
Post Processing Effects

Bernhard Steiner∗

Vienna University of Technology
05.08.2011

Abstract

Post processing effects, photo realistic ones as well as non photo
realistic ones, are very important to modern computer games. This
paper tries to give an overview of how post processing works and
which methods can be used to perform them in real-time, giving
hints how these special effects can be implemented on modern
graphic hardware. Additionally, this paper gives an overview of al-
gorithms used for special post processing effects like depth of field
or motion blur, making them comparable to other implementations.

Keywords: post processing, bloom, glow, depth of field, motion
blur, cel shading

1 Introduction

Since the 1972 when ATARI released the first widely used, com-
mercial computer game ”Pong”, the world of video games has
changed a lot. In early years it was enough to have a computer and
a team of one or two people, now hundred or more people work
on modern triple A productions. Also the appearance of the worlds
and levels have changed a lot. In early years the levels looked ster-
ile and unrealistic, today open world games render images that are
very close to the ones taken by cameras in the real world. Mod-
ern graphic hardware allows the programmer to do stuff not even
imaginable in the beginnings of video games. In the last few years
the architecture of graphic cards made some further steps as allow-
ing the game developers to execute their own shader code directly
in hardware, making them able to create effects that increase the
scenes realism dramatically.

One major benefit of modern graphic cards is the possibility of
multi pass rendering, allowing us to perform so called ”Post Pro-
cessing Effects”. Post processing describes the fact that these ef-
fects do not work with scene geometry, but on a previously rendered
image of the scene. In that way post processing effects are what
is often know as image manipulation or image processing equal to
what filters in Photoshop or other image manipulation programs do.
These types of effects allow designers to generate more realistic im-
ages due to the fact that real world camera models can be approxi-
mated. Another group of effects, the non photo realistic ones, make
it possible to create images that look more artistic, for example like
hand drawn comics. More on this can be found in section 6.

In general post processing effects work in the two dimensional im-
age space, performing operations depending only on the informa-
tion in this image, or some additional information that is present in
the same space, as depth information or normal images. Examples

∗e-mail: bernhard.steiner@tuwien.ac.at

for effects working only with image data are Glow (section 5) and
Bloom (section 5.2). From a mathematical point of view a post pro-
cessing effect is a transformation function f (x,y) from a n×m× l
dimensional input matrix to a output matrix (O). The combination
of a color input (three n×m matrix) and a depth image (one n×m
image) can be seen as one input set of dimension n×m× 4 where
n,m describe the resolution of the images:

In×m×l post processing effect−−−−−−−−−−−−→ O (1)

This paper will first give an overview of some techniques used for
post processing (section 2) and then give a historical overview on
some post processing effects like Depth of field (section 3) or Mo-
tion Blur (section 4) that improves the images realism. In the last
section a short overview of a non photo realistic method, toon shad-
ing is presented. This paper aims on making different algorithms
for the same effect comparable to each other, so there are also some
effects described that are a little out of date. This is needed to show
why and how modern implementations are better (or worse) then
previous ones.

2 GPU implementation details

2.1 Per Pixel Filtering

Most post processing effects are defined by a function f (x,y), that
describes for every point (x,y) in an image, how it has to be changed
for the output image. Applying this function f to the whole image
can be performed very fast on the graphic hardware. To perform
this, the original image must be rendered to a texture (in OpenGL
this is done by using frame buffers), then this texture and, if needed,
some other ones are bound to texture units. The drawing is done by
rendering a full screen quad with texture coordinates in the range
from 0 to 1, (figure 1(a)). Performing the described steps would
copy the whole input image to a new output render target. The post
processing effect f can now be applied in the fragment shader (or
pixel shader in DirectX), because this program is executed for every
pixel in the input image.

Reading texels in the neighbourhood of (x,y) can be done in two
ways. The first is, that the size of the input texture is fixed, then the
fragment shader program can read with a fixed offset. If this is not
possible, the original texture can be bound to multiple texture units,
each with another offset, so that all information for a pixel can be
found at the same location on the different units (figure 1(b)).

2.2 Separable Convolution

Another task, which screen space post processing effects often need
to perform, is filtering of an input image with a given filter kernel.
This is, seen from a mathematical point of view, a convolution in
spatial domain of the image matrix with the filter kernel matrix, or
a multiplication if the image is transformed to frequency domain.
As a convolution needs many texture lookups in order to read the

1

Figure 1: Per pixel post processing. (a) using full screen quads to
perform per pixel post processing, (b) textures with

different offsets, so that all information for a pixel can be
found at one location (image from [Nguyen 2007])

neighbourhood of a given point, it is very expansive to calculate.
For example an image of n×m convolved with a k× l filter kernel
needs to perform k× l×n×m lookups.

[Nguyen 2007] shows that for some filter kernels (e.g. the Gaussian
filter kernel) it is possible to decompose this two dimensional kernel
into two one dimensional kernels. In general it is not necessary that
the original kernel is mathematical decomposable, the result of the
two kernels only needs to look correct. The convolution with two
kernels is then performed by filtering first with one kernel and then
filtering the result with the second one. As can be seen, the above
example needs only (k+ l)× (n×m) lookups. Figure 2 shows the
filter kernels and the resulting image of a decomposed Gaussian
convolution.

Figure 2: The Two-Step Separable Approach for Creating Blurs
Efficiently (image and caption from [Nguyen 2007])

3 Depth of Field

A major problem, that is caused by the limitations of using a pin-
hole camera for rendering 3D scenes, is the fact that every object,
regardless to the distance of the camera, is rendered in perfect fo-
cus. Real world cameras, including the human eye, always have a
limited depth of field, due to the lens system they use. In order to
render more realistic images, or to give the artists the opportunity

Figure 3: Thin lens system (image from [Mulder and van Liere
2000])

to control the focus of the viewers, it is necessary to add depth of
field blurring.

3.1 General

When a pinhole camera is used, every point in the 3D scene is
mapped to one point in the image plane. This causes all objects
to have sharp edges. This is not desirable because a lens system
would render sharp edges only in short range around the focus dis-
tance. The further points are away from this distance, the more
they should become blurred. The human eye uses this fact to create
a depth cue, helping the human to understand the order of objects
in the scene. [Zhou et al. 2007]

3.1.1 Camera Models

To understand how this blurring arises, we will take a short look to
a camera model which is a little more complex , the thin lens cam-
era. In this model the lens system of real cameras is approximated
by one lens (Figure 3). An object point O is refracted by the lens
through the image point I.

As described by [Mulder and van Liere 2000], there is a relation
between the power of the lens P, the distance to the object dO and
the distance to the image point dI :

1
P
=

1
dO

+
1
dI

(2)

You can see that the refraction of an object point depends on the
power of the lens. The human eye can adapt its power to focus on
the point of interest. Points further away or nearer to the lens than
this point of interest are out of focus and will be blurred. The area
to which a point gets blurred is called circle of confusion (CoC).

[Bertalmı́o et al. 2004] describes in his paper (related to the work of
[Potmesil and Chakravarty 1981]) why there is a CoC. When there
is an object point A, that is in the perfect focal distance, its reflec-
tion lines cross exactly at the the image plane. Another point’s (B)
reflection lines cross each other behind the image plane (or before
if B is between the lens and A). The diameter of the CoC is given
as the difference between the two lines at the image plane [CoC(B′)
in Figure 4].

[Mulder and van Liere 2000] describes, based on the work of
[Potmesil and Chakravarty 1981], how to calculate the size of the
CoC. According to these papers the diameter of the CoC on the
retina (see Figure 5) is

2

Figure 4: DOF model: A projects to A’, B projects to a circle
CoC(B′) (image from [Bertalmı́o et al. 2004])

Figure 5: Calculation of the CoC (image from [Mulder and van
Liere 2000])

Cr = |Vd −V f |(E−Vd) (3)

where

Vd =
Pd

d−P
d > P

V f =
Pd f

d f −P
d f > P

E = lensdiameter

in which

d = distance to unfocused object
d f = focus distance

dr = distance from lens to retina

P =
1

1
d f

+ 1
dr

With this formulas the size of the CoC on the display screen can be
calculated

Cs =
ds

dr
Cr (4)

where ds is the distance from the lens to the display screen

3.2 Approaches

Many authors like [Barsky and Kosloff 2008] categorize two major
types of depth of field approaches. The first one are geometric ap-
proaches, in which the calculation is done in the 3D object space.
The DoF calculation is done directly in the rendering pipeline. In
general these methods give a better result with less artefacts, a rea-
son for this is that this calculations are more similar to what hap-
pens in real lens systems. The problem with geometric approaches
is that they are far away from calculation images in real time. The
other category of depth of field algorithms are post processing ap-
proaches, which are done in image space. These methods are much
faster and can be done in real time, which is necessary for using
them in computer games. Some of these approaches can be calcu-
lated on the graphic hardware, using information that is available in
the OpenGL or DirectX rendering pipeline.

3.3 Quality criteria for image space approaches

[Kosloff et al. 2008], [Randima 2004] and [Barsky and Kosloff
2008] identify in their works some goals for image based depth of
field algorithms. These can be used to compare different algorithms
against each other.

Per-Pixel Blur Level Control

Describes if it is possible to calculate the amount blur for each pixel
independently of the other pixels. As objects can have complex
shapes, the depth value of neighbour pixel can differ. Some ap-
proaches, as mentioned in [Barsky and Kosloff 2008], use pyramids
or fourier transformations to calculate the blurring over the whole
image. The perfect depth of field algorithm should have full control
over the pixel blur level.

Choice of point spread function

We have described a simple camera model in section 3.1.1, but there
are many different and more complex models. The point spread
function (PSF) describes how light points get blurred by a specific
lens system. Better DoF algorithms allow a width variety of PSFs.

Lack of intensity leakage

As described above the human eye builds a visual cue for all objects
visible to it. One fact, that depth cue depends on, is that unfocused
foreground objects will never blur over objects further away. Some
of the simpler implementations like linear filtering suffer from in-
tensity leakage artefacts.

Lack of depth discontinuity artefacts

Blurred foreground objects will always have soft edges in real world
situations, linear filtering and some other algorithms have problems
with these and calculate sharp edges even if the object is not in
focus. This artefact is visualized in figure 7.

3

Figure 6: Intensity leakage artefacts, (image from [Randima
2004])

Proper simulation of partial occlusion

Partial occlusion means that unfocused foreground objects with
blurred edges may show something of the background. The name
partial occlusion comes from the fact that background objects are
partially blocked by the foreground. You can see this in figure 8.

This effect is very hard to generate in post processing approaches
because the algorithm has only the pinhole camera information at
the beginning.

Performance

The time an algorithm needs to calculate a result image. Some
methods take several minutes, but the faster ones can be done in
interactive, or in real time.

These criteria should give a short overview of features that can be
compared over approaches for depth of field calculation. There is
no perfect solution that satisfies all of this goals now, this is still an
open problem.

3.4 Linear Filtering

[Potmesil and Chakravarty 1981] describes in his work from 1981
the first depth of field algorithm using linear filtering. He does his
calculation in spatial domain so the cost of this filter depends only
on the size of the filter kernel used. In his work he describes a
spatial variant linear filter using a depth dependent PSF. [Barsky
and Kosloff 2008] explain this formulae in their paper:

B(x,y) = ∑
i

∑
j

ps f (x,y, i, j)S(i, j) (5)

where B is the resulting image, (x, y) are coordinates in this image,
(i, j) are coordinates in the input image (share image, S). Some
of the results from Potmesil and Chakravarty’s paper are shown in
figure 9.

Figure 7: Depth discontinuity artefacts, (image from [Randima
2004])

Figure 8: Partial Occlusion, (image from [Barsky et al. 2003])

This simple algorithm has some problems with depth discontinuity
and intensity leakage.

3.5 Ray distribution buffer

In 1994 Shinay described a method that should replace linear filter-
ing and handles visibility problems. (see [Shinya 1994]) This cre-
ates a ray distribution buffer (RDB) for each pixel, in which depth
values are stored for each location from where light comes to this
point on the image plane. This allows you to handle complex vis-
ibility problems by using the z-buffer. When the RDB creation is
finished, the color for each pixel is averaged to get the blurred re-
sult. RDBs perform much better in the way of visibility problems,
but they do this in cost of memory and time.

3.6 Layered Depth of Field

Some approaches try to separate the scene into different layers of
depth, using one blur factor for each of them. [Scofield 1994] de-
scribes one of these methods and uses fast fourier transforms (FFT)
to perform the filtering. Because of this, his methods efficiency is
independent of the size of the PSF. After the blurring process the
layers are combined using alpha blending. This technique elimi-
nates intensity leakage completely and calculates a good approxi-
mation of partial occlusion. The biggest disadvantage is that only
one blurring factor can be applied per layer, so depth changes within

4

Figure 9: DoF using linear filter with different focus depths,
(image from [Potmesil and Chakravarty 1981])

a layer will not be visible. Result of layered depth of field can be
seen in figure 10.

3.7 Perceptual Hybrid Methods

Looking at computer generated images in games or virtual reality
application, you will notice that the center of attention is (in gen-
eral) near to the center of the image (see figure 11). [Mulder and
van Liere 2000] uses this and filters the input image with two dif-
ferent techniques. The first one is a very fast algorithm, that is used
for the peripheral viewing area, and is less accurate. The other one
is a high quality method for the objects in the center of attention
volume.

Figure 10: Layered DOF, (image from [Randima 2004])

Figure 11: Center of attention volume, (image from [Mulder and
van Liere 2000])

3.7.1 High quality algorithm

[Mulder and van Liere 2000] uses a number of discretized CoCs to
perform a two pass rendering (you can see the discretized CoCs in
figure 12). In the first path the CoC borders for each pixel are drawn
starting by the largest on. Only the CoCs for those pixel were drawn
that have a circle of confusion larger or equal to the current CoC.
In the second pass the CoCs are rendered from the smallest to the
largest ones. This time only the CoCs that contains that pixel are
rendered. The advantage of this algorithm is that it can easily be
implemented in graphic hardware by using a texture of the same
size of the input image, containing the depth values in the alpha
channel.

3.7.2 Low quality algorithm

For the fast algorithm, Gaussian pyramids (see [Burt 1981]) are
used. Two pyramids are constructed, one only containing the pixels
in front of the focus plane, the second one the pixels behind the
focus plane. The resulting image is rendered by first drawing the
levels of the front pyramid from front to back. Then the images on
the focus plane are blended. After this the back pyramid is rendered

5

Figure 12: Discretized CoC sizes and their borders, (image from
[Mulder and van Liere 2000])

from back to front. All this is done with depth testing enabled, so
pixels will only be drawn when there is no other object in front of
them.

The advantage of perceptual methods is, that they are faster than
only using the high quality method, while users may not see a dif-
ference, because the low resolution part of the image will only be
in his peripheral viewing area. One problem is, that it is possible
that objects of interest are near to the image borders and not in the
high quality area.

Results of [Mulder and van Liere 2000] can be seen in figure 13.

Figure 13: Perceputal DoF, (image from [Mulder and van Liere
2000])

3.8 Depth of Field on the GPU

In the last few years many methods, running on graphic hardware,
where developed. One of the first methods was described by [Arce
and Wloka 2002] but suffers from intensity leakage. Additional
work on this was published by [Demers 2003] and [Riguer et al.
2003]. The problem with some of these methods is, that they need
special capabilities of the graphic card or additional steps to create
the information needed. In 2007, [Zhou et al. 2007] presented a
possibility to calculate depth of field using only information that is
a by-product of existing rendering technologies. One example for
this is, that they avoid using a special render pass to calculate the
depth information and make use of the z-buffer.

3.8.1 Use of non linear z-buffer

A common problem when working with data from a graphic cards
z-buffer is the fact that the values are non linear and projection de-
pendent. The simplest method to recover the original scenes depth
information is to multiply z-buffer values with the inverted projec-
tion matrix. A rendered point p′ can be described as the transfor-
mation of a point p to a canonical viewing space with the matrix
P.

p′ = p×P (6)

[Zhou et al. 2007] describes why it is not necessary to calculate the
inverse matrix because only z information is needed. A perspective
projection matrix P is in common given as

P =

2n

r−l 0 r+l
r−l 0

0 2n
t−b

t+b
t−b 0

0 0 n+ f
n− f

−2 f n
f−n

0 0 −1 0

 (7)

where r, l, b, t are the edges of the view volume and n, f are the
near and far clipping plane.

Assuming that

p = x,y,z,1 (8)

and the transformed point in the canonical viewing volume

p′ = { x′

w′
,

y′

w′
,

z′

w′
} (9)

we see corresponding to formulae 6 and 7 that

z′ = P33× z+P34 (10)

and

w′ =−z (11)

The resulting depth value z is then given as

z =
−P34

z′
w′ +P33

(12)

As P34 and P34 only refer to n and f , the clipping planes, the val-
ues can be precomputed when the projection is defined. There are
also possibilities to use the vector arithmetic of the graphic card to
compute four points parallel.

3.8.2 Zhou, Chen and Pullens algorithm

This algorithm is designed as a two pass filter, filtering in the first
pass in horizontal direction and in the second pass in vertical di-
rection, using the result of the first pass as input. After the second
pass the results of the two passes get blended and normalized to cre-
ate the output image. This approach is similar to the one used for
separable Gaussian filters. To control the amount of blur they de-
veloped an adaptive filter kernel, that dynamically adjusts the CoC

6

size at every pixel, using three factors to specify the weight applied
to each pixel in the filter.

The first factor is the light intensity function, that is approximated
as described by [Chen 1987] in order to make it applicable in the
pixel shader. This formulae describes a light intensity falloff pro-
portional to the reciprocal of the squared radius of the CoC.

I(rp) =
1
r2

p
(13)

The second factor is the intensity leakage control function L(zp),
that should help to prevent intensity leakage artefacts as they occur
in most post processing filter methods. [Zhou et al. 2007] describes
the use of this function as follows: ”If the sampled pixel P, is farther
from the camera than the focal plane, its weight is adjusted by a
factor based on the size of the circle of confusion of the center pixel
(up to a maximum value of 1), otherwise its weight is unchanged.”.

L(zP) =

{
αrc, zP > z f
1, zP ≥ z f

(14)

in which

rc = radius of the circle of confusion, measured in pixel widths
zP = scene depth of the sampled pixel
z f = scene depth of the focal plane

This formulae reduces the contribution to the amount of blur of a
foreground pixel in a way that it will be zero if the pixel is in focus.
When the focal plane is behind the pixel it stays one.

The third factor is the overlap function (O(rp)), that describes how
much of pixels area is overlapped by the CoC. This can be: not
overlapped, which leads to no contribution, partial overlapped (con-
tribution factor in the range from zero to one) and totally overlapped
with a factor of one. The three cases are shown in figure 14.

Figure 14: circle of confusion of pixel P, (image from [Zhou et al.
2007])

O(rP) =

0, rP ≤ dP

rP−dP, dP ≤ rP ≤ dP+1
1, rP ≥ dP+1

(15)

where

rP = radius of the circle of confusion of pixel P
dP = distance of pixel P to center pixel C

dP+1 = distance of the next pixel outside the kernel

The final weight for a pixel is the product of these three factors

W (P) = I(rP)×L(zP)×O(rP) (16)

For the center pixel only the light intensity function is used

W (C) = I(rC) (17)

The big advantage of the [Zhou et al. 2007] method is, that the de-
sign as a two pass filter approach allows it to use much more sample
points than it would be possible with simple filtering. Results of the
algorithm can be seen in figure 15 and 16.

Figure 15: Cloisters: Left image, no depth of field. Right image,
depth of field with focus on the fountain., (image from

[Zhou et al. 2007])

Figure 16: Factory: Left image, no depth of field. Right image,
depth of field, with focus on foreground pipes., (image

from [Zhou et al. 2007])

3.9 Summed Area Tables

Summed area tables can, in the context of DoF, be used as an al-
ternative for the sampling of the CoC. In addition to this it is not
necessary to calculate a down sampled image or to distribute point
samples. Summed area tables were first described by [Crow 1984]

7

for texture mapping problems. [Hensley et al. 2005] shows how
they can be calculated fast enough for other computer graphic is-
sues like depth of field. The advantage of SAT is that the creation
of them takes a fixed time, independent of the size of the filter. The
SAT creation can also be fastened up by using a doubling technique
on the GPU. In general depth of field methods using summed area
tables have problems with intensity leakage and depth discontinu-
ity.

3.10 Pyramidal Methods

Pyramids, as described in section 3.7.2, can be used to simulate the
blurring effect, which will always occur when objects are out of
focus. [Mulder and van Liere 2000] used Gaussian pyramids only
in the regions that are not important to the user, because they used
a very simple approach and got block artefacts in their images.

That depth of field can be performed for regions in the center of
attention, is shown by [Kraus and Strengert 2007]. They developed
a layered method, but, in difference to the one in 3.6, a point is not
mapped to the nearest plane. In order to avoid depth discontinuity
artefacts on layer edges, it distributes a point to several adjacent
layers. In the next step the layers get blurred by first down sampling
it and then sampling it up. In this step it is necessary to use a weight
function to avoid block artefacts as they would occur with simpler
pyramid types. To create the result image the layers get composed
using alpha blending.

This algorithm avoids depth discontinuity and has the possibility to
control intensity leakage and is in general much faster than other
layered methods. The problem with pyramidal approaches is the
limitation of the PSF to the ones that can be applied to pyramids. A
result from [Kraus and Strengert 2007] can be seen in figure 17.

Figure 17: Factory: Left image, no depth of field. Right image,
depth of field, with focus on foreground pipes., (image

from [Kraus and Strengert 2007])

3.11 Approaches based on head diffusion

Working with Partial Differential Equations (PDE), as the heat dif-
fuse is one, has a long history in computer graphics. Since the
work of [Koenderink 1981] and [Witkin 1987] in the early eighties,
many different papers where published like the work of [Perona and
Malik 1990], in which they describe a method to replace Gaussian
smoothing by a head diffusion.

∂ I
∂ t

(x,y, t) =4I(x,y, t) = ∇ · (∇I(x,y, t)) (18)

The heat equation (given in formula 18) is a second order PDE,
which can be given in numerical form for the n-th step

In+1(i, j) = In(i, j)+
h2

8
4In(i, j) (19)

where h2

8 is the time step (It can be shown, that the greatest value for
h2

8 that ensures stability, is 0.25, so this would be a good choice).

Applying one step of the heat diffusion equals to a convolution of
the image with a Gaussian filter kernel of the width h

In = In−1 ?Gh (20)

According to this running N steps equals a convolution with filter
width of

√
2Nh

In = I0 ?G√2Nh (21)

Assuming that the step width is 0.25, we get a total number of steps
N, that must be performed to get an equal result to the convolution
of the image I with a Gaussian filter with a width of σ :

N =
σ2

2
√

2
(22)

[Bertalmı́o et al. 2004] shows, that a more generalized version of
the head diffusion equation 18 can be used to simulate depth of
field:

∂ I
∂ t

(x,y, t) = g∇(g(x,y, t)∇I(x,y, t)) (23)

In equation 23, g has to control how the depth of the corresponding
pixel influences the diffusion process. To understand how this is
possible, we need to take a closer look on how the diameter of the
CoC, given in equation 3, can be represented. Formula 24 gives us
an alternative version of the former one:

c = α
|Z−Z f |

Z
(24)

where Z f is the focal distance and Z is the distance to the object. α

is a constant value that depends on the focal length of the lens (F)
and a aperture number (n).

α =
F2

n · (Z f −F)
(25)

According to this g can be formulated as

g(x,y) = α ·
|Z(x,y)−Z f |

Z(x,y
(26)

The result of the diffusion process in 23 and 26 gives the same out-
put image as a convolution with a Gaussian filter kernel of the Cen-
ter of Confusions width. As described by [Bertalmı́o et al. 2004]
(linking to the work of [Ladyzhenskaya 1985]), it can be shown,
that these equations are well formed, so there will always be a
unique solution.

The use of the heat equation for DoF has one major benefit: It does
not cause intensity leakage artefacts. This is caused by the fact that

8

it uses the gradient of I (∇I) which is not the same as g multiplied
with the Laplacian4I.

∂ I
∂ t

= ∇ · (g∇I) = g4I +∇ ·g∇I (27)

The second part (∇ ·g∇I) prevents the intensity leakage. For a more
detailed explanation of this see [Bertalmı́o et al. 2004]. Image 18
shows a comparison of the results from formula 23, with a version
without the leakage prevention term.

Figure 18: Top: original image (left)
and Z-buffer (right.) Bottom: Heat diffusion with (left)

and without(right) leakage prevention, (image from
[Bertalmı́o et al. 2004])

4 Motion Blur

Another image artefact, that is caused by the mechanical apparatus
of real world cameras, is motion blur. This effect is the best way
in computer games to simulate speed and can be, especially for
racing games or flight simulators, the most important effect because
images with motion blur look much more realistic. [Nguyen 2007]

Figure 19: Camera apparatus including lens and shutter

When an image is taken by a camera, the shutter opens for a short
time so light can enter the camera and reach the film, that accumu-
lates the incoming light. This is shown in figure 19. The longer
the shutter is opened the brighter the image will be. The time the
shutter stays opened (according to [Potmesil and Chakravarty 1983]
this time is called exposuretime), causes motion blur, which is the
effect that moving objects in a scene get blurred in the direction of
their movement. There are two possibilities why this happens:

• The most common reason for blurred images is, that moving
objects change their position in the exposure time, causing the
film (or sensor in digital cameras) to accumulate the objects
reflection on slightly different positions.

• The other fact is that the shutter takes a short time to change its
position from totally closed to opened (and vice versa). This
effect is in general not visible to the human eye and we will
not talk about this later on.

In computer graphic cameras this effect will not appear due to the
fact that they will always render on discrete position in time, what
would be the same as an infinite short opening time of the cam-
eras shutter. There are several approaches to create motion blur on
rendered images that are used by many modern games (see image
20). Another similar area of research is the removing of motion blur
artefacts from photographs, witch can be seen as the inverse prob-
lem to motion blur rendering. So many methods and algorithms can
be used for both.

Figure 20: Motion blur in Crysis

4.1 Approaches

Early approaches of [Potmesil and Chakravarty 1983] describe
methods of image processing, like transformations to frequency do-
main, multiplying with a uniform blurring function and than per-
form an inverse Fourier transformation. This was a good approach
when motion in every part of the image is equal, but in modern
game scenarios this assumption can not be given.

4.2 Max and Lerner: 2 and a half D method

In 1985 an extension to [Potmesil and Chakravarty 1983] method
was described by [Max and Lerner 1985], where the whole scene
gets split-up in layers, where each layer includes color and opacity

9

information. In addition to this the motion on every layer has to
be the same. All of these layers get blurred by a very fast raster
blurring algorithm. Blurring an image is very easy along the axis
(in x or y direction) so this algorithm skews the original image in a
way that blurring is only needed along the largest blur vector com-
ponent. The whole blurring is constructed as a three pass post pro-
cessing algorithm. The three steps are:

Skewing

As described above the original image raster has to be skewed by
a transform function that shifts images to the needed direction. An
example for this, that is given in there paper, is: ”Suppose a raster is
to be blurred twice as much in the x-direction as in the y-direction.
Then the raster is skewed by shifting downwards by

4y = x · dy
dx

(28)

, which is x2 in our example” [Max and Lerner 1985]. In general the
shifting factor,4y in the example, will not be an integer number, so
it is needed to calculate a weighted sum from the two nearby pixels
for every shifted one. The result of the skewing described in the
example is shown in image 21 (top right).

Figure 21: Raster Blur Algorithm
top-left: original image
top-right: skewed raster

bottom-left: blurred, skewed raster
bottom-right: unskewed raster

(image from [Max and Lerner 1985])

Blurring

This step has to be performed along the largest blur vectors com-
ponent (and because of this always along the other axis than the
skewing step). As an assumption the blurring distance dx (or dy if
dy > dx, from now on we will not mention the other direction every
time it is possible) should be smaller than the size of the skewed
raster.

Simply blurring the image in the given direction would be the eas-
iest option, but this would only clarify along which axis a object
is moving, but not in which direction. This is because a constant

coloured object would be of constant intensity in the center and de-
crease its intensity along the axis of the movement. The brightness
(B) of a pixel x, in this unweighted blurring, is calculated as the sum
of the dx last pixels in this row of the raster S.

B(x) = ∑k = 0dxS(x− k) (29)

In practice this summation can be done very fast by computing it
incrementally

B(x) = B(x−1)+S(x)−S(x−dx−1) (30)

As mentioned above blurring with this method does not indicate
the direction of movement. So a function is needed that produces
long fading streaks and indicates the direction. This can be done by
adding a weighting factor to formula 29.

B′(x) = ∑k = 0dx(dx− k)S(x− k) (31)

(dx− k) is a linear weighting factor over the time, that is zero for
the oldest position and one for the actual position. To conserve the
overall intensity of the image, a weighting factor N can be used. B′
can also be calculated incrementally:

B′(x) = B′(x−1)+(dx+1)S(x)−B(x) (32)

The composition of the result image of this blurring step can be
calculated using formulae 33, where a and b are free variables for
the weighting. Energy conservation is given as long as a+ b = 1.
It is possible to adjust them in a way that a+b > 1 for fast moving
objects because they might get too dark. Some combinations of a
and b are shown in image 22, in the top left photo, constant sum
blur (a = 1, b = 0) is applied. On the top right, linear sum blur is
shown (a = 0, b = 1), in the bottom left image a = b = 0.5 and in
the bottom right image a = 0.1 and b = 0.9. The last case is also
shown in figure 21 in the bottom line.

B′′(x) = a ·M ·B(x)+b ·N ·B′(x) (33)

Unskewing and drawing

After blurring the image, the inverse transformation, to the one de-
scribed in 4.2 in the Skewing paragraph, is applied to the skewed
raster to create an unskewed raster (I(x)). The resulting raster is
then drawn to the screen, combining it with the previously drawn
by using the opacity mask. For this algorithm it is necessary that
the layers get drawn from back to front.

4.3 Motion Blur for Stop Motion Animation

There are two big problems with the algorithm described in 4.2.
At first there is the problem of separating the whole scene in layers
with constant motion, that can be very time consuming. The second
problem, related to the first one, is that motion for every point on
the raster has to be known.

One of the first works, dealing with motion blur on stop motion ani-
mations, were developed by [Brostow and Essa 2001]. Stop motion
animation describes the technique where still images are taken of a

10

Figure 22: Four different blur weights
top-left: constant sum blur
top-right: linear sum blur
bottom-left: a = b = 0.5

bottom-right: a = 0.1, b = 0.9
(image from [Max and Lerner 1985])

scene at discrete time steps and than playing them with a frame rate
high enough to simulate continuous motion.

[Brostow and Essa 2001] calculate the motion of a point by using
a blob motion detection algorithm. For this, they start by using a
frame differencing technique to identify points that are in motion.
First they calculate a median image (Ib) off all subsequent frames
by calculating the median intensity value for each pixel. This image
describes the static background of the scene. The next step is to
calculate an image that only contains points that are different from
the background in a frame (I f). After this a threshold is applied to
the image in a way that:

Im(x,y) =

{
I f (x,y) |I f (x,y)− Ib(x,y)|> threshold
0 otherwise

(34)

The blob generation is than performed on the threshold image (Im)
by grouping continuous regions. The motion calculation used by
[Brostow and Essa 2001] is based on the work of [Bergen et al.
1990] and [Tweed and Calway 2000], using the previously gener-
ated information. The result is a vector map Vi, that is visualized in
figure 23 describing the motion of each point in Im. It is possible
to improve the results by performing a flow correction algorithm on
this result, similar to [Black and Anandan 1996].

Rendering the blur

Now the way each pixel moves from frame ti to ti+1 can be given
by a motion function Li(x,y, t), describing the interpolated offset of
a pixel (x,y) at moment t. For calculating the color of a pixel there
are two other parameters needed: τ , the time between two frames
in seconds and s, the exposure time. To simulate this exposure time
it is needed to integrate Li for a total time of s, half before and half
after ti. The image describing the result from ti to ti + s

2 is called
IA f t . Each pixel in this image can independently be created by the

Figure 23: Vector map Vi for a frame from the film chicken run
(image from [Brostow and Essa 2001])

integral over all pixels lying in the line of Li. The fraction of a path
over a pixel with borders a and b can be expressed as following:

w(x,y) =

∫ b
a (
√

(dx
dt)

2 +(dy
dt)

2)dt

s/2
(35)

For better understanding the movement function Li mapped to a
pixel grid is shown in figure 24:

Figure 24: Color pixel c moved according to the dotted path L.
After choosing a desired shutter speed s, cs RGB values
are redistributed according to the time it spent moving

through each pixel. (image from [Brostow and Essa
2001])

It is also possible to weight the pixels in a non linear way, for exam-
ple by using higher weights at the end or beginning of the motion
vector. The resulting color for a destination pixel (x,y) is then cal-
culated as the color c of this pixel multiplied with the weight w
(c ·w(x,y)). The other half shutter time image before ti is calculated
similar to IA f t and will be referred to as IBe f .

The total result of this blurring algorithm can then be calculated
as the average of IA f t and IBe f , because each of these two images

11

describe the movement for half of the exposure time. Results of this
method can be seen in image 25.

Some authors describe a very similar method to the algorithm from
[Brostow and Essa 2001] by assuming that the total time of s is
before ti and only calculating IBe f . This can be very useful in com-
puter game environments where the image of the next frame It+1 is
not known at the render time ti.

Figure 25: Result from [Brostow and Essa 2001]
Frame from chicken run (Rocky rolling backwards on

the tricycle)

4.4 Accumulation Buffer

The previously described methods all try to integrate over the re-
flected light while the shutter is opened. Some of them solve this
integral explicit, others use it implicit to blur along the moving di-
rection. The use of graphic hardware to solve this integral is not
easy to handle, as numerical integration may not be fast enough to
perform in real time applications. One of the first hardware sup-
ported approaches of motion blur was described by [Haeberli and
Akeley 1990] in his work on accumulation buffers.

The accumulation buffer is a special hardware or software buffer
which calculates the average of multiple images by summing the
images and then dividing them through the number of images. In
modern graphic cards (since 2002, ATI Radeon 9700) the accumu-
lation buffer is always implemented in hardware.

Motion blur with accumulation buffer can be performed by accumu-
lating for the frame Ft over the last N frames, that where rendered
before t. Higher quality can be achieved by calculating subframes
between the presented frames, what is needed for fast moving ob-
jects to prevent from ghosting artefacts. Ghosting is when a moving
object moves too much between frame Ft and Ft−1, so that there are
holes in the image. Ghosting can be seen in figure 26.

The quality of final results of accumulation buffer algorithms de-
pend mostly on the number of subframes calculated between two
frames, because rotational motion is then better visible. Result im-
ages from [Haeberli and Akeley 1990] can be found in image 27.

4.5 Velocity Maps with Multiple Render Targets

Rendering many frames per second to accumulate them may be a
problem for modern games. Another very fast and hardware sup-
ported algorithm is the generation of motion vector maps as a by-

Figure 26: Ghosting or temporal aliasing effect when the motion
blur of a fast moving object is generated using

accumulation buffer but large time interval between
multiple renderings. (image and caption from [Shimizu

et al. 2003])

product of the rendering pipeline, using multiple render targets.
One of these render targets will than be the vector map. Motion
vectors from a frame to the next can easily be calculated with the
matrices of the previous and current frame, calculating the distance
between the points transformed with them. [Nguyen 2007]

The final motion blur is then performed by sampling points for
each pixel along the corresponding motion vector and accumulating
them.

4.6 Offset Warping

Another method that uses multiple render targets is the algorithm
described by [Shimizu et al. 2003]. This algorithm is a two step
approach, where the second step is an iteration method which per-
forms better with each iteration. The approach is visualized in fig-
ure 28.

In the first step a per vertex displacement vector field is calculated
that defines how much warping will be performed on this vertex in
a three dimensional vector. The offset vector depends on the normal
of the vertex, the direction of movement and the movement speed
and can be calculated using formulae 36:

W = (n · v)V (36)

where n is the normal, v is the normalized motion vector and V is
the real motion vector.

The second step performs the per vertex warping, starting with the
maximum warping factor and moving towards the final objects po-
sition. This resulting warped image is then alpha blended with the
input image. This is performed one time in the vector fields di-
rection and one time in the opposite direction. The warping in the
opposite direction is done with a lower scaling factor because trail-
ing edges should be blurred more than leading edges. The alpha
value for blending is inverse to the warping factor, which allows
warping, that is nearer to the original position, is more visible in

12

Figure 27: Motion blur as an accumulation of 23 frames (image
and caption from [Haeberli and Akeley 1990])

the final image. This iterative step can also be seen as a line inte-
gral convolution along the motion.

Image 29 shows the result of this algorithm

4.7 Velocity Maps from Depth Buffer

The method in 4.5 is a very fast and good method for velocity map
creation, but there are some drawbacks. The first is that it is very
hard to integrate an additional render target in an existing game en-
gine, because all shaders need to be rewritten in order to output
velocity information. The second problem has to do with the lim-
ited render target space on game consoles, which may not allow to
maintain an additional render target.

These facts leed to a, a little bit more calculation intensive but more
storage friendly, method described in [Nguyen 2007]. A point in
screen space is given by its x and y component in the frame buffer
and its z coordinate in the z-buffer. These three values can be trans-
formed back to scene space, using the inverse projection matrix and
the methods for non linear z-buffers described in section 3.8.1. The
world space position now allows to calculate the motion vector by
transforming it with the current and the previous projection matrix.

4.8 Split/Second Motion Blur

A method to improve performance for motion blur in video games
is given by [Ritchie et al. 2010]. He describes an algorithm that uses
motion coherence in a scene as it may be given in many games, es-
pecially in racing games. As the motion is constant in big parts of
the scene, all objects that have the same movement get a shared mo-
tion vector ID, using 4 bits, there can be 16 different of them. To get
the image motion vectors, the scene motion vector corresponding to
a motion vector ID can be inverse projected.

Figure 28: Overview of the algorithm (image from [Shimizu et al.
2003])

[Ritchie et al. 2010] advices also to use a fixed number of shaders
with different filter kernel width for the smoothing process. Re-
sults of the motion vector generation can then be used to determine
which shader has to be used.

To achieve better results, in fact the above described method will
not look very good, the use of a texture space motion blur as de-
scribed by [Bala and Dutr 2010] will be needed.

This algorithm is used in the game Split/Second developed by the
Disney Interactive Studios and released in 2010.The big advantage
of this method is that it combines image space motion blur and tex-
ture space motion blur with a very low number of different motion
vectors, which allows to use few samples while producing an op-
tical good result. Screen shots from Split/Second can be found in
image 30.

13

Figure 29: A blurred car in front of a static background (image
from [Shimizu et al. 2003])

Figure 30: Motion blur system in Split/Second from top to bottom;
image space adaptive at high speed, augmented with
texture space blur (image and caption from [Ritchie

et al. 2010])

5 Glow and Bloom

The previously described effects, depth of field and motion blur,
solve problems that come from the limitation of the camera model
in real time graphics. Another one of these effects are Glow and
Bloom.

Glows or halos in the real world come from the fact, that light
is scattered in the atmosphere or in the human eye. When play-
ing computer games or watching films there is a limited amount of
light, that can be transported to the humans eye. The glow effects
calculate halos around bright objects, fooling the human eye in a
way that even objects with a very small halo look much brighter
than the same object without halo. In image 31 the same scene is
rendered without glow (on the top) and with glow (bottom).

5.1 Tron 2.0

[Nguyen 2007] presents a glow algorithm in his work, written for
the computer game Tron 2.0, which is designed to produce large
glow areas over the whole screen and allowing the artists easily to
define the glow factor of their game assets. This technique is fast

Figure 31: Same scene with (bottom) and without glow(top).
(image from [Nguyen 2007])

enough to be performed for shooter games with a minimum of 60
frames per second.

There are four steps that have to be performed in order to render
the glow effects, that are shown in figure 32. First the scene is ren-
dered to a texture (a). Then the glow source texture is created by
rendering the same scene, but outputting the RGB color from step
one multiplied with the glow factor of the object or object part(b).
This can also be combined with the first step using multiple render
targets. Then the glow source texture gets blurred by using the sep-
arable Gaussian filter described in section 2.2 (c). It is also possible
to perform this step at a lower image size, as applying a small filter
kernel to a small image may look very similar to applying a large
filter kernel to a large image. The down sampling can be done using
a lower MipMap level. The final result is then rendered by combin-
ing the original scene image from step one and blending it with the
blurred glow source texture, using additive alpha blending (d).

Glow factor

As described above, a factor, defining how glowing an object is,
is needed to create the glow source texture. This can be done by
defining a glow factor for each object. A better approach also used
in Tron 2.0 is the usage of a glow factor texture, in order to allow
different parts of an object to have different glow. [Nguyen 2007]

14

Figure 32: Rendering steps for glow effects. (image from [Nguyen
2007])

also describes, that it would be good to store the glow information
in the alpha channel of the rgb texture if not needed, because the
alpha channel can be read with the same texture lookup as the color
value. Figure 33 shows such a texture composition and the resulting
glow source texture.

Figure 33: Glow factor in the color textures alpha channel. (image
from [Nguyen 2007])

Results from the computer game Tron 2.0 can be seen in image 34.

5.2 Bloom

Bloom is an effect that’s implementation is very similar to the one
of glow. The bloom effect lets bright areas bleed into darker areas,
producing also the feeling of a higher brightness. The only differ-
ence to the glow effect is the creation of the glow source texture.

The glow source texture is created by rendering the original scene
image (a) applying a threshold value, in order to render only points
that are brighter than the threshold.

In the result image (figure 35), the bloom effect can be seen very
good at the edges of the front man’s head.

6 Toon/Cel Shading

In the width area of post processed special effects there are in gen-
eral two categories, the photo realistic methods and the non photo
realistic ones. Photo realistic rendering tries to produce images that
are as similar as possible to a real photograph. All previously de-
scribed effects, as motion blur or depth of field, are from these type,
trying to cope with the limitations of real time rendering camera
models.

The other class, non photo realistic rendering, comes from a differ-
ent point of view. These methods try to produce more stylized and
suggestive results. One of these methods, the cel shading or cartoon
shading, tries to render pictures that look like good old hand-drawn
comics. An example for this is given in figure 36, showing a teapot
rendered with a photo realistic renderer (top) and with cartoon shad-
ing (bottom). [Decaudin 2006]

Figure 34: Glow effect in the computer game Tron 2.0. (image
from [Nguyen 2007])

Most algorithms for cel shading consists of two parts. First the
object is shaded in a way that all points illuminated by a light source
get the same color, or a limited number of colors depending on
the brightness. This gives the objects the typical comic look. The
second part is the calculation of dark outlines, or if wanted of hard
edges in the object. There are many different approaches to perform
these two tasks, some of them will be explained in the next sections.

Some cartoon shaded renderers support also the rendering of some
other nice features. One of them is the keeping of highlights (phong
highlights), that give a better feeling of the consistency of the ob-
jects material. Another feature are shadows, especially shadows
that are not exact, but look more comic like (see [Gulbrandsen
2010]).

6.1 Algorithm

Most toon shading techniques calculate the first step, the reduction
of the shading values, as a direct output from the 3D scene render-
ing. One method for this is the one described by [Decaudin 2006],
calculating the intensity of an object by using a slightly modified
version of the Phong illumination model:

color =di f f usesource×di f f usematerial+

max(v ·n,0)× specularsource× specularmaterial
(37)

The images for each light get then combined to calculate the result
image. This algorithm calculates an image with constant color over
an object. This is not the best looking possibility for cel shading,

15

Figure 35: Bloomed image from the film ”Elephants Dream”.

but allows the usage of fixed function pipeline graphic hardware
and keeps the highlights, giving the user a better immersion of the
materials appearance.

The major problem, the lack of back face shadows, can be handled
in two ways. The first one is the usage of shadow mapping for shad-
ows, which calculates back face shadows as a by-product. Another
possibility would be to add a simple term to formulae 37:

color = max(sgn(l ·n),0)×di f f usesource×di f f usematerial+

max(s ·n,0)× specularsource× specularmaterial
(38)

This extension calculates colors only if the dot product between the
normal n and the lightvector l is positive. Figure 36 (bottom) shows
an image, calculated with the shadow mapping option. You can see
that all lightened parts of the teapot have the same color.

Another algorithm (described in [Horsch 2007]) is, that in the frag-
ment shader the shading value is calculated using Phong’s illumina-
tion model. This smooth shading values get then mapped to discrete
values, for example four different ones. In a high level shading lan-
guage like GLSL, this step can be performed very fast and easy by
rounding each smooth value up to the next value. For example the
value in the range of [0,0.25] gets mapped to 0.25. Figure 37 shows
the difference to the previous method. Here the object is not only
coloured with one color, but with four different colors, depending
on the light intensity.

It is also possible to perform the rounding in a post processing stage.
This can be very useful if the comic drawing effect has to be added
to an existing rendering engine, because it can be hard to change all
shaders to perform the rounding.

A speed up can, according to [Barla et al. 2006], be achieved when
the brightness values are stored in a 1D texture from dark to bright.
When a value, that is according to the dot product in the Lamber-
tian shading model always between 0 and 1, should be mapped to
one of these discrete values, the texture can be queried with nearest
neighbour filtering, allowing to map the value to the nearest one in

Figure 36: A teapot rendered with a photo realistic method (top)
and with cartoon shading (bottom). (image from

[Decaudin 2006])

the texture. The only difference to the previously described calcu-
lation is, that values get not only rounded up, but get mapped to the
nearest one.

6.2 Line Drawing

First implementations of line drawing algorithms for cel shading
tried to create the outline edges of objects only. This was done by
inverting the back face culling and drawing the scene only in black.
To produce thick lines this back face drawing has to be performed
multiple times with different offsets. There are two major problems
with this method. First is that lines can only be drawn outside of
an object, but not in an object. As [Decaudin 2006] describes in
his work, dark lines in a comic strip correspond to locations in the
scene, where the view vector is a tangent to the objects surface. The
other problem is the performance aspect, as the back faces have to
be drawn multiple times.

[Decaudin 2006] and [Horsch 2007] show in their works two ap-
proaches working with post processing. [Decaudin 2006] uses the
z-buffer of a rendered scene, because it is calculated as a by-product
of the coloring step. On this depth information he performs 3x3 dif-
ferential operator g of order one.

g =
1
8
(|A− x|+2|B− x|+ |C− x|+2|D− x|+

2|E− x|+ |F− x|+2|G− x|+ |H− x|)
(39)

16

Figure 37: A teapot rendered with [Horsch 2007]’s algorithm.
(image from [Horsch 2007])

where A...H correspond to the positions (x) neighbourhood as
shown in figure 38. This operator is then used to identify gradi-
ents in the z-buffer image, using g with a threshold gives p, that
identifies outline edges in the image.

Figure 38: Neighbourhood of point x for the differential operator.
(image from [Decaudin 2006])

p = min
{(

gmax−gmin
kp

)2
,1

}
(40)

where gmin, gmax are the minimum and maximum gradients in the
3x3 neighbourhood and kp is the threshold. When kp is high, there
will be less edges than with a small kp.

The calculation of edges in an object can be performed with a
higher order differential operator on the z-buffer, but this is numer-
ical not stable. [Decaudin 2006] suggest to use a first order differ-
ential operator to an image with normal information of the scene,
which can be calculated using multiple render targets. The operator
can be the same as for the objects outline, with respect to the fact
that normals are three dimensional.

The method described by [Horsch 2007] uses an edge detection fil-
ter, as the Laplace filter ([Jaehne 2005], on the color image. This
operation can be done very fast on the graphic hardware.

Results from [Horsch 2007] and [Decaudin 2006] can be seen in
images 39 and 40.

6.3 Comic Style Shadows

As described above, [Decaudin 2006] as well as [Horsch 2007] can
calculate back face shadows as booth work with Phong’s illumina-
tion model. But in comic styled rendering it is often not wanted to

Figure 39: Results of [Horsch 2007]’s algorithm. A scene from
(image from the movie Rendez-vous)

separate the lightened areas exactly from the ones in shadows, as
shown in image 42 (left). [Gulbrandsen 2010] proposes not to use
the exact normals of the geometry, but to use a simple hull geome-
try, that’s normals get stored in a normal map. Such a hull for the
model shown in image 42 can be seen in 41.

In the fragment shader the normal of the geometry and the normal
of the normal map gets interpolated using a factor β which allows
the user to control the amount of influence of the hulls normal. This
algorithm produces smoother shadows, masking unwanted details.
Such shadows can often be found in mangas, the Japanese comics.
Results from [Gulbrandsen 2010] can be seen in figure 42 (right),
especially in the person’s face.

6.4 Attention based details

In hand drawn comics the unimportant parts of a scene, for exam-
ple objects in the background, are drawn with less details as the
important ones in the foreground. [Barla et al. 2006] refers to that
as Level of Attention (LOA) and suggest to use two dimensional
textures for the brightness lookup.

These textures can be seen as a stack of one dimensional cel shading
brightness textures (along the x-axis) with different level of detail
(along the y-axis, 0 is lowest detail level). An example texture is

17

Figure 40: Results of [Horsch 2007]’s algorithm. (image from
[Horsch 2007])

Figure 41: Hull with normals for the model shown in 42. (image
from [Gulbrandsen 2010])

given in image 43, where D is the detail level and n · l refers to the
Lambertian shading model.

There are two methods of choosing the detail level, described by
[Barla et al. 2006], for a given pixel. The first one defines the detail
level only in addiction to the depth in the scene. The formulae for
this is:

D = 1−
log(z

zmin
)

log(zmin
zmax

(41)

where zmin is the depth before the highest detail level is used and
zmax the one of the lowest detail level. zmax can also be written
as zmax = r× zmin with a scaling factor r. This leads to a simpler
version of formulae 41:

D = 1− logr(
z

zmin
) (42)

This formulae depends only on the parameters of the minimal and
maximal details depth, but does not allow to draw the highest detail
at a given focal distance (zc), similar to depth of field. For this
another formulae for D can be used:

Figure 42: Shadows in comic styled rendering. Left: Shading with
geometry normals only, Right: Shading with a

combination of geometry normals and hull normals
(image from [Gulbrandsen 2010])

Figure 43: Example for a 2D detail brightness map (image from [])

D =

1− log(z
z−min

)/log(z−max
z−min

), z < zc

log(z
z+min

)/log(z+max
z+min

), z≥ zc
(43)

with z±min = zc± zmin and z±max = zc± rzmin

6.5 Free hand sketches

Hand drawn sketches are in general drawn by the artist only using
lines in one color. This can be achieved very easy by only using the
techniques described for line drawing in section 6.2. But only very
few artists have the ability to draw exact lines, so it is, according to
[Horsch 2007] needed to deform the image. To make hand sketches
more realistic it is needed to draw the lines a few times, every time
with a different warping factor. It can also look good when shadows
are also drawn in the image. Results for this can be seen in figure
44.

7 Conclusion

Post processing effects are a very important part of today’s com-
puter games. Nearly every modern game has some type of post
processing in its rendering pipeline, trying to render either more re-
alistic images or create fancy effects on the screen. For some of the

18

Figure 44: Pencil drawing (top) and ink drawing (bottom) (image
from [Horsch 2007])

effects mentioned above like Glow or Bloom there is an agreement
about how these can be produced, other ones like motion blur are an
ongoing field of research producing new and better or faster ways
of rendering them every year. In the last few years there was even
a massive development of new effects like screen space ambient
occlusion and others.

Beside computer games and film rendering there is another big re-
search area, the virtual reality, in which post processing effects play
an important role, as they can simulate effects depending on the
used camera system. In this area a lot of work is done in improv-
ing post processing effects so that they can produce more and more
realistic results in real time.

From today’s point of view the usage of post processing effects will
increase in the next generation of video games, as the development
of faster hardware allows programmers to create complexer effects
and use more of them for every frame.

References

ARCE, T., AND WLOKA, M., 2002. In-
game special effects and lighting.
http://www.nvidia.com/object/gdc in game special effects.html.

BALA, K., AND DUTR, P., 2010. Motion blur for textures by means
of anisotropic filtering.

BARLA, P., THOLLOT, J., AND MARKOSIAN, L. 2006. X-toon:
an extended toon shader. In NPAR ’06 Proceedings of the 4th
international symposium on Non-photorealistic animation and
rendering.

BARSKY, B. A., AND KOSLOFF, T. J. 2008. Algorithms for
rendering depth of field effects in computer graphics. In IC-
COMP’08 Proceedings of the 12th WSEAS international confer-
ence on Computers, World Scientific and Engineering Academy
and Society (WSEAS) Stevens Point, 999–1010.

BARSKY, B., HORN, D., KLEIN, S., PANG, J., AND YU, M.
2003. Camera models and optical systems used in computer
graphics: Part ii, image-based techniques. In Computational
Science and Its Applications ICCSA 2003, vol. 2669 of Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg,
983–983.

BERGEN, J., BURT, P., HINGORANI, R., AND PELEG, S. 1990.
Computing two motions from three frames. In In Proceedings of
International Conference on Computer Vision 1990, IEEE, 27–
32.

BERTALMÍO, M., FORT, P., AND SÁNCHEZ-CRESPO, D. 2004.
Real-time, accurate depth of field using anisotropic diffusion and
programmable graphics cards. In 3D Data Processing, Visual-
ization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd
International Symposium on 3D Data Processing, Visualization,
and Transmission.

BLACK, M. J., AND ANANDAN, P. 1996. The robust estimation of
multiple motions: parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding 63, 75–104.

BROSTOW, G. J., AND ESSA, I. 2001. Image-based motion blur
for stop motion animation. In SIGGRAPH ’01 Proceedings of the
28th annual conference on Computer graphics and interactive
techniques, ACM New York, 561–566.

BURT, P. J. 1981. Fast filter transform for image processing. Com-
puter Graphics and Image Processing 16, 1, 20–51.

CHEN, Y. C. 1987. Lens effect on synthetic image generation based
on light particle theory. The Visual Computer 3, 3, 125–136.

CROW, F. C. 1984. Summed-area tables for texture mapping. In
SIGGRAPH ’84 Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, ACM New York,
207–212.

DECAUDIN, P. 2006. Cartoon-looking rendering of 3d-scenes.

DEMERS, J., 2003. Depth of field in the ’toys’ demo. Ogres
and Fairies: Secrets of the NVIDIA Demo Team presened at
GDC2003.

GULBRANDSEN, O. 2010. Controlling the dark side in toon shad-
ing. In SIGGRAPH ’10 ACM SIGGRAPH 2010 Posters, ACM
New York.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In SIGGRAPH ’90
Proceedings of the 17th annual conference on Computer graph-
ics and interactive techniques, ACM New York, 309–318.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA1, A. 2005. Fast summed-area table generation
and its applications. Computer Graphics Forum 24, 3, 547555.

19

HORSCH, M. 2007. Nicht-photorealistisches rendering mit pro-
grammierbarer grafik-hardware.

J. KRIVANEK, ZARA, J., AND BOUATOUCH, K. 2003. Fast depth
of field rendering with surface splatting. In Computer Graphics
International, 2003. Proceedings, IEEE, 196–201.

JAEHNE, B. 2005. Digitale Bildverarbeitung, 6. Auflage. Springer-
Verlag Berlin Heidelberg.

KOENDERINK, J. J. 1981. The structure of images. Biological
Cybernetics 50, 5, 363–370.

KOSLOFF, T. J., TAO, M., AND BARSKY, B. A., 2008. Depth
of field postprocessing for layered scenes using constant-time
rectangle spreading.

KRAUS, M., AND STRENGERT, M. 2007. Depth-of-field rendering
by pyramidal image processing. Computer Graphics Forum 26,
3, 645–654.

LADYZHENSKAYA, O. A. 1985. The Boundary Value Problems of
Mathematical Physics. Springer Berlin / Heidelberg.

MAX, N. L., AND LERNER, D. M. 1985. A two-and-a-half-d
motion-blur algorithm. In SIGGRAPH ’85 Proceedings of the
12th annual conference on Computer graphics and interactive
techniques, ACM New York, 85–93.

MULDER, J. D., AND VAN LIERE, R. 2000. Fast perception-
based depth of field rendering. In VRST ’00 Proceedings of
the ACM symposium on Virtual reality software and technology
2000, ACM New York, 129–133.

NGUYEN, H. 2007. GPU Gems 3. Pearson Education, Inc.

PERONA, P., AND MALIK, J. 1990. Scale-space and edge detec-
tion using anisotropic diffusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12, 7, 629–639.

POTMESIL, M., AND CHAKRAVARTY, I. 1981. A lens and aperture
camera model for synthetic image generation. In SIGGRAPH ’81
Proceedings of the 8th annual conference on Computer graphics
and interactive techniques, ACM New York, 297–305.

POTMESIL, M., AND CHAKRAVARTY, I. 1983. Modeling motion
blur in computer-generated images. 389–399.

RANDIMA, F. 2004. GPU Gems: Programming Techniques, Tips
and Tricks for Real-Time Graphics. Pearson Education, Inc.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. 2003. Real-time
depth of field simulation. In ShaderX2 Shader Programming
Tips and Tricks with DirectX 9. Wordware Publishing Inc.

RITCHIE, M., MODERN, G., AND MITCHELL, K. 2010. Split
second motion blur. ACM New York.

SCOFIELD, C. 1994. Graphics Gems III. Academic Press Profes-
sional, Inc. San Diego.

SHIMIZU, C., SHESH, A., AND CHEN, B. 2003. Hardware accel-
erated motion blur generation. EUROGRAPHICS 22.

SHINYA, M. 1994. Post-filtering for depth of field simulation with
ray distribution buffer. In Proceedings of Graphics Interface 94,
Canadian Information Processing Society, 59–66.

TWEED, D., AND CALWAY, A. 2000. Motion segmentation based
on integrated region layering and motion assignment. In Pro-
ceedings of Asian Conference on Computer Vision 2000, 1002–
1007.

WITKIN, A. P. 1987. Scale-space filtering. In Readings in Com-
puter Vision. Morgan Kaufmann Publisher Inc.

ZHOU, T., CHEN, J. X., AND PULLE, M. 2007. Accurate depth
of field simulation in real time. Computer Graphics Forum 26,
1, 15–23.

20

