ) + 0.81240 g(λ) + 0.01063 b(λ) (2.6)

z(λ) = 0.00 r(λ) + 0.01 g(λ) + 0.99 b(λ) (2.7)
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2.3 Color space: CIE XYZ

The values for X ,Y and Z of an emissive source for a given wavelength distribution I(λ) may
be obtained by applying equations 2.8, 2.9 and 2.10 [Lindbloom, 2007]. The values x(λ),y(λ)
and z(λ) represent the color matching functions. P (λ) describes the spectral power distribution
of the given emissive source.

X =

∫
λ
x̄(λ)P (λ)dλ (2.8)

Y =

∫
λ
ȳ(λ)P (λ)dλ (2.9)

Z =

∫
λ
z̄(λ)P (λ)dλ (2.10)

For reflective or transmissive samples the equations 2.11, 2.12 and 2.13 are used
[Nassau, 2001]. There, S(λ) denotes the spectral power distribution of the involved illuminant.
R(λ) denotes the reflectance factor of the object. The color matching functions are represented
by x̄(λ), ȳ(λ) and z̄(λ).

X = k

∫
S(λ)R(λ)x̄(λ)dλ (2.11)

Y = k

∫
S(λ)R(λ)ȳ(λ)dλ (2.12)

Z = k

∫
S(λ)R(λ)z̄(λ)dλ (2.13)

The constant k is dependent on the illuminant S(λ) and is given in equation 2.14
[Nassau, 2001]. There, k is defined in a way that Y in equation 2.12 yields 100 for a per-
fectly reflecting diffuser [Nassau, 2001]. In practical applications the range of the integration
(or summation) is set between 380nm and 720nm [Hunt, 1991] or even wider between 360nm
and 830nm [Lindbloom, 2007].

k =
100∫

S(λ)ȳ(λ)dλ
(2.14)

In CIE XYZ the Y component of a color correlates to its brightness [Hunt, 1991]. But X
and Z do not correlate to any perceptual property. As Hunt [Hunt, 1991] points out in his book
about color:

“Important colour attributes are related to the relative magnitudes of the tristimulus val-
ues. It is therefore helpful to calculate a type of relative tristimulus values called chro-
maticity co-ordinates[.]”[Hunt, 1991]

The chromaticity coordinates are given in equations 2.15, 2.16 and 2.17 [Nassau, 2001]. The
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Figure 2.10: Color matching functions for CIE XYZ. These were obtained by transforming the
CIE 1931 RGB color matching functions [Hunt, 1991].

normalization by (X +Y +Z) in these equations leads to x+ y+ z = 1 and to the implication,
that if two chromaticity coordinates are known the third can be deduced [Hunt, 1991]. The
chromaticity coordinates x and y were used to construct the CIE 1931 x,y chromaticity diagram.
In this diagram any combination of x and y is represented as a colored point in a two dimensional
representation [Hunt, 1991]. Regarding the nature of x and y, which both relate to the RGB
system, the chromaticity has to be seen as a map of different color stimuli [Hunt, 1991].

x = X/(X + Y + Z) (2.15)

y = Y/(X + Y + Z) (2.16)

z = Z/(X + Y + Z) (2.17)

The CIE chromaticity diagram is a normed way to represent a colored light beam. In order to
represent a color of a surface an additional dimension (Y ), which represents the brightness of
the color, is necessary [Nassau, 2001].

The chromaticity diagram and the CIE XYZ system are suitable to display differences in
color stimuli, but not differences in actual color perception. The need to handle differences
in color perception leads to the development of the CIE 1976 uniform chromaticity scale dia-
gram (CIE 1976 UCS diagram) and to uniform color spaces like CIE L*a*b and CIE L*u*v
[Hunt, 1991]. In the CIE 1976 UCS diagram the two axis u′ and v′ are calculated fromX ,Y and
Z, or x and y. The coordinates u′ and v′ are given in equations 2.18 and 2.19 [Nassau, 2001].

u′ =
4X

(X + 15Y + 3Z)
= 4x(3− 2x+ 12y) (2.18)

v′ =
9Y

(X + 15Y + 3Z)
= 9y(3− 2x+ 12y) (2.19)

There, the differences between two colors (or two points in the diagram) correspond better
to the same difference in color perception than in the CIE 1931 chromaticity diagram. It is
important to mention that there are no two dimensional representation which may reduce this
non-uniformity entirely [Hunt, 1991].
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Figure 2.11: CIE1931 chromaticity diagram. The central point W of the diagram denotes the
color white. The curved edge of the shape, also known as the “spectral locus”, denotes the spec-
trum. Hues with highest saturation are on the edge of this curved edge. The straight line from red
to violet is also known as “non spectral hue” or “ purple line” and is obtained by mixing red and
violet. B and Y denote two complementary color examples. They are complementary because the
straight line between them runs through the color white (pointW ). By mixing two complementary
colors, like B and Y , any color on the straight line between them can be obtained. When adding a
third or fourth color the resulting shape defines the colors which may be obtained by mixing these
colors [Hunt, 1991].

2.4 Color space: CIE L*a*b and CIE L*u*v

The CIE published the CIE L*a*b at the same time as CIE L*u*v in the year 1976. Both systems
compensate the disadvantage of non-uniformity of CIE XYZ [Nassau, 2001]. CIE L*a*b and
CIE L*u*v are non-linear transformations based on CIE XYZ. Both result in a three dimensional
color space.

CIE L*u*v which is used in television [Hunt, 1991] and correlates to the chromaticity coor-
dinates u′ and v′ (given in equations 2.18 and 2.19), is defined by these values: L for Luminance,
and two values u and v. The following equations 2.20-2.23 [Hunt, 1991] describe the conversion
from CIE XYZ to CIE L*u*v. There, the values u′n and v′n are the values of the reference white
[Hunt, 1991],
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L∗ = 116(Y/Yn)(1/3)− 16 for Y/Yn > 0.008856 (2.20)

L∗ = 903.3(Y/Yn) forY/Yn ≤ 0.008856 (2.21)

u∗ = 13L∗(u′ − u′n) (2.22)

v∗ = 13L∗(v′ − v′n) (2.23)

CIE L*a*b which is used in colorant industries [Hunt, 1991] is defined by the values: L for Lu-
minance, and two values a and b. Equations 2.24-2.29 [Lindbloom, 2007] describe the conver-
sion from CIE XYZ to CIE L*a*b color space. This calculation involves the use of a reference
white source for color conversion [Hunt, 1991, Wyszecki and Stiles, 2000]. The reference white
source defines which color is assumed as the color white for the conversion.

L = 116fy − 16 (2.24)

a = 500(fx − fy) (2.25)

b = 200(fy − fz) (2.26)

fx =

{
3
√
xr xr > ε

κxr+16
116 xr ≤ ε

xr =
X

Xr
(2.27)

fy =

{
3
√
yr yr > ε

κyr+16
116 yr ≤ ε

yr =
Y

Yr
(2.28)

fz =

{
3
√
zr zr > ε

κzr+16
116 zr ≤ ε

zr =
Z

Zr
(2.29)

The two constants κ and ε are defined by the CIE and are given in equations 2.30 and 2.31
[Lindbloom, 2007].

κ = 903.3 (2.30)

ε = 0.008856 (2.31)

CIE L*a*b and CIE L*u*v introduce measurements called hue-angles which better correlate to
hue differences. They are defined in equation 2.32 and 2.33 [Hunt, 1991].

huv = arctan[(v′ − v′n)/(u′ − u′n)] (2.32)

hab = arctan(b∗/a∗) (2.33)

Both systems arrange colors similar to the Munsell color system. Albert Henry Munsell (1858-
1918) aimed to arrange colors in his system in such a way as to keep the perceived color differ-
ence between any two neighboring colors constant. He also published an color atlas, the Munsell
book of color [Hunt, 1991].

The main advantage of CIE L*a*b and CIE L*u*v is that their uniformity makes it possible
to represent a perceived color difference between two colors through the geometrical distance
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Figure 2.12: This image shows color patches containing examples for different color differences.
Based on a blue hue every patch contains the reference color on the left side and a different color
on the ride side. The color on the right side was chosen in such a way that the color difference
equation CIE76 yields the result labeled in the patch.

between them. This is also known as the color difference equation CIE76 which is given for CIE
L*a*b in equation 2.37 [Hunt, 1991]. The results of equation 2.37 are greater than or equal to
zero and can be interpreted as the higher the result of the equation the higher the perceived color
difference between the two colors L1a1b1 and L2a2b2. Figure 2.12 illustrates some example
color differences.

∆L = L1 − L2 (2.34)

∆a = a1 − a2 (2.35)

∆b = b1 − b2 (2.36)

∆d76 =
√

∆L2 + ∆a2 + ∆b2 (2.37)

2.5 Color difference equation: CIEDE2000

The CIE has released other color difference calculation methods over the years. These new
methods, CIE94 and CIEDE2000, are optimizations regarding the perceivable difference be-
tween two colors [Sharma et al., 2004], because the geometric distance is not always sufficient.

For example, CIEDE2000 makes the assumption that L in the color spaces L*a*b or L*u*v
is not the correct perceived luminance of a color. This is a major difference to its forerunners
CIE94 and CIE76. CIEDE2000 is complex to work with, because it involves a greater number
of calculations than CIE76 and CIE94. Works on implementing this complex formula have been
published by [Lindbloom, 2007], [Johnson and Fairchild, 2003] and [Sharma et al., 2004].

I follow the step-by-step calculation as shown by [Sharma et al., 2004] and the equations for
calculation by [Lindbloom, 2007] to explain the color difference method CIEDE2000 between
two colors, L1a1b1 and L2a2b2.

The final equation is given in equation 2.38 [Lindbloom, 2007], the symbols and indices have
to be read as follows: L stands for lightness, C for chroma, H for hue angle, R for rotation, S
for weighting functions and K for parametric weights which are usually unknown and therefore
set to KL = KS = KH = 1.0. For calculation purposes all angles have to be assigned in
degrees.

∆ECIEDE2000 =

√(
∆L′

KLSL

)2

+

(
∆C ′

KCSC

)2

+

(
∆H ′

KHSH

)2

+RT

(
∆C ′

KCSC

)(
∆H ′

KHSH

)
(2.38)
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The first step consists of the calculation of the intermediate variables C ′1,2 and h′1,2 as given
in equations 2.39-2.48 [Lindbloom, 2007]. The calculations of C ′1,2 includes a correction of the
a-axis denoted by a factor (1 +G) which compensates for correct color difference perception at
low chromaticity values [Johnson and Fairchild, 2003]. Lindbloom [Lindbloom, 2007] suggests
to use the method atan2 for the implementation of tan−1 in equations 2.47 and 2.48 because
this function avoids possible divisions by zero.

C1 =
√
a21 + b21 (2.39)

C2 =
√
a22 + b22 (2.40)

C = (C1 + C2)/2 (2.41)

G = 0.5

1−

√
C

7

C
7

+ 257

 (2.42)

a′1 = a1(1 +G) (2.43)

a′2 = a2(2 +G) (2.44)

C ′1 =
√
a′21 + b21 (2.45)

C ′2 =
√
a′22 + b22 (2.46)

h′1 =

{
tan−1(b1/a

′
1) tan−1(b1/a

′
1) ≥ 0

tan−1(b1/a
′
1) + 360◦ tan−1(b1/a

′
1) < 0

(2.47)

h′2 =

{
tan−1(b2/a

′
2) tan−1(b2/a

′
2) ≥ 0

tan−1(b2/a
′
2) + 360◦ tan−1(b2/a

′
2) < 0

(2.48)

The second step is the calculation of ∆L′, ∆C ′ and ∆H ′ as given in the equations 2.49-2.52
[Lindbloom, 2007]. ∆H ′ has to be calculated differently depending on the orientation of the
hue-angle difference h′2 − h′1.

∆L′ = L2 − L1 (2.49)

∆C ′ = C ′2 − C ′1 (2.50)

∆H ′ = 2
√
C ′1C

′
2 sin(∆h′/2) (2.51)

∆h′ =


h′2 − h′1 |h′2 − h′1| ≤ 180◦

h′2 − h′1 + 360◦ |h′2 − h′1| > 180◦;h′2 ≤ h′1
h′2 − h′1 − 360◦ |h′2 − h′1| > 180◦;h′2 > h′1

(2.52)
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The third step is to calculate the weighting functions SL, SC and SH , and the
rotation RT [Johnson and Fairchild, 2003]. The weighting functions 2.53-2.55 were in-
troduced to adjust color difference perception between lightness, chroma und hue
[Johnson and Fairchild, 2003]. The weighting function for hue angles SH also includes a
chroma term T [Johnson and Fairchild, 2003]. The rotation RT [Lindbloom, 2007] addresses
an issue of CIE L*a*b. This issue is that blue regions are highly non-linear in regard to the
perceived color differences.

SL = 1 +
0.015(L

′ − 50)2√
20 + (L

′ − 50)2
(2.53)

SC = 1 + 0.045C
′ (2.54)

SH = 1 + 0.015C
′
T (2.55)

L
′
= (L1 + L2)/2 (2.56)

C
′
= (C ′1 + C ′2)/2 (2.57)

T = 1− 0.17 cos(H
′ − 30◦) + 0.24 cos(2H

′
) + 0.32 cos(3H

′
+ 6◦)− 0.20 cos(4H

′ − 63◦)
(2.58)

RT = −2RC sin(2∆Θ) (2.59)

RC =

√
C
′7

C
′7

+ 257
(2.60)

∆Θ = 30 exp

−
(
H
′ − 275◦

25

)2
 (2.61)

H
′
=

{
(h′1 + h′2 + 360◦)/2 |h′1 − h′2| > 180◦

(h′1 + h′2)/2 |h′1 − h′2| ≤ 180◦
(2.62)

2.6 Additional conversion formulas

The formulas (2.63-2.67)[Lindbloom, 2007] show the conversion from XYZ to sRGB color
space. Like the conversion from spectral data to CIE XYZ before, it also involves the use of
a reference white. Usually this conversion formulas are used to calculate values for displaying
purposes.



20 CHAPTER 2. COLOR THEORY

rg
b

 = [MsRGBD65]
−1 ∗

XY
Z

 (2.63)

[MsRGBD65]
−1 =

 3.2404542 −1.537385 −0.4985314
−0.9692660 1.8760108 0.0415560
0.0556434 −0.2040259 1.0572252

 (2.64)

R =

{
12.92r r ≤ 0.0031308

1.055r1.0/2.4 − 0.055 r > 0.0031308
(2.65)

G =

{
12.92g g ≤ 0.0031308

1.055g1.0/2.4 − 0.055 g > 0.0031308
(2.66)

B =

{
12.92b b ≤ 0.0031308

1.055b1.0/2.4 − 0.055 b > 0.0031308
(2.67)

Besides matrix 2.64 there are other conversion matrices for different reference white sources.
Several can be looked up in [Lindbloom, 2007].

2.7 CIE standard illuminants

The CIE has normed a selection of light sources as standard illuminants to be used as references
for color comparison and color applications. These standard illuminants are given with their
color temperature, which defines a color by its black body radiation. A so called black body is
an ideal object that absorbs all incident light and emits light caused by thermal radiation. The
color temperature is the surface temperature of this object [Nassau, 2001]. The CIE standard
illuminants are [Wyszecki and Stiles, 2000]:

• CIE A. This standard illuminant corresponds to a gas filled coiled tungsten lamp with a
color temperature of 2856K.

• CIE B. This standard illuminant represents sunlight at noon with a color temperature of
4874K.

• CIE C. This standard illuminant represents average daylight with a color temperature of
6774K.

• CIE D65. This standard illuminant was derived from CIE C and represents daylight with
a color temperature of 6500K.

The standard illuminants above are all non-fluorescent light sources. The difference between
non-fluorescent and fluorescent light is illustrated in figure 2.13. It can be observed that a fluo-
rescent light source differs from a non-fluorescent light source because it contains peaks in its
spectral distribution. The handling of these peaks is an important aspect of any spectral data
representation method.
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Figure 2.13: This image shows two CIE illuminants, A and F2 (both were scaled to a maximum
value of 1.0 for displaying purpose). The difference between the two illuminants is clearly visible.
F2 contains several peaks which interrupt its otherwise smooth distribution.

The mentioned peaks are usually much smaller than the sampling interval used in an ap-
plication. This causes a distortion (or aliasing) which results in a noticeable color difference
compared to a given reference. This hails from the violation of the Nyquist criteria which usu-
ally prevents the loss of information [Hearn and Baker, 2004]. More details on this topic are
reviewed in chapter 4.

The CIE also published standard illuminants for fluorescent light sources [Hunt, 1991],
which were primary designed for industrial applications. The CIE fluorescent illuminants are:

• CIE F1-F6. These standard fluorescent light sources include: F1 (daylight at 6430K), F2
(cool white light like the light of a common fluorescent lamp at 4230K), F3 (white light
at 3450K), F4 (warm white light at 2940K), F5 (daylight at 6350K) and F6 (white light at
4150K).

• CIE F7-F9. These broad band fluorescent light sources which were designed for better
color rendering properties include: F7 (daylight at 6500K), F8 (light at 5000K) and F9
(cool white light at 4150K)

• CIE F10-F12. These narrow band fluorescent light sources can be mixed together to
produce highly efficient white light.

Literature suggests to use the fluorescent light sources F2,F7 and F11 for testing, because
each of them represents a typical one of their kind [HunterLAB, 2005]. This is the main reason
why I will use them for testing color representation methods which include the use of fluorescent
light sources.

Apart from color system which are used to specify a color, there are color ordering systems
like the natural color system [Hunt, 1991]. Color ordering systems are used for checking, select-
ing and measuring color in a wide spectrum of applications. They are designed to be easy to use
but impose difficulties when using two different color ordering systems together [Hunt, 1991].
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Figure 2.14: NCS color wheel (left image) and an example for a NCS color triangle (right image)
at Y90R. The left image shows the NCS color wheel with its 10 percent transitions between the
colors yellow, green, red and blue. The image on the right shows a NCS color triangle taken from
the color Y90R (this caption corresponds to a hue composed of ninety percent red with ten percent
yellow). This triangle shows the variations of the selected color Y90R and different white/black
combinations. The selected color is at blackness ten percent and chromaticness fifty percent. All
mentioned color information drawn together results in the exact definition of a color in the NCS
system. The example on the right can be expressed in standardized NCS notation as NCS S 1050
- Y90R.

2.8 Natural color system (NCS)

The NCS (natural color system) was developed in Sweden. It is a three dimensional color system
[Hunt, 1991] which is based on the complementary color theory of Hering [Hering, 2007] and
represents colors by a combination of four unique hues. Hering proposed to use four unique hues
and their transitions (red to green and blue to yellow), which relate to human color perception,
instead of three (red, green and blue). These hues are called unique because they cannot be
represented by a combination of other colors [Hunt, 1991].

The basic colors of NCS are white (W), black (S), yellow (Y), green (G), red (R) and blue
(B). In this system gray tones are labeled as neutral (N). The perceived fraction of the basic
color is expressed as a percentage value. The whole NCS data set was obtained by observation
of around 60,000 test subjects and contains about 16,000 NCS combinations. For the final NCS
atlas this number was truncated by clipping the numbers to 10 percent steps. This resulted in
about 2,000 color combinations. Due to missing color pigmentation 1,930 entries remained in
the final NCS atlas [Hunt, 1991].



CHAPTER 3
Wavelength dependent effects

Computer graphics (CG) is used in many different applications in science, art, engineering, busi-
ness, industry, medicine, entertainment, education and training. Generating realistic scenes has
become more and more sophisticated in recent years, especially in fields were photo-realism
counts. For example, in the final stages of product design, CAD/CAM applications give an
outlook on the appearance of the final workpiece by applying realistic lighting and surface con-
ditions. It is also used for advertising (e.g. of automobiles) and to show both architects and their
clients how a building will look in reality [Hearn and Baker, 2004].

The ultimate aim of this applications is to generate images which trigger the same impres-
sion for the viewer as the scene in reality would [Devlin et al., 2002]. To achieve this, a broad
spectrum of issues to simulate reality have to be addressed, such as the correct simulation of
shapes, colors (and illumination), motion and natural phenomena [Sun, 2000]. The group of
natural phenomena is further distinguished into optical and geometric effects.

An important subgroup of optical effects involves wavelength dependent light/surface inter-
actions. These interactions are influenced by the spectral appearance of the involved lights and
materials. Spectral rendering techniques are used to implement these effects and enable an ap-
plication to yield plausible results. The term spectral in this context describes everything which
involves wavelength dependency [Devlin et al., 2002].

This chapter contains a review of the most common spectral effects: fluorescence and phos-
phorescence, refraction and dispersion, scattering, interference and diffraction.

3.1 Fluorescence and phosphorescence

Glassner [Glassner, 1995a] gives an example for fluorescence in his book, a fluorescent electric
bulb. The electric bulb emits absorbed energy at an a wavelength which is usually in the visible
spectrum as visible light. The fluorescent material in this example is the gas in the bulb.

Fluorescence is a material property which occurs within molecular structures
[Devlin et al., 2002]. It describes an effect which becomes visible when light is absorbed at

23
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one wavelength and re-emitted at a different, usually longer, wavelength. An important property
of this effect is the time span between absorbance and re-emittance. This time span is usu-
ally smaller than 10−8 seconds for fluorescence. The emitted energy has no orientation and is
uniform in any direction [Nassau, 2001].
Phosphorescence is a similar effect to fluorescence, but incurs a longer time span than the
mentioned 10−8 seconds. This effect occurs when light is slowly emitted by a phosphorescent
material during the transition from a higher to a lower energy state. The emitted light is also not
oriented and uniformly distributed in any direction [Glassner, 1995a]. Examples for phospho-
rescence include “glow-in-the-dark” materials [Nassau, 2001] and the cathode ray tube (CRT)
monitor [Glassner, 1995a] where the screen of the CRT is coated with phosphors for each color.
These phosphors are targeted and shot at by one of three electron guns (one for each color; red,
green and blue). The phosphors absorb the electrons and re-emit them over time (in this example
as light in the visual spectrum) [Glassner, 1995a].

3.2 Refraction and dispersion

Refraction usually happens during the transition of electromagnetic waves between two mate-
rials. This transition results in a deceleration and redirection of the involved electromagnetic
waves. With an exception to the angle of incidence of incident light at 90 degrees this also
results in a bending of the electromagnetic waves. The property of a material which describes
its refractional behavior is described by Snell’s Law (equation 3.1) [Nassau, 2001] and the re-
fractive index. An example for refraction in nature is the bending of light when light enters a
transparent glass filled with water. The effect becomes visible if an object is partially put into
the water. From outside, the object can be perceived as bended under the surface of the water.
This perception is caused by refraction. Another example for refraction is the distortion of the
setting sun. There, the perceived appearance of the sun is distorted by air with varying refractive
indices depending on its height above the ground [Lynch and Livingston, 1995].

sin Θr =
ηi
ηr

sin Θi (3.1)

Equation 3.1 contains the refractive indices of the materials ηi and material ηr. The angle Θr

describes the angle of refraction, and Θi the angle of incidence [Hearn and Baker, 2004]. Some
example values for refractive indices are: η = 1.0 for vacuum, η = 1.52 for ordinary crown
glass, η = 1.33 for water and η = 1.31 for ice [Hearn and Baker, 2004].

With the exception of vacuum the refractive index of a material depends on the wavelength of
the incident light and the temperature of the material. Refraction or the deceleration of electro-
magnetic waves occurs not uniformly along the electromagnetic spectrum and also depends on
the orientation of the inner structure of the material (e.g. crystalline structures)[Nassau, 2001].
The wavelength dependent behavior of refraction is known as dispersive refraction or as disper-
sion.

Isaac Newton discovered dispersion when he conducted his prism experiment (see figure
2.1 for details). He observed that a white beam of light can be split in its spectral colors by
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Figure 3.1: This image shows the elements involved in refraction: the refractive indices ηi and ηr
of both materials, the angle of incidence Θi and the angle of refraction Θr. The angle of refraction
Θr is determined by Snell’s Law which is given in equation 3.1. The vector N denotes the normal
vector of the point on the surface [Hearn and Baker, 2004].

a prism made of glass. Within the material (glass) of the prism the refractive index decreases
with increasing wavelength. This wavelength dependency causes the prism to split the white
light into its spectral components [Nassau, 2001]. Examples for dispersion in nature are the
fire in cut gems, the colors of the rainbow and the green flash [Nassau, 2001]. The green flash
is a green spot which becomes briefly visible before sunrise or after sunset at an unobstructed
horizon above the sun [Lynch and Livingston, 1995].

3.3 Scattering

When an electromagnetic wave hits a small particle the particle may interact with this wave. The
resulting effects are summarized as scattering. The particle size d in relation to the wavelength
determines which type of scattering takes place. If the particle size d is much smaller than the
involved wavelength λ (d < λ/10) then the occurring scattering is called Rayleigh scattering.
If the particle is around the size of the involved wavelength (d ≈ λ) Mie scattering appears
instead of Rayleigh scattering. If the particles are much larger than the involved wavelength
(d >> λ) geometric scattering appears at the edges of the particles which results in the effect
called diffraction [Haferkorn, 2002].

Rayleigh scattering

Lord John William Rayleigh (1842-1919) analyzed the effects caused by scattering, such as the
color of the blue sky. He defined Rayleigh scattering and stated that scattering not only occurs
with small particles, but also appears in slightly impure materials and liquids. These impurities
cause a variation in the refractive index of the material and thus cause scattering.
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The intensity I of the scattered light is given in equation 3.2 [Nassau, 2001]. The equation
is a relation of the intensity of the scattered light Is and the incident light I0. The relation is
proportional to the inverse of the fourth power of the wavelength λ. This equation describes
the fact that the lower the wavelength of the light the more scattering occurs when light travels
through a medium [Lynch and Livingston, 1995].

Is
I0

=
constant

λ4
(3.2)

The scattered light is polarized, which relates to the nature of light
[Lynch and Livingston, 1995]. The directional characteristics also depends on the size
and form of the scattering particles [Nassau, 2001].

Examples for Rayleigh scattering are the color of the sky and the color of the sun perceived
from earth’s surface. The distance sunlight travels through atmosphere determines the parts of
light which are scattered by air molecules. If the distance is short, short-wave light is scattered
out and leads to the blue color of the sky and the light yellow colored sun. The color of the sun
results from the absence of blue in the direct light from the sun [Nassau, 2001].

At sunrise and in the evening the distance is much longer and thus causes scattering of
longer wavelengths. This results in the characteristic red color of the sun. Figure 3.2 illustrates
atmospheric scattering and the resulting color of the sky and the sun. Ultraviolet light is the
strongest scattered part of sunlight, thus scattering is the reason why the risk for sunburn is
highest at noon and lower in the evening [Nassau, 2001].

Mie scattering

If the particle size is around the wavelength (d ≈ λ), than Mie scattering occurs instead of
Rayleigh scattering. This type of scattering was discovered by Gustav Mie (1868-1957) and
takes place when spherical particles with sizes between d < λ and d < 2λ scatter electromag-
netic waves [Nassau, 2001]. Mie scattering appears with a much stronger forward component
than Rayleigh scattering. The scattering behavior itself is very complex to calculate, because it
is influenced by the geometry and refractive index of the scattering particles. When scattering
particles are relatively large only so called white scattering will appear, which can be seen in
nature as the white of fog and low clouds. Small water droplets scatter the light and create these
phenomena [Nassau, 2001].

3.4 Interference and diffraction

When two light rays run closely parallel to each other they may interfere with each another.
This interference is caused by light’s electromagnetic wavelike behavior (see figure 3.3) and
may result in constructive enhancement or destructive refinement [Nassau, 2001].

Augustin-Jean Fresnel (1788-1827) conducted experiments which resulted in the so called
interference patterns. Figures 3.4 and 3.5 show the design and exaggerated result of one of his
experiments. He discovered that his experiment only worked with one light source to be used as
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Figure 3.2: This image shows a schematic display of atmospheric scattering. The image contains
two observers a and b. The atmosphere is represented by the space between the surface and the
gray colored line. In case of observer a the sky appears widely blue because of the short distance
light travels through the atmosphere. For observer a the sun looks yellow because of absence of
blue in the direct sunlight. This changes for observer b. The direct light of the sun travels around
a thirty two times [Lynch and Livingston, 1995] the greater distance through atmosphere than for
observer a. This results in much more scattering which results in a red sun for observer b. The
sky above her appears blue, but the nearer in the direction of the sun she looks the color changes
to characteristic colors of the sky in the evening or at dawn. The red or yellowish color of the sun
at these daytimes depends on the presence of small particles, like dust or ash, in the atmosphere
[Nassau, 2001, Lynch and Livingston, 1995].

Figure 3.3: The image above shows two results for interference. Depending on the phase differ-
ence interference results in constructive enhancement a or destructive refinement b [Nassau, 2001].

source for the two rays of light. When he used an additional ordinary light source the experiment
lead to no interference patterns. The reason for this is, that an additional light source contains
more incoherent light than one split light source. The ability to use an additional light source for
interference experiments changed with the development of lasers, which are capable to produce
monochromatic coherent light [Nassau, 2001].

Examples for visible effects of interference are the rainbow colors on a soap bubble or on
a thin film of oil on water, the coloration of bird feathers, or color-changing ink on bank notes.
Figure 3.6 and 3.7 illustrate so called thin film interactions [Nassau, 2001].

Diffraction occurs when light is spread at the edges of an object. In any case it involves
interference, although interference does not always include diffraction. An example for diffrac-
tion is an experimental setup consisting of a large plate with a small hole and a light source
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Figure 3.4: This image shows Fresnel’s two mirror experiment. The used light source produces
two light rays, s1 and s2, by redirecting them with two mirrors at a screen. There, the light rays
lead to interference pattern, which are displayed in figure 3.5 [Nassau, 2001].

Figure 3.5: This image shows interference patterns produced by the waves of two light rays. The
angle between the two light rays is exaggerated for displaying purposes [Nassau, 2001].

directed at the hole. The light passes through the small hole, but the edges of the hole cut into
the wavefront of the incident light. This bends the light which results in a spreading of the light
behind the plate. If a small screen is put behind the hole, an observer could observe diffraction
patterns on the screen [Nassau, 2001].

Diffraction can be observed at the surface of the rear side of a CD or DVD, where small
bumps or cavities cause diffraction, interference and the resulting characteristic play of color
[Nassau, 2001].
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Figure 3.6: Interference. This image shows thin film interactions involving a material with con-
stant thickness. There, the incident light rays are reflected from the back and front surfaces of
the thin film. The phase difference in D is dependent on the material thickness and the refractive
index of the material. When the incident light is white light, some wavelengths vanish and others
remain. The resulting colors are called Newton’s interference colors. Figure 3.7 shows a similar
setup, but with varying material thickness [Nassau, 2001].

Figure 3.7: Interference. In contrast to the setup in figure 3.6 this setup results in different col-
ors caused by varying material thickness. This illustrates how the play colors occurs on a soap
bubble, because there, the thickness of the soap film is usually not uniform and changes over time
[Nassau, 2001].





CHAPTER 4
Digital signal processing

Techniques of digital signal processing (DSP) allow to exactly reproduce signals, to save them
without information loss and to reduce noise in these signals [Doblinger, 2007]. The focus
of DSP is on the work with discrete time signals and their manipulation in discrete-time or
frequency domain. In a discrete-time domain a signal is given as an indexed x[n] list of real or
complex numbers, which describe a signal sampled at a uniform sampling rate. A multiplication
of two signals in discrete-time domain is defined as an element-wise product of the signal values
[Hayes, 1999]. The formal definition of an infinite digital signal in discrete-time domain is
[Oppenheim et al., 1999]:

x = {x[n]} −∞ < n <∞ (4.1)

Fourier transformations allow to represent signals as a weighted sum of sine waves in the
frequency domain. For discrete time signals the discrete Fourier transformation is used instead
[Blinn, 1989].

In DSP the two terms sampling and reconstruction are commonly used. Sampling usually
describes the transition from a continuous signal to a discrete signal [Hearn and Baker, 2004].
Reconstruction describes the transition from a discrete signal to a continuous reconstructed sig-
nal [Mitchell and Netravali, 1988].

Usually a digital signal is obtained from an analog signal or another digital sig-
nal by sampling. In the theory of sampling and its applications the Nyquist criterion
[Hearn and Baker, 2004] plays an important role. The violation of this criterion usually intro-
duces errors related to the sampling process, which are known as aliasing.

Aliasing is distinguished in pre-aliasing due to poor sampling and the absence of a prefilter,
and post-aliasing which results from to poor reconstruction [Mitchell and Netravali, 1988].

4.1 Nyquist criterion

Bryant [Bryant et al., 2009] summarizes the Nyquist criterion, which is very important in theory
and application of sampling, in his book as follows:
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“A signal with a maximum frequency fa must be sampled at a rate fs > 2fa or infor-
mation about the signal will be lost because of aliasing. [...] Aliasing occurs whenever
fs < 2fa [...] To prevent aliasing, it can be shown that the signal must be sampled at
least twice as fast as the highest frequency component.” [Bryant et al., 2009]

The Nyquist criterion is important for my work because in some cases (e.g. fluorescent light
sources) spectral data contains very narrow signal peaks. This is not problematic if a method
works with densely sampled data and a high number of sample points. However, this is seldom
the case. Usually, to minimize calculation and storage costs the number of sample points is
reduced. This reduction leads to a violation of the Nyquist criterion. Spectral data and working
with them usually incorporates sampling rate changes. These involve reconstruction and thus
may result in postaliasing of the data. Both sampling and reconstruction involve approximations,
which may introduce further aliasing [Pharr and Humphreys, 2004].

To prevent further aliasing and to introduce no additional distortions, Oppenheim and Hayes
[Oppenheim et al., 1999, Hayes, 1999] suggest to use the so called ideal sampling rate conver-
sion (see figure 4.2 for details) involving a low pass filter for reconstruction of the signal. A low
pass filter filters out high frequencies in the signal. This is done before resampling, otherwise
the high frequencies would reappear after sampling as errors and distortions [Blinn, 1989].

However, the application of a low pass filter may not always reduce aliasing, and a wrong-
fully designed filter may blur the data and introduce new errors [Jähne, 2005]. Theoretically,
ideal anti-aliasing requires to filter a function. Usually, the data is given as an indexed list of dis-
crete sample points and not as a function in a time domain. This results in the fact that aliasing
cannot be entirely removed [Blinn, 1989].

4.2 Digital filters

In DSP a digital filter is a time-discrete system which is defined by the application of a, usual
mathematical, transformation T on any given input sequence x[n] to create an output sequence
y[n] [Hayes, 1999]. This output may be smoothened, sharpened, noised-reduced, sampled or
other wisely transformed. Formally this is given as [Oppenheim et al., 1999]:

y[n] = T{x[n]} (4.2)

Any time discrete system is distinguished by its access of the input data (linear vs. non-
linear) and whether the system is time variant or time invariant [Doblinger, 2007]. Furthermore,
in addition to these, a filter is also distinguished by its impulse response, which determines if it
is a recursive filter (infinite impulse response, IIR) or its opposite (finite impulse response, FIR).
A digital filter is classified by its frequency response, which describes which frequencies should
be eliminated and which frequencies are preserved. There are four filter types:

• Low pass filters. Filters belonging to this type eliminate frequencies above a given cutoff
frequency ωc. Examples for low pass filters are given in section 4.5 [Hayes, 1999].
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Figure 4.1: Frequency response of ideal filter types. The depicted filters are (a) ideal low pass
filter, (b) ideal high pass filer, (c) ideal band pass filter and (d) ideal band stop filter. The cut-
off frequency is denoted by ωc (ω1 and ω2 are frequency band limits). Frequency responses
of digital filters are obtained by applying Fourier analysis on the filters[Hayes, 1999]. Ideal fil-
ters have no limits, thus practical applications require a limiting (windowing) of any given filter
[Theußl et al., 2000].

• High pass filters. These filters are the opposite of low pass filters. They eliminate
frequencies below a given cutoff frequency ωc [Hayes, 1999].

• Band pass filters. Filters of this type preserve frequencies within a given frequency range
between ω1 and ω2 [Hayes, 1999].

• Band stop filters. This kind of filters eliminate frequencies within a given frequency
range between ω1 and ω2 [Hayes, 1999].

The ideal versions of these filters are depicted in figure 4.1. Since ideal filters have no limits,
practical application requires a limiting (windowing) of any given filter. This limiting causes
distortions called leakage or ringing artifacts. To counter these filters where the filter function is
multiplied with another function, are used [Theußl et al., 2000]. A windowed filter function is
formally defined as in equation 4.3 [Hayes, 1999].

w[n] =

{
f [n] if n within window borders

0.0 if n not within window borders
(4.3)

Filters, such as a filter window w[k], are applied on time-discrete data by applying it by
convolution [Hayes, 1999]. The convolution theorem is hereby defined as

y(n) =
N−1∑
k=0

w(k)x(n− k) (4.4)
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or generally as

y(n) = w(k) ∗ x(n) (4.5)

In frequency space this convolution is equivalent to a multiplication of the Fourier coeffi-
cients of the filter and the signal [Hayes, 1999].

The selection of a suitable filter follows the goals of digital filter design which aims to
select a filter with a good frequency response, and to set the window w[k] as small as possi-
ble. The realization of these goals is always a compromise between these contradicting aims
[Oppenheim et al., 1999].

Moreover, the selection of a suitable filter is usually also a trade off between sharpness
(preservation of details) and introduction of further aliasing [Turkowski and Gabriel, 1990]. The
application of filters may result in one or more of the following artifacts: sample-frequency
ripple, anisotropic effects, ringing, blurring and aliasing [Mitchell and Netravali, 1988]. These
are in detail:

• (Post)aliasing is aliasing due to spectral leakage, i.e. high frequent data reappears as dis-
tortions in low frequency regions in a reconstructed signal [Pharr and Humphreys, 2004].

• Sample frequency rippling is a form of post aliasing which appears as an oscillation of
distortions at the sampling frequency in a reconstructed signal [Marschner and Lobb, 1994].

• Blurring or smoothing, although desired to reduce signal noise, may also eliminate de-
sired details of the signal [Marschner and Lobb, 1994].

• Ringing and overshooting result from discontinuities and manifest themselves as echoes
of the signal throughout the reconstructed signal [Mitchell and Netravali, 1988].

• Anisotropy describes the asymmetric behavior of the absence or presence of artifacts in
the reconstructed signal [Marschner and Lobb, 1994].

As mentioned, it is possible to transfer discrete data from time domain to frequency domain
by applying the discrete Fourier transformation (DFT).

4.3 Discrete Fourier transformation (DFT)

The discrete Fourier transformation (DFT) transforms (N + 1) uniform sampled points to
frequency space and utilizes the approximation formulas given in equations 4.6 and 4.7
[Bronstein et al., 2001, p.951].

The resulting spectral coefficients, which otherwise would result in a complex number, are
split in to ak, which represents the real part, and bk, which represents the imaginary part. The
value of a0 always results in the mean average of xv and b0 is always equal 0.0.

xv = vh (v = 0, 1, . . . , N), h =
2π

N
(4.6)
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DFT : ak ≈ ãk =
2

N

N∑
v=1

f(xv) cos kxv, bk ≈ b̃k =
2

N

N∑
v=1

f(xv) sin kxv (k = 0, 1, 2, . . . , n)

(4.7)
To transform the Fourier coefficients ak and bk back to a discrete time domain the inver-

sion of the Fourier transformation (IDFT) has to be applied. The trigonometric polynomials in
equation 4.8 and 4.9 depict this inversion.

The first polynomial in equation 4.8 transforms the data from frequency space to discrete-
time domain and satisfies the interpolation condition g̃1(xv) = f(xv) [Bronstein et al., 2001].
This condition ensures that the IDFT returns the original values at the positions of the initial
values when all spectral coefficients are used.

IDFT : g̃1(x) =
1

2
ã0 +

n−1∑
k=1

(ãk cos kx+ b̃k sin kx) +
1

2
ãn cosnx (4.8)

For the application in this work, the second polynomial given in equation 4.9 is used since
it transforms the data under the condition of minimal quadric error. The variable N denotes the
number of initial data points used for calculation and n the number of used spectral coefficients.
This polynomial approximates the function f(x) under the requirement of m < n and results in
a minimal quadric error sum [Bronstein et al., 2001] of the reconstructed values at any position.

IDFT : g̃2(x) =
1

2
ã0 +

m∑
k=1

(ãk cos kx+ b̃k sin kx) (4.9)

Working with data in frequency space is different than in the time domain. For example, the
convolution with a filter is done by multiplication in frequency space [Hayes, 1999]. Representa-
tion methods for spectral data like Sun’s composite method [Sun et al., 1999, Sun, 2000] utilize
the frequency space to compress the spectral information. However, using data in frequency
space incorporates that transformations between the two domains are necessary. The growth of
complexity of a DFT or IDFT is O(n2) which means that in order to perform a DFT or IDFT on
a given signal the effort to do so increases at a quadric rate, which is not very efficient.

Sophisticated improvements such as the fast Fourier transformation speed this up to
O(nlog(n)) [Bronstein et al., 2001]. In addition Libraries for implementation such as the FFTW
present convenient ways to speed up Fourier transformations [Frigo and Johnson, 2009].

4.4 Ideal sampling rate conversion

Ideal sampling rate conversion reduces postaliasing introduced by resampling [Hayes, 1999]. Its
concept, which incorporates the usage of a low pass filter for reconstruction, is depicted in figure
4.2.

For example, a spectral data set consists of N = 42 entries. The desired data set should
consist ofN∗ = 16 entries. To introduce no further aliasing the sampling rate should be changed
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Figure 4.2: Ideal sampling rate conversion by an integer factor L/M to avoid further introduction
of aliasing. This is done in three steps. The first step is to increase the sampling rate (up-sampling)
by an integer factor L. The second step is to reconstruct the data with a low pass finite input
response filter (FIR-filter) with a cutoff-frequency ωc = min(π/L, π/M). The last step is to
decimate (down-sampling) the data by an integer factor M [Hayes, 1999].

by

L

M
=

N

N∗
=

16

42
=

8

21
(4.10)

The usage of a rational factor composed of two integers prevents further distortions in the
resampling process which would otherwise be introduced by the approximation of decimal num-
bers [Hayes, 1999]. The used low-pass filter should have a cutoff frequency ωc, given by

ωc = min(
π

L
,
π

M
) = min(

π

8
,
π

21
) =

π

21
. (4.11)

Up-sampling and down-sampling work as shown in the following pseudo code snippet:

1 x [N ] ; / / s o u r c e da ta
2 u [M∗L ] ; / / up−sampled da ta
3

4 f o r ( i =0 ; i < N; i ++) u [ i ∗ L ] = x [ i ] ; / / up−sampler
5

6 . . . / / i n t e r p o l a t e u by low pass f i l t e r
7

8 y [ L ] ; / / down−sampled da ta
9 f o r ( i =0 ; i < M; i ++) y [ i ] = u [ i ∗ M] ; / / down−sampler

The following section is concerned with the low pass filters used in this work.

4.5 Low pass filters

The ideal low pass filter is the sinc filter. It is characterized by the sinc function, defined as
[Oppenheim et al., 1999]:

sinc(x) =

{
if x 6= 0.0 sin(πx)/(πx)

if x = 0.0 1.0
(4.12)
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In practice, windowed filters are used instead of the ideal filter. A windowed filter is defined
by its filter window width and the filter extent. The first describes the range where the filter
function returns other values than 0.0 (as in equation 4.3) and the second defines how many
values affect the filter result [Pharr and Humphreys, 2004].

The following subsections contain the filters used in this work for filtering spectral data.
All filter functions are displayed as a function of w(x, ...) which is a small deviation from the
representation of the filter functions in the used literature. A plot containing all filter functions
used in my work is given in figure 4.3.

Box filter

The box filter also known as rectangular window is a simple filter which weighs all samples by
the same weight 1.0. Although it is the worst possible filter since it introduces strong spectral
leakage, it’s very fast and easy to implement. Thus it is the favorite used filter for testing pur-
poses. The window function w is given in equation 4.13 [Theußl, 1999]. τ describes the width
of the window.

w(x, τ) =

{
1 if |x| ≤ τ
0 else

(4.13)

Tent filter

The tent filter or Bartlett window [Theußl, 1999] is an advancement to the box filter. It weighs
the samples by different weights, depending on the distance to the center of the filter. The nearer
a sample is to the center the higher is its weight [Pharr and Humphreys, 2004]. The window
function w is given in equation 4.14 [Theußl, 1999]. τ describes the width of the window.

w(x, τ) =

{
1− |x|τ if |x| < τ

0 else
(4.14)

Welch filter

The Welch window is similar to the Bartlett window. The difference between the two window
functions is that the weights in the Welch window fall off at a quadric rate [Theußl, 1999]. The
filter function is given in equation 4.15 [Theußl, 1999].

w(x, τ) =

{
1−

(
x
τ

)2 |x| < τ

0 else
(4.15)
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Gaussian filter

The Gaussian filter is well known in image processing and utilizes the Gaussian bell curve. This
filter usually blurs the results. For implementation it is important to subtract the values at the
window borders from the filter function which is performed by the term − exp−αw

2
in equation

4.16. This is done to satisfy the condition that a windowed filter has the values of 0.0 at its
borders. The value α controls the decline of the bell curve. A small α results in a small decline
and a high α in a strong decline of the curve. The filter function is given in equation 4.16
[Pharr and Humphreys, 2004, p.358].

w(x, α) = exp−αx
2 − exp−αw

2
(4.16)

Mitchell filter

This filter is based on the general form of the symmetric cubic filter with six parameters of
freedom. Mitchell and Netravali [Mitchell and Netravali, 1988] reduced the six parameters to
two parameters b and c to control the appearance of the filter. The filter equation is given in
equation 4.17. Parameters in the filter function of b = 1.0, c = 0.0 lead to an appearance as a
cubic B-spline, b = 0.0 to cardinal cubics and b = 0.0, c = 0.5 to the Catmull-Rom spline.

This filter may contain negative filter values which usually sharpen the result. Mitchell and
Netravali suggest parameters which satisfy b+ 2c = 1 to make a compromise between ringing,
blurring, and anisotropy [Mitchell and Netravali, 1988]. They also provided a two-dimensional
plot of subjective observations, how the filter behavior changes with different values of b and c.
This plot is given in figure 4.4.

w(x, b, c) =
1

6


(12− 9b− 6c)|x|3 + (−18 + 12b+ 6c)|x|2 + (6− 2b) |x| < 1

(−b− 6c)|x|3 + (6b+ 30c)|x|2 + (−12b− 48c)|x|+ (8b+ 24c) 1 ≤ |x| < 2

0 otherwise

(4.17)

Lanczos filter

The Lanczos filter is based on the sinc function. It offers one of the best trade offs between
preserving details, introduction of aliasing and ringing artifacts [Turkowski and Gabriel, 1990].
The filter function is given in equation 4.18 [Pharr and Humphreys, 2004]. The variable τ deter-
mines the number of sinc cycles.

w(x, τ) =
sinπx/τ

πx/τ
(4.18)
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Figure 4.3: This image is an overview over all low pass filters used in this work.
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Figure 4.4: Two dimensional plot of the subjective parameter behavior of the Mitchell filter.
[Mitchell and Netravali, 1988]. The plot shows the dominance of different filtering errors for given
parameters b, c and the parameter line b+ 2c = 1.

Hann and Hamming filter

Both filters are based on the cosine and are similar to each another, but differ in the value α.
The Hann window utilizes α = 0.5 and the Hamming window sets this value to α = 0.54. The
latter is problematic because it introduces discontinuities at the borders of the window function
[Theußl, 1999].

w(x, α, τ) =

{
α+ (1− α) cos

(
π xτ
)
|x| < τ

0 else
(4.19)



CHAPTER 5
Rendering of wavelength dependent

effects

Realistic image synthesis ultimately aims at generating realistic images with the computer. An
observer should experience the same visual sensation when she looks at the real scene and the
computer generated image. In other words, the synthetic image has to be physically and per-
ceptually equivalent when compared with reality [Devlin et al., 2002]. To achieve this aim the
following aspects have to be addressed: representation of geometric shapes, generation of au-
thentic colors and kinetics, and the correct simulation of natural phenomena [Sun, 2000]. Nat-
ural phenomena include interactions between lights, materials and surfaces. A subgroup of the
natural phenomena is defined in physics by spectral interactions, thus they are named spectral
effects [Devlin et al., 2002].

Methods of digital image synthesis can be described by Kajiyahs rendering equation (equa-
tion 5.1). The equation defines the visual sensation of an observer by the propagation of light
rays and basically summarizes how much light a point x receives from another point x′. Further-
more the equation includes the influence of light transport from a third point x′′ to x′. A digital
image synthesis method is defined by the parts of the rendering equation that can be satisfied.
Methods like path tracing satisfy the whole equation. The rendering equation does not cover
spectral effects [Kajiya, 1986], but is useful to demonstrate the concept behind digital image
synthesis.

I(x, x′) = g(x, x′)

[
ε(x, x′) +

∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′

]
(5.1)

The rendering equation is composed of the following terms [Kajiya, 1986]:

• I(x, x′). This term is called transport intensity and describes the intensity of the light
which reaches point x and originates from point x′.

41
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• g(x, x′). This geometry term represents shadowing by geometry. If the direct path from
point x to point x′ is blocked than this term is equal to 0.0.

• ε(x, x′). This term describes how much intensity point x′ emits in the direction of point
x.

• ρ(x, x′, x′′). This scattering term represents how much light is scattered from point x′′ at
point x′ and, from there, to point x.

• Integration
∫
S describes a summation of all light which is scattered at point x. This cov-

ers all influence on the intensity at an hemisphere at point x. This integral and further
recursive invocations of I(x′, x′′) are the reasons why analytic solutions are not suitable
to solve the rendering equation.

Ray tracing (also known as Whitted ray tracing) does not satisfy all parts of the rendering
equation, does not include integration, and the recursion exists only for perfect mirrors. Ray
tracing has not the capabilities to produce diffuse reflections or to provide satisfying specular
reflections from less glossy surfaces [Whitted, 1980]. Ray tracing is reviewed in the next section
because it is often used and very useful to provide an overview on how digital image synthesis
actually works.

5.1 Whitted ray tracing

This method was introduced by Turner Whitted [Whitted, 1980]. The concept of ray tracing is
basically an inversion of an other approach of digital image synthesis. This approach was to
track the light starting from the light source throughout the scene. This is a very costly approach
because the majority of the light in a scene is not reaching the observer. Whitted took the inver-
sion of this approach and added his main contribution, a recursion, which resulted in Whitted’s
ray tracing. In Ray tracing, as the name indicates, rays are emitted by the observer and are
tracked throughout a scene. At each position where a ray hits an obstacle the influence of exist-
ing light sources and geometric shadowing are taken into account. Whitted ray tracing does not
end there, because the reflected rays are traced again like the initial ray. This recursive process
only ends for a particular ray if it hits no other obstacle. The list which contains the reflection
path for each ray is stored in a tree structure. This tree structure is used to calculate the ray/sur-
face intersections which finally result in the intensity (color) of one ray that reaches the observer.
The composition of one point in this tree structure is given in equation 5.2 [Whitted, 1980].

I = Iα + kd

j=ls∑
j=1

(N̄ · L̄j) + ksS + ktT (5.2)

In equation 5.2 I stands for the intensity which is calculated for one point in the tree structure
of the ray/object intersections and is composed of [Whitted, 1980]:

• The intensity of ambient light Iα
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Figure 5.1: The image shows an example of ray/surface interactions which influence the intensity
reaching the observer I from point A. Every N̄ denotes the normal vector of a surface. The
rays labeled T describe the contribution of intensity to the final ray resulting from transmission
(refraction). The rays contributing intensity from specular reflection are labeled S. The displayed
path is finally resolved in each point as a recursion 5.2 [Whitted, 1980].

• The intensity contributed by each light source L̄j calculated by the dot product of the ray
in direction to the light source L̄j and the normal vector of the surface N̄ . Shadowing in
direction L̄j is taken into account.

• The intensity composed of the specular reflection in direction of the direct mirror reflection
S.

• The intensities T1,T2 contributed by transmission (refraction) through the material.

• The coefficients kd, ks, kt represent diffuse, specular and transmissive material properties
which usually incorporate an approximation to physical laws.

The procedure is repeated for all pixels of the target image [Whitted, 1980]. Usually more
than one ray is calculated for a pixel to improve image quality by utilizing digital filtering tech-
niques [Shirley and Morley, 2003]. Usually, before a hit of a ray at a surface is processed, a
ray is checked against a bounding volume to prevent unnecessary calculations. These bound-
ing volumes are usually realized as spheres. These spheres are also used for the testing of a
ray tracing application, because there, the surface and the bounding volume are the same object
[Shirley and Morley, 2003].

For the interested reader I suggest the books of Shirley [Shirley and Morley, 2003], Glassner
[Glassner, 1995a], [Glassner, 1995b] and Pharr [Pharr and Humphreys, 2004], which describe
the implementation of a working rendering application and its backgrounds.
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The result of any rendering technique is, in a manner of speaking, the color for each pixel
of the resulting image. The way in which colors are represented in a rendering application
determines its capabilities in regard to spectral effects.

5.2 Traditional color representation

Traditionally colors are represented by a RGB triplet of color values of the basic colors red,
green and blue. These represent colors by 8 bit per color. This representation is also used to
define light sources and material properties. Color calculations are multiplications of two RGB
triplets, which is very fast and easy to implement [Johnson and Fairchild, 1999].

However, the RGB representation has the major disadvantage that color information is al-
ready lost before any calculation or conversion process has taken place. The reason for this
loss is shown in the science based representation of colors as spectral data: colors relate to an
electromagnetic energy distribution along the visible spectrum [Nassau, 2001] with usually con-
siderable more than three sample points. Thus, three values cannot accurately represent this
distribution. A further disadvantage of this representation is that RGB is device dependent,
which means that the result varies from device to device (e.g. ink jet printer vs. TFT-flat panel).
Moreover, RGB cannot display metamerism, because two objects with the same RGB values
will look the same under any lighting condition [Peercy, 1993].

These disadvantages of RGB [Peercy, 1993] lead to the necessity of a more accurate color
representation where colors also retain their spectral properties. A representation which satisfies
this allows to reproduce spectral effects like fluorescence, diffraction, dispersion and polarization
[Devlin et al., 2002].

Rendering applications using spectral representation methods are called “spectral ren-
dering” which encompasses realistic image synthesis and spectral data representations
[Devlin et al., 2002].

To illustrate how the representation of colors influences the resulting image and how spectral
color representation improves the result, I rendered two scenes with the rendering toolkit ART,
developed at the technological university of Vienna at the institute for computer graphics and
algorithms.

The first scene in figure 5.3 shows a rendering of the sky from a fish-eye perspective. The
image on the right of figure 5.3 shows the difference between traditional RGB representation
and a spectral representation. The second scene given in figure 5.2 shows a chessboard scene
under the influence of sky color and refraction.

5.3 Spectral rendering

In a spectral rendering application colors have to be represented by their spectral distribution or
a compressed form of it. The main issue is to represent high frequent details like narrow signal
peaks [Devlin et al., 2002]. This leads to a trade-off between speed and accuracy.

Techniques such as point sampling for instance, with sampling intervals higher than 10nm
and base functions have problems with narrow signal peaks which usually occur in fluorescent
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Figure 5.2: Different color representations: chessboard under skylight. The image shows three
different images of the same scene. The image on the left was rendered utilizing RGB color
representation. The image in the middle was rendered using a spectral data representation by Rie-
mann summations (see section 5.4 for details). The image on the right shows the color difference
between the two rendered images according to the color difference formula CIE76. The largest
difference occurs within the refraction in the material of the chess figures. A noticeable difference
is visible as a green hue in the refraction of the pawns.

Figure 5.3: Different color representations: sky dome rendered from a fish-eye perspective. The
image shows three different images of the same scene. The image on the left was rendered utilizing
RGB color representation. The image in the middle was rendered using a spectral data representa-
tion by utilizing Riemann summations (see section 5.4 for details). The image on the right shows
the color difference between the two rendered images according to the color difference formula
CIE76. The largest color difference occurs at the horizon and around the sun and is visible as more
greenish hue at the horizon in the left image.

light sources because of aliasing due to the violation of the Nyquist theorem. Adaptive or com-
posite methods try to deal with this issue [Devlin et al., 2002].

Several spectral data representation methods exist in literature. They can be distinguished
by their underlying concept:

• Time-space based methods. Methods utilizing this concept represent a spectra by dis-
crete points sampled at a constant (uniform) sampling distance [Peercy, 1993]. Point sam-
pled spectra or Riemann summations belong to this category. Riemann summations differ
from point sampling because they represents the spectral data by partial integrals of its
wavelength distribution [Peercy, 1993].

• Linear methods. This approach utilizes a different representation of the data. Methods
like principal component analysis (PCA) are used to obtain the eigenvectors and eigen-
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Figure 5.4: Abstract rendering pipeline based on [Hall, 1999]. This pipeline includes all steps of
a rendering pipeline, but neglects all calculation steps related to the presence of geometry.

values of the data [Johnson and Fairchild, 1999] [Peercy, 1993]. These base functions are
used to represent the spectral data.

• Frequency-space based methods. Methods utilizing this approach represent spectral
data in frequency space by its Fourier coefficients which are obtained by Fourier transfor-
mation [Sun et al., 1999].

• Composite methods. This approach was introduced by Sun [Sun, 2000] and separates
the representation of spectral data into two representation tasks. The first task is the rep-
resentation of the non problematic distribution of wavelengths (low frequent signals) by a
compact method. The second task is the separate representation of the problematic details
(high frequent signals) [Sun et al., 1999] [Sun, 2000].

In addition to these methods, it is also important to distinguish between the purpose of
the chosen representation method. Methods may be designed for accurate data storage, fast
calculation speed or compactness. In my work I focus on representations concerning rendering
applications and their accuracy. I assume that the abstract rendering pipeline given in figure 5.4
represents a rendering application.

5.4 Methods for spectral rendering and their challenges

In this section spectral data representation methods are described in detail.

Point sampling

Point sampling utilizes linear interpolation techniques for reconstruction and is a widely used
method to represent signals or sequences of numerical data. The data is represented by uniform
sampled values in an indexed list. Every sampled value in this list represents an energy level at
a discrete wavelength.

Sun [Sun, 2000] summarizes the advantages and disadvantages of this method in his work.
He states that the method is very accurate if the sample interval is kept low and thus a lot of points
are used for data representation. Precision usually decreases when a higher sample interval is
used.
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However, the method has severe problems when representing fluorescent data, because the
width of the details occurring in this data is usually far below the sampling distance [Sun, 2000].
According to digital signal processing theory [Oppenheim et al., 1999] this introduces errors
due to aliasing because the width of the details violates the Nyquist criterion (see section 4.1 for
details). Therefore, Sun concludes that point sampling is very useful for non-fluorescent data
[Sun et al., 1999].

Peercy [Peercy, 1993] claims that a low number (around 4) of data points is sufficient for
basic applications. However to accurately represent detailed data, a high number of sampling
points is needed. The storage costs of this method corresponds to the number of used sample
points. Calculation complexity grows linearly with the number of used sample points (O(n))
which is very efficient.

Multiplication of two spectra represented by point sampling is realized as an element wise
multiplication of two arrays containing the sample points. This assumes that the sample points
are given in the same sampling distance and scope. If the data differs in these properties it is
necessary to apply sampling rate conversions and clipping to adjust the data.

Riemann summations

This method is similar to point sampling, but each point in the indexed list representing a spec-
trum is a partial sum of the area under its spectral distribution. Riemann summations are cal-
culated by numeric integrals in a constant interval [Bronstein et al., 2001]. Each integral can be
expressed as in equation 5.3. y describes the partial sums within an interval [a, b]. The function
f represents the spectral distribution usually given as an indexed list of discrete values.

y =

∫ b

a
f̄(λ)dλ ≈ ∆λ

b∑
a

f̄(λ) (5.3)

The limits of the summation a and b are given by the selected sampling distance. Peercy
[Peercy, 1993] claims that Riemann summations with n+2 partial sums are accurate for the first
2n + 2 spectral coefficients of the corresponding Fourier series of the data. A given function
can be well described with Riemann summations if only a small number of spectral coefficients
is sufficient to describe the function. This means, that a given spectrum only consists of low-
frequent data, which is the case with most non-fluorescent data were no high frequent details
are present. Peercy [Peercy, 1993] claims that about 4 partial sums are normally sufficient. The
storage costs and calculation complexity growth are similar to point sampling.

Riemann summations are not very well suited to handle complex cases, such as fluorescent
data. The presence of high frequency data requires more spectral coefficient to accurately rep-
resent it by its Fourier coefficients. However, Riemann summations work better in these cases
than point sampling, because they better preserve the area under the function of the data which
has a major impact on accuracy. This can be seen when formulas for the calculation of XYZ are
taken into account where the area under the function plays an important role as the result of the
integrals in equation 2.11, 2.12 and 2.13. Multiplication of two spectra represented by Riemann
summations is realized in the same way as in methods utilizing point sampling as an element
wise multiplication of two arrays containing the partial sums.
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Linear methods

These methods are called linear methods because they combine linear sets of base functions
(eigenvectors and eigenvalues) to represent a spectra [Devlin et al., 2002]. In this work, they are
not used, because they require prior knowledge of the interactions of light and surfaces occurring
in a scene [Peercy, 1993] and are only mentioned for completeness.

The mentioned prior knowledge is built by drawing a set of base functions together. These
base functions describe any spectral distribution occurring in the scene, even spectra resulting
from interactions of light, materials and surfaces. This set is calculated utilizing predictions
about spectral interactions in the scene. Peercy [Peercy, 1993] clearly states, that this method is
only effective if prior knowledge of a scene is available for base function candidate generation.
Principal component analysis (PCA) or singular value decomposition (SVD) is used to calculate
the eigenvalues and eigenvectors needed. The eigenvectors represent the base function of the
initial data set and are used according to their eigenvalue. This is done by starting to eliminate
the eigenvectors with the smallest eigenvalues because they are less important to reproduce the
data than eigenvectors with a high eigenvalue [Stahel, 2008]. The number of used eigenvectors
(dimensions) can be reduced to achieve data compression.

Frequency-space based methods

Fourier transformations allow the representation of time-discrete data in frequency space as a
summation of sine waves. This representation can also be utilized to represent a spectrum.
Usually spectral data is stored as spectral coefficients which are split into their real and complex
parts. Sun [Sun, 2000] utilizes frequency-space based methods to represent low frequent data
of any given spectrum for the use with his composite method. Frequency-space based methods
introduce the need to calculate Fourier transformations and their inversion.

To obtain the Fourier coefficients from discrete data, calculation methods such as dis-
crete Fourier transformation (DFT) or fast Fourier transformation (FFT) have to be used
[Bronstein et al., 2001]. The DFT method has been introduced in chapter 4 in section 4.3.

Composite methods

The basic idea of composite methods is to divide the spectral data into low frequent and high
frequent data. This idea was introduced by Sun [Sun, 2000]. He argues that the smooth data can
be easily handled by representing it with a small amount of Fourier coefficients of its Fourier
series. The high frequent data, which contains the peaks or in other words, regions with a high
relative gradient, is represented by point sampling.

The division of the spectral data into a low and a high frequent signal can be achieved by
dividing it according to the relative slope between two sample points. This is done by processing
the initial spectral data, which is usually available as detailed point sampled data. Deville and
his colleagues [Deville et al., 1994] describe an algorithm for this division in their work. Their
spectrum segmentation algorithm splits peaks from the spectrum if a certain gradient threshold
is reached. The result of this algorithm is a low frequent spectral distribution and a separate list
containing high frequent details.
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Sun’s spectral data representation [Sun et al., 1999] requires that multiplication of spec-
tra must happen in the discrete-time domain as point-sampled data (by applying IDFT on the
Fourier representation) [Sun et al., 1999]. This is due the fact that working at the same time
in discrete-time and frequency domain is too complex. The re-sampling leads to an increased
growth of complexity of this method ofO(n2) [Sun, 2000]. The calculation effort of this method
can be reduced by utilizing the Shannon theorem for the re-sampling distance. There are also
faster implementations of the Fourier transformation such as FFT (Fast Fourier Transformation)
[Bronstein et al., 2001] which reduces the growth of complexity to O(n log n). The limitation
of FFT is that it can only work with a number of sample points of the initial time-discrete data
equal to numbers with the basis of two.

By separating the problematic peaks from the smooth data this method can accurately repre-
sent fluorescent data with only a few values and is therefore a very compact method. However,
the calculation costs are high compared to other methods. The storage costs of this method is
composed of the used spectral coefficients ak and bk and the costs for the storage of the high
frequent data which depends on the spectral data.

Testing spectral data representation methods

In literature, different setups are used for testing spectral data representation methods. Peercy
[Peercy, 1993] uses a test scene with 4 different colors chosen from the Gretag Macbeth color
checker [McCamy et al., 1976]. He evaluated the different methods with a small selection of
fluorescent light sources.

Sun and his colleagues [Sun et al., 1999] compared their method with standard RGB repre-
sentations. They also utilize a comparison between their method and point sampled representa-
tions. Their data set consists of a selection of 7 colors from the Gretag Macbeth color checker
[McCamy et al., 1976] and several different fluorescent light sources.

Rougeron and Péroche [Rougeron and Péroche, 1997] use the CIE standard illuminants C,
D65, F2 with the whole twenty-four colors from the Gretag Macbeth color checker.

Sun [Sun, 2000] tests his method in his work using the whole Gretag Macbeth color checker
and the light sources CIE A,B,C and CIE F1-F12. All of the tests have in common that they
utilize all, or a reduced number, of colors obtained from the Gretag Macbeth color checker.

In my work two sets of initial test data are used. The first consists of spectral data from the
CIE standard illuminants and is composed of the spectral data of the standardized light sources
A,B,C and F2,F7,F11. According to [HunterLAB, 2005], this reduced data-set is sufficient for
testing methods in color applications. The data of the CIE illuminants was sampled at a distance
of 5.0nm for wavelengths ranging from 380nm to 780nm.

The second data set consists of spectral data taken from the NCS atlas. The whole color
atlas was scanned with a spectroradiometer and sampled at a distance of 10.0nm ranging from
wavelengths starting at 380nm an ending at 730nm. For this work, the data gathered from the
spectroradiometer was slightly adjusted because some entries had to be removed due to errors in
the scanning process. Finally, 1,927 entries remained in the data set.

The Gretag Macbeth [McCamy et al., 1976] color checker with its 24 entries is utilized for
some comparison purposes where a high number of entries could not be displayed or handled
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Figure 5.5: This image shows the approach used to measure the accuracy of a chosen method.
Steps 1 and 2 denote the major difference in the computation between the reference data and the
sample used for comparison. Step 1 covers sampling rate conversions, and step 2 includes the con-
version to the respective representation method. The final step 3 represents the color comparison
and is done by applying the CIEDE2000 color difference formula to the sample and the reference.

appropriately. This data was sampled at a distance of 5.0nm ranging from wavelengths of 380nm
to 780nm.

For my work an application based approach was chosen to perform the necessary calcula-
tions for color comparison. The application created for this work operates with spectral data
sets and calculates color differences for them for selected testing scenarios. It also computes
statistical key figures and is able to visualize spectral data and calculation results. The used
comparison mechanism is visualized in figure 5.5.

To compare several methods of data representation the program calculates multiplications
of spectral data and light sources, which corresponds to multiplications that occur in a spectral
rendering applications. The results of these calculations are compared with results of a reference
set consisting of multiplications of densely sampled initial data. The program generates a report
for any combination of colors and illuminants.

The color difference formula CIEDE2000 (see section 2.5 for details) is used to compare the
results of the different representation methods and the results of the reference calculated from
initial data.

The program calculates the following statistical characteristics and saves them to a file: mean
average, standard deviation, median, quantiles of 2.5%, 25%, 75% and 97.5%. These character-
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istics are used to represent the results of the calculations as box-plots which occur in the chapter
“Results”.

Besides doing calculations, the program also has the option to generate reports of the results.
Furthermore, individual color differences are printed in these reports. Two reports of this kind
where used to produce figure A.1 in the appendix.

5.5 Enhancements to Riemann summations

While working with the methods to represent spectral data I had the idea to apply the principle
of Sun’s composite method [Sun, 2000] in another way. Instead of using Fourier series, my
variation uses Riemann summations to represent the smooth parts of a spectrum. Using Rie-
mann summations has the great advantage of avoiding costly algorithms as the discrete Fourier
transformation (compare: Methods based on a composite approach, 5.4). Both, Sun’s and my
method utilize separation of the initial data by relative gradients as shown by Deville and his
colleagues [Deville et al., 1994]. After this step my method differs in concept because it stores
the smooth parts of the spectra as Riemann summations. It utilizes the fact that if no peaks are
present in both spectra involved in a multiplication a point wise multiplication as in standard
Riemann summations implementations is used.





CHAPTER 6
Results

In this chapter I want to present the results of my work. This chapter is divided into two sections.
The first section is on the comparison of different methods to represent spectral data. The second
section is concerned with the impact of the application of low pass filters during the preparation
of the data on the results.

6.1 Test scenarios

I divided the scenarios I used in my work into two groups. The first group was designed for
the comparison of different methods for spectral data representation. The second group was
designed for the comparison of different low pass filter setups. Within these two scenarios a
used method is labeled and evaluated according to the following properties:

• Representation methods and their abbreviations: point sampling [PS], Riemann summa-
tions [RS], Sun’s composite method [CS] and enhanced Riemann summations [RE]. The
relative slope for peak detection is fixed at 30 percent for Sun’s composite method and 20
percent for enhanced Riemann summations.

• Number of sample points or spectral coefficients used: This property corresponds to the
compactness of a method and is given as a number after the abbreviation of the used
method. This number should be interpreted as follows for point sampling and Riemann
summations: any number of sample points includes start- and endpoints. This convention
does not refers to the number of sample points without start- and endpoint which is used
by [Peercy, 1993]. For any other method the number corresponds to the amount of used
spectral coefficients and represents all ak and bk (real and imaginary part of the complex
number) without b0, because b0 is always equal to zero. A number of spectral coefficients
of 5 means, that a0,1,2 and b1,2 are used for calculation, or in other words the first three
Fourier coefficients.

53
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• Type of the used illuminants: Fluorescent illuminants [F] (CIE F2,F7 and F11) or non-
fluorescent illuminants [NF] (CIE A,B and C).

• Used low pass filter during sampling rate conversion. This property describes the selected
filter used during sampling rate changes. Possible values are: none, box, tent, Gauss,
Lanczos, Mitchell, Hann window, Hamming window and Welch window.

• The extent of the filtering window: This property is only used if filters are applied and
describes how many sample points usually influence the filter. Sample values which are
not within 380nm and 780nm are counted as equal to 0.0. Possible values for this property
are uneven integers ranging from number 3 to 21.

• Filter setup. This property is only used if filters are applied and contains the variables
which control the appearance of some of the used filters, like α for the Gaussian filter, τ
for the Lanczos filter and b, c for the Mitchell filter.

In the first group of scenarios no filters are applied. Sampling rate conversions, if applicable,
are applied by linear interpolation and no ideal sampling rate conversion process is used. In this
group the following properties vary: representation method, number of sample points and type
of the used illumination.

6.2 Method comparison

This section is on finding an answer to the question of how accurate methods for the representa-
tion of spectral data work with a large data set? I distinguish between the type of the used light
source, between non-fluorescent light sources (CIE A,B,C, labeled as NF) and fluorescent ones
(CIE F1,F2,F7, labeled as F). To measure how accurate a method works I refer to the statistical
key figures which were computed in the method comparison process.

Method comparison with non-fluorescent data

In this subsection I present the results of all test scenarios designed to answer how accurate a
method works with non-fluorescent data. The statistical characteristics of the results are dis-
played in the table 6.1. The table was sorted according the mean color difference of multi-
plications of light sources with the NCS color data. The used color difference formula was
CIEDE2000. Image 6.1 shows the results of all methods for non-fluorescent light sources as a
box plot. The box plots depict the quantiles and the median of the results [Stahel, 2008].

The statistical figures, especially the mean average in table 6.1 indicates that all methods
work well with non-fluorescent data. The majority of the test results is below an average mean
color difference of 1.0.

The results indicate, that the NCS seems to incorporate data which triggers the peak detec-
tion algorithm used by the composite and enhanced Riemann method. This can be seen in table
6.1 when the results of the methods using Riemann summations [RS] are compared to the en-
hanced method [RE]. If there is no fluorescent data, both methods should yield the same results.
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color difference CIEDE2000
mean
average

standard
deviation

median Q2.5 Q25 Q75 Q97.5

PS32 0.149 0.100 0.123 0.023 0.067 0.218 0.379
RE32 0.159 0.090 0.143 0.038 0.083 0.222 0.355
RS32 0.194 0.114 0.172 0.045 0.094 0.276 0.438
CS15 0.395 0.478 0.315 0.118 0.241 0.372 1.258
PS16 0.605 0.396 0.510 0.103 0.286 0.875 1.499
RE16 0.631 0.362 0.584 0.078 0.340 0.882 1.373
RS16 0.756 0.463 0.663 0.137 0.380 1.084 1.759
CS11 0.866 0.918 0.625 0.138 0.390 1.012 3.216
CS7 1.262 1.151 0.836 0.252 0.574 1.544 4.658
PS8 2.295 1.465 1.994 0.403 1.047 3.347 5.565
RS8 2.622 1.435 2.425 0.540 1.487 3.600 5.677
RE8 2.799 1.679 2.527 0.335 1.480 3.925 6.359
CS5 5.605 3.336 5.122 0.972 3.089 7.416 12.643

Table 6.1: Comparison of all test scenarios, designed to answer how accurate a method works
with non-fluorescent data. The table is sorted according the mean average of the color difference
of each result. The used color difference formula is CIEDE2000. The abbreviations are read as
follows: point sampling (PS), Riemann summations (RS), enhanced Riemann summations (RE),
composite method(CS), quantiles with respective percent value (Q2.5, Q25, Q75 and Q97.5). All
methods with a color difference below 1.0 are printed in bold font. A visualization as a box plot
is given in figure 6.1. The number behind the abbreviation stands for the number of sample points
(e.g. PS16: point sampling with 16 sample points) or spectral coefficients (e.g. CS5: composite
methods with the first 3 spectral coefficients pairs ak and bk without b0).

Figure 6.1: Comparison of methods tested with non-fluorescent data as a box-plot. The numbers
which were used to create this box-plot are displayed in table 6.1.
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color difference CIEDE2000
mean
average

standard
deviation

median Q2.5 Q25 Q75 Q97.5

CS15 0.316 0.222 0.293 0.099 0.199 0.358 0.816
RE32 0.474 0.379 0.341 0.064 0.191 0.667 1.484
CS11 0.719 0.491 0.637 0.134 0.394 0.915 1.997
RE16 1.160 0.612 1.056 0.249 0.709 1.512 2.579
CS7 1.205 1.060 0.789 0.209 0.433 1.629 3.778
RS32 1.642 0.885 1.536 0.281 0.918 2.289 3.529
RS16 2.026 1.033 1.880 0.436 1.249 2.682 4.350
PS32 2.649 1.311 2.501 0.723 1.546 3.642 5.341
CS5 4.608 3.296 3.745 0.629 2.002 6.538 12.697
RS8 4.976 2.497 4.679 1.337 2.998 6.483 10.596
RE8 5.179 3.095 4.506 1.013 2.921 6.836 12.858
PS8 10.669 4.677 9.973 3.877 7.113 13.556 22.262
PS16 11.198 5.281 10.451 3.792 6.776 14.843 22.683

Table 6.2: Comparison of all test scenarios designed to answer how accurate a method works with
fluorescent data. The table is sorted according the mean average of the color difference of each
result. The used color difference formula is CIEDE2000. The abbreviations are read as follows:
point sampling (PS), Riemann summations (RS), enhanced Riemann summations (RE), composite
method(CS), quantiles with respective percent value (Q2.5, Q25, Q75 and Q97.5). All methods
with a color difference below 1.0 are printed in bold font. A visualization as a box plot is given in
figure 6.2. The number behind the abbreviation stands for the number of sample points (e.g. PS16:
point sampling with 16 sample points) or spectral coefficients (e.g. CS5: composite methods with
the first 3 spectral coefficients pairs ak and bk without b0).

However, this is not the case. Thus, it can be concluded that the NCS color atlas contains peaks
with a relative slope greater than 20 percent.

The relation between median and mean average shows that all results are not evenly dis-
tributed, since the median lies below the mean average in every depicted case. This indicates a
skewed distribution of the results.

As a whole, point sampling as the simplest of the introduced methods with the lowest growth
of complexity of O(n) works very well in this scenario. This proves the summary regarding
point sampling from Sun [Sun, 2000]. This method should be the method of choice if any
coverage of fluorescent data is not needed.

The next subsection contains the test scenarios including fluorescent data.

Method comparison concerning fluorescent data

The results incorporating the usage of fluorescent data are presented in table 6.2 and visualized
as a box plot in figure 6.2.

The presence of peaks in the fluorescent data has a noticeable impact on the results of the test
scenarios. Thus, the results from table 6.2 and 6.1 are quite different. Except for Sun’s composite
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Figure 6.2: Comparison of methods tested with fluorescent data as a box-plot. The numbers
which were used to create this box-plot are displayed in table 6.2.

method they are usually inferior to the results obtained by the tests using non-fluorescent data.
All results in table 6.2 and 6.1 show the same connection between median and mean av-

erage. The median is usually below the corresponding mean average, which indicates that the
distribution of the results is shifted.

The results in table 6.2 indicate the following conclusions. Composite methods which incor-
porate the separate handling of low frequent and high frequent data work best with fluorescent
data. Such methods are the composite method of Sun [Sun, 2000] and the enhanced Riemann
summations. The results prove that this separation is a valid course of action. In cases that
a separation is not applicable the results indicate that the methods using Riemann summations
work best. The results also display the dramatically reduced accuracy of point sampling when
working with fluorescent data.

The final choice of which method to use when working with fluorescent data is heavily
dependent on calculation costs and storage requirements. Accurate point sampling needs a lot
of sample values. In contrast, composite methods include a higher algorithmic effort but require
fewer sample values to store a spectrum.

6.3 Impact of low pass filters on point sampling

This section is on the results with low pass filters used during the sampling rate conversion of
the initial data. Only results from point sampling are analyzed because other methods are not
affected by the usage of filters since they usually do not include any sampling rate conversion
process.

Filter comparison with non-fluorescent light sources

The results presented in this section are divided into results incorporating the usage of non-
fluorescent light sources and those incorporating fluorescent light sources. Results are sorted
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according to mean average.
Table A.1 (located in the appendix) contains the results for scenarios using non-fluorescent

light sources. The mean average indicates that the Mitchell filter and the Lanczos window are
good choices. If only a small number of sample points is used, every filter used for sampling rate
conversion improves the results. They tend do be very wide when a small number of sampling
points is used. This filter behavior becomes visible when the filter extent is varied. Results of
different filter extents are depicted in figures 6.3 and 6.4.

Results change when higher numbers of sample points are used. However, only the Mitchell
and Lanczos filter yield improved results. Any other filter worsens the average mean and the
standard deviation to a small degree in all test scenarios. In contrast, with scenarios which
incorporate a small number of sample points, filters usually yield relatively the best results when
their filter extent is small.

Filter comparison with fluorescent light sources

The scenarios concerning fluorescent light sources yield different results. In their cases, the
application of a low pass filter during sample conversion usually improves the result of any test
scenario. Results in table A.2 (located in the appendix) indicate that any low pass filter improves
the result and that the Mitchell and Lanczos filter yield the best results. The filter behavior is
similar to the results regarding non-fluorescent light sources. If a low number of sample points
is used the filter extent should be very wide to achieve good results.

The behavior of the filter parameters shows major changes when compared to non-
fluorescent scenarios. As depicted figures 6.3 and 6.4 almost any filter shows a optimal setup
when used with 8 or 16 sample points, which may be obtained by choosing the setup at minimal
average color difference.

Filter comparison in detail

When I review a specific filter I will refer to the numbers in tables A.1 and A.2 (located in the
appendix), and the results depicted in figures 6.3 and 6.4 for the interpretation of the results.

Box filter

The box filter, despite its simplicity, yields adequate results when used with scenarios with
fluorescent light sources. The results are good when a low number of sample points is given.
This changes when a higher number of sample points is present. Although the results improve
as well, they are inferior to the results of other filters used with the same data.

Tent filter

The tent filter yields similar results to the box filter. Its behavior for different extents when used
with fluorescent light sources and a number of sample points greater than 8 follows a smoother
curve than the box filter. The tent filter is the best choice when using a filter with only one
parameter.
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Figure 6.3: Impact of preprocessing on point sampling. The mean averages of point sampling
involving fluorescent and non-fluorescent light sources were added together for visualization pur-
poses. The application of a suitable filter improves the results of point sampling, involving fluores-
cent light sources, but reduces the accuracy of the results involving non-fluorescent light sources.
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Figure 6.4: Impact of preprocessing on point sampling. The mean averages of point sampling
involving fluorescent and non-fluorescent light sources were added together for visualization pur-
poses. The application of a suitable filter improves the results of point sampling involving fluores-
cent light sources, but reduces the accuracy of the results involving non-fluorescent light sources.
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Welch window

The Welch window yields similar results to the box filter and shows a smooth parameter behavior
similar to the tent filter. In some cases, the results of the application of the Gaussian filter with a
small parameter α tend to converge to the results of the Welch window.

Gaussian window

The Gaussian filter is different from the previous filters because it introduces an additional pa-
rameter α which controls the width of the Gaussian bell. The filter itself is a good choice when
used with scenarios incorporating fluorescent light sources. It tends to settle at a very low α
which results in a filter window similar to the Welch window. If this is the case it is inferior to
the Welch window. However, there is an exception when 8 sample points are used for calcu-
lation. In this case, the parameter results in a typical Gaussian bell and the filter yields better
results than the Welch window.

Mitchell filter

The Mitchell filter performs very well in any given scenario. Due to the existence of total 3
parameters (filter extent, b, c) there are a lot of possible parameter combinations. The average
error in scenarios using fluorescent light sources indicate the existence of a minimum color
difference(figure 6.4). The Mitchell filter is the best choice of all introduced filters and improves
even results of scenarios without fluorescent light sources, although the selection of optimal
parameters seems to be a complex task.

Lanczos filter

The Lanczos filter yields the second best results in any given scenario. Due to only two pa-
rameters, there are fewer possible parameter combinations than for the Mitchell filter. The two
parameters tend to yield similar results in different combinations. It seems that the filter extent
is connected to the parameter τ . A higher extent seems to be connected to a higher τ in order to
yield better results.

Hann and Hamming window

The two windows behave similar to the Welch window and show a similar parameter behavior.
The discontinuities of the Hamming window seem to negatively affect the results in comparison
to the Hann window.





CHAPTER 7
Conclusion

The results of this work make it possible to obtain the following answers to the question, how
well methods for representing spectral data work regarding their accuracy:

1. When working with a digital image synthesis application it is important to know if it will
have to deal with fluorescent data or not. This knowledge has a major impact on the choice
of the method which should be selected for the representation of spectral data. This point
is emphasized when looking at the results of different methods in chapter 6. Almost any
used representation method is sufficient for the representation of non-fluorescent data, but
this does not hold true for fluorescent data.

2. If an application only works with non-fluorescent data, point sampling is sufficient to
represent spectral data.

3. If an application works with both fluorescent and non-fluorescent data a composite ap-
proach to yield accurate results should be used.

4. The results prove that handling fluorescent data requires either complexer methods such
as Sun’s composite method [Sun et al., 1999] or a higher number of sample points to yield
suitable results. Composite methods like [Sun, 2000, Sun et al., 1999] result in the highest
accuracy.

A composite approach, as first introduced by Sun [Sun, 2000], includes the separation of smooth
parts and peaks of a spectrum. Deville and his colleagues [Deville et al., 1994] describe an al-
gorithm for this separation utilizing the relative gradient between sample points.

The second research question is on the impact of the usage of low pass filters during sampling
rate conversion on the methods presented in this work. The results indicate:

1. That there is no improvement for methods based on Riemann summations or composite
approaches. This relates to the absence of any sampling rate conversion.
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color difference CIEDE2000
none Mitchell Lanczos Tent

PS16 11.198 1.644 1.804 2.598
-85.32% -83.89% -76.80%

Table 7.1: This table summarizes the impact of the ideal sampling rate conversion process on the
mean average of point sampling with 16 sample points and test scenarios including fluorescent
light sources.

2. That the ideal sampling rate conversion process including a low pass filter has a positive
impact on the results. Table 7.1 depicts the improvements for point sampling with 16 sam-
ple points and scenarios concerning fluorescent light sources. The Mitchell filter yields the
best result, but introduces 3 parameters (filter extent, b and c). The Lanczos filter yields
the second best results and only introduces 2 parameters (filter extent and tau). Finally the
Tent filter yields the best results for filters with only one parameter (filter extent).

3. That the choice of the ideal filter setup is not trivial, since the optimal filter parameters
depend on the used spectral data.

7.1 Summary of contributions

Regarding the first question on the accuracy of existing methods my work contributes:

1. A ranking of existing methods based on a large spectral data set and the CIE illuminants.

2. An enhancement to Riemann summations derived from a composite approach which ne-
glects the need for Fourier transformations and their complex calculations when applying
a composite approach. The major advantages of my method are that it may revert to stan-
dard Riemann summations if no handling of high frequent data is necessary, and that it
does not require complex algorithms.

With the results of the tests concerning sampling rate conversions my work contributes the
following:

1. My results show that there is a positive influence on the ideal sampling rate conversion
process on point sampling involving fluorescent data.

2. My work shows that the Mitchell, Lanczos and Tent filter are good choices for the prepa-
ration of spectral data.

3. Detailed results concerning the usage of a low-pass filter for different filters and filter
extents for the use with point sampling.
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7.2 Future work

After the numeric comparisons in my work, I think an implementation of a small rendering
application could be a valuable asset. The results of my work could thus be verified by generating
test scenes incorporating spectral effects. Furthermore, this application could be used to measure
performance and perceived accuracy of spectral representation methods.

Future work could also focus on the exploitation of prior knowledge on the colors involved
in a scene [Peercy, 1993]. This knowledge may influence the selection and configuration of
spectral data representation methods.

Another approach for the usage of sampling rate conversions including low pass filter may
include the question which filter setup would be suitable for the representation of one given
spectrum. It should be possible to obtain properties to decide which filter parameters should be
used for sampling rate conversion.
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Figure A.1: Illustration using the Gretag Macbeth color checker chart [McCamy et al., 1976]
to depict the impact of ideal sampling rate conversion. The first image from above shows the
reference for comparison. The second image shows the same color checker filled with colors
generated by utilizing point sampling and no ideal sampling rate conversion. The last image
shows the results utilizing point sampling and ideal sampling rate conversion utilizing a low-pass
filter. The mean average color difference calculated by the color difference formula CIEDE2000
improves from 8.189 to 2.251 (−74.18%).
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color difference CIEDE2000
scenarios using non-fluorescent light sources

no filter box tent
point sampling mean 11.656 9.891 10.032
4 sample values σ 7.117 5.321 5.456

parameters extent = 15 extent = 21
point sampling mean 2.295 2.403 2.320
8 sample values σ 1.465 1.498 1.444

parameters extent = 3 extent = 3
point sampling mean 0.605 0.903 0.657
16 sample values σ 0.396 0.562 0.403

parameters extent = 3 extent = 3
Welch Gaussian Mitchell

point sampling mean 9.901 9.908 9.801
4 sample values σ 5.285 5.299 5.298

parameters extent = 21 extent = 21 extent = 21
α = 0.05 b = 2.0, c = −0.4

point sampling mean 2.327 2.303 1.535
8 sample values σ 1.436 1.445 0.931

parameters extent = 3 extent = 3 extent = 13
α = 0.90 b = −0.2, c = 2.0

point sampling mean 0.675 0.623 0.362
16 sample values σ 0.406 0.399 0.198

parameters extent = 3 extent = 3 extent = 11
α = 1.15 b = 1.0, c = 2.0

Lanczos Hann Hamming
point sampling mean 9.949 10.047 10.038
4 sample values σ 5.382 5.557 5.467

parameters extent = 21 extent = 21 extent = 21
τ = 0.05

point sampling mean 1.954 2.296 2.311
8 sample values σ 1.207 1.432 1.442

parameters extent = 17 extent = 3 extent = 3
τ = 2.70

point sampling mean 0.415 0.620 0.659
16 sample values σ 0.267 0.388 0.411

parameters extent = 17 extent = 3 extent = 3
τ = 2.65

Table A.1: This table contains the best results for test scenarios concerning non-fluorescent light
sources per low pass filter.
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color difference CIEDE2000
scenarios using fluorescent light sources

no filter box tent
point sampling mean 17.783 12.533 13.112
4 sample values σ 6.335 5.378 5.182

parameters extent = 15 extent = 21
point sampling mean 10.669 6.282 5.838
8 sample values σ 4.677 3.174 3.188

parameters extent = 9 extent = 11
point sampling mean 11.198 2.424 2.598
16 sample values σ 5.281 1.207 2.160

parameters extent = 5 extent = 7
Welch Gaussian Mitchell

point sampling mean 12.839 12.864 12.681
4 sample values σ 5.143 5.150 5.215

parameters extent = 21 extent = 21 extent = 21
α = 0.05 b = 2.0, c = −1.0

point sampling mean 6.006 5.960 4.885
8 sample values σ 3.448 3.326 2.286

parameters extent = 9 extent = 15 extent = 11
α = 1.30 b = 1.0, c = −2.4

point sampling mean 2.542 2.543 1.644
16 sample values σ 1.456 1.509 0.793

parameters extent = 7 extent = 7 extent = 19
α = 0.05 b = −0.4, c = 1.0

Lanczos Hann Hamming
point sampling mean 13.010 13.327 13.206
4 sample values σ 5.189 5.269 5.186

parameters extent = 21 extent = 21 extent = 21
τ = 0.05

point sampling mean 5.837 5.992 6.003
8 sample values σ 3.338 3.259 3.346

parameters extent = 21 extent = 13 extent = 11
τ = 1.80

point sampling mean 1.804 2.599 2.636
16 sample values σ 1.113 1.575 2.117

parameters extent = 21 extent = 9 extent = 7
τ = 2.50

Table A.2: This table contains the best results for test scenarios concerning fluorescent light
sources per low pass filter.
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