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ABSTRACT
Visualization systems often require large monitors or projection
screens to display complex information. Even very sophisticated
systems that exhibit complex user interfaces do usually not exploit
advanced input and output devices. One of the reasons for that is
the high cost of special hardware. This paper introduces Augmen-
ted Visualization, an interaction method for projection walls as well
as monitors using affordable and widely available hardware such as
mobile phones or tablets. The main technical challenge is the track-
ing of the users’ devices without any special equipment or fiducial
markers in the working area. We propose to track natural features
of the display content with the built-in camera of mobile devices.
Tracking the visualized scene allows pose estimation of the mobile
devices with six degrees of freedom. The position and orientation
information is then used for advanced interaction metaphors like
magic lenses. For a group of experts who are analyzing the data in
front of the same screen, a personal augmented view of the visua-
lized scene is presented, for each user on his/her personal device.
The prototype Augmented Visualization System achieves interactive
frame rates and may lead to a greatly enhanced user experience.
The paper discusses the design and implementation questions and
illustrates potential application scenarios.

Categories and Subject Descriptors
I.3.6 [Computing Methodologies]: Computer Graphics—Interac-
tion Techniques; I.4.9 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Applications

General Terms
Design, Experimentation, Human Factors
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1. INTRODUCTION
In scientific visualization, usually a group of individuals or ex-

perts analyze a scene on a large monitor or projection screen. Dur-
ing the discussion the participants may have different interests re-
garding their field of specialization. For example, in the medical
domain a surgeon, a cardiologist, and a neurologist may want to
investigate different aspects of the underlying data. We propose the
use of their personal mobile devices (e.g., smartphones or tablet
PCs such as an iPad) to interact with the visualized scene and to
explore user-specific information that is not visible on the common
screen.

Our prototypic implementation extends an existing volume vi-
sualization system. It processes volumetric data sets and renders
2D views of the content. In addition to the common large-screen
visualization, users can see their own augmented renderings on
their mobile devices according to their interests. To get an en-
hanced view of the discussed data, the users have to orient their
camera-equipped handheld devices towards the screen. The aug-
menting elements are spatially registered to and superimposed on
the original common display content. For interaction, the touch
screens of the mobile devices are used and the movements of the
devices themselves can also be mapped to actions. The positions of
the mobile devices are estimated relatively to the common screen.
This is done by comparing local feature correspondences of the
rendered and the captured images using state-of-the-art computer
vision techniques. The novelty in our approach is to track the com-
mon display’s dynamic content, i.e., the changing visualized scene
itself. We targeted an affordable setup without any high-priced
tracking devices, therefore, we focused on pure visual tracking us-
ing off-the-shelf mobile devices with built-in camera. We aimed at
finding a markerless approach because passive markers are obstruc-
tive and lead to lower user acceptance, while active markers would
add unnecessary complexity to the visualization setup. Instead, we
chose a pure software-based solution that does not need any addi-
tional special hardware and does not change any aspect of existing
visualization systems. The only assumption we made is that the
discussed content is a planar image which can change regularly in
time, but not at very short intervals. The core of our system is a



Figure 1: The magic lens metaphor in augmented visualization

tracker module that performs natural feature tracking on the video
input of the user devices. Through the redundancy in natural fea-
ture tracking, we actually gain better robustness against lighting
changes and occlusion. The system prototype presented in this pa-
per requires close-to-real-time video streaming between the mobile
client and the tracker. We also propose modifications of the sys-
tem architecture that would allow us to replace video streaming
with more compact data streaming towards the mobile clients. The
realization of the second approach will be possible when the ap-
plied visual tracker component becomes available on the selected
mobile platform. The estimated six-degrees-of-freedom pose infor-
mation and other input events (e.g., button or touch-screen events)
are transmitted back to the rendering system, which creates a per-
sonal augmented view of the scene for each user. The personal
augmented image is presented on top of the camera preview at the
user side. Fig. 1 and Fig. 2 show illustrations of the idea. We named
the approach Augmented Visualization, where the term augmented
refers to Augmented Reality (AR), a technique that overlays virtual
objects and information on the real world to enhance human visual
perception.

Figure 2: Illustration of the Augmented Visualization System

This paper focuses on the realization of an Augmented Visual-
ization System. Section 2 gives a short overview of recent related
projects, followed by several potential applications illustrated in
Section 3. Section 4 deals with the design and implementation
questions of our system introducing the main components in de-
tail. Section 5 presents applications realized with the prototype to-
gether with performance measurements, while Section 6 discusses
the limitations of the proposed technique and concludes the paper.

2. RELATED WORK
In recent years, several projects have dealt with interaction de-

sign for ubiquitous computing environments and some of them have
applied visual localization approaches. Slay and Thomas [26] de-
scribe a universal interaction controller for in-situ visualization of
ambient information across multiple heterogeneous displays. In
their scenario, mobile devices are connected with public displays
and take the role of a controller to interact with the content shown
on the displays. A mobile device can also act as a clipboard, to
temporarily store information, and transfer it between different dis-
plays. In an earlier work, Slay et al. [25] apply artificial markers

to interact with a virtual scene in a very intuitive way, by show-
ing special markers for the camera as commands. Jeon et al. [16]
implemented different interaction scenarios for a group of peo-
ple at a large display using camera-equipped mobile phones and
marker-tagged objects on the screen. In both papers, authors use
the ARToolKit library [2] for fiducial marker detection, which is
a predecessor of the augmented reality framework applied in our
system.

During the last years, the recognition of visual markers with mo-
bile phones has become a widespread technology for interaction
with real world objects. The information gathered through mobile
image processing serves as a physical hyperlink to access actual
object-related information [6]. Ballagas and Rohs [7] developed a
mouse-click function for large screens using ghosted fiducial mark-
ers. They appear on a regular grid on the screen, at the time the user
clicks with the mobile phone. The recorded image is used to loca-
lize the position of the click. A significant drawback of this method
is the use of additional 2D barcodes to determine the position of the
camera. Further, this method is only meant to use the mobile phone
like a computer mouse in order to drag and drop elements on the
screen. This is the objective of the DirectPointer [17] system as
well but with the breakthrough of avoiding artificial markers.

In 2007, Boring et al. [10] presented the Shoot & Copy tech-
nique for recognizing icons on advertisement displays. The user
simply takes a picture of the information of interest, and the system
then retrieves the actual data represented on the screen, such as a
stock quote, news text, or a piece of music. The technique does not
require visual codes that interfere with the shown content. The cap-
tured image region is analyzed on a server (the display’s host com-
puter), which compares image patches to its own screen content
and identifies the captured region. A reference to the correspond-
ing data is sent back to the mobile phone. Once the user has time to
view the information in more detail, the system allows to retrieve
the actual data from this reference. This is the first approach to
use pieces of screen content as markers. However, the recognition
procedure is fairly slow and is limited to previously stored and an-
alyzed advertisements.

Quack et al. [19] present a slide-tagging application for smart
meeting rooms. The users have the possibility in employing their
camera phones to click on slides or sections of slides, that are
being presented on a projection screen. The user simply takes a
photo of the current slide with the mobile phone, and the phone
sends a query to the processing server, where scale-invariant lo-
cal features are extracted from the photo. Then for each feature a
nearest-neighbor search in the reference database of the presenta-
tion’s slides is executed. The resulting potential matches are ve-
rified using projective geometry constraints. This way the actual
slide of the presentation can unambiguously be determined. The
user gets the information present on the slide to record it for his/her
notes or to add tags.

The TouchProjector [11] is an approach to interact with a dis-
tant display through live video. It transforms a mobile phone’s



touch-screen events to camera rays and enables interaction with in-
tersected objects shown on the display. The drawback of the imple-
mentation lies in the pose estimation algorithm which is restricted
to rectangle-shaped static objects (e.g., photos) on the screen.

Our interaction idea was inspired by recent works of Sanneblad
and Holmquist [24] and Kalkofen et al. [18]. They used the magic
lens metaphor (originally from Bier et al. [9]) in graphics and
augmented reality applications to discover hidden structures.

We neither want to tag the projected scene nor the displaying
screen with any artificial markers, therefore we apply natural fea-
ture tracking (NFT), a markerless visual tracking solution. Its par-
ticular advantages are that no special hardware equipment and no
changes are needed in the working area. Arbitrary-shaped natural
objects are detected and collected to build a knowledge database of
the screen content. The most successful NFT methods are based
on sparse features such as scale-invariant interest points and local
descriptors. The realization of our interaction method became pos-
sible by applying the natural feature tracking algorithm described
by Wagner et al. [29] [30] within an augmented reality framework
developed at the Christian Doppler Laboratory for Handheld AR.

3. APPLICATION SCENARIOS
We have defined different interaction scenarios from which two

volume visualization applications have been realized until now. We
combine the discussed hidden data exploration and controller per-
spectives in one technique, and apply the magic lens metaphor in
which the handheld device corresponds to the lens. Fig. 1 shows
an ’X-Ray Vision’ application. In volume rendering, transfer func-
tions define the color and opacity values of volume elements based
on their density value. Thus, a transfer function determines what
is shown and how it is colored on the rendered image. For the ’X-
Ray’ scenario the position and orientation estimation of the client
device must be very accurate. The calculated pose matrix is com-
bined with the modelview matrix of the original rendering, and
subsequently with an additional transformation component (e.g.,
zooming). The generated overlay image depicts the same volume
dataset but rendered using a different transfer function to see the
bones inside the body. It appears to the user as if the mobile camera
could see through the skin. If the viewpoint of the original model
changes, the overlay has to change accordingly. It is also possible
to modify specific rendering parameters depending on the position
or orientation of the camera. The mobile device could be turned
into a preview lens, for instance, by interpolating between two or
more transfer functions while it is being rotated or while the user
is walking from the left to the right of the screen. An orientation-
sensitive menu as described by Adelmann [6] can easily be realized
this way.

If the volume data is accompanied by segmentation information
(for example, one knows which voxel belongs to which organ of the
patient in a medical dataset) then direct scene annotation becomes
possible. Rays are cast from the known user position into the vol-
ume and labels annotate the scene at intersections with objects (see
Fig. 3(a)). In a similar use case there is no overlay at all, the user
can see the camera preview on the mobile screen. If the screen is
touched, a ray is cast into the volume and the user can interact with
the data (select, brush, etc.) at a specific location, similarly to the
work of Boring et al. [11].

The idea is not limited to volume rendering applications only.
The screen content can originate from any visualization software
starting from cartographic applications (Fig. 3(b)) through archi-
tectural visualizations to visual analytics. The common aspect in
these applications is that they can contain hidden states (e.g., the
layout of a pipe infrastructure, tourist attractions, etc.) that can be

(a) Direct scene annotations

(b) Cartographic Visualization

Figure 3: Application concepts (mock-ups)

explored through the lens but take up no permanent screen space
[9] [20]. Furthermore, the generated images are very rich in vi-
sual features, which is of particular importance for natural feature
tracking.

Like the content, the physical setup is also relatively free to
chose. Our system is applicable around a tabletop display with-
out any modification. The PaperLens system [28] offers an alter-
native to the presented approach for tabletops. It has the advan-
tages of supporting multiple users with lenses and higher resolu-
tions while relying on passive IR-markers in a controlled environ-
ment. Our system, on the other hand, does not need any extra
markers and is portable to practically any display. We envision
multiplayer board games where the tabletop screen, which acts as a
dynamic board, tells stories and plays animations during the game,
while each player can see self-related hidden objects on the board
by looking through his mobile phone.

The following section first gives an overview on the basic con-
siderations of designing such an augmented visualization system,
and then the three main components are described in detail.

4. DESIGN AND IMPLEMENTATION
Visualization, e.g., volume rendering, is a computationally de-

manding task. Therefore, the rendering component needs to run on
a special machine, i.e., a high-end PC, to achieve interactive frame
rates. If the overlay image is a different view of the same data,
it is advantageous to render it on the same machine. We aim at



minimizing the dependencies between the rendering part and the
other parts of the system to make the visualization software easily
interchangeable.

The core task is the reliable tracking of the mobile devices, be-
cause their positions determine the overlays to be rendered and their
motions are translated to interactions with the scene. We need to
track them with six degrees of freedom, i.e., three translation pa-
rameters x, y, z and three orientation parameters yaw, pitch, roll,
to know each client’s viewpoint. The tracking system is required
to capture the movement trajectory and deliver the current pose of
each device close to real time. A built-in camera and a fast enough
CPU are nowadays available on most mobile devices, making them
suitable for computer vision approaches.

The quality of vision-based tracking highly depends on the ca-
mera and image sensor characteristics such as lens distortion, image
resolution, or frame update rate, which tend to be rather poor on
mobile devices. Inside-out visual tracking, where the camera is the
object or is attached to the object being tracked, could be enhanced
by fusing the vision-based tracking with other on-board sensor in-
puts such as a gyroscope, accelerometer and compass. We consider
the implementation of a hybrid tracking approach to be out of the
scope of this paper. Efficient and robust techniques for tracking
fiducial markers do exist. However, the use of artificial black and
white patches or retro-reflective markers is invasive and especially
in the context of volume visualization unacceptable. With contem-
porary advances in technology it is possible to track an arbitrary
previously known planar textures, if they contain enough distinc-
tive features. In the computer vision literature this is referred to
as natural feature tracking (NFT) or model-based planar tracking.
Since this technology allows real-time tracking and 6DoF pose es-
timation without any intrusive changes to the visualization system,
we chose to apply this technique.

To keep the system modular, we define the tracker component to
be separate from the other parts. It deals with the necessary com-
puter vision algorithms: feature detection, feature description, fea-
ture matching, outlier detection, pose estimation, and patch track-
ing. First, distinctive keypoints, e.g., corners, of the reference image
are extracted. The patches around the keypoints are described as
feature vectors and a database of features is built. Then, simi-
larly, features of the captured image are extracted and described,
and these feature vectors are compared to the database elements.
If one finds at least three matches, the relative transformation (ho-
mography) between the two images can be estimated. Using the
homography and the camera parameters the pose of the camera re-
lative to the target can be calculated. As the target is the visualiza-
tion screen, a local coordinate system between the screen and the
mobile device can be established. The input to the tracker compo-
nent are the reference images and the camera images. The output
is a 4× 4 pose matrix. The typical resolution of a projected refer-
ence image is about 1024x768 pixels, and a typical captured camera
image is about 320x240 pixels. As we want to compare these two
continuously changing image streams, i.e., the interactively ren-
dered scene and the captured video, in a wireless infrastructure, it
turns out to be beneficial to run the tracker on a PC and not on the
mobile device. The video images are much smaller than the refer-
ence images and therefore data transfer is reduced. Another option
to reduce bandwidth needs would be to extract the features of the
captured image on the mobile device, and to transfer only the ex-
tracted features over the wireless network. Finally, we decided to
use a PC-side tracker and stream the camera preview from the mo-
bile devices to the PC. With this approach it is possible to exploit
existing tracking libraries for PCs and to avoid a dependency on a
specific mobile device model.

The mobile component incorporates all the user-interaction fea-
tures and is treated as the third major part. For data transfer in
such an indoor use case, IEEE 802.11b/g WiFi connection with
up to 54Mbit/s data bandwidth is the most suitable one among the
available features on a common smartphone. A drawback of our
prototype approach is that because of the wireless video streaming,
the number of clients is limited by the connection bandwidth.

Fig. 4 shows the main system components of the augmented
visualization system and indicates their functions in temporal or-
der. A scene is rendered and presented on the common screen
and simultaneously sent to the tracker for analysis. The mobile
device captures the screen content and continuously streams it to
the tracker. The tracker component extracts features from the ca-
mera images and searches for matches within the database of the
reference features. Then, it estimates the relative pose from fea-
ture correspondences. The pose information is sent back to the
mobile device and to the rendering component to enhance user in-
teraction and to render the personal overlay. The overlay imagery
is presented on the user device. The three major building blocks
are described in more detail in the following sections.

Figure 4: The three main components and their operation steps
in our augmented visualization system

4.1 Rendering Component
Our prototype is implemented in C++. For testing and show-

casing augmented visualization, we chose to integrate our software
modules in a volume rendering framework named VolumeShop [12].
It contains several plugins for visualization-research purposes. All
plugin parameters are stored in an XML file, which describes the
whole visualization session. The parameters are potential targets
of our investigation to be changed according to the movements of
the mobile device. The properties of different plugins and frame-
work elements can be linked together. Changing one parameter in a
plugin also causes a refresh of all linked parameters. We extended
this software with additional plugins to enable remote user input
from the mobile device.

The JPEG-encoded target (reference) images are streamed from
the renderer into the tracker through a wired TCP/IP connection. In
VolumeShop, a TCP server belongs to each viewport, and clients
that are interested in the content change can connect to such a
server. The packet format consists of a short header containing the
width, height and byte-length of the image followed by the com-
pressed frame. VolumeShop streams only when a new image is
rendered. To inject interaction events into the rendering software,



an additional plugin was developed. As all the rendering properties
are stored in XML format, and events occur in an asynchronous
manner, we implemented a plugin that opens a UDP port and parses
remote XML commands. The XML format supports different data
types including integers, floats and matrices. To produce the over-
lays for the user, a secondary viewport was set up with own param-
eters and rendering properties. These parameters, for instance the
modelview matrix or a transfer function value, can be linked to pro-
perties of the remote interactor plugin. Further, a new plugin was
needed to convert between the different matrix notations of the ren-
derer (row-ordered) and the tracker (column-ordered), to convert
between different coordinate axes, and to convert the metrics from
number of pixels to display measures. Through this plugin pipeline
the user can remotely control the properties and parameters of the
visualization system with the touch screen and the movements of
the mobile device.

4.2 Tracker Component
A multi-purpose augmented reality framework of the Christian

Doppler Laboratory for Handheld AR (CDL) has been selected as
the tracker module of our augmented visualization system. A great
advantage of the framework is that it enables writing portable AR
applications which run both on the PC and on several mobile plat-
forms. User applications are written in C++ and the framework
can be parameterized by XML files. The core component that per-
forms tracking is a complex computer-vision library embedded in
the framework. It has several features for both marker-based and
markerless tracking applications. It has been designed to support
PCs as well as mobile phones with limited resources. Hence, its
memory requirements are very low and processing is very fast. The
theoretical background of the applied natural feature tracking algo-
rithm is described by Wagner et al. [29], [30].

Although the CDL-tracker can perform feature tracking on sev-
eral types of mobile phones, we decided to run it on a PC and
stream the small camera images from the mobile device to it. Our
task was to create an application that runs in the framework and ex-
ploits its natural feature tracking capabilities. The original tracker
was designed to detect a static target texture on a single video input.
Therefore, we extended it to allow the interactive change of our dy-
namic target image and recalculation of the target-feature database
at runtime. During the first development stages, calibrated web-
cams were used to feed video into the tracker. Later, when the
wireless streaming between the mobile component and the PC was
working, the developers at CDL extended the framework by a net-
work video input using the GStreamer [3] video-streaming library.
GStreamer uses a filter chain to decode network streams and in-
ject the video frames into the tracker. The cameras were calibrated
using the Matlab Camera Calibration Toolbox [4] to undistort the
incoming camera images for achieving better target detection. The
pseudocode of the custom application within the tracking frame-
work is listed in Algorithm 1 and 2.

In the prototype augmented visualization system, the CDL’s nat-
ural feature tracker [29] is responsible for all the tracking tasks. It
consist of an internal target detector and an internal patch tracker.
As the detection step is computationally much more demanding, it
is done once, then the tracker switches to the patch tracking mode
for increased performance. For the first frame, or if the dataset has
changed, i.e., a new picture arrived from the rendering component,
it repeats the detection step using robust feature matching. The de-
tection algorithm is based on a fine-tuned version of the FAST cor-
ner detector [22] [23] and the SURF [8] feature descriptor. Match-
ing the features of the captured image with the database is done
with a brute force approach in our case. As the database is not very

large (approximately thousand reference vectors) and the database
changes frequently, the brute force approach is not slower or even
outperforms the use of any special search structure like SpillTrees,
which are common in other NFT applications [29]. To compare
the feature vectors, the Euclidean distance is used. After outlier-
removal steps, the camera pose is estimated from the detected fea-
ture correspondences.

Once the target was found using feature matching, the internal
patch-tracker component takes over and estimates the camera mo-
tion on the fly. Starting with an approximately known camera pose,
e.g., from the previous frame, it searches for affinely warped ver-
sions of known features at predicted locations on subsequent im-
ages. Such a patch tracking approach is more efficient than track-
ing by detection. It makes use of the fact that both the scene and the
camera pose change only slightly between two successive frames,
and therefore, the feature positions can be successfully predicted.
The patch tracker is able to track the affinely warped patches under
extreme tilts close to 90 degrees and even under extreme lighting
changes and reflections [30].

Algorithm 1 Pseudocode of the main thread in the custom applica-
tion in the CDL-framework

loop
get input video frame from the mobile device
if PatchTracker finds previous target then

//estimate and send pose
estimate pose
send pose (in XML structure)

else
//run feature matching
detect keypoints on video frame
create feature descriptors
match descriptors to feature database
remove outliers and calculate homography
if target found then

restart PatchTracker
end if

end if
end loop

Algorithm 2 Pseudocode of the thread responsible for dynamic tar-
get change in the custom application in the CDL-framework

loop
//wait for new reference image
receive target frame from network socket (blocking)
convert color JPEG to grayscale RAW
downsample both the old reference and the new reference
calculate sum of pixel differences
if sum ≥ threshold then

//the new received reference differs from the previous one
set Tracker inactive
detect keypoints (for multiple scales)
create feature descriptors (for multiple scales)
refresh feature database (delete previous features)
set reference as new target
set Tracker active

end if
end loop



4.3 Mobile Component
As interaction device, we selected the Google Nexus One (HTC

Desire) mobile phone with the Android 2.2 operating system. The
choice is based on the broad set of features (IEEE 802.11 b/g and
Bluetooth connections, touch-screen, Qualcomm Snapdragon 1 GHz
CPU, 512 MB DRAM, 5 MP autofocus camera, hardware support
for H.263 video and JPEG image encoding, etc.) and because of
the openness of the operating system. In our mobile-phone ap-
plication we grab and compress the camera images. We stream
them to the tracker component either as continuous video or sepa-
rate frames. Further, we intercept user input and send events to the
visualization system. Finally, the client is able to receive and show
the VolumeShop-generated overlay imagery.

The tracker needs camera images with a resolution of 320x240
pixels for robust pose estimation. With 8bit uncompressed gray
values such an image takes about 320x240x1Byte = 75kB storage.
With 25 fps this means almost 2MB/s transfer-bandwidth need.
Without compression even the WiFi access is too slow for multiple
users. With the chosen Nexus One phone, there are two favourable
options to overcome this problem: either use the built-in H.263
video encoder and stream the video per RTP/RTSP or use the built-
in JPEG encoder and send individual frames. We decided to avoid
software video encoding (e.g., by using the open-source x264 li-
brary) because we expected high processing costs and thus signifi-
cant delay on the selected phone model.

Our first attempt was to use the Android MediaRecorder API
which accesses the camera and the hardware encoders, but it hides
them from the developer. The media recorder is intended to be
used for audio and video recording into files. It seamlessly com-
presses media and stores them on the SD-card. Android supports
the MPEG4-SP, H.263, and H.264 video encoders, the AMR-NB
audio encoder, and the MP4, and 3GP container formats to be used
by the built-in media recorder. As the Android operating system is
based on Linux, a network socket (as well as any other device) is
equivalent to a file and can be accessed through a FileDescriptor
interface. By giving a socket’s file descriptor to the media recorder
as destination, the compressed video output can be streamed to the
network. The available video players usually support a network-
stream input of standardized RTP packets. So do the VLC Media
Player [5] we used for testing, and the GStreamer that has been in-
tegrated into the tracker framework. The use of RTP is desirable, so
that we can avoid the manual loading and initialization of the video
decoders. These steps are all done automatically in the player soft-
ware. Therefore, the compressed video stream needs to be parceled
into payloads of distinct RTP packets. To avoid the need of any re-
laying application on the PC, the RTP packets must be constructed
already on the mobile device. This is solved by looping back the
socket on localhost and receiving the media output in a secondary
thread. In that second thread RTP packets are assembled from the
received stream according to the standard [1]. To control the data
flow, an RTSP server is also implemented in the mobile client. The
packets are either sent to the connected RTSP clients or deleted de-
pending on the state of an internal softswitch. The switch is set by
the RTSP server thread. During testing, the VLC player could suc-
cessfully connect to the RTSP server and stream the live video from
the phone. However, the transfer had a significant delay of about
three seconds, which is not acceptable for position tracking. The
developed components could be applied in the future for other pur-
poses, but we found that this solution is impractical for our augmen-
ted visualization system. Therefore we also implemented a second
approach using JPEG-compressed frame streaming.

The tracker’s GStreamer input chain is also capable of inject-
ing video that is received as separate JPEG frames (also called

Motion JPEG). The drawback of the Motion JPEG approach is
that the temporal coherence between subsequent frames is not ex-
ploited for compression and thus the bandwidth need is higher. On
the other hand, this method is highly suitable for our goal of hav-
ing minimal delay. For the sake of simplicity, we replaced the
cumbersome MediaRecorder API with the Android Camera API.
The RTP/RTSP communication is also substituted by simple UDP
transfer. We process small-resolution preview frames with a high
refresh rate instead of taking full-resolution images. On the Nexus
One, only the uncompressed NV21 (also called YUV 4:2:0) pre-
view format with 15 fps refresh rate is available. After color con-
version and JPEG compression, the frames are sent to the tracker
component with delay in the order of 100ms.

The pose from the tracker is received within a separate thread
and after filtering it is also shown to the user in a text box for
testing. The overlay images from the rendering component arrive
into a decoder and are presented to the user. He/she can choose
to see the camera preview or the overlays. Note that by extend-
ing the GUI with a GLSurfaceView object (a built-in Android tool
to present OpenGL renderings) on top of the camera preview we
could achieve traditional augmented reality.

4.4 Putting It All Together
We tested the prototype of our augmented visualization system

with the following setup. The rendering component was installed
on a regular desktop PC, the tracker component was set up on a
commercial laptop computer, and the mobile component was run
on the Nexus One phone. The computers were connected via twisted
pair cables to a LinkSys WRT54GL wireless access point. The mo-
bile phone communicated with the other components over WiFi.

Fig. 5 depicts the data flow between the individual components
during operation. The operation steps are as discussed during the
design section: 1) A scene is rendered and presented on the com-
mon screen and simultaneously sent to the tracker for feature ex-
traction; 2) The mobile device captures the common scene and 3)
continuously streams it to the tracker; 4) the tracker component es-
timates a relative pose from the two images and sends it back to the
mobile device and to the rendering component to 5) enhance user
interaction and to 6) render the personal overlay.

Figure 5: Prototype of our augmented visualization system.
Lines with the same color represent the same data flow. Line
width indicates the relative bandwidth need.

5. SYSTEM TESTS
We implemented the following test applications that should hint

at the possibilities an augmented visualization system opens.
The first scenario (Fig. 6) presents a magic lens application. The

volumetric data set is rendered from the calculated viewpoint of



the mobile device using a different transfer function showing other
hidden features of the data (in this case the bones inside the body).
The registration between the two images is not perfect due to the
fact that the camera is not exactly in the middle of the phone. This
is, however, a remediable inaccuracy. By applying a user-defined
transformation depending on the distance between the camera and
the common screen, a zooming effect becomes possible.

(a)

(b)

(c)

(d)

Figure 6: A medical magic lens application – both the back-
ground image and the overlay are rendered on the fly from vol-
umetric data

The second use scenario shows a similar application with two
mobile devices. At this point the multi-user setup requires multiple
tracker instances on separate computers and handling of multiple
video streams. However, the restriction to exactly one video input
in CDL’s tracker is supposed to change in the near future. As Fig. 7
shows, the clients have personalized transfer functions. Here the
opacity transfer function is the same, but the colors are different.
The users can move and rotate the common scene through the touch

(a) (b)

Figure 7: Multi-user scenario with user-specific transfer func-
tions

Figure 8: Orientation-dependent transfer function with a
tablet

screens and trackballs of their devices.
The third test scenario (Fig. 1) demonstrates the interactive change

of rendering parameters depending on the mobile device’s orienta-
tion. The overlay rendering is registered to the position and the
transfer function depends on the orientation of the mobile device.
One can see different tissues by adjusting the orientation. The same
application using a projector and a tablet PC is shown in Fig. 8.

The fourth scenario is used for delay measurements. The mobile
device shows the camera preview, no overlay image is generated.
The estimated pose is injected into the renderer to alter the view
matrix. This way the user is able to move and rotate the virtual ca-
mera in the scene by moving and rotating the mobile device around
the screen. The delay between the real and the virtual movements
is imperceptible.

In all applications, we achieve interactive frame rates between 8
and 20 fps. The first three applications suffer from a delay of about
0.5–1.0s between the device’s movements and changes in the over-
lay image. The camera images are taken at a frequency of 15Hz
and transferred to the tracker with a delay in the 100ms range. The
fourth scenario showed that the steps up to and including pose es-
timation are executed very fast. Most of the delay is caused by
generating the personal overlay on the PC and transferring it to the
mobile device. This was the case even with very small generated
images (128x128 pixels). The size of the applied volumetric dataset
was 256x256x166 samples. Table 1 lists the achieved frame rates
using different setup parameters. We varied the resolution and the
quality of the camera images that are sent to the tracker. We found
that camera images of size 320x240 pixels with JPEG quality set to
80% of the raw image are sufficient for continuous tracking. In case
of a camera resolution of 176x144 pixels, the tracking degrades or
fails. The abrupt change of the target image causes an outage in
tracking, but a new matching step re-initializes and the system re-
covers in less than 1 second. The tests with a projection screen
instead of a PC display involved the same calibration steps – with
a small caveat: The tracking works only in the case of a distortion-



free projection, since the relative distances between feature points
need to be the same as in the reference image, to successfully cal-
culate the homography.

Table 1: Frame-rate results with the magic lens application
Camera
resolution

JPEG
quality

Overlay
resolution

Average FPS

320x240 80% 128x128 19.2
320x240 80% 256x256 15.2
320x240 80% 320x240 14.7
320x240 80% 800x480 9.5
640x480 80% 256x256 8.8
640x480 30% 256x256 9.2
320x240 30% 256x256 16.8
176x144 80% 256x256 19.1 (degraded)
176x144 30% 256x256 failed
320x240 80% 128x128 14.2 (2 users)
320x240 80% 128x128 11.4 (3 users)

(a) (b)

(c) (d)

Figure 9: Detected keypoints are indicated by black crosses on
various images from IEEE Vis 2010 papers. a) Speckmann and
Verbeek [27] necklace maps: 779 keypoints; b) Dykes et al. [14]
map legends: 3015 keypoints; c) Javed et al. [15] time series:
17 keypoints; d) Cao et al. [13] facet atlas: 1288 keypoints

Our observation was that a reference image (1024x1024 pixels)
contains thousands and a captured image (320x240 pixels) hun-
dreds of keypoints in case of the illustrated head dataset from dif-
ferent viewpoints. However, the technique is not limited to vol-
ume visualization. The assumption of a relatively rarely changing,
feature-rich, planar target is viable for many visualization scenar-
ios. To provide evidence for this statement, we took several images
from IEEE Vis 2010 conference papers and counted the number
of identified keypoints. The images were resized to 512x512 pixels
and converted to 8-bit grayscale. The applied FAST corner detector
performs a test at each pixel P by examining a circle of 16 pixels

surrounding P. A keypoint is detected at pixel P if the intensities of
at least 12 contiguous pixels are all above or all below the inten-
sity of P by a given threshold [22] [23]. The threshold value was
set to 100, as in our previous volume rendering scenarios. The de-
tected keypoints are shown on four sample images in Fig. 9. We
found that in one out of the ten examined visualizations (Fig. 9(c))
our approach is not suitable because the number of keypoints is not
high enough.

6. CONCLUSION & FUTURE WORK
The implemented augmented visualization technique contributes

to previous display-interaction methods by applying markerless vi-
sual tracking for pose estimation. The presented use scenarios are
achieved with interactive frame rates and acceptable delay. The
prototype was built using the VolumeShop volume rendering frame-
work, however, the technique is also suited for other visualization
scenarios with any visualization software that implements the pre-
sented minimal interface. The tracking works smoothly at 15 fps,
but the rendering frame rates strongly depend on the complexity of
the underlying data set. The pose estimation was also tested with a
large projection screen without any decrease in performance. How-
ever, a test with a glossy laptop screen with significant reflections
gave negative results.

The bottleneck of the system is definitely the radio transmis-
sion in both directions. With the current implementation, the pre-
sented system does not scale well with the number of users, be-
cause the wireless bandwidth limits the number of video streams to
the server. Once the tracker algorithm is available on the selected
mobile platform, the system can be extended for more users with
some architectural modifications as described in the following. Our
application is portable from the PC to the mobile device, as it is em-
bedded into the framework of CDL. The PC could run an instance
of the application which receives the rendered images, detects the
features and builds the feature database. In the next step, it sends
the database to all mobile clients in a multicast manner. The clients
could run our application as well, but with feature detection and
patch tracking on their own camera images. This setup would re-
duce the required bandwidth drastically. Only the database needs
to be transferred and only once to a multicast group instead of the
distinct whole video streams.

Besides better scalability of the system, it would be interesting
to extend our approach for multiple target images, e.g., a display
wall consisting of several displays, and focus more on new inter-
actions. The works of Jeon et al. [16] and Roman et al. [21] on
interaction methods scalable for multi-user multi-display systems
are good starting points. As also mentioned, the accompanying
sensors of the mobile devices could be used for hybrid tracking
with improved accuracy. The accelerometer data could be utilized
to turn the mobile phone into a Wiimote-like 3D interaction de-
vice. The mobile user interface could be further enhanced by a
bundle of features, for instance a context-sensitive GUI for each
participant, etc. A built-in algorithm for automatic calibration of
the transformation matrices for different displays would make our
system an out-of-the-box enhancement for visualization systems.
In conclusion, our prototype implementation opens a wide variety
of research directions.
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