
D I S S E R T A T I O N

Large Data Scalability
in Interactive Visual Analysis

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller,
Institut E186 für Computergraphik und Algorithmen,

eingereicht an der Technischen Universität Wien,
Fakultät für Informatik,

von

Dipl.-Ing. Harald Piringer,

Matrikelnummer 9826148,
Flötzersteig 284/B4,

A-1140 Wien

Wien, im Mai 2011

ii

Large Data Scalability in Visual Analysis

Harald Piringer, PhD thesis

Application Thread

Event
Handling

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

terminatesrestarts

accesses

invalidates

modifies

changes reuses

Data
Parameters

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

Partial Results

mailto:piringer@vrvis.at

http://www.vrvis.at/forschung/visual-analysis

ii

Abstract

In many areas of science and industry, the amount of data is growing fast and often already
exceeds the ability to evaluate it. On the other hand, the unprecedented amount of avail-
able data bears an enormous potential for supporting decision-making. Turning data into
comprehensible knowledge is thus a key challenge of the 21st century.

The power of the human visual system makes visualization an appropriate method to
comprehend large data. In particular interactive visualization enables a discourse between
the human brain and the data that can transform a cognitive problem to a perceptual one.
However, the visual analysis of large and complex datasets involves both visual and compu-
tational challenges. Visual limits involve perceptual and cognitive limitations of the user and
restrictions of the display devices while computational limits are related to the computational
complexity of the involved algorithms.

The goal of this thesis is to advance the state of the art in visual analysis with respect to the
scalability to large datasets. Due to the multifaceted nature of scalability, the contributions
span a broad range to enhance computational scalability, to improve the visual scalability of
selected visualization approaches, and to support an analysis of high-dimensional data.

Concerning computational scalability, this thesis describes a generic architecture to facil-
itate the development of highly interactive visual analysis tools using multi-threading. The
architecture builds on the separation of the main application thread and dedicated visualiza-
tion threads, which can be cancelled early due to user interaction. A quantitative evaluation
shows fast visual feedback during continuous interaction even for millions of entries.

Two variants of scatterplots address the visual scalability of different types of data and
tasks. For continuous data, a combination of 2D and 3D scatterplots intends to combine
the advantages of 2D interaction and 3D visualization. Several extensions improve the depth
perception in 3D and address the problem of unrecognizable point densities in both 2D and
3D. For partly categorical data, the thesis contributes Hierarchical Difference Scatterplots
to relate multiple hierarchy levels and to explicitly visualize differences between them in the
context of the absolute position of pivoted values.

While comparisons in Hierarchical Difference Scatterplots are only qualitative, this thesis
also contributes an approach for quantifying subsets of the data by means of statistical mo-
ments for a potentially large number of dimensions. This approach has proven useful as an
initial overview as well as for a quantitative comparison of local features like clusters.

As an important application of visual analysis, the validation of regression models also
involves the scalability to multi-dimensional data. This thesis describes a design study of an
approach called HyperMoVal for this task. The key idea is to visually relate n-dimensional
scalar functions to known validation data within a combined visualization. The integration
with other multivariate views is a step towards a user-centric workflow for model building.

Being the result of collaboration with experts in engine design, HyperMoVal demonstrates
how visual analysis is suitable to significantly improve real-world tasks. Positive user feed-

iii

back suggests a high impact of the contributions of this thesis also outside the visualization
research community. Moreover, most contributions of this thesis have been combined in a
commercially distributed software framework for engineering applications that will hopefully
raise the awareness and promote the use of visual analysis in multiple application domains.

Kurzfassung

In vielen Bereichen von Wissenschaft und Industrie wachsen die Datenmengen so rasch, dass
sie oftmals nicht mehr ausgewertet werden können. Andererseits birgt die noch nie dagewesene
Verfügbarkeit von Daten ein enormes Potential zur Unterstützung von Entscheidungsfindun-
gen. Die datenbasierte Wissensgewinnung ist somit eine zentrale Herausforderung des 21.
Jahrhunderts.

Dank der Leistungsfähigkeit des menschlichen Sehapparates ist Visualisierung ein
geeignetes Mittel um große Datenmengen zu verstehen. Speziell interaktive Visualisierun-
gen ermöglichen einen Diskurs mit Daten, der es erlaubt, kognitive Aufgaben durch visuelle
Wahrnehmung zu lösen. Allerdings umfasst die visuelle Analyse großer und komplexer Daten
Herausforderungen sowohl was die Darstellung, als auch was die Berechnung angeht. Erstere
betreffen perzeptuelle und kognitive Grenzen von Benutzern während letztere eng mit der
Komplexität der eingesetzten Algorithmik zusammenhängen.

Ziel dieser Dissertation ist die Erweiterung des Stands der Technik im Bereich visueller
Analyse bezüglich der Skalierbarkeit für große Datenmengen. Entsprechend der vielen
Facetten des Themas Skalierbarkeit spannen die Innovationen dieser Dissertation einen weiten
Bogen von berechnungsbezogener Skalierbarkeit über die Verbesserung der visuellen Skalier-
barkeit ausgewählter Visualisierungsansätze bis hin zur Unterstützung einer Analyse hochdi-
mensionaler Daten.

Hinsichtlich berechnungsbezogener Skalierbarkeit beschreibt diese Dissertation eine gener-
ische Architektur, um den Einsatz von Multithreading bei der Entwicklung interaktiver vi-
sueller Analysesysteme zu erleichtern. Kern der Architektur ist die Trennung des Haupt-
threads der Applikation von speziellen Visualisierungsthreads sowie deren vorzeitigen Abbruch
im Falle von Benutzerinteraktion. Eine quantitative Evaluierung belegt ein rasches visuelles
Feedback während kontinuierlichen Interaktionen selbst bei Millionen von Datenwerten.

Zwei Varianten von Punktdiagrammen widmen sich der visuellen Skalierbarkeit ver-
schiedener Arten von Daten und Aufgaben. Im Falle kontinuierlicher Daten beabsichtigt
eine Kombination aus 2D und 3D Punktdiagrammen die Vorteile zweidimensionaler Interak-
tion und dreidimensionaler Visualisierung miteinander zu kombinieren. Diverse Erweiterun-
gen verbessern die Tiefenwahrnehmung in 3D und widmen sich dem Problem einer nicht
erkennbaren Datendichte sowohl in 2D als auch in 3D. Für den Fall teilweiser kategorischer
Daten beschreibt die Dissertation eine als hierarchische Differenz-Punktdiagramme (Hierar-
chical Difference Scatterplots) bezeichnete Technik. Zweck ist es, mehrere Hierarchiestufen
miteinander in Bezug zu setzen und deren Unterschiede in Bezug auf diverse Aggregate ex-
plizit darzustellen.

Während Vergleiche in hierarchischen Differenz-Punktdiagrammen nur qualitativer Natur
sind, stellt diese Dissertation auch einen quantitativen Ansatz vor, der darauf beruht, statis-
tische Momente von Teilmengen der Daten für potentiell viele Dimensionen gleichzeitig zu

iv

ermitteln. Anwendungen dieses Ansatzes umfassen sowohl einen Überblick über die Gesamt-
daten als auch einen quantitativen Vergleich lokaler Charakteristika wie beispielsweise Cluster.

Die Validierung von Regressionsmodellen ist eine wichtige Anwendung für eine visuelle
Analyse, die eine Skalierung hinsichtlich höher dimensionaler Daten erfordert. Für diese An-
wendung wird eine Designstudie eines als HyperMoVal bezeichneten Ansatzes beschrieben.
Kernidee ist es, n-dimensionale Skalarfunktionen mit bekannten Validierungsdaten in einen
gemeinsamen visuellen Bezug zu bringen. Die Integration mit anderen multivariaten Darstel-
lungen stellt dabei einen Schritt in Richtung eines Benutzer-basierten Modellbildungsprozesses
dar.

Als Ergebnis einer Zusammenarbeit mit Experten im Bereich Motorenentwicklung zeigt
HyperMoVal auch, dass visuelle Analyse geeignet ist, reale Aufgaben erheblich zu erleichtern.
Positives Feedback seitens von Benutzern deutet die Bedeutung der Innovationen dieser Dis-
sertation auch außerhalb der Forschungsgemeinde im Bereich Visualisierung an. Umso mehr,
als die meisten Innovationen dieser Dissertation in einem gemeinsamen Softwareframework
für Ingenieursanwendungen kommerziell vertriebenen werden. Es ist zu hoffen, dass dieses
das Bewusstsein um die Möglichkeiten visueller Analyse und deren Anwendung in unter-
schiedlichen Bereichen steigern wird.

v

vi

Contents

Abstract, Kurzfassung iii

Related Publications xi

1 Introduction and Overview 1
1.1 Motivation . 1
1.2 From Static Images to Visual Analysis: A Short History of Visualization . . . 2
1.3 Scalability in Visual Data Analysis . 6

1.3.1 Large Data Scalability . 6
1.3.2 Other Scalability Issues . 7

1.4 Contributions . 8
1.4.1 A Multi-Threading Visualization Architecture 8
1.4.2 Focus+Context Visualization with 2D/3D Scatterplots 9
1.4.3 Hierarchical Difference Scatterplots . 9
1.4.4 Quantifying and Comparing Features in High-Dimensional Datasets . 10
1.4.5 Interactive Visual Validation of Regression Models 10

1.5 Organization . 11

2 The State of the Art 13
2.1 Data Removal . 13

2.1.1 Sampling . 13
2.1.2 Filtering . 15

2.2 Data Aggregation . 16
2.2.1 Pivotization and Hierarchical Structuring 16
2.2.2 Binning . 18
2.2.3 Abstraction . 19
2.2.4 Aggregation of Spatial and Temporal Data 21

2.3 Dimension Reduction . 23
2.4 Coordination . 25

2.4.1 Multiple Coordinated Views . 26
2.4.2 Overview and Detail . 29

2.5 Data Management and Parallelization . 33
2.5.1 Data Management . 34
2.5.2 CPU-Based Parallelism . 35
2.5.3 GPU-Based Parallelism . 36

2.6 Approaches Adressing Other Scalability Issues 38

vii

3 A Multi-Threading Visualization Architecture 39
3.1 Related Work . 40

3.1.1 Non-Parallel Techniques for Rapid Visual Response 40
3.1.2 Concurrency and Parallel Programming 41
3.1.3 Multi-Threading in Interactive Visualization 42

3.2 Multi-Threading Visualization Architecture 42
3.2.1 Early Thread Termination . 43
3.2.2 Layered Visualization . 46

3.3 Evaluation . 49
3.4 Discussion and Future Work . 53
3.5 Conclusion . 55

4 Focus+Context Visualization with 2D/3D Scatterplots 57
4.1 Extending 3D Scatterplots . 58

4.1.1 Improving Depth Perception . 58
4.1.2 Representing Point Density . 60
4.1.3 Spatial Context Information . 61
4.1.4 Temporal Focus – Context Discrimination 63
4.1.5 Displaying Principle Component Axes 64

4.2 Interactively Linking 2D and 3D Scatterplots 65
4.2.1 Assisting 3D Viewing with 2D Scatterplots 65
4.2.2 Adapting 3D Extensions for 2D Scatterplots 67
4.2.3 Linking External Views . 68

4.3 Application Scenario . 68
4.4 Discussion and Future Work . 72

5 Hierarchical Difference Scatterplots 75
5.1 Related Work . 77
5.2 Hierarchical Difference Scatterplots . 78

5.2.1 Visualization . 78
5.2.2 Coupling Tree Visualizations . 80
5.2.3 Integrating Selected Subsets . 83

5.3 Implementation and User Interface . 83
5.4 Case Study and Evaluation . 85
5.5 Discussion and Future Work . 87
5.6 Conclusion . 89

6 Quantifying and Comparing Features in High-Dimensional Datasets 91
6.1 Related Work . 92
6.2 Quantifying Brushed Data Features . 92

6.2.1 The General Approach . 92
6.2.2 1D Framework . 94
6.2.3 2D Framework . 94
6.2.4 Further Aspects of Our Approach . 96

6.3 Demonstration . 96
6.4 Conclusions and Future Work . 97

viii

7 Interactive Visual Validation of Regression Models 99
7.1 Related Work . 100
7.2 Interactive Model Validation . 101

7.2.1 Visual Encoding . 102
7.2.2 Interaction . 107

7.3 Integrated Workflow for Model Identification 108
7.4 Implementation . 110
7.5 Evaluation . 110

7.5.1 Application Scenario . 110
7.5.2 User Feedback . 112

7.6 Discussion and Future Work . 113
7.7 Conclusion . 114

8 Conclusions 115

Acknowledgments 117

Curriculum Vitae 119

Bibliography 123

ix

x

Related Publications

This thesis is based on the following publications:

Harald Piringer, Robert Kosara, and Helwig Hauser
Interactive Focus+Context Visualization with Linked 2D/3D Scatterplots,
Proceedings of the 2nd International Conference on Coordinated & Multiple Views in Ex-
ploratory Visualization (CMV 2004), pp. 49 – 60, 2004.

Harald Piringer, Wolfgang Berger, and Helwig Hauser
Quantifying and Comparing Features in High-Dimensional Datasets,
Proceedings of the 6th International Conference on Coordinated & Multiple Views in Ex-
ploratory Visualization (CMV 2008), pp. 240 – 245, 2008.

Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger
A Multi-Threading Architecture to Support Interactive Visual Exploration,
IEEE Transactions on Visualization and Computer Graphics, 15(6), pp. 1113 – 1120, 2009.

Harald Piringer, Matthias Buchetics, Helwig Hauser, and Eduard Gröller
Hierarchical Difference Scatterplots - Interactive Visual Analysis of Data Cubes,
SIGKDD Explorations, 11(2), pp. 49 – 58, 2009.

Harald Piringer, Wolfgang Berger, and Jürgen Krasser
HyperMoVal: Interactive Visual Validation of Regression Models for Real-Time
Simulation,
Computer Graphics Forum, 29(3), pp. 983 – 992, 2010.

xi

xii

Chapter 1

Introduction and Overview

This chapter introduces the motivations and challenges of a scalable visual data analysis, and
it provides an overview of the main contributions of this thesis.

1.1 Motivation

We are drowning in information and starving for knowledge. This quote by Rutherford D.
Rodgers summarizes one of the most critical challenges of our time. The ubiquitous use of
information technology in most areas of science and industry, the exponential growth in com-
puting power and storage capacity, and improvements in sensors and recording methods have
led to the current situation that data is collected and generated at an incredible rate. Exam-
ples of collected data per day include 300 million VISA credit card transactions, thousands
of complex financial stocks with millions of transactions, and 210 billion emails [146]. Ex-
amples of generated data are terabytes of simulation results in engineering, physics, biology,
and climate research. Even today, the rate at which data is collected and stored exceeds the
human ability to use that data for decisions in many fields. This has been termed ”informa-
tion glut” [212] and ”information overload” [146]. The explosion of the digital content [88]
suggests that it will become even worse in the future. Without being able to make sense of
the contained information, however, data becomes useless.

From a negative point of view, potential consequences of the information overload range
from a waste of time and money in case of business intelligence to human casualties in case of
security applications. From a positive point of view, the unprecedented amount of available
data bears an enormous potential for gaining knowledge and supporting decision-making.
As a concrete benefit, having more complete data may reduce uncertainty or facilitate the
detection of missing information. Moreover, analyzing large and complex amounts of data is
also the key to solving some of the most important challenges of our time. Environmental
sustainability, for example, is one of the UN millennium goals [189]. To achieve this goal,
engineering the tools of scientific discovery has been ranked among the grand challenges for
engineering [195]. A major purpose of such tools will be to support scientists in turning data
into comprehensible knowledge.

While there are several methods to analyze data as discussed in the next section, a vi-
sual analysis has many advantages. The famous proverb ”a picture is worth 10.000 words”
suggests a close relationship between perception and cognition. Moreover, ”seeing” and ”un-
derstanding” are synonyms in English and ”insight” is also related to vision. Humans acquire

1

CHAPTER 1. INTRODUCTION AND OVERVIEW

more information through vision than through all other senses combined [268]. This makes
the human visual system an enormously powerful pattern seeker combining 20 billion neurons
as a massively parallel processor with the highest bandwidth channel into human cognitive
centers. Furthermore, some researchers emphasize that ”the world is its own memory”, which
means that our ability to think is limited without external representation [197, 268]. All these
facts are strong evidence that visualization is indeed an appropriate method to comprehend
huge amounts of data.

1.2 From Static Images to Visual Analysis: A Short History
of Visualization

The verb to visualize has two meanings. ”To form a mental image of something” refers
to a cognitive, internal aspect whereas ”to make something visible to the eye” refers to an
external, perceptual role [50]. While these two meanings once more emphasize the relationship
between perception and cognition, Keim et al. argue that the most common understanding
of visualization has changed over time and now mostly refers to a graphical representation
of data or concepts [147]. The goals of visualization have changed in a similar way as its
meaning. According to Keim et al., visualization has three major goals:

1. Presentation refers to an efficient and effective communication of facts that are fixed a
priori.

2. Confirmatory analysis can be described as a goal-oriented examination of existing hy-
potheses with the aim of confirming or rejecting them.

3. Exploratory analysis is a typically undirected search for new information like structures
and trends without initial hypothesis.

While early uses of visualization – mostly maps – date back to pre-Christian times [268, 10],
the by far most common goal was presentation until the end of the 20th century. As a rare
documented exception, identifying a contaminated well as the cause of a Cholera epidemic
in 19th century London was an early example where visualization helped to generate new
insights [90] (see Fig. 1.1). In general, however, the limitation to printed graphics restricted
visualization to a static means for presenting existing knowledge for a long time.

The rise of exploratory data analysis began with the age of computers and improvements
in graphical user interfaces. In 1977, a book by John W. Tukey [257] had a major influence
on promoting exploratory data analysis in the statistics research community. This was an
important step, as data analysis has historically been a mostly statistical issue, and many
common types of visualizations like scatterplots or box plots originate from statistics.

Utilizing computers to generate visualizations has emerged as an own research discipline
during the last two decades. A milestone of computer-oriented visualization research was the
move from static images to interactive visualization. Interaction enables a discourse between
the human brain and the data that, for example, allows to focus on interesting structures and
to rapidly try many what-if scenarios in an ad-hoc fashion. While the role of interaction is still
a subject of ongoing research [286, 167], interactions like filtering data, changing visualization
parameters at run-time, and linking multiple visualizations have soon become a standard (see
also chapter 2).

2

1.2. FROM STATIC IMAGES TO VISUAL ANALYSIS: A SHORT HISTORY
OF VISUALIZATION

Figure 1.1: In 1844, this visualization led Dr. John Snow to the discovery that the death
cases (indicated by bars) are clustered around the encircled water pump [90].

Research in visualization is usually broadly classified into scientific and information visual-
ization. Scientific visualization [101] comprises methods where an inherent mapping between
the data and coordinates in a virtual environment exists. Typical applications are volume
rendering for 3D scalar fields like medical body scans as well as flow visualization of 3D or
4D vector fields as, for example, obtained from computational fluid dynamics. In contrast,
information visualization is defined as the use of interactive visual representations of abstract
data to amplify cognition [34]. In this definition, abstract data refers to a lack of explicit
spatial references for parts or all of the data. Examples include data that is categorical, high-
dimensional, textual, hierarchical, or relational (see Fig. 1.2). A key aspect of information
visualization is to find understandable visual metaphors in concert with intuitive interaction
techniques. While a classification in scientific and information visualization is reasonable on a
technique-level, a holistic analysis of real-world data often requires a combination of different
visualization methods [52].

Scientfic and information visualization also share many concrete benefits with respect
to exploratory data analysis. A major advantage of interactive visualization in general is
the ability to transform a cognitive problem to a perceptual one. Interactive visualization
facilitates hypothesis formation by fostering a detection of both large-scale and small-scale
features in potentially massive data that were not anticipated, e.g., artefacts like wrong or
missing values [268]. Despite these advantages, van Wijk warns that visualization is not

3

CHAPTER 1. INTRODUCTION AND OVERVIEW

(b) (c)

(d)

(a)

Figure 1.2: Examples of information visualization. (a) Parallel sets showing categorical
data [154], (b) a tree map for hierarchical data [231], (c) a graph indicating relations be-
tween words in an unstructured text [259], (d) parallel coordinates of 19 dimensions [136].

4

1.2. FROM STATIC IMAGES TO VISUAL ANALYSIS: A SHORT HISTORY
OF VISUALIZATION

Figure 1.3: Comparing the complementary abilities of humans and computers [145].

”good” by definition, but involves costs for development, training, and data preparation as
well as perception and exploration costs [260]. Many of these costs are caused by the inherent
involvement of human users. However, human involvement is neither necessary nor desirable
for all types of tasks. Moreover, most visualization techniques do not scale to truly high-
dimensional data, and visual results are often only qualitative which is not fully sufficient for
many tasks.

Automated approaches to data analysis (partly) avoid costs due to human involvement.
Most approaches yield precise values as results and many approaches scale well to high-
dimensional data. Statistical learning and data mining, for example, have long been applied
to make predictions without human interaction in fields like business intelligence, pattern
recognition, and science [19]. There are numerous techniques for automated classification,
prediction, and clustering [106]. Therefore, using automated techniques is typically preferable
if the properties of the data are known and the goals of the analysis can precisely be specified
a priori. However, for increasingly complex problems, purely automated analysis is often
insufficient. The reasons range from a lack of understanding of the results of automated
methods to the inability to include human knowledge in case of conflicting, heterogeneous, or
messy data.

Interactive visualization and automated data analysis are thus two different approaches
with similar goals that have complementary advantages and disadvantages [20]. This cor-
responds to the fact that human abilities like perception, creativity, and general knowledge
are complementary to the strengths of computers like processing power and storage capac-
ity [145] (see Fig. 1.3). A next major step of visualization is consequently to strive for a
tight integration of interactive visual and automated data analysis. In 2005, the term visual
analytics was established for the respective research direction. As an early definition, visual
analytics was defined as ”the science of analytical reasoning facilitated by interactive visual in-
terfaces” [247]. More recently, the definition has been concretized: ”Visual analytics combines

5

CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.4: Parallel coordinates of approximately 30.000 data entries as an example of clutter.

automated analysis techniques with interactive visualizations for an effective understanding,
reasoning and decision making on the basis of very large and complex datasets.” [146]. An
important aspect of this latter definition is the emphasis on scale and complexity, which is
the topic of this thesis.

1.3 Scalability in Visual Data Analysis

The increasing size and complexity of datasets is a key motivation for interactive visual
approaches. Scalability is thus a core topic of visual analysis. The importance of scalability
is stressed by the fact that it has been approved as the Priority Program Scalable Visual
Analytics: Interactive Visual Analysis Systems of Complex Information Spaces (SPP 1335)
by the Senate of the Deutsche Forschungsgemeinschaft. Scalability has also been described
as a grand challenge in the research agenda of visual analytics [247].

1.3.1 Large Data Scalability

While scalability is a multifaceted problem as will be discussed in section 1.3.2, the sheer
size of a dataset is a major aspect. A visual analysis becomes increasingly challenging with
a growing amount of data. Dix and Ellis explain the problems of large data by visual and
computational limits [62].

Visual limits are caused by perceptual and cognitive limitations of the user as well as
hardware limitations of the display device. The main challenge is to visually represent a very
large number of data elements in a much smaller number of visual display elements [212]. The
human perception of patterns in visual displays adheres to the Gestalt laws [268]. Continuity
and closure, for example, are often required to convey certain properties of the data. Clut-
tering a visualization by too many data elements affects the perception in a negative way. In
scatterplots or parallel coordinates, for example, overplotting makes it impossible to judge the
true distribution of the data. In an extreme case, the visualization becomes a single uniform
blob (see Fig. 1.4 for an example). Using visual attributes like color, shape, or size to convey
additional data attributes can make the problem even worse. Colors of closely spaced pixels
will be merged by the eye, and glyphs are likely to overlap and obscure each other [62].

6

1.3. SCALABILITY IN VISUAL DATA ANALYSIS

The capability of a visualization to effectively display large datasets in terms of either the
number or the dimension of individual data elements is known as its visual scalability [61].
Eick and Carr identified six factors affecting visual scalability, i.e., human perception, monitor
resolution, visual metaphors, interactivity, data structures and algorithms, and computational
infrastructure. Besides human perception which is inherently given, the other five factors
explain a great diversity of different visualization approaches with respect to visual scalability.
In particular, visualization research has designed a huge variety of visual metaphors and
interaction concepts to improve the visual scalability (see chapter 2).

However, visualization techniques have a different visual scalability with respect to the
number of displayed data elements and the number of concurrently shown data dimensions.
Most visualization techniques have no inherent limit with regards to the number of displayed
data elements and a variety of clutter reduction techniques exist to overcome practical limi-
tations [64]. On the other hand, most techniques are inherently limited with respect to the
number of dimensions which can simultaneously be displayed (e.g., scatterplots). For other
techniques like parallel coordinates or scatterplot matrices, the practical limit for the number
of dimensions is magnitudes smaller than the one for data elements. As a consequence, an
analysis of truly high-dimensional data is challenging. The user typically has to pre-select
the displayed dimensions, which may become a difficult task without a-priori knowledge or
dedicated support.

Computational limits of visualizations are closely related to the computational complexity
of the involved algorithms, which is a core topic of computer science [77]. In case of algo-
rithms with a quadratic effort, for example, visualizing hundred items may be interactive
while visualizing millions of items may take hours for each update. Approaches to overcome
computational limits can be classified as hardware-oriented or software-oriented. As surveyed
in chapter 2, hardware-oriented approaches involve parallelization and distributed data stor-
age. Software-oriented approaches include the removal of data using sampling or filtering as
well as data aggregation as for multi-resolution approaches.

Visual and computational limits are not independent from each other. Many approaches
address both limits simultaneously. Sampling a large number of data items, for example,
reduces the computational effort and enhances the visual scalability at the same time [62]. In
general, overcoming computational limits is often a necessary prerequisite to achieve visual
scalability, because interactivity is an important factor of visual scalability as discussed above.
This fact is becoming a challenging issue in the context of an increasingly tight integration of
automated and visual analysis, as most automated approaches have not been designed with
interaction in mind.

1.3.2 Other Scalability Issues

The contributions of this thesis focus on scalability with respect to large datasets (see sec-
tion 1.4). The size of the analyzed data, however, is just one aspect of scalability. A recent
survey on scale and complexity in visual analytics considers five major issues of scalabil-
ity [212], i.e., information scalability, visual scalability, display scalability, human scalability,
and computational scalability. While visual scalability has been discussed in section 1.3.1,
this section briefly covers the other types of scalability.

Robertson et al. define information scalability as the ability to offer simple visualizations
of the right subset of a massive stream of data [212]. Information scalability can thus be
seen in a more general sense than dealing with data that is solely large, but it also includes

7

CHAPTER 1. INTRODUCTION AND OVERVIEW

the rate of change for dynamic data and the facility to scale the presentation to a certain
audience. Though not mentioned by Robertson et al., one could also think of other aspects
of information scalability. The ability to scale to a large number of different data sources
will become an increasingly important issue for visual analysis systems. As a related topic,
information scalability also involves the ability to handle data that is heterogeneous in multiple
ways [140].

Display scalability refers to the ability of a visualization to be effective from personal
digital assistants to wall-sized displays. Today, most visualization systems are designed for
desktop displays and are neither suitable for the limited resolution of small screens, nor make
effective use of very large screens.

Human scalability refers to the number of humans involved in analytical problem-solving
activities. The goal is to achieve a graceful scaling from a single user to a collaborative
environment.

Computational scalability stresses the fact that most algorithms do not automatically
become faster with an increasingly parallel computing infrastructure. On the contrary, within
15 years, systems for exascale computing are expected to have several million cores, which will
require a fundamental paradigm shift for algorithms and visualization approaches. Moreover,
for all types of computers, the number of cores is expected to grow significantly faster than
the total amount of memory or disk space. This means that the memory resources per process
will actually decrease.

Concluding, scalability comes in many different ways. Each scalability issue is a challenge
and a research topic in its own right. Interpreting scalability in a broad sense, it has been a
driving motivation behind most research in visual data analysis in the past few years.

1.4 Contributions

The goal of this thesis is to advance the state of the art in visual analysis with respect to
the scalability to large datasets. Corresponding to the multifaceted nature of scalability, the
contributions span a broad range and address different selected topics of interactive large
data visualization. In particular, the contributions intend to overcome computational limits,
visual limits with regards to the number of data entries, and limits with regards to the
dimensionality of particular tasks. The subsequent sections briefly motivate and summarize
each contribution. It is also discussed, how each contribution relates to the overall topic of
large data scalability in visual analysis.

1.4.1 A Multi-Threading Visualization Architecture

During continuous user interaction, it is hard to provide rich visual feedback at interactive
rates for datasets containing millions of entries. Many approaches provide a fixed amount
of feedback during a continuous user interaction, which either leaves time unused or may
severely degrade the responsiveness of the application.

This thesis contributes a generic architecture that ensures the responsiveness of the appli-
cation even when dealing with large data and that is applicable to many types of visualizations.
The architecture builds on the separation of the main application thread and the visualiza-
tion thread, which can be cancelled early due to user interaction. In combination with a
layer mechanism, the architecture facilitates generating previews incrementally to provide

8

1.4. CONTRIBUTIONS

rich visual feedback quickly. To help avoiding common pitfalls of multi-threading, synchro-
nization and communication are discussed in detail. Explicitly denoted design choices enable
to control trade-offs. A quantitative evaluation based on the system Visplore shows fast visual
feedback during continuous interaction even for millions of entries. Further instantiations of
the architecture in additional tools demonstrate the general applicability.

The multi-threading architecture relates to scalability issues in multiple ways. First,
it supports information scalability as it enables systems to remain responsive while scaling
to datasets with several million data items. Second, it increases computational scalability
by utilizing commonplace multi-core technology. Third, the architecture improves visual
scalability in so far as it guarantees visual feedback as quickly as possible, i.e., it keeps the
latency between interaction and visual feedback below 100 ms [226]. Fourth, it scales with
regard to multiple views.

Being instantiated in the systems Visplore and SimVis, the multi-threading architecture
also relates to all other contributions of this thesis, which are implemented in either of these
systems and adhere to the conceptual paradigms.

1.4.2 Focus+Context Visualization with 2D/3D Scatterplots

Scatterplots in 2D and 3D are very useful tools, but also suffer from a number of problems.
Overplotting hides the true number of points that are displayed, and showing point clouds in
3D is problematic both in terms of perception and interaction.

This thesis contributes a combination of 2D and 3D scatterplots, together with some
extensions to both, to overcome these problems. By linking 2D and 3D views, it is possible to
interact in 2D and to get feedback in 3D. Several depth cues enhance that feedback in order
to provide a better depth impression. Histograms in 2D and 3D show additional information
about point densities, and additional context information can be displayed. An example
application from the field of computational fluid dynamics demonstrates the usefulness of the
technique.

The proposed approach relates to scalability mostly with respect to visual scalability.
Using color, halos, and point size as depth cues significantly improves the perception of large
3D point clouds of continuous data attributes. Due to binning, the density information
provided by histograms scales well to millions of data entries. Zooming into the data also
enhances the scalability by means of interaction while different projection techniques ensure
that the spatial context is not lost in this case.

1.4.3 Hierarchical Difference Scatterplots

Data cubes as employed by On-Line Analytical Processing (OLAP) play a key role in many
application domains. The analysis typically involves a comparison of categories from different
hierarchy levels with respect to size and pivoted values. Most existing visualization methods
for pivoted values, however, are limited to single hierarchy levels. On the other hand, most
tree visualizations convey the topology of a hierarchy but disregard multivariate attributes.

This thesis contributes an approach called Hierarchical Difference Scatterplots (HDS).
HDS allow for relating multiple hierarchy levels and explicitly visualize differences between
them in the context of the absolute position of pivoted values. Additional contributions
involve a discussion concerning a tight coupling of HDS to other types of tree visualizations,

9

CHAPTER 1. INTRODUCTION AND OVERVIEW

the integration in a setup of multiple linked multivariate views, and an analysis of social
survey data in collaboration with a domain expert as evaluation of the approach.

HDS relate to the visual scalability when analyzing data cubes. The overall goal was to
combine the visual scalability of overview summaries with a refined degree of detail for selected
parts of the data. As the main consideration of the visual encoding of HDS, representing
different hierarchy levels in the same visualization makes comparisons much more intuitive
and precise than relying on comparisons across multiple views, which is the standard today
(e.g., as provided by Tableau [235]). Due to aggregation, HDS scale to datasets with millions
of underlying data records. Interaction concepts enable to focus on particular parts of the
hierarchy, e.g., comparisons along the hierarchy or across one hierarchy level. In this respect,
the approach scales to comparing more than ten hierarchy levels at the same time.

1.4.4 Quantifying and Comparing Features in High-Dimensional Datasets

Linking and brushing is a proven approach to analyze multi-dimensional datasets in the
context of multiple coordinated views. Nevertheless, most visualization techniques only offer
qualitative visual results for brushed subsets of the data. Many user tasks, however, also
require precise quantitative results as, for example, offered by statistical analysis.

Motivated by the Rank-by-Feature Framework [222], this thesis contributes a joint visual
and statistical approach for guiding the user through a high-dimensional dataset by ranking
dimensions (1D case) and pairs of dimensions (2D case) according to statistical summaries.
While the original Rank-by-Feature Framework is limited to global features, the most im-
portant novelty of the proposed approach is the concept to consider local features, i.e., data
subsets defined by brushing in linked views. The ability to compare subsets to other subsets
and subsets to the whole dataset in the context of a large number of dimensions significantly
extends the benefits of the approach especially in later stages of an exploratory data analysis.
A case study illustrates the workflow by analyzing counts of keywords for classifying e-mails
as spam or no-spam.

As the most important aspect with regards to scalability, the approach scales to high-
dimensional datasets. In particular, ranking different measures of interest enables to quickly
identify the most relevant dimensions for hundreds of dimensions in the 1D case. Approxi-
mately 35 to 40 dimensions can reasonably be handled in the 2D case. With regards to the
number of data items, the statistical summaries have no inherent limitations. However, the
preview visualizations in the 2D case suffer from overplotting in case of many data items.

1.4.5 Interactive Visual Validation of Regression Models

During the development of car engines, regression models that are based on machine learning
techniques are increasingly important for tasks which require a prediction of results in real-
time. While the validation of a model is a key part of its identification process, existing
computation- or visualization-based techniques do not adequately support all aspects of model
validation.

This thesis contributes an interactive approach called HyperMoVal that is designed to
support multiple tasks related to model validation: 1) comparing known and predicted results,
2) analyzing regions with a bad fit, 3) assessing the physical plausibility of models also outside
regions covered by validation data, and 4) comparing multiple models. The key idea is to
visually relate one or more n-dimensional scalar functions to known validation data within

10

1.5. ORGANIZATION

a combined visualization. HyperMoVal lays out multiple 2D and 3D sub-projections of the
n-dimensional function space around a focal point. As a related contribution, concepts for
linking HyperMoVal to other views further extend the possibilities for model validation. Based
on this integration, a discussion outlines steps towards supporting the entire workflow of
identifying regression models. An evaluation illustrates a typical workflow in the application
context of automotive engine design and reports general feedback of domain experts and
users of the approach. These results indicate that the approach significantly accelerates the
identification of regression models and increases the confidence in the overall engineering
process.

An important aspect of HyperMoVal is to scale with respect to the dimensionality of the
validated regression models. Even more importantly, however, HyperMoVal demonstrates
how visual analysis is suitable to significantly improve a real-world task in a concrete applica-
tion domain. Researchers have recently been stressing the importance of the characterization
of real-world problems and the difficulties of a successful technology transition [187, 219].
Being distributed as part of a commercial software suite, HyperMoVal – as well as the contri-
butions summarized in the previous sections 1.4.1, 1.4.3, and 1.4.4 – are examples of such a
technology transition from science to industry and thus highlight the practical impact of this
thesis.

1.5 Organization

The remainder of this thesis is organized as follows: chapter 2 surveys the state of the art in
scalable visual analysis with respect to large multivariate data. The subsequent five chapters
present the main contributions of this thesis. Concerning computational scalability, chapter 3
describes a generic architecture to facilitate the development of highly interactive visual anal-
ysis tools using multi-threading. Two variants of scatterplots address the visual scalability for
continuous data (chapter 4), and for partly categorical data (chapter 5). While comparisons
in these scatterplots are only qualitative, chapter 6 contributes an approach for quantifying
subsets of the data by means of statistical moments for a potentially large number of di-
mensions. As another topic involving the scalability to a non-trivial number of dimensions,
chapter 7 describes a design study for the validation of regression models as an important
application of visual analysis. Chapter 8 describes conclusions and implications of this work.
The thesis concludes with acknowledgements as well as an extensive bibliography.

11

CHAPTER 1. INTRODUCTION AND OVERVIEW

12

Chapter 2

The State of the Art

Chapter 1 motivated scalability as a key issue of visual analyis in general, and described large
data as a particular challenge with respect to visual and computational limits. This chapter
surveys the state of the art in scalable visual analysis of data that is large either with respect
to the number of data entries, or with respect to the number of dimensions.

In consistence with the contributions of this thesis, the focus of this survey is on mul-
tivariate data, including hierarchical, spatial, and temporal data. Scientific visualization of
large data [101] (e.g., rendering of massive volumetric data or large vector fields) as well
as information visualization of textual data or large networks are separate topics which are
beyond the scope of this report. However, many of the discussed approaches are general and
can also be employed in scientific visualization and information visualization of networks and
textual data.

This survey structures the discussion by the employed approach, i.e., data removal, data
aggregation, dimension reduction, coordination, data management, and parallelization. This
structure facilitates to compare related approaches. The chapter concludes with a brief sum-
mary of approaches for other scalability issues than the sheer size of data.

2.1 Data Removal

This section summarizes approaches that reduce the size of a multivariate dataset by tem-
porarily removing parts of it. The main distinction concerns the strategy which data to keep.
Sampling refers to a random selection of a subset of the data whereas filtering deterministically
selects a data subset that satisfies certain criteria.

While the approaches discussed in this section operate on data items (i.e., the rows of a
dataset), removal may also apply to data dimensions (i.e., the columns). This is especially
important for truly high-dimensional data. In some sense, even assigning a pair of dimensions
to the axes of a scatterplot can be regarded as a kind of data removal of all other data
dimensions. However, in order to make the discussion as coherent as possible, dimension
reduction is surveyed as an own topic in section 2.3.

2.1.1 Sampling

Randomness has gained an increasing importance in computer science for problems which are
intractable for a non-trivial amount of data using deterministic approaches – including NP-

13

CHAPTER 2. THE STATE OF THE ART

Figure 2.1: A lens-metaphor to locally reduce clutter by means of sampling [63].

hard ones. For example, genetic algorithms [92] enable to find a good solution in acceptable
time rather than the optimal solution.

While computational limits also play a role in some visualization algorithms, the main
motivation for using sampling in multivariate visualizations is to achieve visual scalability by
the reduction of clutter [64]. Dix and Ellis [62] argue that random sampling can improve
visualization algorithms (1) if calculations imply that information is lost anyway, (2) if there
are too many data points to show, or (3) if details are only required for some data items. For
visualizations based on aggregate or summary statistics (e.g., histograms), Dix and Ellis claim
that sampled data can always be used to give approximations. For item-based visualizations
(e.g., scatterplots or parallel coordinates), sampling the data will reduce overplotting in dense
areas and thus make such visualizations more readable.

A key trade-off of sampling is to minimize the sample size while preserving as much
accuracy of the visualization as possible. Dix and Ellis discuss respective issues involving
perceptual limits, performance, and the interplay between common interactions like zooming
and the visualization of sampled data [62]. They also stress the importance of correct sampling
which means that sampling should preserve the statistical properties of the original data. This
involves avoiding any bias towards particular values or categories.

Sampling can be applied globally or locally. Global sampling affects the entire visualization
and the density is more or less independent of user interaction. For example, Bertini and
Santucci propose a formal framework to measure the degree of visual overlapping, to obtain
precise quality metrics about the visualization degradation, and to devise automatic sampling
strategies in order to improve the overall image quality of 2D scatterplots [21]. In contrast,
local approaches typically employ the lens-metaphor [22] to let the user reduce clutter in
particular regions of the visualization. Ellis and Dix, for example, measure occlusion in

14

2.1. DATA REMOVAL

parallel coordinate plots to automatically adjust the sampling rate within the lens [63] (see
Fig. 2.1).

Concluding, sampling has many advantages compared to other clutter reduction tech-
niques [64]. In particular, it is scalable and preserves all information of kept data items.
Reducing data at an early stage of the visualization pipeline, sampling may improve both
information and visual scalability at the same time. However, sampling by itself neither
guarantees that individual data items can visually be discriminated, nor does it necessarily
convey the overlap density in overplotted views. Moreover, avoiding bias can be very difficult
to accomplish for complex datasets that comprise multiple categorical as well as continuous
data dimensions. Finally, whether sampling is a viable option at all depends on the task.
While sampled representations generally preserve trends and correlations, they may discard
important information if the user is looking for outliers or other single data items.

2.1.2 Filtering

Filtering is a technique to deterministically reduce the set of visualized data items based on
some specific conditions. As a typical reason for filtering, parts of the data are sometimes
considered irrelevant for a particular task, e.g., certain categories or values exceeding certain
thresholds. Filtering these parts may significantly reduce both the computational and visual
complexity of a visualization.

Historically, filter conditions were typically specified once at the very beginning of the
visualization pipeline, i.e., at the time of data import as batch-oriented text queries (e.g.,
using the Structured Query Language (SQL)). In case of huge input data as for large data
warehouses, such kind of static filtering is often still reasonable to allow for a subsequent
interactive analysis of the data at a particular level of detail. However, more interesting in the
context of visual analysis are interactive approaches to support filtering the data dynamically
during the analysis. Several taxonomies describe filtering as a basic type of interaction, for
example Shneiderman [227], Keim [148], and Wilkinson [277]. More recently, Yi et al. [286]
defined filtering as ”to show something conditionally”.

Different types of data require different interaction techniques to specify filter criteria.
Many systems (e.g., Spotfire [1]) reserve a dedicated area for dynamic query controls like
range sliders for continuous or check boxes for categorical data attributes [2]. Prosection views
may also employ range sliders to control the displayed parameter range for each parameter
of a multi-dimensional function [258]. In contrast, the Name Voyager [271] supports filtering
of names by entering the first letters through keyboard interaction.

Some systems integrate the specification of filter criteria in the visualization itself. For
example, a common approach to filtering categorical data is to support dragging categories
onto a dedicated panel (e.g., implemented by Polaris [238] and SellTrend [168]). Depending
on the semantics of the panel, this either hides all data items of the respective category or
everything except the selected category. For time-series data, Wattenberg proposed QueryS-
ketch [269] which filters data items based on similarity metrics to a graph that users are able
to draw freehand. Hurter et al. [122] proposed an interesting technique to filter thousands of
aircraft trajectories. Users can spread the dataset across multiple views using pick and drop
operations of selected trajectories, where each view only shows a subset of the data.

In most systems, filtering has a global effect as it affects the entire visualization of poten-
tially multiple views (see section 2.4). In contrast, the Movable Filter [241] locally changes
the view of objects within an arbitrarily-shaped region.

15

CHAPTER 2. THE STATE OF THE ART

As a conclusion, filtering is appropriate if parts of the data are known to be irrelevant.
As a major advantage of filtering, all information of the relevant data is preserved. The
introduction of potential bias depends on the user-defined filter criteria rather than on a
sampling strategy which can make efficient implementations much easier. Unlike sampling,
filtering data may also be reasonable when looking for outliers. However, like sampling,
filtering can not ensure the discrimination of individual data items in the visualization [64].
It is often not possible to obtain a certain target size if the relevant amount of data is still too
large. Finally, if the user does not know precisely which data might be relevant, filtering (too
much) data means losing potentially valuable context information. Therefore, highlighting
interesting data by means of selection is often a reasonable alternative to filtering data (see
section 2.4).

2.2 Data Aggregation

The term aggregation is defined as forming a whole by combining several separate ele-
ments [49]. In the context of data reduction, aggregation is a transformation in order to
reduce the amount of detail while preserving certain important information. In contrast to
data removal, typically all data items contribute in some way to the result of the aggregation.

This section summarizes aggregation-based visualization approaches. The discussion is
structured by the type of aggregation, i.e., pivotization, binning, and abstraction. Finally,
a separate sub-section is dedicated to aggregation of spatial, temporal, and spatiotemporal
data in order to account for the importance and the special characteristics of such data. As
for section 2.1, all approaches discussed in this section operate on data items (i.e., the rows
of a dataset) while aggregation-based approaches operating on data dimensions are covered
by section 2.3.

2.2.1 Pivotization and Hierarchical Structuring

Data dimensions of multivariate datasets can roughly be distinguished as being either con-
tinuous or categorical. In case of datasets having both categorical and continuous attributes,
pivot tables have long been used to summarize the values of the continuous attributes with
respect to a classification as given by the categories of categorical attributes (also referred to
as conditioning categories). The concept of pivoting data is very important for databases,
where the predominant Structured Query Language (SQL), for example, offers the “GROUP
BY” clause of “SELECT” statements for this purpose.

Flat pivot tables can be visualized using common techniques for multivariate, quantitative
data. The Gapminder Trendalyzer [89], for example, maps two aggregated indicators of
countries to the axes of a time-dependent scatterplot and shows the population, i.e., the
size of the category, by the area of according circles. However, categorical data is closely
related to hierarchical data and pivot tables are often structured hierarchically. Apart from
inherently hierarchical categories (e.g., years can be subdivided into months, days, hours, etc.),
dimension composition defines hierarchies by specializing the categories of one attribute by
the categories of another one. For example, two separate attributes ”sex” and ”age group”
can be combined to obtain a category like ”female and younger than 30”. This is the key idea
behind On-Line Analytical Processing (OLAP) [45] which typically uses large-scale overview
summaries of the data as starting point for selective drill down into interesting parts of
the data. OLAP is thus related to navigating a hierarchy. Gray et al. [94] proposed to

16

2.2. DATA AGGREGATION

Figure 2.2: Tableau is based on a formal algebra to create visualizations intuitively using
data pivotization [169].

treat multidimensional databases as n-dimensional data cubes to overcome the limitations of
traditional SQL statements with respect to drill-down and roll-up operations.

While most OLAP front-ends only offer selected business graphics, Polaris [238] uses a
formal algebra as specification of pivot tables and their visual representation. The user can
incrementally construct complex queries by intuitive manipulations of this algebra. Stolte et
al. [239] also describe an extension to the algebra for rich hierarchical structures. The layout
of Polaris is based on small-multiple displays of information [256]. This refers to arranging
the conditioning variables into rows and columns of a matrix where each cell visualizes a
conditioned subset of the data. Polaris is a very intuitive and highly effective approach for
analyzing data cubes, as shown by the success of its commercial version Tableau [169] (see
Fig. 2.2).

As discussed above, incremental pivotization of data is equivalent to defining a hierar-
chy. There has been very much research on the visualization of hierarchies and hierarchically
structured data (see Fig. 2.3). Containment-based approaches like tree maps [225] are one of
the most popular techniques and show the size of the hierarchy nodes very well, while depth
information is occasionally harder to read. In contrast, node-link representations [12, 116]
show the structure more explicitly, but most approaches do not clearly convey the size of
the nodes. The rooted tree growing from top to bottom is a very common layout, but does
not utilize space efficiently for large hierarchies. Centric approaches are superior in this re-
spect as they grow outwards from the representation of the root node and thus allocate more
space to more detailed levels of the hierarchy. Nodes are typically placed in correspondence

17

CHAPTER 2. THE STATE OF THE ART

Figure 2.3: Different tree visualization techniques. From left-to-right: rooted tree, radial tree,
balloon tree, and treemap layout [119].

to their position in the hierarchy, e.g., putting nodes with equal depth on concentric circles
(radial tree) [12] or enclosing each sub-tree in a bubble (balloon tree) [116]. There are many
extensions and variations to these approaches: focus+context techniques to improve scala-
bility [161], combinations of node-link representations and enclosure [289], combinations of
centric layout and enclosure [284], and edge bundles for integrating relations between items
into the visualization [119].

Recently, Slingsby et al. [231] explored the effects of selecting alternative layouts in hier-
archical displays that show multiple aspects of large multivariate datasets. They employ size,
shape, and color to show subset properties and order the position of the hierarchy nodes by
the conditioning variable values using dimensional stacking. Slingsby et al. point out that
the use of different layouts at different hierarchical levels can help to use the coordinates of
the plane more effectively in order to draw attention to trends and anomalies in the data.

Concluding, pivotization may significantly reduce the amount of discriminated entities
for subsequent steps like visualization. In contrast to sampling and filtering, all data entries
contribute to the final result even in case of billions of data records. Dimension composition
supports a controlled and semantically meaningful adjustment of the degree of detail using
drill-down and roll-up operations. This might be the reason why OLAP has become the stan-
dard approach to business intelligence (and other applications) in the past decade. However,
these benefits come at the cost of a potentially huge loss of detail when condensing the values
of multiple entries to a few summary statistics – typically simple univariate moments like the
average or the maximum. Moreover, pivotization changes the unit of the entities in terms
of which the data is being analyzed. For example, after pivoting a financial dataset logging
individual transactions by the respective stock, any visualization will compare stocks rather
than transactions.

2.2.2 Binning

Item-based visualization techniques for multivariate data (e.g., scatterplots and parallel coor-
dinates) are in general more suitable for continuous data attributes which make more efficient
use of the available space. On the other hand, it can be advantageous to categorize contin-
uous data attributes before the visualization in case of a very large number of data items.
This process is referred to as binning which converts continuous data to a frequency-based
representation by dividing the data space into a set of intervals - called bins - and assigns to
every bin an occupancy value which determines the number of data records that belong to
the bin [229]. In the context of visualization, the primary goal of binning is to reduce visual

18

2.2. DATA AGGREGATION

Figure 2.4: Outlier-preserving focus+context visualization of a flow simulation dataset [194].

clutter and to preserve the distribution characteristics of the data which may otherwise be
concealed due to overplotting.

Histograms, for example, typically employ univariate binning with equally sized bins and
they represent the number of data items in each bin by the height of a respective bar. Other
visualization techniques use multidimensional binning. Some extensions of histograms gener-
ate a 2D map of two binned variables (e.g., time histograms [153]). This map can be displayed
either in 3D as a height field or in 2D as an image with color representing the density. Novotny
and Hauser generate parallel coordinates on the basis of a binned data representation for what
they call an output-oriented visualization approach [194] (see Fig. 2.4). Their approach draws
parallelograms instead of single lines for the two-dimensional bins of each pair of adjacent
axes. Furthermore, they also discriminate between outliers and trends based on clustering as
performed on a binned data representation (see section 2.2.3).

Other approaches adapt the size of the bins to the characteristics of the data. Hao et
al. [103] recently proposed variable binned scatterplots to allow the visualization of large
amounts of data without overlapping. The basic idea is to use a non-uniform (variable)
binning of the x and y dimensions and to plot all data points that are located within each
bin into the corresponding squares.

Generally speaking, the visual scalability of a binned visualization typically depends on
the number of bins rather than on the size of the data which is an interesting aspect for
large datasets. Varying the number of bins is the key to controlling the amount of details.
Bin sizes that correspond to a single pixel in image space hardly incur a visible loss of detail
and may reduce the effort for other involved computations. On the other hand, binning may
introduce aliasing artifacts and interaction techniques like zooming may require a frequent
re-binning of the data. Finally, binning is not easily applicable to all types of visualizations
(e.g., glyph-based visualizations).

2.2.3 Abstraction

The objective of data abstraction is to convey the important information while suppressing
irrelevant details [247]. The key idea is to compute values or patterns which can then be used
for further analysis or visualization processes rather than the raw data.

Descriptive statistical moments are a common type of abstraction in the context of data ag-
gregation. Box plots have a long history and they are still one of the most common approaches
to graphing summary statistics [257]. The standard box plot summarizes the distribution of

19

CHAPTER 2. THE STATE OF THE ART

a dataset by its minimum and maximum range values, the upper and lower quartiles, and
the median. Many extensions have been proposed to include additional information like the
density of the data. Potter et al. [205] provide a summary of these extensions and propose a
new hybrid summary plot that includes additional statistical quantities like the skew or the
tail in order to convey certain aspects of data uncertainty. Kehrer et al. [142] also include
higher-order statistical moments like the skewness and the kurtosis as well as robust estimates
in an iterative visual analysis process. The focus of their work is on integrating statistical
aggregations in a framework of coordinated multiple views (see section 2.4) by enabling an
analyst to brush particular statistics.

Clusters are another popular type of abstraction for multivariate data. A cluster refers
to a subset of data items that are similar in some sense. The process of cluster analysis
partitions a collection of data items into separate groups with respect to a given measure of
similarity [254]. Cluster analysis belongs to the field of unsupervised learning because it does
not require pre-classified training data. Hastie et al. [106] provide a comprehensive overview
of statistical learning in general and unsupervised learning in particular. However, Nam et
al. [188] point out that results from fully automated cluster analysis often do not match the
knowledge and intuition of domain experts. Therefore, Nam et al. describe a framework
that integrates the user in the derivation of classification hierarchies. This framework enables
users to interactively tune parameters of k-means clustering based on a visualization of the
inherent characteristics of the data in high-dimensional space.

Numerous visualization approaches have been proposed in the recent years that build on
the results of clustered data. A common goal is to tackle problems caused by clutter when
drawing a large number of data items. For example, Fua et al. [82] propose a hierarchi-
cal version of parallel coordinates which is based on a multi-resolution view of the data via
hierarchical clustering. Yang et al. [285] generalize this idea to a general framework for inter-
active hierarchical displays. In order to convey aggregation information about the resulting
clusters, the authors describe hierarchical variations of traditional multivariate visualization
techniques including star glyphs and scatterplot matrices.

Especially parallel coordinates have seen multiple variations to improve the representation
of higher dimensional clusters. Most of these variations have recently been surveyed and
evaluated by Holten and van Wijk [120]. As two examples of variations, Johansson et al.[134]
use transfer functions operating on high-precision textures to highlight different aspects of
the cluster characteristics. The authors also apply feature animation as a guidance when
simultaneously analyzing several clusters. Zhou et al. [290] exploit curved edges to form
visual bundles for clusters in parallel coordinates in order to increase their chance of being
revealed.

Besides cluster analysis, numerous other types of abstraction models may be used to
represent different kinds of trends in the data. Regression models are perhaps among the
most important types of statistical models, establishing a linear or non-linear relationship
between one or more independent parameters and a continuous result dimension [59]. Lines
and curves have long been used in statistical visualization to display regression models in
2D scatterplots. Going beyond global trends, Reddy et al. [208] describe data skeletons as
a visual abstraction for high-dimensional data distributions that may contain local trends in
certain subspaces. The idea is to represent certain shapes of data by a graph that consists of
segments of locally fit principal curves or surfaces summarizing each identified branch.

In contrast to trends, outliers have not yet attracted as much attention in visualization
research. This is somewhat surprising, as many applications (e.g., intrusion detection) may

20

2.2. DATA AGGREGATION

regard outliers as the most interesting part of the data. As one exception, Novotny and
Hauser [194] explicitly separate outliers from trends in order to treat them differently for
visualization in parallel coordinates according to their different characteristics and semantics
(see Fig. 2.4). Kehrer et al. [142] also include measures of outlyingness in their study of
opportunities for the interactive visual analysis of multi-dimensional scientific data.

Concluding, abstracting from raw data is a key approach to generate effective visualiza-
tions even for huge datasets. In some cases, well-designed abstractions have the potential
to avoid clutter and to convey important aspects much better than it would ever be possi-
ble by showing even parts of the raw data, which makes abstraction a key issue for visual
scalability. These benefits may have also been an important reason why Keim reformulated
Shneiderman’s well-known information seeking mantra (”overview first – zoom/filter – details
on demand” [227]) to ”analyze first – show the important – zoom, filter and analyze further
– details on demand” [147].

On the other hand, abstraction also implies a loss of detail that is not always tolera-
ble. Some abstraction methods may require significant computational resources which may
contradict the requirement of highly interactive tools. Finally, especially complex models
like clusters and non-linear regression models may not reasonably be identified in a fully
automated way. Building such models typically requires multiple iterations including re-
parameterization and validation based on the knowledge of domain experts for the data. As
discussed in chapter 1, this fact is in accordance with the goal of visual analytics to strive for
a tight integration of interactive visualization and automated data analysis [247]. However,
it may be a prohibitive disadvantage if the task of the user is different than model building
as such.

2.2.4 Aggregation of Spatial and Temporal Data

Temporal references and spatial coordinates are often treated just like ordinary numeric vari-
ables. However, temporal and spatial data have several specific characteristics that distin-
guish them from other types of data [8]. For example, characteristics at proximal locations
tend to be correlated [249] which is often called ”the first law of geography”. Concerning
time-oriented data, Aigner et al. discriminate between a linear versus a cyclic view on time,
between point-oriented versus interval-oriented temporal entities, and between ordered time
versus branching time [3]. Therefore, this sub-section briefly summarizes aggregation concepts
that are specific to temporal, spatial, or spatiotemporal data.

A common way to represent time is using a hierarchy of temporal categories (e.g., years,
months, days, hours, etc). Such a representation is a specific type of data cube and is thus
frequently used for pivotization (see section 2.2.1). Tableau [169], for example, intuitively
supports navigating temporal hierarchy levels to adapt the degree of detail (see Fig. 2.2).
Tableau also demonstrates how a flexible assignment of temporal categories to visual at-
tributes enables the user to switch between a linear and a cyclic view on time. Assigning all
temporal categories to a single axis (typically the X-axis) generates a linear view on time;
assigning temporal categories to multiple axes supports the comparison of cycles (e.g., years
being represented as rows and months being sequential columns). Wang et al. propose tempo-
ral summaries [266], an interactive visualization technique that dynamically aggregate events
in multiple granularities for the purpose of spotting trends over time and comparing several
groups of records.

Apart from common descriptive statistics like maximum or average, an interesting option

21

CHAPTER 2. THE STATE OF THE ART

to aggregate a part of a time-series to a single quantitative value is by its similarity to a
certain temporal pattern. This is the key idea of the TimeSearcher [118]. Muigg et al. [186]
also employ such an aggregation for brushing a subset of many function graphs. Van Wijk et
al. [262] use similarity for clustering daily patterns in order to identify patterns and trends
on multiple time scales simultaneously.

The temporal context is often important for data abstraction. Aigner et al. [3] distin-
guish between basic and complex temporal abstraction methods. An example of a basic
abstraction method is a qualitative classification of the gradient of a time-dependent value
(e.g., ”decreasing fast”). VIE-VENT [183] is a system that provides more complex temporal
abstraction like context-sensitive and expectation-guided methods in a medical application
domain. The methods incorporate knowledge about data points, data intervals, and expected
qualitative trend patterns to arrive at unified qualitative descriptions. As another exam-
ple, The Spread [184] implements a time-oriented data abstraction method to derive steady
qualitative descriptions from oscillating high-frequency data.

Much work has been dedicated to the visualization of geographical data. Dykes et al. [60]
give a survey of the existing systems and future trends of geo-visualization. With regards
to aggregation, hierarchical categories also play an important role for geographical data,
(e.g., continents, countries, states, counties, etc.). When aggregating geographical data, it is
essential to consider that the analysis results may depend on how the units are aggregated.
This refers to the sizes of the aggregates (scale effects) as well as to their locations and
composition from smaller units. As an example, Shanbhag et al. [224] use visualization of
demographic data over time to validate partitions. Chang et al. [38] present an interactive
tool for urban visualization that aggregates buildings and city blocks into legible clusters. The
goal is to provide continuous levels of abstraction while preserving the users mental model of
the city.

In many cases, data has both spatial and temporal characteristics. Such spatiotemporal
data can be regarded as spatial distributions (situations) changing over time or as profiles
of local temporal variation distributed over space. To support both analytic perspectives,
Andrienko et al. [5] recently suggested a framework based on Self-Organizing Maps (SOMs)
combined with interactive visual tools. The authors apply SOMs to spatial situations at
different time moments as well as to local temporal evolution profiles. The SOM matrix
displays groupings of data objects and their two-dimensional arrangement by similarity.

Movements (e.g., trajectories of cars) are a particularly important type of spatiotemporal
data. Large sets of movement data typically involve data aggregation that can be spatial
(S), temporal (T), attributive (A), or a combination thereof [78]. As an example, an SSTT
aggregation (start place, end place, start time, and end time) counts for each pair of places
in space the number of movements between two time moments. This can be visualized as
a transition matrix [97]. Andrienko et al. [6] extend SSTT-aggregation by a route-based
grouping of movements. In a later paper, Andrienko et al. [4] investigate the use of aggregation
for two possible views of movement, traffic-oriented and trajectory-oriented (see Fig. 2.5).

As a conclusion, the variety of different aggregation methods for spatial, temporal, and
spatiotemporal patterns shows the importance of considering the special characteristics of
such data in the context of the task. The fact that most data have some type of temporal or
spatial reference – also in information visualization – makes respective aggregation methods
a major issue of scalable visual analysis.

22

2.3. DIMENSION REDUCTION

Figure 2.5: Different clusters of trajectories going to the center of Milan [6].

2.3 Dimension Reduction

All approaches discussed so far address scalability with respect to many data items, i.e., data
tables with a large number of rows. However, also high-dimensional datasets are becoming
increasingly common, i.e., data tables with a large number of columns. Examples include
frequency spectrums in technical data and surveys with many questions.

Most visualization techniques for multivariate data have inherent or practical limitations
with respect to the number of dimensions that can simultaneously be displayed. A basic
2D scatterplot, for example, scales up to a few thousand data items, but it displays only
two dimensions. Parallel coordinates and scatterplot matrices become increasingly hard to
interpret and scale up to 10 to 20 dimensions at best. Therefore, exploring truly high-
dimensional datasets is a non-trivial yet important research question.

As one solution, there are numerous methods that project high-dimensional data to low-
dimensional space. Principal Component Analysis (PCA) of N-dimensional data is an ap-
proach that generates a sequence of N best linear approximations to the data which are
ranked by the amount of variance [138]. Each principal component is a linear combination of
the original dimensions that is orthogonal to all other principal components. While PCA itself
is a lossless transformation that does not reduce the number of dimensions, its application in
the context of dimension reduction is based on the ranking of the principal components. In
most cases, the first few components account for the majority of information in the data which
can enable the detection of high-dimensional clusters in common scatterplots, for example.

Many non-linear methods for dimension reduction attempt to preserve similarities be-
tween objects in high-dimensional space after the projection to low-dimensional space. For
example, Multi-Dimensional Scaling (MDS) [179] is an iterative approach to minimize a stress-
function that expresses how much the distances between objects change by a projection to
low-dimensional space. Self-Organizing Maps (SOMs) [151] perform vector quantization to

23

CHAPTER 2. THE STATE OF THE ART

Figure 2.6: The Rank-by-Feature Framework for ordering pairs of dimensions by bivariate
statistical moments [222].

project high-dimensional data vectors to a limited number of prototype vectors which are
often arranged as a 2D regular grid. Visualization results often resemble landscapes that
show clusters in the data as mountains [75].

Schreck et al. emphasize that one problem of MDS and SOM is the uncertainty regarding
the precision of the projection as compared to the original data characteristics [220]. They
address this issue by integrating a projection precision measure into the projection visual-
ization and discuss several visual mappings for integration at various levels of abstraction.
However, the main drawback of PCA, MDS, SOM, and all derivates (e.g., non-linear PCA
and local MDS [106]) from a visualization point of view is the lack of intuitive meaning of the
generated dimensions which makes results difficult to interpret. As one approach to mitigate
this in case of PCA, Jeong et al. [132] describe a system that visualizes the results of PCA
and which provides user interactions to assist in better understanding PCA.

As an alternative solution, several interactive approaches to dimension reduction have
been published. Most of them focus on different structures within the data. Yang et al. pro-
pose visual hierarchical dimension reduction [283], which groups dimensions into a hierarchy
in order to let the user select a meaningful set of dimensions from different clusters of the
hierarchy. Later, Yang et al. extended their work to what they call interactive hierarchical di-
mension ordering, spacing and filtering approach (DOSFA) [282]. While DOSFA is also based
on dimension hierarchies, dimension filtering automatically picks out important dimensions
to form lower dimensional subspaces that contain major features of the original datasets.

Some approaches rely on ordering dimensions with respect to certain metrics. Peng et
al. [201] define different measures of what constitutes clutter in terms of display properties for
four different visualization techniques and they order the dimensions so that clutter is mini-
mized. The Rank-by-Feature Framework [222, 223] ranks dimensions and pairs of dimensions
by univariate and bivariate statistical moments (see Fig. 2.6). The user may choose between
several statistics which are displayed in a linked table for ranking preview visualizations as
guidance to potentially interesting dimensions. Johansson et al. [136] proposed to combine
user-defined quality metrics using weight functions. Their approach supplies a range of au-
tomatic variable orderings and enables a quality-guided reduction of variables (see Fig. 1.2
(d)).

A different idea is to visually represent the space of dimensions itself. Ankerst et al. [7]
introduced a measure to place dimensions with alike behavior close to each other. Based
on a similar idea, Yang et al. [281] represent dimensions as pixel-oriented glyphs and apply
Multi-Dimensional Scaling to position them in 2D space according to their properties (see

24

2.4. COORDINATION

Figure 2.7: Representing each dimension as pixel-oriented glyph [281]. Multi-Dimensional
Scaling [179] is employed to position the glyphs according to the correlation between the
dimensions.

Fig. 2.7).
Another group of work assesses projections by different user-dependent notions of inter-

estingness. Wilkinson et al. [278] apply Graph Scagnostics to characterize axis-parallel 2D
projections by measuring properties like convexity, correlation, or outliers. Dasgupta et al.
recently proposed Pargnostics [48] as a similar approach for parallel coordinates. Sips et
al. [230] described two quantitative measures of class consistency to assess the quality of the
mapping. Tatu et al. [244] measure interestingness of labeled and unlabeled point clouds to
provide the user with a small number of potentially useful candidate visualizations.

As a conclusion, despite significant advances achieved by a wealth of both automated and
interactive approaches, analyzing truly high-dimensional data will perhaps always remain
a challenge due to the inherently limited intuition of humans for high-dimensional space.
However, many approaches have successfully demonstrated that it is possible to partially
solve the problem for specific tasks or data characteristics. An increasingly tight integration
between interactive visualization and automated data analysis is likely to further increase the
number of solutions to real-world problems that scale to high dimensionality.

2.4 Coordination

The analysis of complex data typically requires a variety of different components. Examples
include different visualization types, data projections, interaction techniques, and automated
methods for data analysis. Coordinating multiple components is thus a key issue in the context
of scalable visual data analysis. Olson et al. describe coordination as composing purposeful
actions into larger purposeful wholes, where the additional information processing performed
when multiple, and connected actors pursue goals that a single actor [or indeed the multiple

25

CHAPTER 2. THE STATE OF THE ART

actors working separately] pursuing the same goals would not perform [196]. Boukhelifa et
al. [28] emphasize the point that the whole is greater than the sum of its components and
they argue that any operation can be coordinated.

This section summarizes the state of the art in coordination for information visualization.
Section 2.4.1 is dedicated to the coordination of multiple views, which is a very frequent type
of coordination in systems for visual data analysis. Section 2.4.2 then surveys approaches
that combine overview and detail information, which can also be considered a coordination
of multiple degrees of visual detail.

2.4.1 Multiple Coordinated Views

The term multiple views is generally used to describe visualization approaches that employ
multiple windows to show different representations of data [211]. Baldonado et al. [11] defined
principles when and how using multiple views should be considered. They suggest to use
multiple views in case of diversity in attributes, abstractions or genres when these views draw
out correlations or disparities. Moreover, they point out that smaller manageable views can
be helpful to partition complex visualizations.

The need to coordinate many components in a flexible way incurs a significant additional
complexity to the design of a system for effective visual data analysis. Based on examples
from visualization literature, Roberts identified multiple basic architectures to achieve view
coordination [211], namely constraint-based [177], data-centric [192], and based on the Model
View Controller (MVC) paradigm [200]. Boukhelifa et al. [28] argue that models for coordi-
nation allow for an effective development as well as a qualitative evaluation of systems that
incorporate coordination. To this extent, they describe an abstract model that is based on
sharing objects such as the visualization parameters of the dataflow model to achieve coor-
dinated exploratory tasks in multiple views. Weaver proposed a similar conceptual model
called Live Properties [272], in which views are tightly coupled through shared objects that
describe the data contents and the navigation and selection state of views in a visualization.

There are many types of multi-view-environments and multiple different characteristics
to discriminate them. One decision concerns the scope of updates when parameters change.
In his model, Roberts distinguishes between replacement, replication, and overlay [210] with
replication being the principal model of coordinated multiple views.

A key distinction of multi-view-environments is the strategy for managing views. Dual
view systems [47] combine only two views on the data. A typical example is providing
separate views for overview+detail, and also focus+context can to some degree be regarded
as a special type of dual view (see section 2.4.2). Small multiples [256] are another type of
multi-view-environment. Their main purpose is to enable visual comparisons by repeating
a series of related views. Scatterplot matrices [43], for example, lay out all two-dimensional
projections of a high-dimensional dataset as a grid so that adjacent plots share a common
axis. HyperSlice [261] uses the same layout to visualize high-dimensional scalar functions.
Other examples of small multiples subdivide the space according to categorical dimensions.
Polaris [238] employs a regular subdivision while hierarchical layouts like tree maps [225]
scale cells to represent a certain property for each node. In some sense, also pixel-based
visualizations [143] can be considered as an extreme case of small multiples in which ”views”
have been reduced to single colored pixels that convey information when being arranged with
respect to a certain criterion.

For more general multi-view-environments, various strategies exist to simultaneously man-

26

2.4. COORDINATION

Figure 2.8: Caleydo [166] as an example of multiple coordinated views. The bucket layouts
multiple views in a 2.5D setting. VisLinks [46] connect related information across views.

age diverse types of views. Simple ones may rely on the operating system to layout different
windows or may utilize well-known dynamic splitters. More complex approaches display
iconic representations to represent a navigable history of an analysis session [159, 113]. Lex
et al. [166] layout multiple views as a bucket, i.e., the inside faces of a cube (see Fig. 2.8).
This approach puts the focus on the center view while showing the surrounding views as
context information. The 2.5D setting enables to intuitively draw connections (VisLinks [46])
between related visual representations in different views.

Another characteristic aspect that is tightly related to the strategy for managing multiple
views is the interaction concept for creating new views. As the most simple case, many sys-
tems offer only a fixed layout and do not allow the user to create new views at all [168, 55].
Many other systems rely on standard menus and buttons for this type of interaction (e.g.,
Spotfire [1]). As an example of a more advanced approach, FromDaDy [122] enables the user
to create new views by splitting the data shown in one view through interactive selection.
Tableau utilizes an algebra in combination with a predetermined ranking of different visu-
alization types in order to automatically create and parameterize small multiple views [169]
(see Fig. 2.2). Other approaches offer module visualization environments that enable users
to individually combine different visualization components also to define precisely how these
components should be linked to each other (e.g., Snap-Together [192] and Improvise [272] (see
Fig. 2.9)).

Besides the aspect of creating views, interaction in a general sense plays a key role for coor-
dinated views [286]. Roberts distinguishes between direct and indirect interaction techniques
for coordination [211]. Indirect interaction refers to approaches where the user interacts
outside the visualization, e.g., dynamic queries for filtering data items (see section 2.1.2).
Although not strictly interactive, also simultaneous animation in multiple views with respect
to a common temporal reference can be regarded an indirect coordination technique [213].

In contrast, direct interaction techniques are performed within the visualization. Examples

27

CHAPTER 2. THE STATE OF THE ART

(a)

(b)

Figure 2.9: (a) Example of Improvise [272]. (b) The coordination pattern of the three high-
lighted scatterplots in (a) synchronizes their horizontal scrolling.

28

2.4. COORDINATION

of such techniques include linked cursors [72], linked navigation [203], and data probing [32].
The most common type of direct interaction technique, however, is brushing which refers to
defining different degrees of interest in the data. Brushing techniques are mostly specific to a
certain type of visualization or data and differ in their complexity. Simple approaches include
selecting individual data items by clicking on them, or marking coherent axis-aligned rect-
angular regions in scatterplots [16]. Examples of more advanced approaches involve angular
brushes in parallel coordinates [108] and brushes of temporal characteristics [118, 186].

Complex tasks often require a more expressive way of formulating the degree of interest
than it is possible by an isolated application of individual selection techniques. In this case,
logical operations can be used to compose queries of arbitrary complexity [274]. Doleisch et
al. [52] support smooth transitions in the degree of interest and apply fuzzy logic [288] for
composite queries (see also chapter 4). In accordance with the idea of visual analytics [247,
146], a recent trend is to increase the intelligence of the data selection process. Hao et al. [102],
for example, identify relationships to portions of the data which are similar to what the user
has interactively selected before. Similarly, Yang et al. [280] presented an analysis-guided
exploration system that extracts pieces of valuable information (called nuggets) based on the
interests of users and also helps to organize a growing pool of such nuggets.

As a conclusion, coordinating multiple views is a suitable – and often necessary – approach
to address complexity in data analysis. As described by Baldonado et al. [11], this complexity
often results from diversity in the data that would be inappropriate or impossible to represent
in a single view. Therefore, coordinated multiple views are a key technique with respect to
visual scalability. There are several studies evaluating perceptional aspects in multi-view
environments which illustrate the benefit for certain tasks, e.g., as compared to zooming [204]
(see section 2.4.2).

However, Baldonado et al. also warn that multiple views should be used sparingly and
that sequential comparisons can sometimes be favorable to side-by-side visualizations [11].
Furthermore, they stress the importance of consistent interfaces across views and the necessity
of perceptual cues to make relationships between views more evident. Recently, Liu and
Stasko [167] noted that internalization is a necessary first step in order to build a mental
model when learning a visualization system. Many users still do not have such a mental
model of the concept of multiple coordinated views (see section 7.5). Therefore, using – and
even more so defining – multiple views is a mentally complex process for novices that may
take a considerble amount of time to familiarize with.

2.4.2 Overview and Detail

As motivated in chapter 1, it is typically not possible to visualize all details of a large dataset
in one image. As a solution, many approaches let the user specify a different degree of interest
in different parts of the data [107]. Such a definition can be used to provide details only for
interesting parts of the data. However, in contrast to filtering techniques that typically elim-
inate the rest of the data (see section 2.1.2), this section surveys approaches which combine
the visualization of detail information with a representation of an overview of contextual data
or even the entire dataset. The purpose of the overview is to provide contextual information
and to let the user keep track of the current position in the data.

Several taxonomies and books identify different classes of approaches for providing
overview and detail (e.g., [155, 236, 44]). Most of this work discriminates the subsequent
categories which are also used to structure the discussion in this section:

29

CHAPTER 2. THE STATE OF THE ART

• Overview+detail. Such interfaces show the overview information separately from detail.

• Zooming. An interaction technique to achieve a temporal separation between overview
and detail.

• Distortion-oriented focus+context. Such techniques distort the image geometrically.

• In-place focus+context. Respective visualizations use visual cues to emphasize certain
parts of the data.

Overview+detail interfaces spatially separate the display of the overview from the detail in-
formation. Examples dating back to the early 1980s are computer games (e.g., Defender),
which display a low-resolution map of an entire level as overview in which a rectangle indi-
cates the area that is currently shown in full-resolution. Very similar ideas can nowadays be
found in many commercial applications, e.g., image editing software like Adobe Photoshop
or geographical software like Google Maps. In information visualization, an early example
is the Information Mural [133], where a smaller overview window shows the structure of the
entire dataset while the detail area is given more screen space. A key challenge for using
overview+detail in information visualization as compared to applications for rasterized im-
ages is to generate a meaningful abstraction as overview. Chen et al., for example, recently
proposed an approach to dynamically adjust the level of abstraction for overview dendrogram
visualizations [40].

Lam et al. evaluated the effectiveness of overviews in interfaces that provide multiple
visual information resolutions for a given set of tasks [160]. They found that participants of
their study used overviews only for simple visual targets with a small visual span. As their
conclusion, interactions across multiple resolution interfaces incur a high cognitive load which
is a considerable barrier to an effective use. However, other literature comparing interfaces
with and without overviews has reported benefits of overviews for faster navigation [14], to
maintain orientation [202], and to make decisions about future navigation [121].

As an alternative approach, zooming achieves a temporal separation between overview
and detail visualizations. Users can adjust the level of detail by magnifying or de-magnifying
a visualization in place rather than seeing multiple resolutions simultaneously. Furnas and
Bederson proposed Space-Scale diagrams [87] as a framework to address domain independent
design challenges when conceptualizing navigation using zoom and pan. Van Wijk and Nuij
presented a generic model to achieve both smooth and efficient animations when navigating
large 2D information spaces [263]. Their model uses a metric describing the perceived velocity
for simultaneous zooming and panning to derive solutions for animations between two views,
automatic zooming, and the parameterization of camera paths. Concerning the effectiveness
of zooming, Plumlee and Ware presented a model predicting the user performance for tasks
requiring frequent movements and scale changes for zooming as compared to using multiple
views [204]. Since their evaluation showed much higher error rates for zooming, they proposed
the design heuristic that extra windows are needed when visual comparisons involve patterns
which are too complex to be held in visual working memory.

A very important class of techniques – generally referred to as distortion-oriented fo-
cus+context – transforms the image geometrically to integrate both overview and detail within
a single visualization. In the early 1970s, Farrand was amongst the first to present the use
of different magnification factors [68]. About a decade later, Furnas’ Fisheye view [84] is now
considered as the start of computer-based focus+context visualization. The idea has soon

30

2.4. COORDINATION

(a) (b)

Figure 2.10: Projections onto a sphere enable a smooth shift of the focus [158].

been generalized [85]. An early taxonomy by Leung and Apperley [165] distinguishes three
classes, namely continuous magnification, piecewise constant magnification, and others.

As an example for continuous magnification, Lamping et al. [161] draw in hyperbolic space
and project the result to Euclidean space. Similarly, a projection onto a sphere enables the
user to move the focus to all sides of the display [158] and supports a smooth degree of
distortion (see Fig. 2.10). Keahey and Robertson describe non-linear magnification fields as a
generalized technique to control the magnification function on a grid in a flexible way which
also supports multiple foci [141]. While it is generally difficult to preserve shapes for large
differences in magnification factors, Boettger at al. more recently proposed a technique to
keep shapes intact and recognizable [27]. They use the complex logarithm and the complex
root functions in order to show very small details even in very large contexts.

The concept of focus+context techniques with continuous magnification has been suc-
cessfully adopted by widely-used commercial software especially for widgets offering a choice
from a linear set of options, e.g., fish-eye menus [17] like the dock icon panel of Mac OS X.
However, a continuously changing degree of distortion hampers the perception of distances
for many other tasks. This is a major drawback for many types of visualizations like maps or
scatterplots. In this respect, a piecewise constant magnification as employed by the bifocal
display [237] preserves distances partially at least. A similar approach is the Perspective
Wall [170] that does not distort the focus and bends the context backwards to both sides.
Signal Lens [149] are an example of a very recent application of this concept to electronic
time series.

The idea of distortion-oriented focus+context can both be specialized and generalized
in many ways. Specializations mostly refer to extensions which are tailored to a specific
kind of visualization. For example, various focus+context approaches have been proposed for
visualizations of hierarchical data, e.g., centric representations [284] as well as containment-
based representations [255]. An important generalization concerns the application of different
visualization techniques for different degrees of detail. As an example, the Table Lens [207]
displays a detailed textual representation for a user-defined focus region of a data table
while the rest is shown only graphically (see Fig. 2.11). Another generalization concerns the

31

CHAPTER 2. THE STATE OF THE ART

Figure 2.11: The Table Lens show a different degree of detail for the focus and the con-
text [207].

definition of the degree of interest to incorporate data-driven instead of purely interactive
approaches. World Mapper [56], for example, distorts a map in order to scale different
territories by quantitative properties like the average income while preserving the topology
between the territories.

Evaluations comparing distortion-oriented focus+context techniques against alternative
options like zooming or overview+detail reveal mixed results [31, 190]. Positive results
of distortion-oriented techniques have been reported for tasks like interactions on small
screens [31], steering navigation [100], and calendar use [18]. For other tasks like interac-
tive layout [99] and visual scanning [150], distortion was not the preferred option.

As another type of focus+context techniques, in-place focus+context employs visual cues
instead of distortion to discriminate focus from context. A typical application is to highlight
a certain subset of data by modifying visual attributes – mostly color or the size of glyphs.
Inspired by the well-known depth-of-field effect in photography, Kosara et al. also proposed
the use of frequency as visual cue [156]. Their semantic depth of field thus blurs objects to
indicate them as context (see Fig. 2.12). A very similar approach has recently been proposed
to lessen the visual structures of uncertain data [73].

Some in-place focus+context approaches modify the style and the level-of-detail for dif-
ferent degrees of interest. For example, Matkovic et al. describe different levels of detail for
control widgets in process visualization [173]. Their design space trades off the size of widgets
against the amount of shown information and also the precision of its visual representation.
Novotny and Hauser also apply different visualization styles for representing outliers and

32

2.5. DATA MANAGEMENT AND PARALLELIZATION

Figure 2.12: An example of semantic depth of field [152].

trends in parallel coordinates [194] (see Fig. 2.4). In this case, binning is used for the data
considered as ”trend” (see section 2.2.2) while ”outliers” are drawn as poly-lines. In some
sense, probes can also be regarded as in-place focus+context technique although this tech-
nique is closely related to multiple views as well. Butkiewicz et al., for example, draw iconic
representations of multivariate views as detail information for certain spots of a geographical
context [32].

As a conclusion, discriminating interesting from contextual information is agreed as a
suitable and effective approach to achieve visual scalability in interactive visualization. As
surveyed in this section, the design-space is huge which may be considered good or evil.
Contradicting evaluation results when comparing different approaches suggest that the ”ideal”
technique is highly task-dependent and also dependent on the user skills, the environment,
and on other parameters. Therefore, choosing the best approach for a particular design is
still a non-trivial task.

2.5 Data Management and Parallelization

Most approaches discussed so far focus on visual aspects of scalability. In contrast, this
section deals with computer-oriented issues of information and computational scalability with
respect to data management and data processing. In scientific visualization, technical issues
for handling large data have long been a major topic of research. In their introduction to this
topic, McCormick and Ahrens identified four fundamental techniques to solve the large-data
visualization problem in scientific visualization [176].

• Data streaming

• Task parallelism

• Pipeline parallelism

• Data parallelism

33

CHAPTER 2. THE STATE OF THE ART

In information visualization, most approaches are still geared towards sequential CPU-based
processing of comparatively small datasets which can entirely be kept in the main memory of
common PCs. In the context of visual analytics, however, the importance of computational
scalability has recently been increasing also for non-scientific visualization. This section sur-
veys approaches to scalable data management and to parallel computing, focusing on their
adoption by information visualization and visual analytics. After discussing data manage-
ment for visualization in section 2.5.1, the survey of parallelism is structured by discriminating
CPU-based approaches in section 2.5.2 and GPU-based approaches in section 2.5.3.

2.5.1 Data Management

Large data often exceeds the capacity of the main memory. Huge data even exceeds the
capacity of local hard disks of a normal desktop PC and is typically stored on dedicated
servers. According to the idea of memory hierarchies and caching [199], a common approach
for both cases is to fetch data from the storage medium being next in size. This approach is
often referred to as out-of-core computing as surveyed by Vitter [265]. Vitter distinguishes
between batched problems and online problems. In the first case, all data items are processed
by streaming them in blocks. In the latter case, the computation is done in response to a
continuous series of query operations so that only a very small portion of the data needs to
be retrieved in response to each query.

In scientific visualization, streaming structured data has long been a topic of research.
Law et al. [162] describe a multi-threaded streaming architecture that automatically breaks
data into pieces of a specified size and processes them within a pipeline of filters. Law et
al. argue that their architecture supports any size problem on any size computer, at the
expense of extra computational time. More recently, Cedilnik et al. describe an approach to
remote large data visualization in the ParaView framework [35]. Their solution incorporates
a data-parallel data server, a data-parallel rendering server, and a client controller. As a
consequence, data parallelism is a necessary requirement in both cases which means that the
data can be separated and pieces of data can be processed independently. While many algo-
rithms for structured data in scientific visualization meet this requirement, many algorithms
in information visualization do not.

This may be a reason why Vitter’s notion of online problems better matches the needs of
information visualization than batched problems. In fact, querying, sorting, and aggregating
data items are key issues in many systems and precisely coincide with the core functionality
provided by databases. Moreover, commercial databases and data warehouses are often the
natural source of raw data. For these reasons, approaches that directly operate on top of
databases are becoming increasingly popular in information visualization and especially visual
analytics [146]. However, a distinction should be made between loose and tight integration
between the visualization application and the database. Loose integration refers to approaches
that retrieve data at specific points in time (e.g., at import) while relying on internal data
handling mechanisms which are typically restricted to the main memory during the analysis.
VisDB [144], Spotfire [1], and Advizor [124] are only a few examples of this approach which
is fast for analyzing moderately sized datasets but does not scale to truly large data.

In contrast, analytics applications realizing a tight integration directly rely on the database
for data management and data querying. As examples of a tight integration with database
systems, front-ends for On-Line Analytical Processing (OLAP [39]) like Cognos [123] or the
MicroStrategy Reporting Suite [181] let the user perform drill-down and roll-up operations

34

2.5. DATA MANAGEMENT AND PARALLELIZATION

in huge data warehouses, but typically offer only static business graphics (see section 2.2.1).
While OLAP optimizes query throughput by pre-computing aggregations, Harinarayan et
al. [104] argue that carefully planning pre-computed views is crucial due to the large number of
possible views. Tesone et al. propose smart aggregation to adjust the amount of data obtained
from a database combining automatic measures and user-defined controls [245]. Doshi et al.
describe asynchronous data pre-fetching to explore large datasets by adaptively selecting
different pre-fetching strategies over time [58]. Wylie and Baumes present a component-
based pipeline framework for the integration of algorithms from scientific and information
visualization [279]. A key aspect of their work is a mechanism to use databases and database
queries as the input to an on-demand data pipeline.

Especially with regard to a tight integration of database systems and visualization applica-
tions, the performance of the database is becoming an important issue for the usability of the
interactive analysis. Most relational database systems are row-oriented, which means that the
attributes of a data record are stored contiguously. While such an architecture optimizes the
throughput performance when processing on-line transactions, it is less efficient for analytical
queries accessing only a small subset of data attributes. Therefore, column-oriented storage is
becoming increasingly popular for analytical tasks because only referenced attributes need to
be fetched [242]. Comparing row- and column-oriented architectures, Harizopoulos et al. [105]
conclude that column-oriented storage usually achieves higher performance. MonetDB [25]
and kdb+ [125] are examples of column-oriented databases that also attempt to keep data in
memory.

Based on kdb+, Chan et al. developed a client-server system for exploring massive time
series [36]. Interactivity is maintained by delegating data queries to eight multi-processor
database servers and by applying caching and pre-fetching mechanisms. To guarantee smooth
interaction, constraints are derived from the capabilities of the employed hardware and soft-
ware, and limit the distance that a user is allowed to travel per exploration step.

Concluding, column-oriented in-memory databases can be an important step towards mak-
ing interactive visual analysis of truly large data technically feasible. They allow for accessing
the data in a controlled and standardized way, are able to handle issues concerning security
and data consistency, and provide support for distribution and load balancing. All these issues
are typically disregarded due to their complexity for proprietary data management facilities
on top of which most visualization systems are built nowadays. However, research on how
to efficiently incorporate such databases for visual analytics has just begun. A collaborative
effort of the database community and the visualization community will be needed to design
ways for an optimal interplay even in case of huge data.

2.5.2 CPU-Based Parallelism

Multi-core technology has become commonplace in today’s CPUs and the number of cores
will further increase in the future. As a consequence, utilizing CPU-based parallelism by
means of multi-threading has become a major concern for all types of software, and it is a
particularly important issue for demanding applications like interactive visualization of large
data.

Parallelism and concurrency are key topics of computer science and subject to ongoing
research. There are numerous highly non-trivial related issues involving synchronization,
communication, scheduling, consistency, deadlock prevention, data and task parallelism, per-
formance, and scalability. Defining design patterns for particular problems has proven a good

35

CHAPTER 2. THE STATE OF THE ART

approach to cope with this complexity. Schmidt et al. [218] describe 17 patterns for con-
current and networked objects, covering event handling, synchronization, and concurrency.
Similarly, Mattson et al. [175] define a pattern language for parallel programming, which is
structured as dealing with finding concurrency, algorithm structure, supporting structures,
and implementation mechanisms. More recently, Herlihy and Shavit [115] summarize the
theory when programming for multiple processors and describe practical implementations for
concurrent data structures.

While parallel algorithms and systems play an important role in scientific visualization,
many techniques focus on exploiting data parallelism by parallelizing the processing of data
blocks [162] (see section 2.5.1). For this purpose, most approaches specifically tune the internal
representation of the data to maximize performance. In contrast, information visualization
and visual analytics systems typically can not make as many assumptions about the data
while offering the user many options to control the visualization pipeline. This may be a
reason why these fields have paid little attention to multi-threading so far.

Among the few exceptions, Heer et al. [109] note that an important issue in implementing
the Scheduler pattern is to handle concurrency. Their framework Prefuse [112] offers a sched-
uler mechanism to execute costly computations in a separate thread, e.g., to drive animations
or incremental layout computations. The XmdvTool uses multi-threading for asynchronous
data pre-fetching [58]. The visualization system Improvise [272] implements asynchronous
displays based on retarding worker threads to allocate as much resources as necessary to the
user interface thread (called throttling [275]).

A common problem of applying multi-threading in a general way is the increased system
complexity and the usually higher implementation costs [163]. Heer and Bostock note that
addressing this problem was one motivation for them to design a declarative language for
information visualization [111]. Their language seeks to separate the specification of visual-
izations from details of the execution in order to simplify the development and to support
optimizations like parallelized execution.

As a conclusion, research on utilizing CPU-based parallelism in information visualization
and visual analytics is still in its infancy. Most systems apply multi-threading only for isolated
aspects – if at all – and many non-trivial details about multi-threading have been left unpub-
lished. This situation was a motivation for proposing a generic multi-threaded architecture
(see chapter 3).

2.5.3 GPU-Based Parallelism

Driven mainly by the computer games industry, Graphics Processing Units (GPUs) have seen
a tremendous evolution in the past 15 years. Showing a growth-rate of 2.5 – 3.0 times a year,
the performance of GPUs has been increasing faster than Moore’s Law for CPUs [198]. Today,
graphics cards in common PCs are equipped with GPUs of 512 parallel cores and more than
a gigabyte of highly optimized memory.

While GPUs have mostly been designed for realistic real-time rendering of large scenes,
general-purpose GPU computing (GPGPU) [248] attempts to make use of the stream pro-
cessing capabilities of GPUs for general computation and algorithms. A key issue of GPGPU
is to map high-level data structures to the graphics primitives in terms of which GPUs are
programmed [164]. GPGPU libraries like NVidias CUDA, ATIs Stream Computing SDK,
and the Brook library [29] are very helpful in this respect.

GPUs have also been used for visualization, but mostly in the context of scientific vi-

36

2.5. DATA MANAGEMENT AND PARALLELIZATION

Figure 2.13: The visualization pipeline as extended by an image-step [178].

sualization. Weiskopf summarized approaches for GPU-based scientific visualization [276].
An adoption of the GPU by information visualization has been much slower. Existing work
often discusses the utilization of GPUs rather as an implementation detail than as a part of
the contribution. Johansson et al., for example, use a GPU pixel shader to render parallel
coordinates [135]. Elmqvist et al. apply a fixed GPU-shader architecture to draw glyphs in a
graph visualization system [66].

Other work investigated the use of GPUs for force-directed node placement. Frishman
and Tal present an algorithm for force directed graph layout on the GPU [80]. Their approach
computes a balanced partitioning of a general graph to allow for a data parallel programming
model, but it does not scale to weighted complete graphs and uses the CPU for initial node
placement. Glimmer [126] is a GPU-based approach to Multi-Dimensional Scaling that runs
all stages of the algorithm on the GPU. Glimmer recursively applies a parallel, force-based
subsystem to combine and refine hierarchically organized input data.

There have also been first approaches to utilize GPUs in information visualization in a
more general way. Fekete and Plaisant [71] investigated methods based on hardware accelera-
tion to interactively visualize a million data items in scatterplots and tree map visualizations.
Besides rendering performance, non-standard visual attribute mappings support perception,
and appropriate interaction methods are integrated. Florek and Novotny [76] utilize graphics
hardware to improve the rendering performance of scatterplots and parallel coordinates. More
recently, McDonnel and Elmqvist describe an image-space step as refinement to the informa-
tion visualization pipeline for an implementation using GPU shaders [178] (see Fig. 2.13).
Their strategy is to sample multivariate data in the resolution of the current view.

Concluding, GPUs are likely to play an increasingly important role in information visual-
ization and visual analytics in the near future. However, McDonnel and Elmqvist conjecture
that a wide-spread adoption of GPUs is currently hindered by a conceptual mismatch be-
tween the geometrically-related basic data types of GPUs and more high-level and abstract
datasets such as graphs, trees, and free text [178]. Heer and Bostock note that optimizations
like GPU processing lead to increasingly complex APIs, which impose an additional burden
on developers [111]. Therefore, finding a good balance between complexity and efficiency will
be a key to success.

37

CHAPTER 2. THE STATE OF THE ART

2.6 Approaches Adressing Other Scalability Issues

As discussed in chapter 1, scalability in visual analysis is a very broad topic that goes far
beyond the sheer size of analyzed data. In accordance with the topic of this thesis, this state
of the art report focused on scalability with respect to large data. However, this final section
briefly summarizes approaches to address other scalability issues.

Concerning display scalability, the limited resolution of small screens makes them a par-
ticularly challenging field of research. As one example, Büring et al. proposed interaction
techniques to support scatterplots of multiple thousand items on displays of smart phones [31].
Another approach are facet-based interfaces like FacetMap [233] and FaThumb [139].

At the other end of the spectrum, Yost and North investigated the perceptual scalability
of visualizations to very large displays [287]. Their results suggest that encoding is more
important on a smaller display while spatial grouping is more important on a larger display.
Multi-projector displays are one technique to realize large screens in practice, but a seamless
combination is challenging [216, 215].

Human scalability summarizes aspects of collaboration, which is in some cases related to
large displays. For example, Isenberg et al. studied co-located collaborative visual analysis
around a tabletop display [129]. However, co-located collaboration of small groups is just
one case of social interaction. Heer and Agrawala emphasize that the most appropriate
collaboration mechanisms to support sense making are not immediately clear [110], and they
discuss design considerations for asynchronous collaboration.

Web-based approaches are becoming increasingly popular to support collaboration on a
large scale. Many Eyes [264], for example, is a public web site where users may upload data,
create interactive visualizations, and discuss findings. Being targeted to the public, such ap-
proaches face additional challenges as compared to designing visualizations for trained expert
users. Respective techniques have sometimes been termed casual information visualization.
Examples of casual information visualization also include automated generation of visual-
izations [169], visual story telling [221], and various social applications like installations in
museums [117], exploration of the user’s own history [13], and explorations of online conver-
sations [55].

Involving textual data, relational data, and multimedia data, online conversations also
illustrate that visualization has to deal with increasingly heterogeneous data. Only a few
approaches have been proposed that adress a joint analysis of heterogenous data. As one
example, VisLinks [46] reveal relationships between multiple visualizations. Ivanov et al.
describe an example to integrate data from video cameras and motion sensors [130].

Dealing with scalability issues typically also increases the complexity of writing respective
analytics software. In addition, software systems are required to be modular and highly
configurable while the development should be cost-efficient and fast. In order to achieve
these complementary goals of software scalability, design patterns for information visualization
describe reusable building blocks [109], and various libraries and frameworks support the
development process at different levels of abstraction [111, 74].

38

Chapter 3

A Multi-Threading Visualization
Architecture

As motivated in chapter 1, interactive visualization is particularly suitable for the exploration
of unknown data. Explorative tasks are different from presentation tasks in that they require
frequent changes of the view on the data. Therefore, a smooth and efficient exploration
requires that the ensemble of analytical, visual, and interaction methods has to generate
results in a timely manner (within 50 – 100 ms [226, 236]). However, even moderately sized
data can pose computational challenges. Computing a graph layout of a few hundred nodes
or rendering a dataset with a million data records as a parallel coordinates plot may take a
few seconds on a desktop computer. For discrete interaction (e.g., a single click on a button)
scalability problems like delays or temporary loss of responsiveness might be acceptable,
because interaction occurs at low frequency.

However, research in human-computer-interaction has long been emphasizing the signif-
icance of continuous interaction as a requirement of interactive systems to support native
human behavior [67]. This is in particular true for an exploratory visual analysis which typ-
ically involves examining multiple ‘what if’ scenarios [236]. A scenario could, for example,
refer to setting a model parameter to a certain value. For discrete interaction, the user has
to explicitly specify scenarios of interest in a successive manner. This approach provides no
information about properties between two scenarios and it requires much time to explore
parameter ranges. Continuous interaction, on the other hand, allows the user to explore any
range in any speed and reduces the risk of losing interesting scenarios. During continuous
interaction, two important requirements are to keep the application responsive and to provide
a sufficient amount of visual feedback. What ‘sufficient visual feedback’ refers to depends on
the visualization and the purpose, but definitely involves showing a representation of the data.
A support of continuous interaction is thus considerably more challenging with respect to the
scalability to large data.

Many approaches provide a fixed amount of feedback during a continuous user interaction.
However, as the available computation time per update can hardly be predicted generically
and may vary due to caching and scheduling effects, such approaches suffer from one of two
drawbacks: 1) time is left unused and less visual feedback is provided than possible or 2)
single updates take longer than the time between consecutive user events. In the second case,
the application responsiveness may degrade severely if visualization generation happens in the
same thread that is responsible for receiving events. This significantly limits the scalability

39

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

to large data.
Therefore, some systems (e.g., Improvise [273]) parallelize these tasks using multi-

threading. While multi-threading is desirable, many potential pitfalls have not sufficiently
been addressed in the context of interactive visualization so far (see section 2.5.2). Moreover,
multi-threading by itself neither guarantees responsiveness due to potential blocks caused by
thread synchronization, nor does it ensure rich visual feedback at interactive rates.

This chapter describes a generic visualization architecture that intends to increase the
computational scalability of visual analysis systems based on multi-treading. In particular,
the architecture should help to avoid pitfalls related to multi-threading. It has been designed
to meet the following goals:

• Guarantee responsiveness to the user at all times, i.e., avoid perceivable delays of the
GUI

• Provide visual feedback as quickly as possible, i.e., keep the latency between interaction
and visual feedback below 100 ms [226]

• Provide as much visual feedback as possible

• Scale to datasets with several millions of data items

• Scale with regard to multiple views

• Support most common types of visualizations

• Be applicable regardless of environment or language

Where goals are conflicting (e.g., maximizing speed vs. maximizing the amount of feed-
back), particular design choices are explicitly outlined and discussed. This architecture has
been shaped based on experiences in implementing several visualization systems and tools,
including SimVis (C++) [52], Visplore (C++), CGV (Java) [251], and VisAxes (C#) [250].

The next section relates the proposed architecture to other work. Section 3.2 describes
our architecture, including details related to multi-threading. We present a quantitative
evaluation based on the system Visplore in section 3.3. This chapter closes with a discussion
about design choices, further instantiations of our architecture, and ideas for future work in
section 3.4.

3.1 Related Work

The discussion of related work is structured into non-parallel techniques for achieving rapid
visual response, concurrency and parallel programming in general, and multi-threading in
interactive visualization in particular.

3.1.1 Non-Parallel Techniques for Rapid Visual Response

Without parallelizing event handling and the generation of visual results, constantly updating
the entire visualization during interaction does not scale for large data as both the update
frequency and the application responsiveness degrade significantly. Therefore, many systems
provide only a fixed (usually minimalistic) amount of feedback during continuous interaction
to ensure responsiveness. For example, the commercial system Tableau shows an elastic

40

3.1. RELATED WORK

rectangle during dynamic query operations, whereas the query evaluation is triggered only
after releasing the mouse button.

Tanin et al. [243] describe optimizations to dynamic queries which are an important type of
continuous interaction in many systems. They pre-compute the set of affected items for each
pixel position of a slider. During slider movement, newly selected data items are displayed on
top of the visualization, whereas removed items are drawn with the background color. Several
visualization systems implement this approach (including Spotfire and Treemap4). However,
as noted by Fekete [70], the restriction to pixel precision is often not tolerable. Fekete also
points out that query optimizations alone can not guarantee responsiveness, because the
limiting factor is usually the rendering.

Chapter 2 surveyed a variety of approaches to speed up rendering based on data removal
or aggregation. However, some of these methods involve costly computations (e.g., cluster-
ing) which may cause a temporary loss of application responsiveness in case of large data.
Moreover, most approaches imply a loss of details, which is not always acceptable.

3.1.2 Concurrency and Parallel Programming

Many real-time graphics applications (e.g., games) exploit the parallelism of modern Graphics
Processing Units (GPUs) to achieve interactivity when transforming geometric or volumetric
data into images. GPUs have also begun to attract attention in visual analysis [71, 178] (see
section 2.5.3), but transferring all steps of the visualization pipeline to the GPU is not always
possible.

Chan et al. [36] delegate data queries to eight multi-processor database servers for explor-
ing massive time series. However, constraints limit the distance that a user is allowed to travel
per exploration step. It remains unclear how far such large-scale architectures downscale to
desktop PCs. Moreover, concurrency is not mentioned with regard to mapping and rendering
steps. Chan et al. argue that the time required to map and render the data is negligible com-
pared to query computation time, which contradicts the aforementioned claim by Fekete [70].
Obviously, the position of the bottleneck depends on the platform, the data size, and the
type of both visualization and user interaction. Approaches that assume any of these factors
as given can not solve the problem of guaranteeing responsiveness and maximizing feedback
during continuous interaction in general.

Parallelism and concurrency in a general sense involve numerous highly non-trivial is-
sues. In case of multi-threading, the advantages like utilizing commonplace multi-core ar-
chitectures come at the expense of increased system complexity and higher implementation
costs [163]. Automatic support (e.g., OpenMP or Intel Threading Building Blocks) provides
help for exploiting parallelism for particular computations, but does not scale to parallelizing
application-wide tasks like separating user input from generating visualizations. This problem
has been termed the Multicore’s Programmability Gap [180].

Defining design patterns for particular problems has proven a good approach to cope with
this complexity [218, 175, 115]. Many patterns are applicable to systems for visual data
analysis and some patterns are even related to the architecture as proposed in this chapter
(e.g., the Active Object design pattern [218]). However, the scope of most patterns is very
general and neither addresses the requirements regarding responses to user interaction nor
visualization aspects.

41

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

3.1.3 Multi-Threading in Interactive Visualization

While multi-threading is frequently used in scientific visualization, many techniques focus on
exploiting data parallelism (see section 2.5). On a task level, computations in SciRun [137] are
multi-threaded and do not block the GUI, but are typically not designed for early cancellation
due to new input. The system ParaView [35] separates the VTK-based processing engine from
the user interface by running both in different processes, and it relies on Tcl scripts for inter-
process communication. Due to the design of ParaView to scale to client/server environments
and batch processing, it supports only two static levels-of-detail – one during interaction and
one for still images –, and does not address early termination due to frequent user interaction.
While there are also numerous approaches for progressive visualization, most of them focus
on a dedicated visualization technique like volume rendering [33]. For this purpose, most
approaches specifically tune the internal representation of the data to maximize performance.

As discussed in section 2.5, information visualization tools typically can not make as
many assumptions about the data. This may be a reason why little attention has been paid
to multi-threading in information visualization literature so far. The few exceptions typically
provide little information concerning communication and synchronization aspects (e.g., Heer
et al. [109]), or use multi-threading only for asynchronous data pre-fetching [58]. A review of
open source visualization software shows that The InfoVis Toolkit [70], Processing [81], and
Mondrian [246] do not employ multi-threading at all.

Most closely related to the proposed architecture, the visualization system Improvise [272,
273] uses patterns for coordinating multiple views which are related to semantic layers (see
section 3.2.2). Asynchronous displays in Improvise are based on retarding worker threads to
allocate as much resources as necessary to the user interface thread [275]. The authors also
propose caching of visualization tiles and other enhancements to improve performance and
interactivity during exploration. However, most aspects related to multi-threading are specific
to Java. No details are provided on thread synchronization, early termination of updates, or
on exploiting multi-threading for maximizing visual feedback. Moreover, the scalability to
millions of data records remains unclear as interactive performance has been listed as future
work [273].

To the best of our knowledge, there exists no generic architecture for inherently multi-
threaded information visualization of large data, as many details about multi-threading have
been left unpublished for information visualization systems. However, we believe that such
an architecture could significantly facilitate the development of highly interactive informa-
tion visualization tools, which combine responsiveness and rich visual feedback even during
continuous user interactions.

3.2 Multi-Threading Visualization Architecture

We first provide an overview of the proposed architecture before discussing its details in sec-
tions 3.2.1 and 3.2.2. The architecture builds on the separation of the main application thread
and visualization threads (see Fig. 3.1). The application thread is responsible for managing
user requests in the event loop using event handlers. To keep this loop alive, event handlers
are restricted to perform inexpensive tasks only, i.e., changing visualization parameters and
triggering updates. Costly computations are delegated to visualization threads. In a multiple
view environment, all user requests arrive in the main application thread, while each view
has its own visualization thread.

42

3.2. MULTI-THREADING VISUALIZATION ARCHITECTURE

Application Thread

Event
Handling

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

terminatesrestarts

accesses

invalidates

modifies

changes reuses

Data
Parameters

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

Visualization Thread

V
is

u
al

 F
ee

d
b

ac
k

Layer 1

Layer 2

Layer 3

Layer n

Partial Results

Figure 3.1: Overview of the architecture. It shows involved threads and data, how threads
access this data, and how the application thread controls the visualization threads.

Especially during continuous interaction, updates in progress will frequently become irrel-
evant due to the arrival of new events. Therefore, the visualization thread checks repeatedly if
it may proceed or should terminate early. For this purpose, we use a thread state object that
serves as central point of communication between the application thread and the visualization
thread. Depending on the semantics of the event, the execution of event handlers may be
concurrent to the execution of the visualization thread (asynchronous), or mutually exclusive
(synchronous).

The visualization is subdivided in image space into layers, and the visualization pipeline
is processed separately for each layer. We will see later on that the term “layer” is used in a
broader sense. Layers serve as partial visual results and can – in addition to partial results in
data space – be reused across multiple executions of the visualization thread. Event handlers
invalidate layers so as to maximize layer reuse and thus to accelerate updates. Upon (early)
thread termination, layers that have been validated so far can be displayed to provide as much
visual feedback as possible and as early as possible.

3.2.1 Early Thread Termination

Our approach to support continuous interaction even for large data is to provide dynamic
visual feedback by adapting the amount of detail to the available computation time. In
general, this time is known only a posteriori, i.e., when it has elapsed due to receiving new
input. Receiving this input, however, must be possible and not hindered by generating the
feedback itself, which implies performing both tasks in parallel. It thus requires a multi-
threaded architecture of each visualization.

According to the Active Object design pattern [218], invocation on an object should occur
in the client’s thread of control, whereas execution should occur in a separate thread. In

43

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

our context, the ’object’ is an interactive visualization, ’invocation’ refers to event handlers
for processing change notifications which are typically triggered by user input, and ’execu-
tion’ means processing the visualization pipeline as widely accepted reference model [41] to
generate visual results. Consequently, our visualization architecture maintains a single dedi-
cated visualization thread T per view (maintaining multiple threads per view is discussed in
section 3.4). Changes of parameters along the pipeline affect the final image and thus need
to trigger a new execution of the pipeline. In this case, T must abort its current execution
(if running) and eventually start processing the pipeline anew. We call this paradigm Early
Thread Termination (ETT), as an execution may be aborted before T has finished the final
image. During execution, T must repeatedly check for the permission to proceed. Besides
necessary clean ups like freeing resources, it must abort once this permission is no longer
granted.

The time between requested and actual thread termination incurs a certain latency L.
Minimizing L is a central aspect of ETT and requires checking for abort at a high frequency.
It is therefore an important requirement that checking is inexpensive, which is generally
possible as explained below. When accessing data sequentially, performing a check after
every few thousand entries is usually sufficient. In general, T should check at least 10 to 20
times per second to achieve interactive response rates [226, 236], but preferably even much
more often. However, it can become impossible to guarantee a high frequency when calling to
foreign APIs, which is admittedly a potential limitation of ETT. In order to lessen the practical
impact of this problem in particular and to make the responsiveness of the application less
dependent on L in general, an important observation is that changes (i.e., events) are critical
with a different degree. Some changes require an ordered communication between the handler
and T while others do not. We distinguish synchronous and asynchronous handling.

Synchronous event handling (see Fig. 3.2) enforces a mutually exclusive execution of the
handler and T . This implies that handlers need to stop T , and must wait for this stop to
occur before proceeding and eventually re-starting T . Synchronous event handling ensures
that any subsequent execution of T is aware of the change.

Asynchronous event handling (see Fig. 3.2) also tells T to stop execution, but does not
wait for this to occur. After committing the change, which potentially involves modifying
parameters, the handler states that T needs to be restarted as soon as possible and returns.
A current execution of T may notice the effects some time afterwards.

Basically, all changes could be handled synchronously. However, the performance of a
synchronous handler – and thus the responsiveness of the application – depends directly
on L, whereas asynchronous handlers are independent of L and typically do not block the
event-handler thread. With regard to responsiveness, asynchronous handlers are therefore
preferable and should be used for uncritical changes like modified parameter values. On the
other hand, some events require synchronous handling, for example, when objects or data
must no longer be accessed (e.g., due to deletion). In practice, visualizations will need both
synchronous and asynchronous event handling.

It is a potential problem of ETT, that if an execution is constantly aborted before com-
pleting any result, no result will be delivered at all. In general, redundant computation across
multiple executions of T should be avoided. It is therefore an important issue to:

1. identify partial results along the visualization pipeline, which can be cached and poten-
tially reused across multiple executions,

2. maintain a state of validity V [1..n], one for each partial result,

44

3.2. MULTI-THREADING VISUALIZATION ARCHITECTURE

Event Handler Thread

Visualization Thread (T)

Thread State (S)

Asynchronous

Restart

Synchronous

Latency (L)

Running Stop Restart Running

Time

Commit
changes

Processing Visualization

check for abort

change state

unblock/resume

Event received

Event received

Event Handler Thread

Visualization Thread (T)

Thread State (S)

Processing Vis.

Running Stop Stopped Running

Commit
changes

Blocked

Processing Visualization Wait

Figure 3.2: Comparison of synchronous and asynchronous event handling. Threads commu-
nicate by changing the thread state S.

3. minimize the impact of changes by invalidating only those elements of V , where the
respective result directly or indirectly depends on changed parameters.

Section 3.2.2 discusses this concept in detail in the context of interactive visualizations. For
now, it is important that V is part of the communication between event handlers and T .
Moreover, the communication involves the requested state of T , referred to as S. Fig. 3.2
illustrates, how S is accessed and modified by involved threads over time for both synchronous
and asynchronous changes. As a fundamental idea of ETT, T repeatedly checks the state of S.
Stop tells T to terminate execution. Restart also tells T to terminate its current execution,
but to immediately restart a new one. Fig. 3.2 also shows, how L directly affects the duration
of synchronous handlers, which are blocked until T has reached the state Stopped. In order
to prevent deadlocks and livelocks, it is generally not recommendable for T to directly or
indirectly trigger events itself.

As for all parallel systems, synchronization is important for ETT in order to avoid race
conditions. The following points of synchronization can be identified:

• Between event handlers and T , as discussed above.

• Between different event handlers. If changes may occur in more than one client thread,
event handlers themselves must be mutually exclusive in order to provide a predictable
communication between each handler and T .

45

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

• Access to S between all handlers and T . As an important exception, if access to S is
atomic (i.e., S is always accessed in one piece as is typically the case for basic data
types), checking S for abort – i.e., read access – does not need synchronization, unless
S is subsequently written in dependence of the result. This explains why checks for
thread termination are usually cheap, meeting a requirement of ETT.

• Access to V between asynchronous handlers and T . For synchronous handlers, V is
implicitly synchronized and thus does not require explicit synchronization.

• Access to local (i.e., view-specific) parameters along the visualization pipeline which are
written by asynchronous handlers and read by T . However, synchronization of access
is not sufficient to guarantee that the same state of parameters is used throughout one
execution of T . To ensure this, T must maintain a local copy of those parameters which
are potentially modified by asynchronous handlers. This is a major disadvantage of
asynchronous handlers. Local parameters modified only by synchronous handlers are
implicitly synchronized by the mutually exclusive execution. T does therefore not need
to maintain a local copy of them. For this reason, modifications of memory-intensive
local parameters (e.g., local derived data or a local selection state) typically require
synchronous handling.

• Access to global (i.e., application-wide) parameters. Such parameters may change out-
side the execution of handlers of the particular visualization. In a multi-view environ-
ment, global parameters refer to the very information linking the views and thus include
the data to be visualized itself. However, concurrent read access to global parameters
by multiple views is necessary, because a synchronization of read-access to data would
otherwise prevent concurrent processing of multiple visualizations, blocking all but one.
It would thus eliminate responsiveness. Maintaining a local copy for each view is not
practicable for large data. As a solution, changes to global parameters require two
notifications: One synchronous notification preceding any modification, which forbids
access, and one asynchronous notification permitting access when the modification is
finished.

Finally, it is worth mentioning that although ETT is discussed in the context of visualizations
in this chapter, it is not limited to them. ETT can be applied to the design of any kind of
objects that need to combine expensive computations with potentially frequent state changes
due to interaction (e.g., ad-hoc queries or derived data columns).

3.2.2 Layered Visualization

As explained in section 3.2.1, identifying and reusing partial results during the execution of
the visualization thread is necessary to avoid redundant computations. This section discusses
potential approaches to identify such partial results in the context of interactive visualiza-
tions, and how partial results help to display a dynamic amount of detail during continuous
interaction.

A key idea is to subdivide the final image into separate passes through the visualization
pipeline (referred to as “layer”), and to process one layer after the other. Each layer provides
additional information and thus increases the amount of detail. It is important that the
processing order may be chosen independently of the display order to prioritize important
information for previews, as discussed below. In contrast to decomposing work in data space,

46

3.2. MULTI-THREADING VISUALIZATION ARCHITECTURE

Interaction AStart Interaction B

Event handling

Visualization

L1

L2

L3

L4

Threads

User

Layers

stop restart stop restart

Validity (V)
valid

invalid

invalidate

validate

Feedback for Start

Feedback for Interaction A

Feedback for Interaction B
(complete image)

Handle A Handle B

Process
Layer 1

Process
Layer 2

Process
Layer 3

Display
L1, L2

Process
Layer 2

Process
Layer 3

Process
Layer 4

Display
L1, L2, L3

Process
Layer 4

Display
L1, L2, L3, L4

Process
Layer 3

skip L4skip L3, L4

Figure 3.3: Caching and early feedback of layers. Two user events (handled synchronously)
interrupt the computation and invalidate layers. Visual feedback is provided on thread ter-
mination.

which is often not possible in information visualization (e.g., computing graph layouts), lay-
ering is thus a concept for decomposing results in view space. For most visualizations, it is
possible to identify one or more types of layers:

• Semantic layers are semantically different parts of the visualization. Typical examples
include the background (e.g., an image, a map, a grid, etc.), all visible data items, those
items selected by an ad-hoc query, and overlays providing detail-on-demand like labels or
precise values [273]. It is reasonable to process semantic layers by decreasing relevance or
increasing effort. For example, processing the layer of selected items (“focus”) first will
typically be less effort than considering all items (“context”) and may already provide
the most important information.

• Incremental layers can be identified in item-based visualizations (like scatterplots or
parallel coordinates) by subdividing the data into disjunctive subsets and treating each
subset as layer. Each incremental layer contains a sampled version of the data and the
accumulation of all layers represents the entire dataset. A desirable feature is to ensure
a sampling distribution that conserves important properties of the final image as soon as
possible, i.e., in the layers being processed early. Desirable properties could be a size or
a relative distribution similar to the final image. This aspect boils down to determining
an index that specifies the order in which data entries are to be dealt with. Ellis et.
al. [63] have shown that statistical sampling is an effective way of data reduction.

• Level-of-detail (LoD) layers provide visual representations of the same data with dif-
ferent complexity and rendering cost. The processing order is determined by increasing
effort. In contrast to incremental layers, more detailed LoD layers may replace coarser
layers, which are consequently not part of the final image. For example, a tree-map
showing a hierarchy depth of four might be used instead of one showing only two hier-
archy levels [23]. The design space for level-of-detail layers is large and includes abstrac-
tion in both view and data space. A view space-based approach could be to reduce the
rendering quality for early layers, possibly in addition to displaying a sampled version
of the data. Examples include disabling anti-aliasing and reducing geometric resolution.
As example of a data space-based approach, lower levels of details might display features

47

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

of the data like major trends, clusters, and outliers, or may use aggregation (e.g., bin
maps) to reduce the rendering effort [194]. As a special case of LoD layers, iterative
layers refer to visualizing intermediate results of an iterative algorithm, as for example
the computation of a graph layout. In this case, each new layer (i.e., each iteration)
typically replaces any previous iteration.

Once the final image could be completed, it is shown to the user. According to the ETT
paradigm, the work is aborted whenever relevant parameters have changed. However, it is
an important design choice, how visual feedback can be provided even in cases when the
visualization thread could not complete.

Design choice 1: immediate feedback vs. feedback on termination. Immediate
feedback updates the display whenever a layer could be completed. As advantage, feedback
is given early and is guaranteed to be up-to-date. As disadvantage, the composition of each
image is exposed to the user and produces potentially disturbing flicker, which could be
misinterpreted as data artifacts in extreme cases. In contrast, feedback on termination updates
the display just before thread termination to show all valid layers, i.e., the highest amount of
detail that could be dealt with in between two consecutive user interactions. The advantage
is that only one image is generated per execution of the visualization thread, which reduces
flicker significantly. As disadvantage, it might take longer until feedback is provided – in
particular, if the execution is not aborted. The number and the type of layers and the effort
for generating the final image are critical factors in the decision for one approach.

Design choice 2: type, number, and ordering of layers. In general, the number of
visual layers increases with the complexity of a visualization. A single layer is most likely
sufficient for basic bar charts, whereas a subdivision of parallel coordinates discriminating
multiple selections and providing overlays could involve several semantic layers, which could
in turn consist of LoD layers. Layers can thus be organized hierarchically. In this case, it is a
design decision whether to prioritize level-of-details over semantic layers or vice versa. Apart
from semantic dependencies, a processing order of layers may also be implied by internal
dependencies between layers. For example, layers showing data items may depend on the
layer showing the grid to determine the ranges of all displayed data dimensions.

An important decision for item-based visualizations is whether to provide fine-grained
incremental visualization (i.e., a large number of incremental layers), or a fixed – typically
small – number of LoD layers. The first case maximizes the average amount of provided
detail (e.g., the number of shown items), yet it also increases the variation in the amount of
details over time. This might create the impression of flicker even if a single image is shown
per execution of the visualization thread. The second case is more stable with respect to the
visual feedback, yet also reduces the possibility to adapt the amount of detail to the available
computation time. This shows a trade-off between the amount of detail and stability.

Design choice 3: caching concepts. In order to avoid redundant computations, layers
also represent reusable partial results. According to the model as proposed by Chi [41], differ-
ent parameter adjustments affect different stages of the visualization pipeline. For example,
changing a color could just require a redraw of already filtered, projected and possibly ag-
gregated data. Performing just the rendering may thus be magnitudes faster than processing
the entire visualization pipeline. We refer to this type of reuse as caching results in data

48

3.3. EVALUATION

space, which is related to lazy evaluation and demand-driven pipelines in visualization lit-
erature [162]. It is particularly useful for types of visualizations where computing internal
representations of the data is relatively expensive as compared to the rendering itself, and
where these representations consume a limited amount of memory. Examples include pivoted
values of categorical data, aggregated representations as generated by binning continuous
data, and the state of iterative algorithms (e.g., for graph-layout and clustering).

On the other hand, some changes affect the entire visualization pipeline, but only for a
particular (semantic) layer. For example, ad-hoc queries may require a frequent re-processing
of the selected data (“focus”), but may have no impact on the visualization of the entire data
(“context”) or other visual elements like the grid. In this case, it is advantageous to cache
results in view space for each layer independently. Fig. 3.3 illustrates caching and reuse of
layers from the point of view of the user, the involved threads, and the layers as well as their
validity. In this example, events are handled synchronously, feedback is provided on abort,
and the validity is assumed on a per-layer basis, i.e., not taking partial results along the
pipeline into account.

The additional complexity for implementing item-based visualizations using layers as com-
pared to naive implementations can be summarized as:

• Invalidate affected layers instead of redrawing everything.

• Support multiple iterations through arbitrary subsets of the data instead of processing
all items in one pass. In the case of multiple selections, for example, iterate through the
data once for each selection (and once for all entries), instead of mapping the selection
state of each entry to visual attributes like color or size within a single pass. As data
records may appear in multiple layers, more significant layers must be shown on top of
less significant ones. In particular, it is often desirable – though not required – that the
visual representation of a selected item occludes its representation as non-selected item.

• Render layers to off-screen buffers and blend them together instead of drawing directly
to screen. In practice, this is more easy to implement for 2D visualizations. In 3D, a
composition in view space is generally harder to realize due to the additional depth-
information necessary for correct occlusion handling.

• Check for thread termination regularly.

In our experience, these issues apply to all types of item-based visualizations (scatterplots,
parallel coordinates, time-series views, etc.). Sorting the items by their selection state or
grouping them by identical rendering parameters is usually even necessary without explicit
layering. The additional complexity imposed by semantic layers is thus usually (much) less
than 20% in terms of lines of code. For incremental layers, the main effort lies in identifying
an index for fair sampling (i.e., shuffling rows appropriately). Implementations of incremental
layers typically require a single off-screen buffer where new visual output is added. For LoD-
layers, the additional complexity may range from negligible (e.g., just disabling anti-aliasing)
to considerable for cases that require the computation of features of the data like clusters.

3.3 Evaluation

This section evaluates the proposed architecture. The goal is to demonstrate its applicability
and its possibilities to support visual exploration of large data. All tests have been conducted

49

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

on consumer hardware: Intel Core 2 Quad CPU with four cores at 2.4 GHz, 4 GB of main
memory, and an NVidia Geforce 8800 GTS graphics card. Windows XP Professional x64
Edition was used as operating system.

As test dataset, we used a multivariate CFD-simulation of a two-stroke engine. The data
table consists of 14.589.282 rows and 50 columns (approx. 5.3 GB), which are mostly physical
properties like temperature or pressure. One row in the data table represents one cell of the
model geometry at one particular discrete time-step of the simulation. Previous analyses of
the dataset have been conducted using the SimVis system [51], which also implements the
proposed architecture (see section 3.4). The focus of this evaluation is on performance issues
with respect to maximizing visual feedback during continuous interaction for data of such
non-trivial size.

We performed all tests in Visplore, a system for visual exploration. Visplore provides more
than 10 different visualizations (e.g., the approaches proposed in the chapters 5, 6, and 7).
All views implement the proposed architecture to support continuous interaction and early
visual feedback. Multiple views are linked by ad-hoc selections and derived data columns,
whose evaluation also utilizes the ETT paradigm. Visplore is written in C++, it uses GTK+
as GUI library and OpenGL for rendering. The focus of this evaluation is to demonstrate the
possibilities of our architecture. An application of Visplore is described in chapter 7.

We discuss two examples of continuous interaction, which cover important cases: (1) The
interaction concerns a single view, yet entails performing the mapping and the rendering stage
of the visualization pipeline for the entire data. (2) The interaction concerns multiple views,
but affects a single semantic layer. The implementations of the involved views also cover
different options for the design choices 1 and 2, as explained below.

For the first example, we drag a slider to restrict the value range displayed on the X-axis
of a 2D scatterplot. For the evaluation, we stored the interaction sequence as a macro (which
takes 12 seconds) and replayed it with four different implementations to highlight trade-offs
in the design space.

• Case 1.1 A single-threaded implementation as example of a naive approach, i.e., each
change entails a redraw of the entire visualization in the same thread as used for handling
events.

• Case 1.2 An ETT-based implementation providing immediate visual feedback for two
static LoD-layers as example of a common case in many visualization systems. The first
layer consists of a sampled subset of 32.768 data items without point smoothing and
without transparency; the second layer is the entire dataset using point smoothing and
transparency for visualizing density.

• Case 1.3 An ETT-based implementation providing early visual feedback of fine-grained
incremental layers as example of maximizing visual detail. The visualization pipeline
is processed separately in blocks of 4096 rows and the visualization thread checks for
abort after each block. The view provides feedback on termination, displaying all data
handled so far, and on completion of the entire dataset.

• Case 1.4 An ETT-based implementation without preview visualization, i.e., visual re-
sults are only shown if the thread completed the entire visualization. This case has been
chosen as example of evaluating the effect of multi-threading without layering.

50

3.3. EVALUATION

Case 1.1 Case 1.2 Case 1.3 Case 1.4
avg. # events handled / s 4.1 36.3 35.9 35.6
avg. # visual updates / s 4.1 13.2 35.9 0
min. # visual updates / s 3 9 18 0
min. items shown / update 100% 0.2% 0% 0%
q25 of items shown / update 100% 0.2% 3.5% 0%
avg. items shown / update 100% 0.2% 8.8% 0%
q75 of items shown / update 100% 0.2% 10.8% 0%
max. items shown / update 100% 0.2% 97.1% 0%

Table 3.1: Results for example 1: restricting a slider

We use several indicators. Responsiveness is quantified by the average number of user events
that could be handled per second during the interaction. The frequency of visual feedback is
given by the average and the minimal rate at which the visualization is updated per second.
The amount of feedback and its variation – indicating flicker – is given by the minimal,
average, and maximal percentage of shown data per update as well as the percentage of data
that could at most be shown for 25% and for 75% of the frames (i.e., quantiles). Table 3.1
shows the results for the time between the start and the end of the interaction.

In case 1.1, feedback is given at a very slow rate. Even worse, the application is hardly
responsive during the interaction. All other cases show that multi-threading ensures respon-
siveness of the application. Comparing case 1.2 to case 1.3 highlights the trade-off between
minimizing flicker and maximizing visual feedback. In case 1.2, flicker does not occur at all
because the visualization is updated only if the first LoD-layer could finish while the entire
visualization (i.e., the second LoD-layer) could never complete. However, both the frequency
and the average amount of visual feedback are significantly lower than in case 1.3, where even
the minimal update rate of 18 is clearly faster than the desirable frequency of 10 (= 100 ms
per update), and where a considerable percentage of the data (8.8%, i.e., 1.2 million items)
is displayed on average – the best values are close to showing the entire dataset. On the
other hand, the feedback sometimes drops to displaying the grid without data and flicker is
generally high in case 1.3. Case 1.4 does not provide any feedback on the data, because at no
point during the 12 seconds of interaction, the visualization thread is able to process the entire
data in between two consecutive user events. This highlights the importance of early visual
feedback. However, even case 1.4 is arguably superior to case 1.1, as it ensures responsiveness
(i.e., the slider is updated continuously) and pausing the slider movement without releasing
the mouse button would give the visualization thread the time to generate visual feedback.
In practice, Visplore uses case 1.3.

For the second example, we drag an ad-hoc selection in a 2D scatterplot and highlight
the selected data items in a linked parallel coordinates view showing 5 axes (see Fig. 3.4).
Besides other types of queries, Visplore offers an instant ad-hoc query (referred to as Focus)
that always selects all data items under the mouse cursor. The Focus is pre-computed for
all possible mouse-positions of a view, which reduces its evaluation to a look-up operation.
However, each view needs to update frequently (i.e., on every mouse move) to reflect Focus
changes. For the evaluation, we again stored an interaction sequence as a macro, this time a
continuous mouse movement of 23 seconds, which causes frequent Focus updates. The macro
has been tested against the following four implementations of parallel coordinates.

• Case 2.1 A single-threaded implementation without caching any partial results as exam-
ple of a naive approach where each change necessitates processing the entire visualization

51

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

Case 2.1 Case 2.2 Case 2.3 Case 2.4
avg. events handled / sec. 0.2 20.1 13.5 8.8
min. response time (sec.) 6.7 0.03 0.03 0.03
avg. response time (sec.) 12.1 0.07 0.09 0.09
max. response time (sec.) 13.4 0.23 0.25 0.14
average data shown 100% 0.05% 100% 100%

Table 3.2: Results for example 2: linked ad-hoc selection

No Caching of Layers Reusing Layers

Figure 3.4: Example 2: comparison of an ad-hoc selection of entries beneath the mouse cursor
in a multiple view setup for two implementations of parallel coordinates. The response time is
equally low in both cases, but the amount of detail is much higher when caching and reusing
layers.

pipeline in the application thread

• Case 2.2 An ETT-based implementation without caching any partial results. However,
the Focus is processed first and is immediately displayed to provide visual feedback.

• Case 2.3 An ETT-based implementation caching the image of the Context layer, i.e.,
the semantic layer displaying all data items, and reusing this images as long as the layer
stays valid. The comparison of case 2.2 to case 2.3 is intended to emphasize the effect
of caching.

• Case 2.4 Same as case 2.3, but single-threaded to evaluate the effect of caching sepa-
rately

The average number of events that could be handled per second during the interaction quan-
tifies the responsiveness of the application. The minimum, maximum, and average response
time indicate the latency between changing the Focus and providing visual feedback. The av-
erage amount of shown data refers to the number of visualized items. In contrast to example

52

3.4. DISCUSSION AND FUTURE WORK

1 where continuous movement triggers updates constantly, the frequency of visual feedback
is not a reasonable indicator in example 2, as moving the mouse cursor through empty space
does not trigger updates. Table 3.2 shows the results.

For case 2.1, interaction is practically impossible as the system blocks for several seconds
at each mouse move. For the cases 2.2 and 2.3, the system stays responsive and visual feedback
is provided quickly. However, case 2.2 only displays the Focus most of the time, as illustrated
by the left image in Fig. 3.4 while the entire visualization is only shown when the Focus is not
updated for some time. Case 2.3 on the other hand always displays the entire visualization
due to reusing the cached image of the Context as shown by the right image in Fig. 3.4. The
results of case 2.4 are similar to those of case 2.3. This is not surprising considering that by
re-using the image of the Context, not much work is left to be done. However, interactions
invalidating the Context degrade the responsiveness as badly as shown for case 2.1.

Concluding, this evaluation demonstrates that the proposed architecture successfully pre-
serves responsiveness of the application while providing visual feedback during continuous
user interactions even for a dataset of 14.5 million items. It also shows that ETT, previews,
and caching must work together to achieve this goal. Although not shown in this evaluation,
the architecture also scales with respect to a large number of views. Informal evidence can
be found in the application example of chapter 7, as well as in several publications related to
the systems implementing the architecture (for example [52]).

3.4 Discussion and Future Work

Three important yet contradicting objectives of our architecture are:

• to minimize the latency between interaction and visual feedback, which is equivalent to
maximizing the frequency of updates

• to maximize the amount of detail shown upon ETT

• to minimize the variation of the amount of shown detail in order to provide a stable
image.

The design choices 1 and 2 have been explicitly denoted, because they allow for trading off
these objectives against each other: (1) Providing immediate feedback for each completed
layer minimizes latency while it maximizes flicker – especially in the case of fine-grained
layering. (2) Utilizing many layers allows for minimizing latency and maximizing detail, but
the flicker is usually significant.

Another option for trading off latency against preview details concerns the handling of
asynchronous events. As requests by asynchronous handlers are less critical than those issued
by synchronous handlers, they can be ignored for some time. For example, it seems reasonable
to finish and to display costly visual results which are almost complete when receiving a
request for thread termination.

Design choice 3 is essential for adapting the architecture to a wide range of visualizations.
Caching of results in view space is important where rendering is expensive, as for item-based
visualizations. Caching results in data space is suitable in case of expensive computations yet
potentially cheap rendering (e.g., pivoted data as in chapter 5). Although less obvious than
for costly rendering, early visual feedback is also possible in this case: the final results could

53

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

repeatedly be estimated and displayed during the computation based on already considered
data.

An important limitation of our architecture is the need to frequently check for termina-
tion. As already mentioned, this may become impossible when passing control over to foreign
APIs for a long time. This is particularly critical for synchronous changes as it compromises
responsiveness much like a single-threaded architecture. Asynchronous changes preserve re-
sponsiveness, but the latency of visual feedback may still be disturbing.

Another limitation with regard to computational scalability concerns the number of in-
volved threads. The architecture utilizes one thread for each view plus the main thread of
the application, which results in less than ten threads for most multi-view systems. While
this roughly corresponds to (or even exceeds) the number of cores in current desktop PCs,
computers will have much more cores in the future. Since increasing the number of views for
the sake of enhancing parallelism is obviously no option, making use of all available cores will
become increasingly challenging. In this context, it is reasonable to utilize additional threads
for other tasks than visualization, e.g., the computation of derived data or the evaluation of
queries.

As another potential solution, it may seem reasonable to spawn a new visualization thread
for each asynchronous event (synchronous changes must wait for thread termination anyway).
In the systems implementing the architecture, we decided against this option, because our
practice has shown that gains are small on current computers compared to a significant
increase in complexity. While synchronization is complex for a single visualization thread,
it becomes worse for multiple threads. Redundancy increases too, as each thread requires
a copy of all local view parameters. Furthermore, it is not reasonably possible for graphics
APIs that do not support concurrent access to the same rendering context (e.g., OpenGL).
In such cases, maintaining a single thread per view avoids the significant overhead caused
by context switches, which is incurred when using a common thread pool for multiple views.
However, on computers having much more cores, utilizing multiple threads per visualization
could become a reasonable option.

The proposed architecture has been implemented in several systems besides Visplore (see
section 3.3). The SimVis visualization framework [52] is mainly used in the context of 3D or
4D simulation data (see also chapter 4). Multiple linked views are provided to the user, allow-
ing for interactively selecting and viewing data in different attribute spaces. Multiple of these
views implement ETT to maintain responsiveness even when visualizing hundreds of millions
of data entries. Attribute views such as scatterplots or time series visualizations [186] all
support asynchronous as well as synchronous thread termination and use cached background
layers to provide feedback to the user during continuous interaction. The 3D visualization
capabilities of SimVis also rely on concepts presented in this work to perform progressive
rendering as well as level of detail rendering during continuous interaction using a multi-
resolution approach. When dealing with very large data, a common approach is to access
data in blocks [162] which are guaranteed to be in memory while the rest may be swapped to
disk (known as out-of-core visualization). Both Visplore and SimVis perform active memory
management, which shows that out-of-core visualization is compatible with our architecture.
Switching blocks even provides a dedicated point to check for thread termination.

CGV is a system for interactive exploration of graphs [251]. It uses multiple linked views
to show different aspects of clustered graphs. Early thread termination is used for instance
in the graph splatting view. Because the performance of graph splatting depends not only on
the number of data items, but also on pixel resolution, the view uses a level-of-detail layering

54

3.5. CONCLUSION

and renders the splat progressively at increasing resolutions. Continuous interactions as for
instance dragging a noise level slider or a threshold slider are guaranteed to stay responsive
and feedback is provided quickly.

Axes-based visualizations map data values to positions relative to well-arranged visual
axes. The Time Wheel [250], for example, allows among other interactions for continuous
rotation of data axes around a central time axis. Interactive visual feedback is crucial in this
case to help users maintain the mental map. Therefore, ETT and layering are applied for the
Time Wheel. It is subdivided into semantic layers: axes layer, labels layer, preview layer, and
data layer, which are drawn in this order. As a result, the basic shape of the visualization
(i.e., the axes), labels, and a sampled version of the data are visualized early, while the entire
dataset is processed in the background.

We see multiple directions for future work. First, the design space potentially involves
more than three design choices as discussed in this chapter, and a systematic coverage would
be very helpful. Second, the aspect of flickering needs more thorough research, including a
user-evaluation about how much flickering is considered acceptable. New approaches could
strive for minimizing flickering while still providing much visual feedback, e.g., by ignoring
asynchronous changes for some time or by fading the images of consecutive updates. Third,
it still remains a challenge to achieve rich visual feedback during continuous interaction in a
distributed environment.

3.5 Conclusion

Continuous user interaction is important in information visualization to support smooth data
exploration. A key concern is to preserve responsiveness and to provide rich visual feedback
at the same time even in case of large data. Realizing this in practice is difficult, however, as
it requires parallelism of application tasks which involves many non-trivial details.

This chapter proposed a generic architecture to support continuous interaction and to help
avoiding pitfalls. Being inherently multi-threaded, the architecture improves the computa-
tional scalability of tools for visual analysis. As illustrated by the evaluation, the architecture
also scales with respect to large data sizes. It is applicable to many types of visualizations
regardless of a particular platform, programming language or graphics API, as instantiations
in several visual analysis systems and tools show. GPU-based rendering is supported, but not
required.

We identified and discussed three major design choices to allow others to adapt the ar-
chitecture to particular visualization needs and to trade off latency against the amount of
detail and the stability of visual feedback during continuous interaction. We also discussed
in detail communication and synchronization aspects of our architecture as key issues of any
multi-threaded program. We believe that our architecture will facilitate the development of
highly interactive information visualization tools, and that it will help to promote rich visual
feedback during continuous user interactions.

55

CHAPTER 3. A MULTI-THREADING VISUALIZATION ARCHITECTURE

56

Chapter 4

Focus+Context Visualization with
2D/3D Scatterplots

Simple 2D scatterplots are a very old and well-known visualization method for unstructured
data. The two-dimensional display can be easily overviewed and understood, and lends itself
well to direct interaction with two-dimensional input devices (e.g., the mouse).

This simplicity and ease of use hides a number of problems, however. In a large dataset,
many points may be plotted onto the same pixel, without the user being able to tell how
many. This makes it impossible to judge the true distribution of data from a scatterplot, thus
limiting the visual scalability. For this reason, some approaches modulate the intensity of the
color to convey the point densities in 2D visualizations [214].

As another problem of 2D scatterplots, it is also hard to find structures that exist in more
than two dimensions. This has prompted various extensions of 2D scatterplots to deal with
higher-dimensional data. A scatterplot matrix [43], for example, lays out scatterplots for all
pairs of dimensions as a matrix so that plots within one column share a common X-axis,
and plots within one row share a common Y-axis. Prosection views [86] rely on interaction to
restrict the projected points to user-defined ranges in data dimensions which are not shown by
the scatterplot. This idea has also been combined with the layout of a scatterplot matrix [258].
While these extensions are definitely very useful, it is still not intuitive and requires some
training to develop a feeling of structures which involve more than two dimensions.

3D scatterplots solve a part of the limitations of 2D scatterplots. There is an additional
dimension in which structures can be separated. Moreover, less data will in general be pro-
jected onto the same position in 3D space than in 2D space which reduces the overplotting
problem to some degree. Several variants of 3D scatterplots have been proposed which can be
distinguished as point-based or volume-based. Point-based 3D scatterplots draw a point for
each data item. Several statistics and math packages like SPSS, R, and MatLab [172] imple-
ment this approach. In contrast, volume-based 3D scatterplots employ binning to generate a
volume that represents the densities of the data. Volume rendering is applied to generate the
visualization [15, 157, 209]. The rendering performance of volume-based approaches depends
on the resolution of the volume rather than on the size of the data which is an advantage in
the case of many data items. On the other hand, point-based approaches enable a continuous
mapping from data space to scatterplot space which avoids the aliasing problems caused by
binning.

In general, 3D has many disadvantages compared to 2D [232]. Interaction is harder in 3D,

57

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

and the projection of a 3D plot onto a 2D output device incurs a loss of information. This
loss manifests as occlusion and causes difficulties in making precise length judgments because
of perspective foreshortening [252]. Furthermore, most implementations lack sufficient depth
cues, which makes a judgment of the three-dimensional structure of the points very difficult.

The contributions of this chapter intend to alleviate some problems of 3D scatterplots
and to enhance their visual scalability for large data. First, we introduce halos and depth-
dependent point size as novel depth cues in the context of 3D scatterplots, and we use his-
tograms as technique to highlight the point distribution and density inside and outside a
user-defined spatial focus region. Second, we propose a linked setting of the 3D scatterplot
with three 2D views, which combines the advantages of both (see Fig. 4.1). Interaction is
done in 2D, with the results shown in 3D. Third, we present a case study that illustrates the
usefulness of the combined approach and the novel techniques.

The combined 2D/3D scatterplots were implemented as part of SimVis [52], a system
that uses linked views [11] extensively for the display of high-dimensional data from com-
putational flow dynamics (CFD) simulations. The 3D scatterplot is point-based rather than
volume-based in order to avoid aliasing artifacts and ambiguities with respect to the degree of
interest (see section 4.2). All parts of the approach exploit the capabilities of modern graphics
hardware to provide interactive frame rates even for large datasets.

4.1 Extending 3D Scatterplots

This section proposes various extensions to standard 3D scatterplots. The extensions address
common problems like a compromised perception of depth and point density.

4.1.1 Improving Depth Perception

A common problem of conventional 3D scatterplots is the loss of depth information after
the projection onto the 2D output device. Interaction methods like changing the viewpoint
temporarily compensate for this shortcoming due to the effect of motion parallax, i.e., the
different movement speeds of the displayed points, but are not applicable to still images. To
address this problem, our approach employs size and color to represent the distance from the
viewpoint for each point and halos help to outline the shape more clearly (see Fig. 4.2).

Size is one of the primary natural depth cues [93], because the human brain is used to
the fact that distant objects appear smaller, as they occupy less space on the retina of the
eye. As an independent visual dimension (like color and position), size is also well-suited for
representing depth in 3D scatterplots. Decreasing the point-size with increasing distance from
the viewer enhances depth perception considerably. The size can either drop off reciprocally
with the distance – mimicking a perspective projection in a mathematically correct way – or
decrease linearly from a maximum to a minimum inside the 3D scatterplot, which permits a
better discrimination in point size of the distant parts (which we found more useful in the
context of our application).

Although varying the point size obtains a convincing depth impression for sparse ar-
eas, this effect levels off as soon as clusters of similarly colored points cover large, almost
monochromatic spots on the output device, where single data entries can not be discrimi-
nated any more. In this case, halos [128] can help to outline the shape of single points. As a
technique known from painting, accentuating the outline can help to intuitively indicate the
presence of depth discontinuities between contiguous elements in a projection. This comes

58

4.1. EXTENDING 3D SCATTERPLOTS

Figure 4.1: The combined 2D and 3D scatterplot with user interface.

at the cost of a slightly increased amount of occlusion, which we found hardly disturbing,
since only the foremost front of a big cluster is visible anyway. Technically, each point is
surrounded by a thin, semi-transparent circle of the same hue as the original point-color but
with a much lower brightness. As illustrated in the middle of Fig. 4.2, varying the point-size
in combination with halos conveys a three-dimensional impression and permits to make out
single entries even in dense areas – unlike in the left image, where neither depth cues nor
halos are used.

Apart from size, depth can also be mapped to color. Altering the hue and contrast of
scene elements that are farther away from the viewer is a technique known from painting
and rendering and is a frequently used sort of depth cueing [91]. Due to characteristics of
the human visual system, bright and warm colors (like red or yellow) are suited to indicate
proximity to the viewer, while dark and cold colors (blue or grey) are intuitively associated
with depth. This optical phenomenon is referred to as chromo-stereoscopy [253].

59

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.2: Improving depth perception. Left: No depth cues are used; Middle: Depth is
indicated with point size and halos are used to ease the discrimination of single points; Right:
Depth cueing using both color and point size, as well as halos.

Figure 4.3: Representing the point density with transparent 2D histograms: The density is
not clearly recognizable in the left image. In the middle image, a texture-based representation
uses opacity only, while the right image illustrates mapping density to opacity as well as to
the height of axis-aligned bins.

Depth cueing with point size, color and halos can be done independently or in combination,
the latter yielding the most convincing depth perception (see Fig. 4.2, right). Employing
dedicated graphics hardware for modifying point size, color, and for generating halos helps
to achieve interactive frame rates for a large number of points. Vertex programs have proven
useful for these tasks if the 3D scatterplot is point-based (as in our case), and stored as a
set of independent vertices. Hardware-based fogging is another option, yet applies to color
only and provides less flexibility than vertex programs. Our implementation uses one vertex
program for all tasks, since the same interpolation factor can be applied to both point size
and color, which is efficient and guarantees consistency.

4.1.2 Representing Point Density

The approximate point density at a certain position is important information when analyzing
characteristics of a dataset. However, scatterplots (2D and 3D) represent density in a satis-

60

4.1. EXTENDING 3D SCATTERPLOTS

factory way only as long as hardly any points are projected to the same pixels. Adapting the
scaling does not solve the problem of identical data in general and comes at the cost of losing
overview. Our approach incorporates two-dimensional histograms at each border plane of the
cube where the 3D scatterplot is drawn. Each rendered data point (lying inside the cube)
is orthographically projected to each border plane. The 2D distributions are discretized by
equally sized squares (called bins) in accordance with the desired resolution. A user-definable
scaling is applied to the bin-counts before any further visualization. Linear scaling highlights
peak densities while logarithmic scaling permits to discriminate even minor differences in
sparse areas.

Our approach supports two different visual representations of the 2D histograms. A
geometric representation draws one axis-aligned cuboid per bin (Fig. 4.3, right image), and
the height reflects the respectively scaled bin-count. A texture-based flat visualization uses
one quadratic texture per border plane matching the resolution of the binning with nearest-
neighbor filtering (Fig. 4.3, middle image). In both cases, the scaled bin values are mapped
to the opacities of the cuboids or texels, respectively, with a user-definable maximum opacity.
Additional color coding is possible, but may cause problems due to too much visual complexity.
Concrete implementations must take into account that transparent geometry requires a view-
dependent back-to-front rendering order.

Although both visualization methods can not solve the problem of unrecognisable point
densities inside the scatterplot itself and allow for rather approximate assessments only, they
provide very useful information and contribute to a better understanding of the data. Sec-
tion 4.2.2 adapts this technique for 2D scatterplots, where we face similar problems in repre-
senting the point density.

4.1.3 Spatial Context Information

When analyzing large datasets, zooming into the data helps to focus on local features like
clusters. In our approach, the user may define a cubic cutout of the scatterplot (referred to
as spatial focus). The points outside this cube are not rendered, but may still provide useful
context information (the spatial context). We discuss a visualization of this context similar
to the way as we deal with point densities in section 4.1.2: After scaling the data as currently
chosen, all points of the spatial context are projected onto the border planes of the cube as
described below and binned according to the desired resolution. We perform either linear or
logarithmic scaling before the results are mapped to opacities and displayed using a texture
or geometry-based transparent representation.

We propose a perspective projection towards the center of the cube of all points, which
are outside the spatial focus (see Fig. 4.4 left for a 2D sketch). Each border plane serves as
view plane for all points of the spatial context seen from the cube center using a quadratic
view frustum with a field of view of 90 degrees. This approach strongly resembles the way
cube maps [95] are generated in the field of real-time rendering (for instance for environment
mapping) and it actually serves a similar purpose.

For binning, the angle of the field of view (rather than the view plane) is equally subdivided
in order to make sure that each bin covers an equal amount of space. Each bin represents the
number of points of the spatial context in a certain direction. In order to intuitively indicate
the direction captured by one bin, we propose to use projection-aligned bars as geometric
representation (Fig. 4.5, left). Using non axis-aligned geometry for a perspective projection
also renders it easier for the user to visually distinguish between the various visualization

61

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.4: Projecting the spatial context perspectively (left) or orthographically (right). The
hatched space is not captured by the orthographic projection. Note the unequal binning when
equally subdividing the angle instead of the plane with the perspective projection.

Figure 4.5: Representing the spatial context: The perspective projection (left, drawn using
projection-aligned transparent bars) captures the whole spatial context, while the ortho-
graphic projection (right) omits parts of it (the lobe in the bottom right corner for example).

modes. The scaled bin values are again mapped to the heights of the bars. It may possibly
seem more intuitive to place the bars of the perspective projection on a sphere, but we have
decided against this representation as it differs from the shape of the actual spatial focus
and leaves a gap in between. A texture-based representation is somewhat problematic, since
the unequally sized bins mismatch the equally sized texels. A simple solution is to draw one

62

4.1. EXTENDING 3D SCATTERPLOTS

Figure 4.6: Displaying the temporal context as grey points.

correctly sized flat quad per bin instead.
Another option is to use an orthographic projection instead of a perspective one. However,

without extensions, this is applicable to only such data entries, which are outside the spatial
focus in not more than one considered dimension; These points are projected onto the nearest
border plane as illustrated in the right of Fig. 4.4. The result can be equally binned and
visualized as texture or using axis-aligned cuboids (Fig. 4.5, right). Although this method is
simpler, we still favor the perspective projection, since it captures the entier spatial context.
Neglecting the parts of the context which are outside the focus in two or three dimensions
can be misleading.

4.1.4 Temporal Focus – Context Discrimination

The SimVis system [54], which the 3D scatterplot is part of, is designed for analyzing flow
simulation results over time, thus the dimension time is essential in all views and should
always remain within the attention of the user. As an alternative to mapping time to the
axes of the scatterplot just like any other data attribute, the view provides a range slider
as a means of specifying a certain time span of interest – called temporal focus – within
the overall duration of the simulation. Only this focus is subject to any kind of interaction
and spatial context visualization. We refer to this kind of focus – context discrimination as
temporal focus – context discrimination. However, a generalization to other dimensions than
time would be straightforward and would resemble the idea of prosection views [86].

The temporal context is optionally rendered as semi-transparent grey points – analogously
to the visualization in other SimVis views [52] and clearly discernible from the opaquely
colored points of the temporal focus (see Fig. 4.6). Since the rendering order is important
for all transparent objects, we suggest drawing the entire temporal focus before the temporal
context with the depth-test enabled. This ensures that the focus remains visible even behind
the context. The user can define the point sizes separately for focus and context permitting

63

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.7: Displaying the principle components of the displayed data: The first axis (yellow)
indicates the direction of the likeliest correlation, the second axis (magenta) is less than
half the size and the third axis (cyan) is hardly visible, thus the data seems to be actually
correlated.

to highlight one or the other. Halos and depth-dependent point sizes as techniques for depth
cueing (see 4.1.1) are applicable to the context as well.

4.1.5 Displaying Principle Component Axes

An important reason for drawing scatterplots is to relate two or three dimensions in order to
visually detect potential correlations. A mathematical way to deal with correlations between
dimensions is to perform a Principle Component Analysis [138]. Transforming potentially
correlated variables of an n-dimensional data space into n uncorrelated variables with de-
creasing variability yields an orthogonal basis of the data space (see section 2.3). The axes of
this basis are ordered by the amount of variance the data shows in the respective direction.
This is valuable information when exploring the characteristics of the dataset and is thus
(optionally) visualized. The principle components are calculated for the spatial and temporal
focus of the three dimensions mapped to the axes of the scatterplot in scatterplot space and
displayed as 3D arrows (Fig. 4.7). We use the mean values of all considered data entries as
origin of the obtained coordinate system and scale the displayed arrows in accordance to the

64

4.2. INTERACTIVELY LINKING 2D AND 3D SCATTERPLOTS

absolute values of the respective eigenvalues, whose computation is an intermediate step in
the overall calculation of the principle components.

4.2 Interactively Linking 2D and 3D Scatterplots

The main advantage of 3D scatterplots is that one more dimension is simultaneously displayed.
However, 2D scatterplots are much more widely used and thus much more familiar to the
majority of users. Besides, the two dimensions of the mouse as standard input device match
the dimensionality of 2D views, which makes interaction with the data much easier and more
intuitive. This section proposes a combination of 2D and 3D scatterplots and discusses linking
and brushing [30] in this context.

4.2.1 Assisting 3D Viewing with 2D Scatterplots

A common way to complement 3D viewing with 2D views in commercial modeling applications
is to add three 2D views, each showing an orthographic projection of the scenery for the X-,
Y- and Z-axis, respectively. Applying this approach to 3D scatterplots yields a spreadsheet
forming a simple 2D scatterplot matrix [43]. This matrix displays every combination of
two data dimensions mapped to the three axes of the 3D scatterplot (see Fig. 4.8). The
arrangement is important, as neighboring views assign the same dimension to the common
edge to ease comparisons. In order to attain a consistent multi-viewing, changes to any
relevant parameter (e.g., axis-mapping, scaling and so on) take immediate effect in all views.
An in-depth discussion about using linked multiple views in a spreadsheet setting is provided
by Chi et al. [42].

Apart from providing more familiar 2D scatterplots as a purpose on its own, a significant
advantage of the combined approach is the ability to easily define axis-aligned 3D brushes
in a 2D environment. Although conceptually identical to 2D brushes, it is important that
the brush concept matches the view layout: Using the feature specification as proposed by
Doleisch et al. [52], a brush defined within the proposed setup is a logical AND-combination of
selections on all three dimensions of the dataset which are currently mapped to the axes. Such
a brush (referred to as simple brush) represents an axis-aligned cuboid in 3D and a rectangle
in 2D. Due to the view layout, the boundaries of a brush are collinear in neighboring 2D
views. Simple brushes are created by dragging the mouse in any 2D view, where the two
dimensions mapped by this view are constrained according to the user input, while the third
(hidden) dimension is initially defined by the size of its spatial focus. After creation, simple
brushes can be moved and resized in any 2D view which takes instantaneous effect in all
views. We only support axis-aligned brushes, because brushes of this shape do not implicate
any correlation between the dimensions [52]. However, the user can define arbitrarily complex
composite brushes by combining simple (and composite) brushes using logical AND or OR
combinations.

As an important aspect of the system SimVis, the degree of interest (DOI) as defined
by brushing is not restricted to binary values but may take any value within 0.0 and 1.0.
Motivated by the idea of fuzzy logic [288], this concept is called smooth brushing [53] and
is also supported by our approach. The user can split the border of a simple brush into
independently modifiable interior and exterior boundaries, which causes the according DOI
function to drop off linearly from 1.0 inside the interior boundary to 0.0 at the outer boundary.
A visualization of the DOI in 2D scatterplots is essential: Brushes defined in the proposed

65

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.8: Composite smooth brushing in the combined 2D/3D View: Two cuboid-shaped
basic brushes are logically OR-combined. DOI coloring is applied in all views. The basic
brushes are drawn as rectangles in 2D and as transparent boxes in 3D. Note the arrangement
of the views recognizable by the color-coding of the axes.

setup constrain three dimensions and thus one more than can be shown by a single 2D view.
However, 2D rectangles as 2D outlines of brushes do not provide any information concerning
the depth-validity of the brush. Even points inside a rectangle in 2D can lie outside the brush
in 3D. Therefore the coloring of the points reflects their DOI in order to facilitate a correct
understanding of the current brushing situation. Among possible visualization options for the
DOI are mapping the minimum, maximum or average of the DOI values of all data entries,
which project to a certain pixel, to color. Additionally, providing coloring based on the DOI

66

4.2. INTERACTIVELY LINKING 2D AND 3D SCATTERPLOTS

Figure 4.9: Extensions for 2D scatterplots: Histograms indicate the point density of the whole
focus (black) and the brushed focus (red) and grey areas represent temporal context.

in the 3D view can further enhance the comprehension of the current brushing. An example
for a composite smooth brush with DOI coloring in the combined 2D and 3D scatterplot is
shown in Fig. 4.8.

4.2.2 Adapting 3D Extensions for 2D Scatterplots

Some extensions of 3D scatterplots as presented in section 4.1 are also applicable to 2D
scatterplots in a slightly modified version. This is, because 2D and 3D scatterplots have some
drawbacks in common. Due to the loss of one dimension compared to 3D scatterplots, the
problem of unrecognizable point densities is usually even worse in 2D.

Analogically to the 3D case (see section 4.1.2), we depict the spatial focus with two
histograms per view – for the X- and Y-axis, respectively (see Fig. 4.9). These histograms are
located at the margin of each view and they share its resolution. A co-located and equally
scaled histogram in a different color represents the distribution of the brushed subset of the
data. Each data item is counted corresponding to its current DOI.

The principle component axes can also be shown in 2D views (see section 4.1.5). The user
can choose between an independent 2D analysis for each view or an orthographic projection of
the components as calculated in 3D into 2D. The former approach provides more information

67

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.10: The T-junction: Warm liquid is entering from one inlet (right), hot liquid
expands from a second inlet (above) and splits due to an obstacle.

for the 2D views themselves, while the latter is more consistent with 3D viewing.
Analogously to the 3D case, 2D scatterplots also permit visualizing the temporal con-

text as described in section 4.1.4. Since the perception of the respective focus must not be
compromised, we suggest drawing the focus on top of the context, hiding it in places where
both focus and context can be found and using clearly discernable colors for both. Fig. 4.9
illustrates a combined application of the proposed 2D extensions.

4.2.3 Linking External Views

The combined 2D and 3D scatterplot is considered a single visualization by the SimVis sys-
tem, even though it consists of four sub-views. The SimVis system employs a multi-level
focus+context approach [186] and the coordination between these sub-views as described in
section 4.2.1 is one of these levels. In addition, composite brushes can be defined by logically
combining brushes of different views [53, 52]. We thus distinguish between local brushing (the
combination of all brushes defined in a single view) and global brushing (actually brushed
data points considering the overall composite brush). To allow for this distinction, different
colors are assigned to locally and globally brushed data points (see Fig. 4.13 and Fig. 4.14
for examples).

4.3 Application Scenario

This section demonstrates the application of combined 2D and 3D scatterplots and other
linked views for interactively exploring and analyzing a large dataset. It puts special emphasis
on using the extensions proposed in this chapter as well as on the aspect of linking with other
views of SimVis.

Our collaboration partner belongs to the field of the automotive engineering industry,
where results from computational flow simulation are analyzed, which is a challenging task.

68

4.3. APPLICATION SCENARIO

Figure 4.11: The development of velocity, pressure and turbulence over time: The first con-
solidation phase (left), the second expansion period (center) and the state at the end of the
second consolidation phase (right).

Figure 4.12: Mapping brushed physical space to attribute space: The main chamber of the
T-junction (shown in the linked 3D View of SimVis) closely corresponds to the lobe at high
pressure in the linked 3D scatterplot.

Simulations are time-consuming and typically many simulation-cycles are required to opti-
mize the performance of a specific system. In order to speed up these simulation-cycles and
in turn also shorten development times, interactive visualization is crucial to achieve fast
and successful analysis of the data. Visualization often is the mean to understand complex
relationships between different data items. However, the visualization has to cope with an
amount of data which is usually vast due to detailed geometrical models (in terms of num-
bers of cells), the number of attributes computed for each cell and the time-dependent aspect
(number of time-steps) of the simulation.

The case presented here is a T-junction with an extended chamber around the junction

69

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

Figure 4.13: Relating locations inside the main chamber to their attributes: The turbulence
kinetic energy (TKE, mapped to the blue axis) is very high for location 1 (top), considerable
for location 2 (bottom, left) and only medium for location 3 (bottom right). Note the repre-
sentation of spatial context in the 3D views. Not shown by this figure: The smaller lobes in
TKE originate from time-steps before the hot liquid has fully entered the main chamber and
vanish afterwards.

(see Fig. 4.10) and an obstacle below the secondary inlet (red in Fig. 4.10). Warm liquid
starts to float in from the main inlet with the beginning of the simulation (at the right of
Fig. 4.10). After the first third of the time-span of the simulation, a hot liquid enters the
junction from the second inlet. In this example the user is interested in the mixing behavior
and particularly in the existence of vortices and eddies, which are hard to detect by purely
mathematical means. The dataset comprises 18 data attributes for approximately 32000 cells
and 100 time-steps.

While the analyzed dataset comprises 18 dimensions, most questions can be answered
considering a much smaller set of dimensions. A typical set for computational flow simulation
involves velocity, pressure, turbulence kinetic energy (TKE), temperature and time. In our
context, velocity, pressure, and TKE are mapped to the three axes of the 3D scatterplot,
temperature is mapped to color and time is considered as temporal focus and context, defined
with a range slider (see section 4.1.4).

In order to get a first approximate idea of the data, the exploration starts with moving a
narrow temporal focus (time-slab) back and forth in time (temporal context and histograms
for the spatial focus are enabled to permit a correct assessment of the relative position in
time and of the current point distribution, respectively, see Fig. 4.11). This basically reveals
four temporal periods: Expansion of the liquid from the first inlet towards the outlet, a first
consolidation phase, expansion and mixture from the liquid of the second inlet, and the second
consolidation phase. The two expansion phases are characterized by approximately linear

70

4.3. APPLICATION SCENARIO

changes in velocity, quick rising in pressure and high values of TKE. During the consolidation
phases, velocity and pressure remain approximately the same, while the TKE slowly decreases
with increasing duration of the phases; the simulation shows stabilization at the end of the
last phase. A particularly strong increase in the overall size of the point cloud with respect to
the displayed dimensions can be observed during the second expansion phase, which suggests
distinct vortices. This is identified as interesting for further examination – together with
the beginning of the second consolidation phase in order to check, which turbulences are
nonrecurring and which are persistent.

More advanced investigations require extended brushing facilities and linking of different
views (see section 4.2.3). Relating physical locations to features in attribute space and vice
versa is an essential part of the exploration with brushing. Three settings are reasonable in
general for linked views:

• Brushing in space and visualizing the according attributes (which characteristics can
we find in certain parts of the geometric model?)

• Brushing attributes and visualizing the related positions in space (where can we find
certain characteristics?)

• Brushing attributes and visualizing other attributes (how are certain dimensions related
to each other?)

We focus the further exploration on the main chamber (by brushing in space), since the situ-
ation within the inlets and outlet (being significantly influenced by the boundary conditions
of the simulation) is rather known and therefore less interesting. Brushing in 3D space can
easily be done with the combined scatterplot by mapping the X-, Y- and Z-coordinates of
the cell centers to the three axes. As can be seen in Fig. 4.12, the main chamber (brushed
in space and visualized with the linked 3D view of SimVis) largely coincides with the lobe
at high pressure of the linked combined scatterplot showing pressure versus velocity versus
TKE (Fig. 4.12 is an example for linking multiple views of different kinds). In order to make
efficient use of the available space and resolution, we adapt the scaling of both combined
scatterplots (space and attributes) so that they contain only the brushed part and consider
the rest as spatial context.

Locally investigating the main chamber with a spatial brush which is refined to 5x5x5 cell
centers (plus one surrounding slice of smoothly brushed cells) reveals high peaks of TKE in
some parts next to the obstacle in the direction to the main inlet: Comparing spatial and
attribute domain, Fig. 4.13 illustrates very different turbulence-conditions across the width
of the T-junction over time. High turbulences often indicate the presence of eddies; therefore
it could be that some of the hot water entering the main chamber from the secondary inlet
forms an eddy in this place.

We try to verify or refute this assumption by brushing in attribute space: If an eddy exists,
it most probably contains some of the entering hot liquid due to the proximity to the second
inlet. We account for this consideration by brushing high temperatures in the histogram view
of SimVis [153], as illustrated in the top of Fig. 4.14. Furthermore, we are especially interested
in areas where the flow direction is different from the main direction, because swirling liquids
usually exhibit velocities from a wide range of flow directions. In order to address this task,
we refine the brush on temperature with a 3D brush defined in a linked combined scatterplot
where the X-, Y- and Z-components of velocity are mapped to the three axes: The principle

71

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

component analysis of these three dimensions reveals that the main flow can be found in
positive X-direction with an additional flow in negative Y-direction – it is also helpful for
this task to display the zero crossings of each dimension (as thin lines in 2D and transparent
planes in 3D). Smoothly brushing all opposite flows by selecting approximately the negative
X- and the positive Y-direction as well as a certain band around zero in the Z-direction
(Fig. 4.14 center) outlines a rotating flow, located in the investigated area, in the linked 3D
view of SimVis (Fig. 4.14 bottom). This is a clear indication for an eddy, which cools down
during the upward flow, as can be seen when mapping temperature to color. However, the
visualization shows that the defined properties can be found on the other side of the obstacle
as well: This secondary result could be subject of further investigations.

Concluding, we have demonstrated in short, how interactively linking the combined scat-
terplot with other views of SimVis has been a successful way to explore and analyze complex,
multi-dimensional and time-dependent flow data. Apart from linking and brushing, a task-
centered application of the proposed extensions to 2D and 3D scatterplots has proven useful
in gaining an in-depth understanding of the dataset.

4.4 Discussion and Future Work

This chapter introduced several extensions to 2D and 3D scatterplots in order to alleviate
various known restrictions. The introduced extensions improve the depth perception in 3D,
address the problem of unrecognizable point densities in both 2D and 3D, and they help
the user to keep an overview in space as well as in time when focusing on certain tempo-
ral and spatial parts of the plot. As an additional contribution, a tightly linked setup of
2D and 3D scatterplots intends to combine the advantages of both. The linked 2D scatter-
plots complement the 3D scatterplot by providing an alternative visualization as well as a
convenient way for defining brushes which are consistent with the 3D setting. This chapter
also described an integration of our approach in the SimVis system as an example of an
interactive, multiple-view exploratory software. Finally, we demonstrated the application of
the proposed scatterplot extensions as well as linking with external views by means of an
exemplary investigation of large computational flow simulation results.

Although much less common than 2D scatterplots, 3D scatterplots have proven advanta-
geous along with the presented extensions. The three dimensions match the dimensionality
of physical space, which permits to intuitively visualize and interact with according data, like
brushing certain areas of a physical model as well as the three components of velocity, for
example, or any kind of three-dimensional gradients. The major drawbacks of 3D scatterplots
are occlusion and difficulties with respect to comprehension and interaction due to the mis-
match in dimensionality of three shown by the scatterplot and two used by standard input
and output devices. This chapter showed an attempt to mitigate these problems.

Ideas for future work include additional 3D brushing concepts and an extension of the
integration of the principle component analysis as a means to introduce a data-driven co-
ordinate system. Being able to define principle-component aligned brushes could ease the
specification of features.

72

4.4. DISCUSSION AND FUTURE WORK

(a)

(b)

(c)

Figure 4.14: Combining several brushes to extract the eddy: Temperature is brushed using a
histogram (top), the flow direction is defined with the combined scatterplot (center) and the
result is visualized in the 3D view (bottom).

73

CHAPTER 4. FOCUS+CONTEXT VISUALIZATION WITH 2D/3D
SCATTERPLOTS

74

Chapter 5

Hierarchical Difference Scatterplots

Data dimensions of multivariate datasets can roughly be distinguished as being either con-
tinuous or categorical. While the data of some application fields is predominantly continuous
(e.g., physical quantities), many application domains have to deal with mixed data, which
has many categorical as well as continuous attributes (e.g., data from Customer Relationship
Management). In this case, pivot tables are widely used to summarize the values of continuous
attributes with respect to a classification given by categories. On-Line Analytical Processing
(OLAP) [45] uses categorical attributes, called Dimensions, to split the data before aggregat-
ing continuous attributes, called Numeric Facts. An important aspect of OLAP systems is to
use large-scale overview summaries of the data as starting point for selective drill down into
interesting parts of the data.

OLAP is based on the fact that categorical data is closely related to hierarchical data
and selective drill down (and roll up) is thus related to navigating a hierarchy. Apart from
inherently hierarchical categories (e.g., years can be subdivided into months, days, hours,
etc.), dimension composition is the key approach for defining hierarchies as it allows for
specializing the categories of one attribute by the categories of another one. For example,
two separate attributes ”sex” and ”age group” can be combined to obtain a category like
”female and younger than 30”. In the context of information drill down, pivot tables are also
hierarchically structured and often referred to as data cubes (or OLAP cubes).

As described in chapter 2, a major benefit of pivotization is a lossless data reduction that
enables to represent billions of underlying data items by simple visualizations. In general,
however, this excellent visual scalability comes at the cost of a huge loss of detail. Interactive
analysis tools for pivot tables should consequently support navigation in a way that it is up
to the user to decide where to drill down and where to stay at a summary level. They should
reflect this hierarchical aspect in the visualization.

Apart from the navigation within the hierarchy itself, a frequent analysis task is to compare
categories within one hierarchy level and also between multiple hierarchy levels. The difference
of pivoted values with respect to parent categories may characterize individual categories very
well as demonstrated by common statements like ”the average income in a particular region
is x percent higher as compared to the entire country”. A visualization approach for OLAP
cubes should therefore also facilitate relating categories along the hierarchy.

Based on these considerations, this chapter introduces Hierarchical Difference Scatterplots
(HDS) as a novel approach to the interactive visual analysis of OLAP cubes. The overall goal
was to combine the visual scalability of overview summaries with the necessary degree of

75

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

Drill - down Roll - up

Cut

Figure 5.1: Navigating a hierarchy. Dark nodes represent the current state of navigation
(the “cut”); nodes above the cut are contextual information and nodes below the cut are not
visualized. Drill-down and roll-up operations transform the left hierarchy to the one on the
right-hand side.

detail for selected parts of the data. The following list describes more concrete goals and
tasks which guided the design of HDS:

• Relating categories to siblings and to parent categories with respect to two continuous
attributes. Our consideration is that differences between pivoted values of parent and
child categories provide an intuitive way of comparison. We therefore represent them
explicitly.

• Integrating multiple hierarchy levels into a single visualization in order to analyze hier-
archy levels in the context of the other levels.

• Supporting local drill-down and roll-up (see Fig. 5.1). Unlike other hierarchical visual-
izations, it is an essential aspect of HDS to provide different levels of detail for various
parts of the data instead of representing the entire hierarchy as such. This is in ac-
cordance with drill-down tasks in huge OLAP cubes, which also often emphasize depth
rather than breadth.

• Supporting a setup of multiple linked views in order to dynamically integrate results of
arbitrary queries as defined by the user in linked visualizations (e.g., a certain cluster
of customers of a sales dataset as selected in parallel coordinates).

Our clear focus is on supporting specific OLAP tasks by a combination of visualization and
interaction. It is explicitly not the goal of HDS to be superior to existing tree visualizations
with respect to providing visually pleasing still images of huge hierarchies as a whole. For
tasks where this is required, we discuss, how other types of hierarchical visualizations can
be tightly coupled to HDS. As one of many potential application scenarios, we evaluate our
approach by analyzing a real-world social survey regarding national identity. The analysis
has been conducted in collaboration with a social scientist. We also provide a discussion of
analysis tasks as supported by HDS, limitations, and a motivation for visualizing differences
explicitly.

76

5.1. RELATED WORK

5.1 Related Work

As described in section 2.2.1, pivot tables have long been used to summarize data. They
have been extended to n-dimensional data cubes, which have widely been adopted by On-
Line Analytical Processing (OLAP) [45]. Section 2.2.1 also described Polaris [238] and its
commercial version Tableau as successful approaches of an interactive visual analysis of data
cubes. However, Polaris displays a single level of detail (i.e., hierarchy level) and thus does not
support comparisons between different levels of detail. The authors of Polaris also describe
design patterns for adapting visualizations of data cubes on multiple scales [240]. This work
deals with transitions between levels of details while still showing a single level of detail at a
time. It has been mentioned as future work to communicate parent-child relationships and
to deal with non-uniform branching factors.

The current version 6 of Tableau, however, does support comparisons between hierarchy
levels using sub-totals and grand-totals, which are displayed in additional rows and columns.
As the main drawback of this approach, comparisons require the user to look at multiple
places on the screen in a successive manner. This makes comparisons difficult as will be
discussed in more detail in section 5.5. This problem is inherent for approaches that rely on
showing absolute values in a side-by-side manner. Therefore, visualizing differences explicitly
was a main consideration in the design of HDS.

Yang et al. [285] propose a general framework for interactive hierarchical displays of large
multivariate datasets, and they apply this framework to extend parallel coordinates, star
glyphs, scatterplot matrices, and dimensional stacking. This approach categorizes a dataset
by clustering before using this classification for multi-resolution analysis of aggregated values.
However, unlike HDS as introduced in this chapter, Hierarchical Parallel Coordinates are
limited to comparing results along one cut through the hierarchy, while our approach focuses
on differences between levels. Sifer [228] proposes parallel trees, which employ a parallel axes
layout for aligning multiple drill downs into a data cube. The categories of all hierarchy levels
are stacked on top of each other. For analysis, the user may relate one active dimension to all
others by coloring parts of the boxes. This implicitly conveys the information for comparing
siblings as well as child categories to parent categories. Differences are not represented explic-
itly which requires remembering one category and shifting the attention to another one for
comparison. This becomes even more difficult as categories are scaled in proportion to their
relative frequencies and thus their size may differ significantly. Moreover, parallel trees require
categorization of continuous dimensions (i.e., facts) and do not support typical aggregations
like average or sum. This severely limits their applicability to frequent OLAP tasks.

Section 2.2.1 briefly summarized the huge amount of literature on the visualization of
hierarchies and hierarchically structured data. While common node-link representations [12,
116] focus on showing the structure of the hierarchy rather than pivotized properties of nodes,
containment-based approaches like tree maps [225] convey the size of the hierarchy nodes very
well. However, only a few approaches derive the node placement from multivariate properties
of the data as necessary for typical OLAP tasks.

Wattenberg proposes PivotGraph [270] for analyzing multivariate graphs and he addresses
OLAP by supporting drill-down and roll-up. The graph layout corresponds to a grid which is
given by two categorical dimensions for the X and the Y axes, respectively, and edge thickness
is determined from the number of edges being aggregated. While the basic idea of property-
based node placement is similar to HDS, there are several differences. PivotGraph only
supports placement based on discrete dimensions while HDS uses a node layout scheme suited

77

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

Entire dataset

Not very proud

Not proud at all

Proud

Missing

2nd drill down

1st drill down

Not proud

Figure 5.2: A simple hierarchy as conceptual example: the average age (X-axis) and the
average years of schooling (Y-axis) are compared for several degrees of pride on armed forces
and the entire data. Drill-down on “not proud” distinguishes “not very proud” and “not proud
at all”. The size of nodes shows the number of respective interviewees. The visualization
reveals that pride is increasing with age and is decreasing with education.

for comparison of differences between continuous facts. Moreover, PivotGraph visualizes a
single level of detail at a time (similar to Polaris [238]) and thus does not allow for relating
nodes to their parents. After all, the intention of PivotGraph is to improve the interpretability
of the graph topology for a particular level of detail, while HDS focus on comparing aggregated
facts along and across a categorical hierarchy.

Queries defined through interaction within visual representations (also known as “brush-
ing”) are a proven standard approach for the identification of selected data subsets of interest
(see section 2.4.1). However, there has been little research on integrating brushed subsets
in hierarchical visualization techniques. In particular, no approach explicitly characterizes
brushed subsets by displaying the difference between the properties of an entire category and
its selected part.

5.2 Hierarchical Difference Scatterplots

This section introduces Hierarchical Difference Scatterplots (HDS) as a novel combination of
scatterplots and tree visualizations. After describing the approach itself, we provide examples
of tightly coupling HDS to other hierarchical visualizations and propose techniques for linking
our technique to other multivariate visualizations.

5.2.1 Visualization

The main idea of HDS is to layout nodes of a tree based on properties similar to a scatterplot
(see Fig. 5.2). For parameterization, HDS require a pre-defined hierarchy, i.e., a data cube,
and several properties, which are assigned to the visual attributes X-position, Y-position, size,

78

5.2. HIERARCHICAL DIFFERENCE SCATTERPLOTS

Entire dataset

Europe

Austria

University Degree

Married

Male

Female

D
is

to
rti

on
 o

n
Y-

A
xi

s

Figure 5.3: Example of a deep drill-down: the focus is on comparing men and women of the
category path Europe – Austria – University degree – Married (i.e., five levels of the hierarchy
plus the root) with respect to their attitude towards the Internet and international companies.
Size, color and opacity are used to visually discriminate hierarchy levels. All siblings along
the path are shown as valuable context information. Distortion is used on the Y-axis.

and color. Properties may be pivoted values of continuous data attributes. An example are
aggregated ”measures” like the average revenue per node or other aggregates like minimum,
maximum, median, sum, etc. Other examples include inherent features of hierarchy nodes
like absolute frequencies or depth. Applying data-driven glyph placement [267], the prop-
erties assigned to the X- and Y-attributes are directly mapped to the position of the visual
representations of categories. In addition to X- and Y-position, the user may independently
assign different properties to size and color which is comparable to Polaris [238], or use default
settings. For example, size per default represents the number of raw data items for each node.
Color is discussed further below.

In accordance with the idea of information drill-down, the user may increase the complex-
ity incrementally and selectively. Initially, the entire data cube is handled as a single category
and it is thus shown as one visual item. By clicking on this item, the user may drill down
to the next hierarchy level that displays the respective hierarchy nodes as additional visual
items. Clicking on any of these items adds its direct children and thus increases the amount
of shown information locally for this particular sub-tree (see Fig. 5.2). As most important
aspect of HDS, the visualization is not limited to the categories within the current state of
navigation in the hierarchy (referred to as ”cut”, see Fig. 5.1), but also includes all nodes
above the cut up to the root of the hierarchy. This allows for direct comparison of properties
between child nodes and parent nodes as both are displayed in the same visualization and
thus share the same visual context with respect to node placement. However, this necessitates
concepts for discriminating levels of the hierarchy and recognizing structural relationships,
which we address in multiple ways.

First and foremost, lines connect each parent to all visualized children, thus represent-
ing the topology of the hierarchy. In order to improve the distinction of lines in densely
populated areas, connection lines smoothly blend the color of the parent to the color of the

79

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

child. As interesting aspect, these directed lines could be seen as ”skeleton” of the visual-
ization, which sketches the structure of the scatterplot of non-aggregated raw data entries.
Even more important in the context of OLAP, the lines explicitly visualize the difference
between the properties of each category with respect to its direct parent category (or the
root of the hierarchy). Both the length and the angle have semantics, namely the overall
amount of difference and the ratio. Due to the 2D layout, the lines support the perception of
relationships between differences on the X and the Y axis. This allows for fast identification
of sub-categories deviating in the same way from their parents for multiple sub-trees. In
our implementation, optional small arrows pointing towards the respective child indicate the
direction and facilitate tracing the structure of the hierarchy in some situations at the cost
of increased clutter.

As mentioned above, each visual attribute can be used in different ways. In particular, each
attribute can be used to enhance the discrimination of hierarchy levels, where transparency
can be modulated independently from color. Transparency and size-based discrimination
amount to a focus+context approach. One hierarchy level C is considered to be the current
one, which is drawn opaque and in full size. Opacity and size decrease for lower and higher
levels N with a factor of 1/2|C−N |. The current hierarchy level is a global property of the
visualization, i.e., the same depth is highlighted through all sub-trees. Drill-down and roll-up
operations automatically update the current level, or the user may manually set any level as
current. Expanded nodes, i.e., nodes above the cut, are highlighted by an additional opaque
circle. Directed lines leading towards expanded nodes are always drawn in full opacity (see
Fig. 5.3), which facilitates tracing individual sub-trees as generated by a local drill-down.

HDS offer various modes for coloring hierarchy nodes. In addition to representing common
categorical properties like size or pivoted values of an arbitrary measure as mentioned above,
users may optionally also emphasize the structure of the hierarchy. Hierarchy-based coloring
recursively subdivides the hue circle in a similar way as described for the Interring [284]. The
segment of the hue circle assigned to each node is proportional to the number of leaf-nodes in
the sub-tree and the hue in the middle of the segment is applied to the node itself. Color is
a particularly important issue when coupling different tree-visualizations, as it supports the
visual matching of hierarchy nodes (see section 5.2.2).

With an increasing number of displayed nodes, the extents and the density of the visu-
alization may vary significantly during the analysis. Restricting the displayed value range in
a similar manner as in Spotfire [1] is supported by our approach, but it has the disadvan-
tage that users may lose the overview because the entire hierarchy is not visible any more.
As an alternative, we offer spatial distortion in a similar way as Table Lens [207]. This has
proven useful to provide focus+context for areas where nodes with similar properties are close
together. Applying a piecewise linear visual transfer function [34], the user may smoothly
magnify any contiguous sub-interval of the displayed value range. The factor is chosen sep-
arately for the X- and Y-axis (see Fig. 5.3 and 5.4). The reason for using a piecewise linear
function instead of using non-linear distortion (e.g., fish-eye distortion [161]) is that differ-
ences between nodes remain comparable as long as all involved nodes are inside the focus,
which can easily be ensured by the user.

5.2.2 Coupling Tree Visualizations

Arguably, no single visualization approach perfectly covers all aspects of hierarchical data.
The clear focus of HDS is on supporting the interactive analysis of data cubes in the context

80

5.2. HIERARCHICAL DIFFERENCE SCATTERPLOTS

Identification: NationalityIdentification: Nationality

Identification: Age GroupIdentification: Age Group

Separated but Married

Divorced

Entire dataset

Figure 5.4: Comparing multiple sub-trees: interviewees are distinguished by their marital
status and most important identification (in this order). Each class is characterized by its
average age and the average number of persons in the household. While most identification
nodes deviate roughly in the same direction for all marital status nodes, some interesting
exceptions, like “Nationality”, show contrary behavior for different nodes. Color is derived
from the category name. Spatial distortion is applied on both axes to focus on divorced and
separated but married interviewees.

of OLAP. By displaying multiple pivoted values (or other properties) and the differences to
parent levels at the same time, HDS visualize comparatively much information per node.
Due to the data-centric layout, however, HDS do not perfectly scale to the visualization of
both depth and breadth of large hierarchies at the same time (i.e., the hierarchy as a whole).
This is due to well-known graph-drawing problems like a potentially high number of crossing
edges. However, as discussed in section 5.5, this is not a limitation with respect to analyzing
large real-world data cubes, because the user may increase the complexity incrementally
and selectively by drilling down to interesting details while staying at a coarse level for less
interesting sub-trees (or even hiding them).

Still, aspects conveyed not so well by HDS might be interesting. We therefore briefly
discuss concepts of tightly coupling HDS to other approaches for visualizing hierarchies in
order to combine their benefits when analyzing the same hierarchy. As an example, we have
implemented a layout similar to parallel trees [228] as used by Sifer to analyze OLAP data.
This layout is related to ArcTrees [191], which we refer to as hierarchical bargrams since we

81

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

University degree completed

MM
FIn

te
rn

et
 In

fo
rm

at
io

n
M

or
e

Av
ai

la
bl

e

F
M

F

M

F

M

Above higher secondary

Higher secondary completed

Lowest formal qualification

Above lowest qualification
Large International Companies Are Causing Damage

Figure 5.5: Tightly coupling HDS to hierarchical bargrams for displaying frequencies and
names of hierarchy nodes. Several education levels, partly split into male (blue and letter ”M”)
and female (red and letter ”F”), are compared with respect to the average attitude towards
international companies (X-axis, hue) and benefits of the Internet (Y-axis, saturation). The
nonlinear relationship between the questions and the influence of education and sex are clearly
visible.

do not show any arcs. In hierarchical bargrams, a horizontal bar representing 100% of the
displayed data is subdivided in proportion to the relative frequencies of the categories in the
first level of the hierarchy. The obtained boxes are recursively split in proportion to the relative
frequencies of their sub-categories. This generates bars nested inside the representation of
their parent-category. Each bar displays the name of the respective node (see Fig. 5.5).

We have identified the following attributes for tightly coupling HDS to other kinds of tree
visualizations.

• State of navigation The user may perform drill-down and roll-up operations in any
visualization, which consistently updates all views. In the hierarchical bargrams, the
recursion stops at the current cut, which is also conceivable for most other types of tree
visualizations (like tree maps).

• Color As discussed above, HDS offer multiple ways for using color. Applying consistent
coloring of nodes to all visualizations greatly facilitates the visual matching between
them. In our case, the bars in the bargrams are drawn in the same color as the nodes
in the coupled HDS. Deriving the color from the position of nodes in the HDS (e.g., by
mapping the position on the X-axis or the difference from the root to color) enhances
the matching even more. Coupling by color is possible for almost all types of tree
visualizations.

• Order Many tree visualizations have a degree of freedom in which order siblings are
represented. This freedom can be used to roughly maintain proximities between nodes
throughout all visualizations. The hierarchical bargrams, for example, optionally order

82

5.3. IMPLEMENTATION AND USER INTERFACE

sibling nodes with respect to their position on the X- or Y-axis in the coupled HDS.

• Selection Interaction is generally very powerful for linking visualizations. We provide
different types of selection: (1) based on dedicated mark up interactions (e.g., by drawing
a rubber band or actively clicking on an item) (2) temporarily hovering over visual
items, which highlights the node or sub-tree beneath the mouse cursor throughout all
visualizations. This has turned out to be very intuitive and fast for matching nodes as
no mouse clicks are needed.

5.2.3 Integrating Selected Subsets

The previous section discussed tightly coupling HDS to other tree visualizations. This section
describes the integration of subsets as defined by brushing arbitrary multivariate visualizations
like parallel coordinates. It also applies to linking multiple instances of HDS visualizing
different hierarchies. Linking views by interactive queries has established itself as important
concept, because different sub-tasks of a complex analysis typically require different types
of visualization. For example, the user may want to identify multi-dimensional clusters in
parallel coordinates, and immediately relate each cluster to a hierarchy as visualized by HDS.

In a linked setup, each type of visualization typically highlights the subset of selected
entries in an appropriate way. In HDS, the integration is based on the fact that the selection
state is categorical too. Each row in the underlying non-aggregated main data table is either
selected or not at any point in time with respect to a particular query. Employing the concept
of dimension composition, a selection thus refines any hierarchy node X into “X and selected”
and “X and not selected”. This allows for visualizing selections similar to normal child nodes.

For each node X of the cut, the aggregations of the selected part of X (unless empty) are
computed and visualized at the respective position in the plot (see Fig. 5.6). As for actual
sub-categories, a line connecting the representations of the entire category X and its selected
part explicitly represents the difference between both with respect to pivoted values. In or-
der to discriminate multiple selections, the border of selection nodes is drawn in the color
of the respective query, while this part is black for actual nodes of the hierarchy. Immedi-
ately updating the visualization at each modification of the selection implicitly generates an
animation of change similar to moving the time slider of the Gapminder Trendalyzer [89].
In our case it concerns general variation on arbitrary data dimensions. The modification
speed of each node representation reflects the gradient of change with respect to the selection
criterion. As recently discussed by Robertson et al. [213], it also reveals overall trends, e.g.,
all selection nodes move from left to right, and makes outliers discernable, which move in a
contrary direction.

5.3 Implementation and User Interface

HDS have been implemented in the context of Visplore, an application framework for visually
supported knowledge discovery in large and high-dimensional datasets. Visplore supports the
analysis of datasets with millions of entries and hundreds of dimensions at interactive rates
on consumer hardware. This has a major impact on the design of all views (including HDS)
and necessitates advanced software techniques like multithreading (see chapter 3). Visplore
also supports missing values and requires all views to do so.

83

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

Free Trade Leads to Better Products

Selected Subset of
Identification:
Political Party

Selected Subsets

Identifications

Figure 5.6: Integrating queries: interviewees older than 60 years, as brushed in a histogram,
are highlighted for each category regarding most important identification with the average
attitude towards free trade (X) and damage done by international companies (Y) assigned
to the axes of the HDS. The visualization shows that elderly people tend to have an over-
proportionally negative attitude towards international companies, while the attitude towards
free trade is in most cases independent of age. The category “political party” is an exception,
though, as the acceptance of free trade is higher for elderly people and – unlike for the other
categories – more significant than the difference regarding international companies.

Visplore currently provides more than 10 different visualizations, which are partly stan-
dard (e.g., 2D and 3D scatterplots, parallel coordinates, histograms, etc.) and partly specific
to certain application tasks (e.g., validating regression models as described in chapter 7).
A key aspect of Visplore is to discriminate multiple queries, which are defined by compos-
ite brushing and are highlighted by all views in a linked way. All components also offer
convenience functionality like undo/redo and a consistent way to arrange controls like data
dimensions of the current dataset. In particular, the user may at any time specify new hier-
archies of arbitrary complexity by dimension composition or by combining categories. Data
dimensions and hierarchies can easily be assigned to views, which is the way how the axes
and the displayed hierarchy of HDS are parameterized.

Making the user interface easy-to-use was also an essential design aspect of HDS. The user
may perform drill-down and roll-up operations by just clicking on a visual representation, or
may hide entire sub-trees. Tool tips provide details-on-demand showing the name, the size,
and the aggregated values for the node beneath the mouse cursor. In order to highlight

84

5.4. CASE STUDY AND EVALUATION

subsets of the data in linked views, the user can brush nodes by either clicking on them or
dragging a rubber band. Dedicated widgets next to the X- and Y-axis offer all functionality
related to adapting the displayed value range and the spatial distortion.

5.4 Case Study and Evaluation

We now discuss the evaluation of our approach by the interactive visual analysis of a large
survey, which we did together with a sociologist. The analysis of opinion polls is an important
topic, where too little attention has been devoted to. HDS are designed to be generally
applicable to data cubes of any kind, e.g., business data as a typical application of OLAP, and
are not limited to opinion poll data. The sociologist had rich experience with the analysis of
surveys, but had used static statistical software and had never used interactive visualizations
before.

The survey was conducted by the International Social Survey Programme (ISSP) [206]
in 33 countries between February 2003 and January 2005 with 44.170 respondents in total.
Disregarding country-specific and thus incomparable questions, the dataset consists of 104
predominantly categorical attributes. The attributes are partly demographic questions and
partly concern the attitude towards national consciousness, identity, and pride. The answers
to most questions comprise 4 or 5 levels, e.g., very proud, somewhat proud, not very proud,
not proud at all. This allows for both treating them as categories as well as computing
meaningful aggregations, e.g., the average accordance to a statement. The dataset contains
missing values, which represent an own category for categorical attributes. Missing values are
disregarded when aggregating a continuous attribute.

Before analyzing the questions regarding attitude and pride, the sociologist first wanted
to gain an overview about characteristics of various demographic categories, figures of the
survey, and potential relationships between them. HDS facilitate this task, as it is fast to
visualize simple pivot tables like the average number of persons in a household per country
and they also quickly provide the size of each category. Within a few minutes, the expert
could look at dozens of combinations, partly confirming expected facts, e.g., the average age
of widowed people is 22 years higher than the average of the dataset. Partly, this basic
analysis already revealed unexpected features like a significant variance in the average age
of interviewees throughout the countries (which must be taken into account for subsequent
conclusions).

Already for such flat pivot tables, the sociologist appreciated being shown the average
of the entire dataset as visual reference. The reason is that this reference is not affected by
categories of different size - a common problem when trying to determine the center in a
purely visual manner (e.g., by assuming the center of the image as center of the data, which
is typically misleading). As criticism regarding our implementation, the expert said that he
lacked labels next to the nodes, although he admitted that tooltips partly compensate for
that. We suggested using coupled bargrams as legend and deriving the order of the nodes
from the X-position in the HDS. He made use of them for cases where only a few nodes are
simultaneously shown, while they turned out to be of limited scalability for more complex
hierarchies.

After analyzing cross tabulations between categories (a frequent task in sociology) in an-
other visualization of our framework, the expert returned to HDS in order to characterize
categories in the context of other categories. For example, he was interested whether differ-

85

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

ent categories concerning identification have a similar distribution of age for different marital
status categories (see Fig. 5.4). Showing multiple hierarchy levels simultaneously and explic-
itly representing the difference between them turned out to significantly help answering this
and other comparatively complex questions. Within a short time, the sociologist identified
multiple interesting and unexpected facts in the data. Comparing the difference vectors of the
red dots in Figure 5.4, for example, reveals that for all categories related to marital status,
the subset specifying ”age group” as most important identification tends to be older than
the average of the entire category. However, singles are a remarkable exception, as the ”age
group” sub-category of singles is the youngest of all. Assigning the same color to related sub-
categories (e.g., red to all ”age group” sub-categories) greatly facilitates such comparisons
between different sub-trees. As the visualizations became more complex, the sociologist used
distortion increasingly often and found it a convenient way to clarify relationships for densely
populated areas.

As the next step of the analysis, the expert was interested in results concerning attitude
and pride. Figure 5.5, for example, shows that people with a positive attitude towards the
Internet turned out to be less skeptical towards large international companies. It further
reveals a strong influence of the education level. For drill-down scenarios involving more
hierarchy levels, the sociologist liked that he could focus on particular categories but still
see the rest as context information, as illustrated by figure 5.3. While focusing on Austrian
interviewees with a university degree, still all other education levels are shown for Austria, all
other European countries, and all continents. The center of the entire dataset is given as well.
The expert considered such deep local drill-downs a key advantage of HDS. Analyzing the
difference between two levels is of course also possible by visualizing this derived information
in simple scatterplots. Relating four or five levels at a time, however, would generate numerous
derived data dimensions, which are hard to analyze intuitively without HDS.

The sociologist needed some time to familiarize with the idea of specifying ad-hoc cat-
egories by brushing linked visualizations. He eventually embraced this approach and used
queries as defined in linked visualizations frequently for two types of tasks:

• Motion Due to the immediate update, changing the query in one view generates an
animation in HDS. Figure 5.6 shows an example, where interviewees are selected by age
in a histogram. Moving the interval from young towards old makes the selected parts
of most identification classes in the HDS wander from top to bottom, indicating more
skepticism towards international companies for elderly people. It also reveals interesting
contrary trends for ”political party” and ”ethnic background” regarding the attitude
towards free trade in dependence of age.

• Highlighting When comparing multiple sub-trees, a convenient way of identifying
related categories throughout all shown extracted branches is by brushing this particular
category in a linked view. For example, instead of assigning the same color to related
sub-categories in figure 5.4, it would also be possible to highlight all ”age group” nodes
by selecting the category ”age group” in another view, e.g., in a second instance of
HDS. Using the ”Superfocus”, the sociologist could identify many different categories
in a short time. This was particularly useful when color was needed otherwise - for
example to discriminate hierarchy levels as in figure 5.3.

Although we can only describe a small part of our analysis here, this application has demon-
strated how HDS facilitate and speed up the interactive analysis of data cubes. As result of

86

5.5. DISCUSSION AND FUTURE WORK

Figure 5.7: Comparing hierarchy levels using HDS (upper half) and using multiple scatterplots
in Tableau (lower half). The average age (X axis) and the average number of education years
(Y axis) are shown for groups having different most important identifications (color), which
are further subdivided by sex. The same colors are used for corresponding identifications in
both halves. In HDS, ”male” is drawn blue and ”female” red, while multiple panes are used
below. Comparing especially the horizontal position of items is difficult across columns, while
even minor differences are clearly conveyed by HDS.

our evaluation, the sociologist particularly liked being shown the center of the data as refer-
ence and being able to analyze multiple levels of the hierarchy in the context of each other.
Despite tooltips and coupled hierarchy visualizations, his most important criticism concerned
the lack of labels, which we will address in future work.

5.5 Discussion and Future Work

The main goal of HDS is to support the interactive visual analysis of data cubes. Selective
drill down ensures that users can increase the amount of detail incrementally for sub-trees
of interest. This is an important aspect regarding the scalability of HDS as it combines
the visual scalability of overview summaries with the necessary degree of detail for selected
parts of the data. As for all approaches relying on pivot tables, the speed for aggregating
data is the most significant limitation with respect to the number of underlying data rows.
Aggregating data is generally fast even for millions of data rows and may even make use
of explicit optimizations for data cubes in data warehouses. Therefore, HDS scale well for
datasets consisting of multiple millions (and even billions) of underlying data records, which

87

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

makes them applicable to real world data cubes.
A relevant question concerns the amount of detail (i.e., how many hierarchy levels and

how many nodes), that can be shown before the visualization suffers from cluttering. An
answer depends on the purpose. Generally speaking, HDS are suitable for:

• Comparisons along the hierarchy. The main intention is to relate a few particular nodes
to their direct and indirect parent nodes. Such comparisons involve local drill downs
of numerous hierarchy levels while typically little information is shown per level (see
Fig. 5.3 for an example). In this case, the most interesting information is the path to the
root node (i.e., the properties of the entire data cube). Siblings provide rather context
information and it is often even tolerable to hide siblings for certain hierarchy levels.
In this case, comparing ten or more hierarchy levels is possible. However, as shown
by Fig. 5.3, the number of visual attributes needed for discriminating hierarchy levels
generally increases with the number of hierarchy levels. As a special case, mapping the
depth of a node within the hierarchy to its position on one of the two axes yields a
common rooted tree layout. This layout is guaranteed to have no crossing edges as long
as not more than one node is expanded per hierarchy-level.

• Comparisons across one hierarchy level. The focus is on the position of siblings relative
to each other and to common parent nodes (see Fig. 5.4 for an example). Much infor-
mation is shown for a single hierarchy level while little information – if any – is typically
shown for other levels. In this case, HDS resemble non-hierarchical scatterplots, but
may still convey additional information (e.g., the properties of the entire data cube as
one additional item). In this case, comparing a few hundred categories is possible.

As a consequence of displaying much information per node (i.e., two pivoted properties and
topology), HDS are limited with respect to showing both depth and breadth of large hierar-
chies simultaneously. Showing large hierarchies in their entirety was not a design goal of HDS
and it is not necessary for many tasks. As discussed in section 5.1, most tree visualizations
convey the topology but disregard multivariate attributes. Most approaches for OLAP, on
the other hand, consider multiple attributes but are limited to displaying a single hierarchy
level.

Tableau optionally displays multiple hierarchy levels using sub totals and grand totals
which are added as additional rows or columns. However, comparisons require looking at
multiple places on the screen in a successive manner. Generally speaking, comparisons be-
come increasingly difficult and less precise with increasing visual distance and number of
visualizations involved in the comparison. For example, while detecting even minor differ-
ences in the height of two adjacent bars of a bar chart is easily possible, comparing the position
of points of multiple non-adjacent scatterplot panes is difficult and coarse. The reason is that
the user is forced to ”remember” one pane while shifting his focus to another – potentially
distant – pane. Fig. 5.7 illustrates this aspect. Although three panes (as shown in the lower
half) is quite a small number, precise comparisons are particularly difficult with respect to
the position on the X-axis. The figure also shows that using a single row makes comparisons
with respect to height much easier, because the same vertical reference is given for all items.
Using multiple rows (e.g., by assigning identification to rows instead of using color) would
severely compromise comparability of the Y-position as well. In the worst case, comparing
panes might even involve scrolling the entire visualization. This problem is inherent for ap-
proaches that do not explicitly visualize the difference between items but rely on showing

88

5.6. CONCLUSION

multiple visualizations in a side-by-side manner as small-multiple visualizations typically do.
Drawing items in a single scatterplot does explicitly visualize the difference between them,
as this difference is directly proportional to their distance. This was a main consideration in
the design of HDS.

There are multiple interesting directions for future work. First, we intend to conduct a
large-scale user study in order to evaluate HDS more formally. Second, the issue of labelling
nodes as mentioned by the sociologist needs to be addressed. The challenge is to add labels
in a scalable way without compromising readability. Third, we plan to examine the effect of
varying the shape of node representations on the interpretability of the visualization.

Other interesting questions for future research concern the applicability of HDS within
small-multiple displays. A scatterplot matrix, for example, would allow for visualizing more
than two measures at a time. Moreover, comparing drill-downs for multiple sub-trees of
one node in a side-by-side manner could be an option for analyzing many deep drill-downs
simultaneously. However, care will have to be taken as the aforementioned disadvantages of
small-multiple visualizations apply in this case.

5.6 Conclusion

The analysis of data cubes is a key issue in many application domains. It involves navigating
a potentially large hierarchy as well as comparing nodes within one or between multiple hier-
archy levels with respect to properties like size and pivoted values. Particularly the difference
between hierarchy levels is important information, which is not adequately represented by
existing visualization techniques. Therefore, this chapter introduced Hierarchical Difference
Scatterplots (HDS) as an interactive approach to analyze multiple hierarchy levels in the con-
text of each other and to emphasize differences between them. Visualizing both the topology
and two pivoted values per node, HDS display much information at a time. For many tasks,
this means an added value as compared to alternative approaches. For example, analyzing
differences between hierarchy levels using non-hierarchical scatterplots requires the user to
look at multiple views (i.e., positions of the screen) in a successive manner. HDS display the
difference between categories explicitly within one visualization, which makes comparisons
more intuitive and more precise.

A key idea of HDS is to allow for incrementally and selectively increasing the amount of
detail using local drill-down. This combines the visual scalability of overview summaries with
the necessary degree of detail for selected parts of the data, ensuring that the proposed concept
of HDS is reasonably applicable to data cubes of any size. HDS employ several focus+context
approaches involving transparency, size, and distortion in order to ensure interpretability
also for a significant number of displayed nodes. As other tree-visualizations are superior
with respect to providing a pleasant layout of the entire topology or showing frequencies,
we discussed concepts of tightly coupling HDS to other tree visualizations. Moreover, we
discussed linking arbitrary other visualizations by user-defined queries to HDS. This allows
for analyzing properties of ad hoc categories, it reveals trends through animations when
changing queries, and it may also be used to highlight particular nodes. We described an
evaluation of our approach by analyzing a large survey, which revealed numerous interesting
and non-trivial aspects within a short time.

89

CHAPTER 5. HIERARCHICAL DIFFERENCE SCATTERPLOTS

90

Chapter 6

Quantifying and Comparing
Features in High-Dimensional
Datasets

Various technologies address the highly non-trivial issue of extracting useful information from
potentially huge datasets in different ways. Statistics have been used for long in order to
provide summarized data characteristics. Basic statistical moments like mean, variance or
correlation are very common and can be computed extremely fast even for millions of values
on today’s computers. However, statistics as such – and also most statistics-based techniques
in the fields of machine learning – are quite static approaches as they hardly involve the user
and typically yield a result without additional context information.

Information visualization follows a user-centric approach which is particularly suitable for
exploratory analysis (see chapter 1). However, visual results are often only qualitative and
thus not fully sufficient for many tasks. Additionally, to deterministically parameterize visu-
alizations is a challenge itself when it comes to exploring high-dimensional datasets. Selecting
a small number of dimensions to be displayed in low-dimensional projections like scatterplots
may become a difficult task without a-priori knowledge or dedicated support.

The Rank-by-Feature framework by Seo and Shneiderman [222] is an example of a success-
ful combination of statistics and information visualization. It addresses the issue of conveying
a quick overview about all dimensions at an early stage of the analysis. However, its limitation
to global features – statistical measurements are only computed with respect to the entire
dataset – clearly restricts its continued application at later stages of the analysis, e.g., after
identifying clusters or separating trends from outliers, where the user might be interested in
properties of selected data subsets.

The main contribution of this chapter is an approach for characterizing and comparing ar-
bitrary subsets by combining the precise information of well-known statistical moments with
the expressiveness of visualization. Pursuing the concept of Seo and Shneiderman [222, 223],
the statistics can be used for ranking small preview visualizations. Color enables a quick
assessment of differences between dimensions or subsets and numerical values precisely char-
acterize the respective data. We propose a 1D approach for univariate moments of individual
dimensions and a 2D approach for bivariate moments of pairs of dimensions.

91

CHAPTER 6. QUANTIFYING AND COMPARING FEATURES IN
HIGH-DIMENSIONAL DATASETS

6.1 Related Work

The related work comprises approaches which perform a statistical analysis of user-defined
subsets of the data, as well as approaches for supporting a high-dimensional data analysis in
general.

Mathematically Describing Brushed Subsets – The interaction metaphor of brushing
has established itself as proven standard approach to the identification of selected data subsets
of interest (see section 2.4.1). Some approaches also perform a statistical analysis of the
selected subset of the data in order to organize interesting queries [280] or to guide the user
to similar parts of the data [102, 83]. However, while the intention of these approaches is to
detect other potentially interesting parts of the data based on the description, our approach
provides statistical summaries themselves to the user and ranks dimensions accordingly.

High-Dimensional Data Analysis – As surveyed in section 2.3, a variety of approaches
addresses the non-trivial question how to explore truly high-dimensional datasets. Methods
which are based on linear combinations of dimensions to project high-dimensional data to low-
dimensional space are typically hard to interpret (e.g., Principal Component Analysis [138] or
Projection Pursuit [79]). Other approaches visually represent the space of dimensions itself [7,
281], but they typically neither consider user-defined local features nor do they provide any
numerical details as the work presented in this chapter. The same shortcomings apply to
most approaches which rely on ordering dimensions with respect to certain metrics [283, 282,
201, 136]. Methods assessing potential projections by different user-dependent notions of
interestingness [278, 230, 244] speed up the identification of interesting plots but typically
require high abstraction skills from the user.

Most related to our approach, the Rank-by-Feature Framework [222] is designed to meet
the Graphics, Ranking and Interaction for Discovery (GRID) principles: a) ”study 1D, study
2D, then find features”; and b) ”ranking guides insight, statistics confirm”. The user may
choose between several statistics displayed in a linked table for ranking preview visualizations
of the dimensions. While this approach has proven suitable as an initial guidance to potentially
interesting dimensions [223], it is of limited use when it comes to the focused analysis of
selected data subsets of interest.

6.2 Quantifying Brushed Data Features

We now present our approach to visualizing, quantifying and comparing data subsets in the
context of large numbers of dimensions.

6.2.1 The General Approach

Our approach distinguishes the subsets as defined by user queries (and also the whole dataset
as a ”special” subset) and restricts all statistical computations to the according and valid
entries of the data. It considers an arbitrary number of dimensions, as selected by the user. All
results are automatically updated whenever a query and thus the underlying subset changes
(e.g., when the user brushes a linked view), hence providing full linking to all other views.
The basic setup consists of three coordinated parts which support different tasks.

92

6.2. QUANTIFYING BRUSHED DATA FEATURES

(a) (b) (c)

Figure 6.1: The 1D case showing word and character counts for spam classification of e-mails.
(a) The Visual Overview displays mini-histograms, box plots, and color-codes the dimensions
according to the current ranking criterion ”Skewness”. (b) The Ranked Statistics list the
results of a user-defined set of statistical moments for each dimension. (c) The Dimension-
Based Details provide a larger histogram, whisker plots for each layer, and the results of the
statistical moments with respect to the active dimension for the whole dataset and each query.

The Visual Overview (Fig. 6.1a and 6.2a) displays small visualizations with little detail in
order to provide an overview of all considered (pairs of) dimensions. Despite their small size, it
has proven useful that also these mini-views highlight the subsets as defined by the user. The
user may either manually arrange the dimensions or may automatically sort them according
to the ”active” statistical moment, defined by the Ranked Statistics (see below). If the results
are comparable across all dimensions (i.e., if the range of that moment is independent of the
scaling of the data), the user may visualize the differences by mapping the results to color. The
according transfer function is scaled between the smallest and largest result of the respective
statistical moment, unless a ”natural” range exists (e.g. -1 to +1 for correlation coefficients).

Ranked Statistics (Fig. 6.1b and 6.2b) are structured as table with (pairs of) dimensions
as rows and the respective moments as columns. It shows the results, which are optionally
computed for the whole dataset or for the subset defined by a query and is thus suitable for
simultaneously quantifying one query with respect to multiple dimensions. The rows can be
ordered by any column, denoting the respective moment as ”active” which also determines
the order and color-coding of the Visual Overview. If applicable, each column is color-coded
in order to improve the comparability.

Dimension-Based Details (Fig. 6.1c and 6.2c) refer to a single (pair of) dimension(s),
which is selected in any of the other parts. The purpose is twofold: First, this part provides
a larger visualization with more detail. Second, it displays a table similar to the Ranked
Statistics with columns being the selected statistical moments. The difference is that the
rows represent the results for subsets defined by the various queries (plus one row referring
to the whole dataset) for the active (pair of) dimension(s), allowing for direct comparisons of

93

CHAPTER 6. QUANTIFYING AND COMPARING FEATURES IN
HIGH-DIMENSIONAL DATASETS

the characteristics for all queries.

6.2.2 1D Framework

We now explain how this general approach can be applied to analyze individual dimensions
(1D case) and/or pairs of dimensions (2D case). The intention of the 1D case (see Fig. 6.1) is
to look at the dimensions individually and the offered statistics are therefore univariate. The
following set of different statistical moments allows to adapt the analysis to the user task and
to the respective properties of the data:

• Minimum and maximum.

• Mean and median.

• Quartiles (1st and 3rd) and standard deviation.

• Trimmed mean and trimmed standard deviation for robust statistics: omits the smallest
and largest 10% of the values.

• Skewness, kurtosis and normality: describe and quantify the deviation from normal
distribution.

• Entropy: rises with increasing uniformity of the data distribution.

• Number of unique values.

• Value of the biggest gap.

• Percentage of missing entries.

The related visualization approach employs well-known histograms and box plots [171] to
show the distribution of each dimension. The Visual Overview (Fig. 6.1a) consists of a list of
dimensions, where each row contains a small box plot drawn above a histogram, which also
highlights all subsets as defined by queries. In order to support multiple queries, which are
not necessarily disjunctive, the results of the queries are drawn on top of each other with the
”active” subset drawn in front. Furthermore, an attempt is made to determine whether the Y-
axis of the histograms should better be scaled linearly or logarithmically in order to guarantee
meaningful visualizations, also for distributions where the majority of values lies in a very
narrow range – of course, the user may manually override this setting. The Dimension-Based
Statistics display a large histogram and a box plot for each query (Fig. 6.1c).

6.2.3 2D Framework

Apart from analyzing dimensions separately, users are typically interested in relationships
between multiple dimensions. This is true on a global scale (e.g., identifying groups of similar
dimensions) and also applies to local features like individual clusters. In order to support
such tasks, the 2D framework (see Fig. 6.2) allows for exploring all combinations of assigned
dimensions. Therefore, the investigated items are pairs of dimensions. Concerning the han-
dling of missing data, this implies that only entries are considered valid if they are present in
both respective dimensions. Due to the symmetry of all employed techniques, it turned out

94

6.2. QUANTIFYING BRUSHED DATA FEATURES

(a) (b) (c)

Figure 6.2: The 2D case comparing pairs of word and character counts for the spam classifica-
tion dataset. (a) The Visual Overview shows a part of the scatterplot matrix, the background
color-coded by the percentage of missing entries and the pair of the word counts of ”you”
and ”all” currently highlighted. (b) The Ranked Statistics list the results of the bivariate
statistical moments for each pair of dimension, with ”Missing (%)” being the current ranking
criterion. (c) The Dimension-Based Details show a larger scatterplot and compare the results
with respect to the active pair for the whole dataset and each query.

to be sufficient and fosters the overview to maintain only one pair per combination (i.e., for
two dimensions X and Y, either (X, Y) or (Y, X)) and to omit all pairs of any dimension
with itself.

Any symmetric bivariate statistical moments are suitable for the 2D approach. The cur-
rently available moments comprise Pearson’s correlation coefficient and Spearman’s rank cor-
relation coefficient [185] (plus the percentage of entries considered as missing). While the
first one is appropriate for describing linear relationships, the latter provides more robustness
and the ability to detect also non-linear dependencies at slightly higher computational costs.
Both coefficients range from -1 to +1 independent of the scaling of the data and are thus
suitable for coloring.

Relationships between two dimensions are usually visualized with 2D scatterplots, which
are also used in our case. While the Dimension-Based Details display a scatterplot with higher
resolution showing more details of a selected pair (Fig. 6.2c), the Visual Overview arranges
the potentially large number of plots as a scatterplot matrix (Fig. 6.2a). Due to exploiting
symmetry as explained above, a single plot is drawn for each pair, which reduces the matrix
to a triangle and leaves space for printing the names of the dimensions. If the extents of the
matrix exceed the available space, it is scaled down to a certain minimal size, before scrollbars
are shown. However, the plot beneath the mouse cursor is always zoomed smoothly to its
original size. The exact layout is based on a linear order of the dimensions (like in the 1D
case). The user can specify this order manually or adopt the order of the Ranked Statistics.

Unlike the 1D case, automatically obtaining an order from ranking dimension pairs is not
straightforward and ambiguous. After evaluating several strategies, we employ the following
algorithm for this task: First, those two dimensions are selected of which the pair achieves

95

CHAPTER 6. QUANTIFYING AND COMPARING FEATURES IN
HIGH-DIMENSIONAL DATASETS

the highest ranking, which specifies the topmost plot. Afterwards, the algorithm selects the
dimension, which produces a row of the matrix including the pair with any already assigned
dimension, which has the highest ranking. This latter step is repeated until all dimensions
have been assigned, thus constructing the matrix line by line. The benefit of automatically
ordering the matrix is that similar dimensions tend to be placed close to each other, indicating
groups of dimensions more directly.

6.2.4 Further Aspects of Our Approach

The approach described in this chapter has been realized in the context of the system Visplore
as briefly described in section 5.3. A key aspect of Visplore with regards to local features is the
support of multiple queries, which are defined by composite brushing in various linked views.
Both the 1D and 2D framework introduced in this chapter implement the multi-threaded
architecture as described in chapter 3 to support datasets with millions of entries. Visplore
explicitly allows for denoting single values as missing, which are expected to be omitted for
all visualizations and computations.

6.3 Demonstration

This section briefly illustrates a potential workflow with our approach by analyzing a dataset
that has been used for classifying e-mails as spam or no spam. The dataset is based on 4601
e-mails. It contains the relative frequencies of certain words and characters in the respective
message and whether it is regarded as spam, summing up to 57 dimensions. It has been
obtained from the UCI Machine Learning Repository [9] and originates from the Hewlett-
Packard Labs, where employees collected and classified e-mails in order to build a personalized
spam-filter. The goal of this case study is to show that our framework supports the task of
assessing words and joint occurrences of words with respect to the relevance regarding spam
classification. Note that counts of zero are treated as missing values.

As first step of the analysis after importing the dataset, two queries are created in order
to select all e-mails, which are classified as spam (red) and no spam (green), respectively.
This is accomplished by interactively brushing a linked view for visualizing such categorical
dimensions (see Fig. 6.3).

As the next step, all dimensions related to counts of words and characters are assigned
to the 1D case (see Fig. 6.1). The histograms show that most dimensions are distinctly
exponentially distributed, i.e., most counts have many small and very few large numbers of
occurrences. Therefore, the Y-axes of most histograms are logarithmically scaled in order
to make also small occurrences visible. Moreover, many dimensions have a lot of missing

Figure 6.3: Brushing mails classified as spam (red) and no spam (green) in a linked view for
visualizing categorical data.

96

6.4. CONCLUSIONS AND FUTURE WORK

values, which means that these words do not occur at all in many messages. When looking
at the histograms, the distinctive coloring of spam and no spam messages reveals that the
distribution per subset is quite different for individual words and characters: Some clearly
occur more often in one class while for others, the distribution is more or less equal. Ranking
the Visual Overview by the average number of occurrences of spam mails provides a very
approximate ordering with respect to the likelihood to indicate spam. Picking one word
(”re”) as an example of a dimension, where the overview suggests good indication properties,
the Dimension-Based Details (see Fig. 6.1c) confirm this assumption (e.g., by different box
plots and mean values). However, due to the high degree of missing values, it is obvious that
single words and characters will not be sufficient for a good classification.

Therefore, joint occurrences are analyzed in the 2D case, where words with promising
indication properties are assigned to (see Fig. 6.2). Because some words occur together only
rarely, the percentage of missing data is mapped to color in order to indicate the significance
for each combination. As an example of a comparatively frequent pair (see Fig. 6.2a), in-
specting the combination of the words ”you” and ”all” in more detail (see Fig. 6.2c) shows
that this pair is missing in 78% of the messages not considered as spam, but only in 40%
of the spam messages. In other words, this dataset suggests that encountering both words
in one e-mail significantly increases the likelihood for being spam, though it is of course no
proof on its own - for this, more pairs would need to be considered together. Furthermore,
the Dimension-Based Details also show that the number of occurrences for ”you” and ”all”
are much more correlated for e-mails being no spam (with ∼ 47% according to Pearson and
∼ 56% according to Spearman). However, probably most interestingly, the scatterplot shows
some very distinct ”needles”, where several messages obviously have perfectly linearly corre-
lated counts of these two words. Such structures are impossible to explain without further
knowledge about the e-mails and raise questions regarding the quality and authenticity of the
data. If this can be justified, these features suggest the existence of multiple classes of mails,
which could be the starting point of a more in-depth analysis.

6.4 Conclusions and Future Work

In this chapter, we have introduced an approach for quantifying and comparing multiple
subsets of a dataset by computing and ranking univariate as well as bivariate statistical
moments with respect to an arbitrary number of dimensions. The subsets are defined by
interactive brushing in linked views. The 1D case supports analyzing multiple dimensions
separately, while the 2D case reveals relationships between dimensions. Like the Rank-by-
Feature Framework by Seo and Shneiderman [222], our approach is well suited for conveying
a quick overview about global properties of the dimensions at an early stage of analysis. How-
ever, the aspect of linking the approach to other views significantly extends its applicability
also to later stages of analysis – e.g., computing statistics after deselecting identified outliers,
characterizing detected clusters, or comparing various categories to each other. It turned out
that using well-known statistics leads to faster understanding and acceptance of the approach
for domain experts, and extending the set of offered statistics is easily possible.

Concerning scalability, the most important goal of our approach is to facilitate an analysis
of high-dimensional data. However, there is a certain practical limit concerning the number
of simultaneously shown dimensions. Due to the quadratic increase of dimension pairs, this
limit is significantly lower in the 2D case. Our experience shows that approximately 35 to

97

CHAPTER 6. QUANTIFYING AND COMPARING FEATURES IN
HIGH-DIMENSIONAL DATASETS

40 dimensions can reasonably be handled in the 2D case, while the 1D case also works well
for a few hundred dimensions. With regards to the number of data items, the scalability is
mainly limited by the effort to compute the offered statistics as well as by the limited visual
scalability of the preview visualizations. The involved computations are fast even for millions
of data entries and the histograms employed by the 1D case also scale very well due to binning
the data. However, as most scatterplots, the preview visualizations in the 2D case suffer from
overplotting already for a few million data items (see chapter 4).

We see at least two directions for potential future work. First, more work would be
helpful on how to automatically extract and quantify the characteristics and even semantics
of brushes. Second, exploring really high-dimensional datasets with several hundreds or even
thousands of dimensions is still a big challenge. As our approach also generates tables with
(pairs of) dimensions as rows, applying well-known visualization techniques for multivariate
data like parallel coordinates to such tables could be an interesting start.

98

Chapter 7

Interactive Visual Validation of
Regression Models

Strict emission rules and steadily increasing demands on performance force car manufacturers
to constantly improve the design of powertrain systems [24]. Different types of numerical
simulations have thus become a key technology to analyze complex systems like engines.
Especially in early stages of the design process, 1D Computational Fluid Dynamics (CFD)
simulations are widely used. Compared to very time consuming 3D CFD simulations, 1D
CFD simulations are magnitudes faster and produce much less data. This enables to study the
design space by running thousands of simulation runs for different locations of the parameter
space. Matkovic et al. [174] describe how interactive visualization can support the analysis of
such data.

Some tasks, however, require mathematical models that can make predictions in real-time.
When testing strategies for Engine Control Units (ECUs), for example, their behavior is ana-
lyzed during a simulated drive, which requires simulating the physical behavior. As even 1D
CFD simulations are far too slow for such real-time tasks, manufacturers use surrogate models
instead which are based on statistical regression rather than on physical equations [114].

The identification of surrogate models requires known results at sampled positions of an
input parameter space for training and validation. These results come from measurements or
from 1D CFD simulations. A particular model is trained to predict one result (e.g., torque)
given values for particular attributes (e.g., speed and load). While the process of training a
model requires no interaction, most types of regression models have numerous parameters
(e.g., kernel type and tolerance values for support vector regression [106]) that must be
set before. The complex interplay between these parameters makes finding good training
parameters a challenging task. Different models may also perform best for different subsets
of input attributes. Sometimes, implausible data must be filtered before the training.

Before making critical decisions based on the predictions of a surrogate model, it is there-
fore very important to validate its quality and to possibly improve it in further iterations.
This validation involves comparing known results to predictions by the model [217]. Besides
looking at criteria that can be derived automatically (e.g., the maximal residual), it is essen-
tial for application experts to get a feeling for the model itself and to be able to analyze its
behavior also for regions not covered by training data. For these reasons, a fully automatic
workflow for model validation is insufficient. Instead, it must be complemented by an inter-
active visual approach to increase the confidence in the overall process based on the domain

99

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

knowledge of the engineers.
Based on interviews with application experts and observations of their workflow, we de-

rived the subsequent set of design goals for an interactive visual approach for the validation
of surrogate models:

• Relate known results to predictions of models.

• Support a quick identification of deviating regions.

• Convey a feeling of the behavior of a model around any point in space.

• Allow a comparison of multiple models.

• Scale to models with a large number of input parameters.

• Be highly interactive without perceivable delays.

• Be tightly integrated into the workflow of model identification by restricting the analysis
to an arbitrary subset of validation data and to update the visualization immediately
at modifications of the model.

Although the application background of this chapter is the development of powertrain systems,
the identification and the validation of regression models is of general importance in many
application domains [234]. The problem can be formulated as assessing the suitability of
a multi-dimensional scalar function y = f(X) to approximate known values of y at a set of
different points for X, where y is a scalar value (called the dependent variable) and X is a point
in n-dimensional space (referred to as independent variables). While combined visualizations
of the function graph and known results are very common in statistics for one-dimensional
regression models, a detailed analysis of higher dimensional models is challenging. The issue
of scalability with respect to the involved dimensionality thus plays an important role for our
task.

The contributions of this chapter are as follows:

• A design study of HyperMoVal, an interactive visualization technique for validating
regression models based on a combined visualization of n-dimensional functions and
known validation data.

• A tight integration of HyperMoVal within an interactive workflow for iterative identifi-
cation and validation of regression models involving multiple linked views.

• An evaluation of the proposed techniques within the application context of engine design
based on a case study of an exemplary workflow and the report of user feedback.

7.1 Related Work

Numerous visualization techniques address the important issue how to visualize multivari-
ate data [96]. Most of these techniques operate on generic n-tuples, for example parallel
coordinates [127] and scatterplot matrices [43].

Besides such general purpose techniques, various approaches have been proposed to visu-
alize multi-dimensional scalar functions y = f(x1, x2, ..., xn). A direct visualization is trivial

100

7.2. INTERACTIVE MODEL VALIDATION

for n = 1 using line graphs and n = 2 using surface plots. The case n = 3 is typically ad-
dressed using volume rendering and isosurfacing. However, larger values of n are challenging.
Most visualization approaches thus reduce the number of parameters to 1, 2, or 3 per plot by
assuming specific values for the rest. These values can typically be changed by animation or
by interaction.

Worlds within Worlds [69], for example, uses a hierarchy of nested coordinate systems.
At each level of the hierarchy, the origin of the coordinate system specifies up to three pa-
rameters for all further levels until the number of independent variables is reduced to support
a direct visualization of the function. A related approach by Mihalisin et al. [182] nests
axes hierarchically to plot function values against all combinations of a sampled subset of
the parameter space. Jayaraman and North propose a focus+context visualization of multi-
dimensional functions [131] based on a radial layout of slices. Each slice shows the behavior
of the function as sampled along rays emanating from a focal point into a certain direction
for one independent variable.

HyperSlice by van Wijk and van Liere [261] shows all 2D orthogonal slices of a function
around an n-dimensional focal point. Each slice represents the function by varying two pa-
rameters while assuming the values of the focal point for the rest. This is done for all pairs of
variables and the resulting plots are arranged using a matrix layout. Dos Santos and Brodlie
extended the idea of HyperSlice to three dimensions to what they call HyperCell [57]. Instead
of using a fixed matrix layout, they provide a graph interface that supports the creation of
1-, 2-, or 3-dimensional plots (called cells) and they support multiple focal points. Recently,
Nouanesengsy et al. [193] proposed an approach to analyze multi-dimensional scalar functions
based on projecting line segments into 2D plots. The key idea is to plot the distance of each
line segment from user-defined points against the respective function values.

All of these techniques are useful for understanding certain aspects of multi-dimensional
scalar functions, and particularly HyperSlice served as an important and widely accepted
starting point for our work. However, the goal of these approaches is to visualize a function
as such, not to validate it as an approximation model by means of known data. As motivated
above, a validation requires a direct comparison of the approximation model to results from
measurements or physically-based simulations [217].

Moreover, the identification of regression models based on techniques from machine learn-
ing is typically an iterative process [19]. Each iteration involves parameter definition, training,
and validation. Supporting this entire workflow is an important topic which goes far beyond
the mere visualization of functions. Recent work shows significant progress towards support-
ing the process of model building using interactive visualization, but this work is restricted
to particular models like clusters [188] or linear trends [98]. There is no approach to support
the identification and validation of general regression models according to the design goals
listed above.

7.2 Interactive Model Validation

This section introduces HyperMoVal as our approach to an interactive visual validation of
surrogate models. We first describe the combined visual encoding of model and validation
data before discussing the supported interaction techniques.

101

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

Independent variables

Dependent variable
(active dimension)

PP

SP

Parity Plot

PP PP PP

SP SP

SP SP

SP
PP .. Parameter Plot
SP .. Surface Plot

Focal Point

Function Graph
at Focal Point

Validation Data

Variation Graphs

Variation

Deviation

Deviation

Figure 7.1: The layout of HyperMoVal for a real model predicting torque given four param-
eters. The focal point F is set to a validation data point with a significant deviation. The
matrix contains all paraxial 2D slices at F in the 5D model space.

7.2.1 Visual Encoding

The key idea of our approach is to provide a combined visualization of a regression model
and known validation data in order to assess the match between both. The model is an
analytically given scalar function with n independent variables and the validation data is
given as an arbitrary number of n+1-tuples, i.e., a value for each parameter of the function
and one for the result. In order to visualize such potentially high-dimensional data, we
layout multiple projections to low-dimensional space as paraxial slices in a similar way as
HyperSlice [261]. This approach treats all dimensions equally and supports the creation of
plots which are familiar to engineers. An implication is to maintain a focal point F as n+1-
tuple, which defines values Fi, i ∈ {1..n + 1} for all dimensions not shown by a particular
plot. F may take any position inside an n+1-dimensional hyperrectangle S representing the
space considered for visualization. S is defined as the Cartesian product of intervals defined
for each of the n+1 dimensions. S is initially set to contain all values of the validation data,
but its extents can be modified by the user (see section 7.2.2).

Each pair of dimensions defines one plot (see Fig. 7.1). The result dimension of the
function specifies the y-axis of the bottom row of the matrix. These plots (called parameter
plots) thus display the explicit function graph for all independent parameters. All other plots
(called surface plots) show pairs of independent variables, where the function is represented
as contour at the iso-value specified by F . Only the lower triangle of the matrix is displayed
for performance reasons and to gain free space for other purposes.

In addition to the function graphs of the model, each plot also displays projections of the
validation data as points. In order to support a quick identification of badly approximated

102

7.2. INTERACTIVE MODEL VALIDATION

t

t

t tSlice at focal point

Figure 7.2: The region around two slices in which points are considered relevant for the
respective plot. The color intensity depends on the distance to the slice.

regions, the size of each point reflects its absolute residual to the prediction by the model at
the particular position in parameter space. Large points indicate regions with a significant
deviation whereas small points suggest a good match. Although the precision conveyed by
size is lower than for other visual attributes, it is sufficient for the purpose of assessing the
prediction quality.

7.2.1.1 Task-Specific Point Relevance

As each plot is a slice through the visualization space S at F , it is important to consider
which points should be displayed by a plot. A precise assessment of the fit by a model is only
possible for validation points on that slice. One approach could thus hide all other points.
In this case, at most one point will typically be visible. An important exception, though,
is validation data which is structured as – possibly unequally spaced – n-dimensional grid.
This is a common case in the design of experiments (e.g., full-factorial designs). Provided
that F is set to a point of the grid, parameter plots then show all points in the same line
in the respective dimension. 2D surface plots, however, require a precise match in the result
dimension and typically display F only (this is different for 3D plots as discussed below).

In general, it is often reasonable to additionally display points close to (but not on) the
slice of a plot, e.g., to provide context information for navigation. It may even be necessary
to show all points in order to assess the coverage of the parameter space by validation data
like in a normal scatterplot matrix. For this reason, HyperMoVal supports a task-specific
definition of what is considered a relevant range around each slice (see Fig. 7.2). Formally, let
P denote a point inside the n+1-dimensional hyperrectangle S and let V be a 2D visualization
of the dimensions xj and xk, then the relevance r of P with respect to V is defined as

rV (P) = 1 − Maxi∈{1..n\xj ,xk}
(|Pi−Fi|

|Si|
)

where Si denotes the length of S in the i-th dimension. After computing rV (P), a linear
mapping determines the saturation with which P is drawn. This mapping is controlled by a
threshold t with 0 ≤ t < 1 so that rV (P) ≤ t means white (i.e., the background color) and

103

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

Pressure at Intake = 30000 Pa Pressure at Intake = 60000 Pa Pressure at Intake = 90000 Pa

Figure 7.3: Altering F in one dimension changes the function graph and the relevance of
data points for all plots not displayed in that dimension. Continuous modifications make the
points fade in and out smoothly around the graph.

t = 0.9 t = 0.6 t = 0.0

Figure 7.4: Altering the relevance threshold t changes the shown subset of data points around
the visualized slice.

1 means maximal saturation. The transition conveys the distance to the slice and generates
a smooth fading effect when changing F , as illustrated by Fig. 7.3. Modifying t enables to
define relevance depending on the task (see Fig. 7.4): values close to (or at) 1 show only a
narrow range around the slice to precisely support a visual assessment of the fit. For values
close to 0, our approach resembles a normal scatterplot matrix.

7.2.1.2 Sensitivity Analysis

Another important task is to analyze the sensitivity of the surrogate model with respect to
changes in single dimensions. To support this task, one dimension can be set active at a
time, which has two effects: 1) each plot displays a family of function graphs (called variation
graphs) for a user-defined number of equally sized steps along the displayed range of the active
dimension; 2) the active dimension determines the hue of validation data points and variation
graphs via a transfer function. By default, we use a transition from blue to red. This ensures
a good luminance contrast to the white background and it is perceptually distinct from the
modulation of saturation by point relevance. Users may also choose other transfer functions.

104

7.2. INTERACTIVE MODEL VALIDATION

Figure 7.5: Varying the parameter ”Engine Speed” generates a family of iso-contours and
explicit function graphs.

Coupling variation and coloring has proven beneficial with respect to usability. The main
reason is that grid lines of plots showing the active dimension define meaningful steps for
variation graphs and may also be used as legend for the color coding. The most frequent –
and default – case is to set the result dimension active, which generates multiple iso-contours
of the same surface in each surface plot (as in Fig. 7.1). Setting a function parameter as
active dimension generates multiple explicit graphs in all other parameter plots. It also shows
contours at the same iso-value for multiple surfaces in each surface plot that does not display
the active dimension (Fig. 7.5). Mapping the active dimension to hue emphasizes relations
between points and graphs with respect to this dimension. It also reveals deviations when
points are afar from graphs despite having the same hue.

7.2.1.3 3D Visualization

While all plots are described as 2D so far, surface plots optionally provide a 3D visualization
as well. In this case, the result dimension of the model is mapped to height (see Fig. 7.6).
The validation data is shown as a 3D scatterplot of points which are scaled and colored as
described for the 2D case. The computation of relevance excludes the result dimension in
order to display points around the entire surface. Being less restrictive, more data points are
thus shown in 3D than in 2D. The function of the surrogate model is represented in multiple
ways: iso-contours are generated for F and all variation graphs of the active dimension as
line strips similar to the 2D case, except that each contour is located at the height of the
respective iso-value.

In addition, the surface of the surrogate model for F is either shown as wireframe or

105

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

Figure 7.6: 2D and 3D visualizations of the same surface plots. Due to the additional visual
dimension, the set of relevant points is typically larger in 3D.

as shaded, opaque surface. While the wireframe representation avoids problems caused by
occlusion and thus keeps all validation points visible, opaque surfaces convey a better 3D
impression at the cost of occluding points either above or beneath the surface – depending on
the viewing position. When switching between 2D and 3D, a smooth transition of the view
point avoids change blindness in a similar way as described by Elmqvist et al. [65]. The main
reason for integrating a 3D visualization is the great popularity of this representation with
engineers in our target domain. Initial observations have shown that 3D plots are particularly
used for assessing models with few parameters and for checking physical relationships between
parameters. 2D surface plots are rather used for studying abstract relationships for high-
dimensional models.

7.2.1.4 Parity Plot

Differences between predicted and known results are also shown in a separate scatterplot (see
Fig. 7.1). This plot maps known results to the X-axis and predicted results to the Y-axis
for each point of the validation data. Such plots are called parity plots and are common in
many fields of science and engineering. A straight line at the main diagonal indicates a good
match whereas deviations to either side convey the amount and the sign of residuals. The
thickness of the covered area around the main diagonal provides an overview of the overall
fit and outliers remain visible. Both types of information could also be conveyed differently

106

7.2. INTERACTIVE MODEL VALIDATION

Model 1 (solid graphs)

Model 2 (dashed graphs)

Figure 7.7: Comparison of two models predicting torque. The models are discriminated by
the line style (dashed and solid) and show a very different prediction quality at F . ”Intake-
Pressure” is a parameter of Model 2 only.

(as shown in later sections). The reasons for integrating parity plots are the equal scaling of
both axes and the popularity of this plot with experts in our target field of application.

7.2.1.5 Comparison of Multiple Models

Another design goal concerns the comparison of multiple regression models predicting the
same result dimension. The independent variables may be different, in which case our ap-
proach represents the union of the independent variables of all visualized models. Each plot
(except the parity plot) shows function graphs or iso-contours for each model that covers the
dimensions of both axes. Different line stippling is used to discriminate the graphs of multiple
models (see Fig. 7.7). Deviations, however, will in general be different for multiple models.
In order to avoid overloading the visualization, the point size thus refers to the residuals with
respect to one active model while disregarding all others. Analogously, the parity plot is only
shown for the active model and 3D surface plots show the – wireframe or opaque – surface of
the active model only. For these reasons, other models are rather context information when
assessing the match between the active model and the validation data. However, visualiz-
ing multiple models is particularly useful when comparing their behavior outside the space
covered by validation data (e.g., when assessing the plausibility of extrapolations).

7.2.2 Interaction

Interaction is an important aspect of HyperMoVal to support different tasks. Modifying the
focal point F enables to navigate the visualization space S. We discriminate local and global
modifications: local modifications affect a subset of the dimensions at a time. They involve
altering the value of a single dimension by dragging handles at the border of the matrix

107

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

or altering two dimensions by moving a crosshair representing F in any 2D plot. Global
modifications define values for all dimensions at once by setting F according to a particular
point. This is done by clicking on a visible validation point in any 2D plot including the
parity plot. It supports a quick navigation to points with a significant residual.

As another type of interaction, the extents of S can be modified individually for each
dimension. Similar to the Prosection matrix [258] and dynamic filtering [2], narrowing the
range of one dimension removes all validation points outside this range in all plots. Changing
the range also allows the user to analyze every part of the function in as much detail as
necessary or to scroll across function graphs. Extending ranges to contain space outside
the region covered by validation data is crucial in our context to assess the plausibility of
extrapolations by a model.

Further interactions which are not discussed in detail involve changes of the viewpoint
in 3D plots, altering the threshold t as discussed in section 7.2.1, and setting functions and
dimensions to be active. When validating models with many parameters, it is helpful to
temporarily hide certain independent parameters and thus gain more space for the rest.

7.3 Integrated Workflow for Model Identification

HyperMoVal as described in section 7.2 can be regarded a design study that is conceptually
independent of properties of a surrounding software system. A stand-alone implementation
of HyperMoVal already fulfils all design goals except the last as listed above.On the other
hand, it is not always practical for a single view to cover all potentially relevant tasks during
a complex workflow like model building. Fortunately, linking multiple views is agreed to be
a solution to this problem. This section therefore describes the integration of HyperMoVal
within a system of multiple linked views. We also discuss how to use different views to support
the entire workflow of model identification. It should be emphasized, however, that the focus
of this chapter is on model validation while many aspects related to model identification are
up to future work (see section 7.6).

Our integration is based on two concepts: 1) defining arbitrary subsets of validation data
in any view and 2) representing predicted results and residuals of a particular model as derived
data attributes. Besides HyperMoVal, the types of involved views may include most standard
visualizations for multivariate data, for example scatterplots and parallel coordinates. Their
purpose is to visualize the validation data and to support the definition of arbitrary sub-
sets thereof based on view-specific brushing techniques like rubberband- or lasso-selections.
HyperMoVal supports restricting the set of validation data points to any subset defined by
brushing other views. This enables to filter validation data that is implausible (e.g., incorrect
measurements) or undesirable due to design constraints. Unlike the filtering offered by Hy-
perMoVal, such selections may include dimensions which are not covered by any model and
they may be based on composite queries of arbitrary complexity [274].

As second concept, predicted results and residuals of a particular model are added as ad-
ditional data dimensions for each point of the validation data. Such derived data columns are
available for view parameterization like any attribute of the validation data itself. This offers
a variety of possibilities: for example, residuals of multiple models may be compared using
parallel coordinates (Fig. 7.8a). They may indicate the amount of deviation in a scatterplot
relating model parameters (Fig. 7.8b). Other views may provide statistics as quantitative
results, e.g., the maximal and the average prediction error of a model for a certain subset

108

7.3. INTEGRATED WORKFLOW FOR MODEL IDENTIFICATION

(a)

(b) (c)

Selected validation data
Model 1 Residuals Model 2 Residuals Model 3 Residuals Model 4 Residuals

M
od

el
 4

 R
es

id
ua

ls
TorqueEngine Speed

Lo
ad

 S
ig

na
l

Figure 7.8: Linked views of derived model attributes: (a) comparing the deviations of different
models by brushing large residuals; (b) mapping absolute deviations of one model to color
in a 2D representation of the parameter space; (c) plotting residuals (Y-axis) against known
results (X-axis).

of the validation data (see chapter 6). Derived columns may also be used as criterion for
selections as discussed above.

Validation is only a part of the overall workflow of model identification [217]. In our
application context, the first step is the definition of all information that is necessary for
training the model. This involves selecting dimensions as input parameters, specifying model
and training parameters, and choosing the training data itself. After the (automatic) training,
the model needs to be validated and potentially compared to other models as supported by
our approach. The goal of this validation is to determine whether a particular model is
appropriate, or whether further refinements are necessary. In the latter case, an additional
iteration starts by changing the set of input dimensions, modifying training parameters, and
performing another training [19].

Our approach to support this highly iterative process is based on integrating parameter
specification, training, and validation within a single tool. This has two benefits: 1) brushing
various views as discussed above can also be used to define the set of training data interactively,
e.g., to filter wrong results based on domain knowledge of the user. 2) changing a certain
model by executing a new training immediately updates the information related to this model
in all views. This includes function graphs in HyperMoVal, derived attributes like residuals in
all views, and it triggers a re-evaluation of selections which are based on derived attributes of
the model. The advantage of this tight integration is the speed at which different settings of

109

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

training parameters can be tried and compared to each other, which may reduce the necessary
time of the overall workflow significantly.

7.4 Implementation

HyperMoVal and the workflow described in section 7.3 have been implemented in Visplore,
a system for visual exploration, which offers different visualizations that can be linked by
ad-hoc selections and derived data columns (see section 5.3). All parts are written in C++
and use OpenGL for rendering.

HyperMoVal supports immediate visual feedback during continuous user interactions like
changing the focal point F . For this purpose, it implements the multi-threading architecture
as described in chapter 3. When drawing function graphs, a dedicated visualization thread
samples the model progressively. This provides an immediate preview while generating the
final image including variation graphs in each plot may take a few seconds on standard PCs
for models of more than two parameters. Each plot also layers the visualization in order to
prioritize the visualization of F and to cache and reuse visual results in image space.

Internally, models are objects which implement an interface that allows the integration
of any type of regression model. Currently, our implementation supports support vector
regression (SVR), and it uses the library LIBSVM [37] both for model evaluation and training.
The user interface for defining training parameters is a simple dialog.

7.5 Evaluation

To evaluate our approach on multiple levels [187], this section first describes an application
scenario to illustrate a typical workflow in car engine design. We then report general feed-
back collected by interviewing application experts of the target domain. This evaluation has
been done in collaboration with three experts in the field of engine design, whose educational
background is in mechanical engineering and industrial mathematics. As employees of AVL
List GmbH, a company providing hardware and software for the development of powertrain
systems, their responsibility is partly customer support and training, and partly the devel-
opment of the simulation core. All of them are experienced users of our approach who have
been testing, using, and training it for months.

7.5.1 Application Scenario

The goal of the scenario is to identify a surrogate model predicting torque based on the
results of 400 simulation runs of a real-world car engine. This example uses the same data
for training and validation. Knowing that torque is primarily a function of engine speed and
load signal, the first step is to check whether a 2D model on these attributes already provides
sufficient accuracy. Statistical summaries (first row of Fig. 7.9e), however, indicate a large
mean deviation and a substantial maximal error. An analysis in HyperMoVal (Fig. 7.9a)
reveals an outlier in the data. The engineer explains this point as non-converged simulation
run and decides to exclude it from further steps. Besides the outlier, large points in regions
near steep changes in torque generally reveal the model as insufficiently accurate.

In the next iteration, the engineer decides to increase the complexity of the model by
adding the pressure at the intake manifold (p0IM) as third parameter which is known to

110

7.5. EVALUATION

(a) (b) (c)

(d)

(e)

(f)

Load_SignalEn_Speed

En
To

rq
ue

Lo
ad

_S
ig

na
l

EnTorque

To
rq

ue
2

Pr
ed

ic
tio

ns

Non-converged
simulation run

Significant residuals

Insufficient approximation

To
rq

ue
3b

 P
re

di
ct

io
ns

En
To

rq
ue

Lo
ad

_S
ig

na
l

En_Speed

EnTorque

p0IM

EnTorque

THIM

EnFuelFlow

EnSpeed

EGRMassFlow

p0EM

Load_Si

Lo
ad

_S
ig

na
l

En_Speed

|Torque4a Residuals|

|T
or

qu
e4

b
Re

si
du

al
s|

(g)

Decreasing torque for increasing load signal

Different sensitivity to changes in load signal

En_Speed Load_Signal

En
To

rq
ue

Figure 7.9: An exemplary workflow for model building. (a) Assessing a 2D model also reveals
implausible validation data; (b + c) a 3D model still does not sufficiently cover a jump in
torque for low values of speed; (d) ranking potential input parameters by means of correlation
to the result; (e) quantifying multiple models with respect to their residuals (in Nm); (f)
comparing residuals for two model candidates; (g) comparing the candidates with respect to
the plausibility of extrapolations.

impact torque. While this new model turns out to be much better, statistics still show a
considerable maximal deviation (second row of Fig. 7.9e). Brushing absolute residuals larger
than 5 Newton meters (Nm) in a histogram (Fig. 7.9b) reveals that the main problem is a
jump in torque at low values for both speed and load. As this insight still does not explain,
why the match is bad in this region, the engineer uses HyperMoVal to analyze the local model
behavior in detail (Fig. 7.9c). This shows that the gradient of the model is not sufficient to
approximate the sudden jump in torque. A potential explanation is that p0IM does not
contribute information for this region since the values for p0IM are very similar as shown by
the bottom right plot of Fig. 7.9c.

The engineer decides to add one more dimension as model parameter. Since there are
multiple physically meaningful candidates, ranking them by the amount of correlation to
torque facilitates the selection (Fig. 7.9d). For this purpose, the engineer brushes the valida-
tion points in the mismatching region; he then opens a scatterplot matrix that is ranked and
colored by the correlation of the selected points to torque as described in chapter 6. Having
correlation coefficients close to 1, the temperature at the intake manifold (THIM) and fuel
mass flow (EnFuelFlow) turn out to be equally suitable candidates.

111

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

In order to try both variants, the engineer creates two further models: The model
”Torque4a” has THIM as fourth parameter while ”Torque4b” depends on EnFuelFlow. The
statistical quantification shows that both models are better than the previous ones in par-
ticular with respect to the maximal error which can now be considered sufficiently small
(Fig. 7.9e). Brushing residuals greater than 3 Nm for both models in a scatterplot shows an
error distribution that is slightly more clustered for model ”Torque4b” (green points) in a
linked view plotting speed against load signal (Fig. 7.9f).

As final step, the engineer uses HyperMoVal to compare the plausibility of both models
(Fig. 7.9g) outside the range covered by training data. He extends the displayed interval for
speed to 0 to 6000 rotations per minute. He also sets the focal point to the non-converged
simulation run to ensure that the models compensate for this error. Setting load signal as
active dimension generates variation graphs in steps of 10 percent. Despite their comparable
error statistics, the shapes of the function graphs differ significantly. Unlike ”Torque4a” (solid
graphs), the model ”Torque4b” (dashed graphs) turns out to be highly sensitive to changes in
load signal at high speeds, which is considered undesirable. Even worse, ”Torque4b” predicts
significant decreases in torque for increasing load signal at low speeds, which is implausible
regardless of the values of other model parameters (like pOIM). As a result, ”Torque4a” is
the better choice.

7.5.2 User Feedback

Based on their own experiences and on the feedback gained from customer training, the overall
feedback of our interviewees was very positive. Their former workflow for model identification
involved an in-house tool and standard software in engineering like Matlab [172]. Compared
to these software packages, our interviewees appreciated that HyperMoVal supports analyzing
particular questions and changing scenarios instantaneously, e.g., skimming through the model
behavior for different validation points. In their experience, standard software like Matlab
requires a setup-time of several minutes for writing and modifying some lines of code for
each step of an analysis, and they provide limited interactivity for their visualizations. As a
result, HyperMoVal and its integration with other views allows engineers to validate models
in detail on average one magnitude faster. As an application expert stated, ”the design [of
HyperMoVal] and the high interactivity encourage the analysis of reasons for mismatches.
It also facilitates comparisons between models which would otherwise have been omitted in
many cases due to the involved effort. Being able to validate a model in detail before usage
significantly increases the quality and the confidence in the entire process.”

An objection was that most engineers are still not used to the concept of interaction. While
the improvements in speed (e.g., when rotating a 3D surface) have been noticed immediately,
most users tend to map their old workflow to the new tool. This particularly applies to
the concept of linking different views as discussed in section 7.3, which may require several
days for familiarization. On the other hand, features which are common in other engineering
applications are also expected in new approaches and thus required to gain acceptance. For
HyperMoVal, this includes the support for 3D plots, parity plots, and the ability to change
the transfer function to a rainbow color map, which are still popular with engineers despite
their known flaws [26]. Perhaps the most challenging aspect of the design process was thus
to find a good balance between preserving familiar methods and introducing techniques that
are powerful yet unfamiliar to engineers (e.g., linked views). Nevertheless, our interviewees
confirmed that all features of HyperMoVal are useful for specific tasks as discussed in former

112

7.6. DISCUSSION AND FUTURE WORK

sections.
Our approach is distributed under the name IMPRESS xD as part of the software suite of

AVL List GmbH, a company providing tools for the development of powertrain systems. While
it is potentially available to several thousand users, the application of surrogate models is at
the beginning and reliable evidence about adoption rates is not yet available. First estimates
assume an application by 5 to 10 companies.

7.6 Discussion and Future Work

The validation of regression models comprises three levels of detail as reflected in the applica-
tion scenario of section 7.5.1: (1) Statistical summaries of the entire validation data provide
a coarse yet compact information about the global prediction quality. (2) Derived attributes
like residuals describe the quality as one value per data point. They enable the identifica-
tion of local characteristics like badly fitted regions, but are often insufficient to explain such
characteristics. (3) A combined visualization of validation data and function graphs of the
model provides most information for a certain point of the parameter space. The shape and
the gradient of the function offer detailed reasons yet with very local scope.

HyperMoVal is designed to support domain experts at this latter level, while the integrated
workflow described in section 7.3 serves the first two levels. Stand-alone implementations of
HyperMoVal may decide to additionally cover the levels 1 and 2 by integrating quantitative
model characteristics like the statistics of Fig. 7.9e or additional options for coloring, e.g.,
mapping residuals to color as in Fig. 7.8b. While respective extensions would be straightfor-
ward, our implementation employs linked views for these tasks.

Concerning scalability, HyperMoVal has been tested with several thousand validation data
points. Multi-threading and the use of graphics hardware ensure immediate visual feedback.
Interaction concepts like narrowing the relevant region support the perceptual scalability.
HyperMoVal has also been tested for models with more than ten parameters, although such
surrogate models are rare in practice. In this case, hiding some dimensions is usually tolerable
and provides more space for the rest. An upper limit with respect to the number of compared
models is four due to the difficult distinction of function graphs and a significant cluttering.

We believe that HyperMoVal is a good example for combining computation and interactive
visualization to support a complex task, which is a main issue of visual analytics. The
optional integration to multiple linked views fosters a tight loop of computation-based training
and visualization-based validation of regression models. Splitting the data into training and
validation data is an important aspect in practice [234] and is supported using selections.

However, further steps towards model identification are a key aspect of future work. In
particular the identification of good training parameters is an optimization problem on its
own. Currently, users with little background in machine learning (as are most designers of
car engines) need to manually try many combinations of parameters like the cost value or
the gamma value of the SVR. This is neither efficient nor does it ultimately guarantee an
optimal set of training parameters. Semi-automatic approaches could integrate optimization
techniques to quickly identify promising training parameters. Other plans for future work
include a long-term field study of the adoption by different groups of engineers, as well as
further navigation concepts for the focal point. Finally, we intend to evaluate our approach
within other application areas to assess its general applicability.

113

CHAPTER 7. INTERACTIVE VISUAL VALIDATION OF REGRESSION
MODELS

7.7 Conclusion

This chapter introduced HyperMoVal as interactive visualization to support various tasks
during the validation of regression models. The combined visualization of the n-dimensional
model and the validation data provides a direct comparison of known and predicted results and
it enables to analyze regions with a bad fit in detail. The simultaneous analysis of families of
graphs for multiple models helps to assess and compare the physical plausibility of the function
behavior. The matrix-based layout of 2D and 3D slices scales to high-dimensional functions,
which can easily be navigated using different interaction techniques. Providing model-related
attributes like residuals as derived dimensions optionally complements the analysis in other
multivariate views. Linking these views via ad-hoc queries may not only be used to filter
implausible validation data; it also supports a user-defined selection of training data as a first
step towards a workflow for model building that tightly integrates domain knowledge. User
feedback suggests that our approach significantly accelerates the identification of high-quality
surrogate models for simulating engine physics in real-time. Application experts consider it
an important technique for increasing the confidence in the entire process of car engine design.
Motivated by these results, we believe that HyperMoVal may also be beneficial to numerous
other application areas in science and engineering.

114

Chapter 8

Conclusions

The main motivation of visual analysis is to turn the information overload of the 21st cen-
tury into an opportunity. This explains scalability as a core issue of visual analysis. While
scalability is a multifaceted topic, the sheer size of data is a key concern that involves both
visual and computational challenges. This thesis made a broad range of contributions to
enhance computational scalability, to improve the visual scalability of selected visualization
approaches and tasks, and to support an analysis of high-dimensional data.

Concerning computational scalability, this thesis contributed a generic architecture that
intends to facilitate the use of multi-threading in the development of highly interactive vi-
sual analysis tools. A quantitative evaluation demonstrated that the architecture scales with
respect to the size of the data and the number of views while providing permanent visual
feedback even during continuous interaction. Instantiations in several visual analysis systems
and tools show the applicability to many types of visualizations regardless of a particular
platform, programming language or graphics API. As a key aspect of computational scala-
bility, communication and synchronization aspects of the architecture have been covered in
detail.

Unlike computational scalability, visual scalability directly depends on the employed
metaphor and task. This thesis contributed two variants of scatterplots to address visual
scalability for different types of data and tasks. For continuous data, a combination of 2D
and 3D scatterplots intends to combine the advantages of 2D interaction and 3D visualization.
Several extensions improve the depth perception in 3D and address the problem of unrecogniz-
able point densities in both 2D and 3D. As a result, 3D scatterplots have proven advantageous
especially when dealing with inherently spatial data like three-dimensional gradients.

For partly categorical data in general and data cubes in particular, the thesis contributed
Hierarchical Difference Scatterplots (HDS). The main goal of HDS is to support analytical
tasks involving comparisons of categories of different hierarchy levels. Local drill down and
several focus+context approaches ensure the scalability to data cubes of any size. As a
key benefit with regards to visual scalability, HDS display the difference between categories
explicitly in a single visualization, which makes comparisons more intuitive and more precise
than relying on multiple views.

Nevertheless, comparisons in HDS – as for most approaches of information visualization –
are only qualitative and limited with respect to the involved dimensionality. For this reason,
this thesis also contributed an approach for quantifying subsets of the data by means of
univariate and bivariate statistical moments for a potentially large number of dimensions.The

115

CHAPTER 8. CONCLUSIONS

approach has proven useful during multiple stages of an analysis. A quick overview over
high-dimensional datasets provides initial guidance, while a quantitative comparison of local
features like clusters are beneficial in later stages of an analysis.

Striving for scalability to multi-dimensional regression models, dimensionality has also
been a major issue in the design of HyperMoVal. The combined visualization of multiple
n-dimensional regression models and respective validation data enables a detailed analysis of
regions with a bad fit. The integration with other multivariate views allows for a validation
in multiple degrees of detail. An interactive selection of training data is a step towards a
user-centric workflow for model building.

Apart from issues that are directly related to scalability with respect to large data, this
thesis described several applications of visual analysis. Especially HyperMoVal was the re-
sult of a close collaboration with application experts in the field of engine design. It was an
interesting lesson to see how it took a significant amount of time to develop a mutual under-
standing of challenges and possibilities. As another important lesson, finding a good balance
between preserving familiar methods and introducing powerful yet unfamiliar techniques is
challenging but necessary to gain acceptance in a certain target community. However, as
the result of the collaboration, engineers considered HyperMoVal an important technique for
increasing both efficiency and confidence in the entire process of car engine design.

Such feedback suggests a high impact of the contributions of this thesis also outside the
visualization research community. In this context, it is an important aspect that most contri-
butions have been combined in a common software framework for visual analysis called Vis-
plore. The application of model-building (section 7.5.1) illustrates the usefulness of combining
multiple contributions of this thesis for complex real-world problems. Moreover, Visplore is
mature in order to be commercially distributed to thousands of customers worldwide by the
company AVL List GmbH. Besides the scientific contributions, an indirect contribution of
this thesis is thus to raise the awareness and to promote the use of visual analysis as such in
different application domains.

However, considering the myriad of challenges related to large data, it is obvious that
many open problems remain. A major issue concerns the magnitude of what constitutes
”large data”. The contributions of this thesis have been evaluated with at most a few million
data items. While this exceeds the capabilities of most interactive visualizations today, it is
still magnitudes smaller than what many fields in science or business encounter on a daily
basis. Moreover, the contributions have only been evaluated with static datasets. Streaming
data, for example, involves additional complexity.

In general, dealing with scalability often involves trade-offs. Making use of parallel hard-
ware, for example, typically increases not only the computational scalability, but also the
complexity of writing and testing respective software, which explains the need for the pro-
posed multi-threaded architecture. Advanced interaction concepts like multiple linked views
enable to analyze complex data, but also require more time for familiarization, as learned
from the design of HyperMoVal. As a consequence of such trade-offs, many scalability issues
can only be solved in the context of concrete applications and tasks. For all these reasons,
scalability will remain a core issue of visual analysis and will motivate as much research in
the future as it has done in the past.

116

Acknowledgments

First of all, I would like to thank my advisor Prof. Eduard Gröller, who provided important
input and help during the supervision of my work and who repeatedly encouraged me to
continue and finish this thesis. Prof. Eduard Gröller always cordially agreed to take enough
time when I needed him for fruitful discussions and friendly advice.

A very special thank-you also goes to Prof. Helwig Hauser from the University of Bergen,
Norway. Prof. Hauser introduced me to visual analysis and aroused my fascination for this
topic. His visionary ideas have been a major source of inspiration for my work during the last
years, and I would like to thank him for finally accepting the position of reviewing my PhD
work.

Furthermore, there are many people who contributed in one way or the other to this thesis.
Most importantly, I thank my colleague Wolfgang Berger. Wolfgang did not only implement
the approaches of the chapters 6 and 7, but he was also involved in preparing the respective
publications and he was always willing to discuss ideas with me. I also thank my colleagues
Matthias Buchetics and Martin Brunnhuber, who implemented the approach of chapter 5.
Other people who supported the work as co-authors of publications are (in alphabetical
order) Robert Kosara, Philipp Muigg, and Christian Tominski. I also want to thank Helmut
Doleisch, Kresimir Matkovic, and Prof. Heidrun Schumann for their constructive comments.

Most of this work has been done in the VRVis Research Center, which is funded in part by
the Austrian Funding Agency FFG. Special thanks go to the CEO of VRVis, Georg Stonawski,
who has always supported my work and my ambitions. Furthermore, much of this work would
not have been possible without the VRVis company partner AVL List GmbH. AVL not only
provided some of the datasets used throughout this thesis, but actively stimulated research
by sharing their needs and by participating in the evaluation. In this context, special thanks
go to Jürgen Krasser who has been promoting visual analysis within AVL for many years. I
also thank Johann Wurzenberger, Ivo Prah, Natalija Galovic, and Florian Spendlingwimmer
for their support of the evaluation.

The most important thank-you goes to my family. I am deeply indebted to my parents
Christine and Gerhard, who have been supporting my interest in computers since I was a
child and who have always believed in me. A particularly special and warm thank-you goes
to my wife Caroline who has always encouraged and motivated me to pursue my research
and to finish this thesis. Caro, thank you so much for tolerating the many long and lonely
nights when I was working on this thesis and thanks for not complaining about my bad mood
during much of the write-up! Finally, I hug my son Christian, who has not seen his daddy as
often as he would have deserved to, your daddy loves you!

117

118

Curriculum Vitae

About Harald Piringer:

Dipl.-Ing. Harald Piringer, born on 28th November 1978, in Vienna, Austria, as the first son
of Christine Piringer (maiden name Woldan) and Dipl.-Ing. Gerhard Piringer,
married with Dipl.-Ing. Caroline Piringer (maiden name Langer),
one son Christian Piringer.

Contact information:

Flötzersteig 284/B4, A-1140 Wien, email: piringer@vrvis.at

Professional Activities:

• From June 1998 to Sept. 1999: Technical support for Nextra Telekom GmbH in
Vienna, Austria

• From March 2000 to Sept. 2000: Web-development for Gentics EDV Dienstleistungen
GmbH in Vienna, Austria

• From Oct. 2001 to Feb. 2003: Design and development of entertainment software
for Dion Software GmbH in Vienna, Austria

• Since Aug. 2003: Researcher at the VRVis Research Center in Vienna, Austria

• Since Oct. 2007: Project Leader at the VRVis Research Center in Vienna, Austria

• Since Jan. 2010: Head of Group ”Visual Analysis” at the VRVis Research Center
in Vienna, Austria

Activities Related to Scientific Work:

• 2 computer science projects during my studies of computer science at the Institute
of Computer Engineering, Vienna University of Technology, about Real-time Systems,
Prof. Hermann Kopetz (Oct. 2000 – Nov. 2001)

• My diploma thesis ”Occlusion Culling Using Hardware-Based Occlusion Queries” at
the Institute of Computer Graphics, Vienna University of Technology (Aug. 2002 –
May 2003)

• Reviewer for the conferences IEEE Information Visualization (2006 – 2011), the
Eurographics / IEEE Symposium on Visualization (2008 – 2010)

119

Activities Related to Teaching:

• Coach of more than 15 student projects and seminar works in the studies of com-
puter science, including those of Jürgen Platzer, Murat Sari, Johannes Kehrer, Andreas
Ammer, Matthias Buchetics, Matej Novotny, and others

• Coach and supervisor of the diploma theses of Matthias Buchetics, Wolfgang Berger,
Matthias Froschauer, Roland Boubela, and Stephan Pajer.

• Involved in the Organization of the course on Information Visualization at the In-
stitute of Computer Graphics, Vienna University of Technology, in 2005

• Lecturing Information Visualization at the Fachhochschule Technikum Wien, since
2007.

Education:

• Volksschule (primary school) in Klosterneuburg, Austria (Sept. 1985 – June 1989)
• BG/BRG Klosterneuburg (combined secondary school and high school) in

Klosterneuburg, Austria (Sept. 1989 – June 1997). Graduation (Matura) with high-
est distinction

• Grundwehrdienst (military service) at the Magdeburgkaserne Klosterneuburg, Aus-
tria (Oct. 1997 – May 1998).

• Studies of Informatik (computer science) at the Vienna University of Technology,
Austria (Oct. 1998 – June 2003)

• Finishing of diploma thesis ”Occlusion Culling Using Hardware-Based Occlusion
Queries” at the Institute of Computer Graphics, Vienna University of Technology, in
May 2003. Graduation (with highest distinction) to ”Diplom-Ingenieur der
Informatik” (computer science) in June 2003

• Since Sept. 2009: further studies of Informatik (computer science) at the Vienna Uni-
versity of Technology, resulting in the work on this PhD thesis at the VRVis Research
Center

Reviewed Publications:

Jiri Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer
Coherent Hierarchical Culling: Hardware Occlusion Queries Made Useful,
Computer Graphics Forum, 23(3), pp. 615 – 624, 2004.

Harald Piringer, Robert Kosara, and Helwig Hauser
Interactive Focus+Context Visualization with Linked 2D/3D Scatterplots,
Proccedings of the 2nd International Conference on Coordinated & Multiple Views in Ex-
ploratory Visualization (CMV 2004), pp. 49 – 60, 2004.

Philipp Muigg, Johannes Kehrer, Steffen Oeltze, Harald Piringer, Helmut Doleisch, Bernhard
Preim, and Helwig Hauser
A Four-Level Focus+Context Approach to Interactive Visual Analysis of Tempo-
ral Features in Large Scientific Data,
Computer Graphics Forum, 27(3), pp. 775 – 782, 2004.

120

Harald Piringer, Wolfgang Berger, and Helwig Hauser
Quantifying and Comparing Features in High-Dimensional Datasets,
Proccedings of the 6th International Conference on Coordinated & Multiple Views in Ex-
ploratory Visualization (CMV 2008), pp. 240 – 245, 2008.

Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger
A Multi-Threading Architecture to Support Interactive Visual Exploration,
IEEE Transactions on Visualization and Computer Graphics, 15(6), pp. 1113 – 1120, 2009.

Harald Piringer, Matthias Buchetics, Helwig Hauser, and Eduard Gröller
Hierarchical Difference Scatterplots - Interactive Visual Analysis of Data Cubes,
SIGKDD Explorations, 11(2), pp. 49 – 58, 2009.

Harald Piringer, Wolfgang Berger, and Jürgen Krasser
HyperMoVal: Interactive Visual Validation of Regression Models for Real-Time
Simulation,
Computer Graphics Forum, 29(3), pp. 983 – 992, 2010.

Wolfgang Berger and Harald Piringer
Peek Brush: A High-Speed Lightweight Ad-Hoc Selection for Multiple Coordi-
nated Views,
Proccedings of the International Conference on Information Visualization (IV 2010), pp. 140
– 145, 2010.

Wolfgang Berger and Harald Piringer
Interactive Visual Analysis of Multiobjective Optimizations,
Proccedings of the IEEE Conference on Visual Analytics Science and Technology (VAST
2010), pp. 215 – 216, 2010.

Wolfgang Berger, Harald Piringer, Peter Filzmoser, and Eduard Gröller
Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multi-
variate Prediction,
Accepted for publication in Computer Graphics Forum, to appear 2011.

121

122

Bibliography

[1] C. Ahlberg. Spotfire: an Information Exploration Environment. SIGMOD Record
(ACM Special Interest Group on Management of Data), 25(4):25–29, 1996.

[2] C. Ahlberg and B. Shneiderman. Visual Information Seeking: Tight Coupling of Dy-
namic Query Filters with Starfield Displays. In CHI ’94: Proc. of the SIGCHI Conf.
on Human Factors in Computing Systems, pages 313–317. ACM, 1994.

[3] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visual Methods
for Analyzing Time-Oriented Data. IEEE Transactions on Visualization and Computer
Graphics, 14(1):47–60, 2008.

[4] G. Andrienko and N. Andrienko. Spatio-Temporal Aggregation for Visual Analysis of
Movements. In Proc. of the 3rd IEEE Symposium on Visual Analytics Science and
Technology (VAST 2008), pages 51–58. IEEE Computer Society, 2008.

[5] G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. von Landesberger, P. Bak,
and D. Keim. Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring
Spatiotemporal Patterns. Computer Graphics Forum, 29(3):913 – 922, 2010.

[6] G. Andrienko, N. Andrienko, and S. Wrobel. Visual Analytics Tools for Analysis of
Movement Data. SIGKDD Explorations, 9:38–46, December 2007.

[7] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity Clustering of Dimensions for
an Enhanced Visualization of Multidimensional Data. In Proc. IEEE Symposium on
Information Visualization 1998 (InfoVis ’98), pages 52–60, 1998.

[8] L. Anselin. What is Special about Spatial Data? Alternative Perspectives on Spatial
Data Analysis. Technical Report 89-4, National Center for Geographic Information and
Analysis, 1989.

[9] A. Asuncion and D. J. Newman. UCI Machine Learning Repository. http://www.ics.
uci.edu/~mlearn/MLRepository.html, Last visited on Apr. 26th, 2011, January 2008.

[10] BBC Backstage. A Quick Illustrated History of Visualisation. http://backstage.bbc.
co.uk/data_art/resources/history_of_vis.php, Last visited on Feb. 1st 2011.

[11] M. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for Using Multiple Views
in Information Visualization. In Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 110–119, 2000.

123

BIBLIOGRAPHY

[12] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, 1998.

[13] D. Baur, F. Seiffert, M. Sedlmair, and S. Boring. The Streams of Our Lives: Visualizing
Listening Histories in Context. IEEE Transactions on Visualization and Computer
Graphics, 16:1119–1128, 2010.

[14] D. B. Beard and J. Q. Walker. Navigational Techniques to Improve the Display of Large
Two-Dimensional Spaces. Behaviour & Information Technology, 9(6):451–466, 1990.

[15] B. Becker. Volume Rendering for Relational Data. In Proc. IEEE Symposium on
Information Visualization 1997 (InfoVis ’97), pages 87–91, 1997.

[16] R. Becker and W. Cleveland. Brushing Scatterplots. Technometrics, 29(2):127–142,
1987.

[17] B. B. Bederson. Fisheye Menus. In Proc. of the 13th Annual ACM Symposium on User
Interface Software and Technology (UIST ’00), pages 217–225. ACM, 2000.

[18] B. B. Bederson, A. Clamage, M. P. Czerwinski, and G. G. Robertson. DateLens: a Fish-
eye Calendar Interface for PDAs. ACM Transactions on Computer-Human Interaction,
11:90–119, 2004.

[19] M. Berry and G. Linoff. Data Mining Techniques, 2nd Edition. Wiley, 2004.

[20] E. Bertini and D. Lalanne. Investigating and Reflecting on the Integration of Automatic
Data Analysis and Visualization in Knowledge Discovery. SIGKDD Explorations, 11:9–
18, December 2009.

[21] E. Bertini and G. Santucci. Give Chance a Chance: Modeling Density to Enhance Scat-
ter Plot Quality through Random Data Sampling. Information Visualization, 5(2):95–
110, 2006.

[22] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and Magic
Lenses: the See-Through Interface. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 73 – 80, 1993.

[23] R. Blanch and E. Lecolinet. Browsing Zoomable Treemaps: Structure-Aware Multi-
Scale Navigation Techniques. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1248–1253, 2007.

[24] F. Boecking, U. Dohle, J. Hammer, and S. Kampmann. Passenger Car Common Rail
Systems for Future Emission Standards. Motortechnische Zeitschrift (MTZ), 66(7-
8):552–557, 2005.

[25] P. A. Boncz. Monet, a Next-Generation DBMS Kernel for Query-Intensive Applications.
PhD thesis, CWI Amsterdam, 2002.

[26] D. Borland and R. Taylor. Rainbow Color Map (Still) Considered Harmful. IEEE
Computer Graphics and Applications, 27(2):14–17, 2007.

124

BIBLIOGRAPHY

[27] J. Bottger, M. Balzer, and O. Deussen. Complex Logarithmic Views for Small Details in
Large Contexts. IEEE Transactions on Visualization and Computer Graphics, 12:845–
852, 2006.

[28] N. Boukhelifa, J. C. Roberts, and P. J. Rodgers. A Coordination Model for Exploratory
Multi-View Visualization. In Proc. of the Conf. on Coordinated and Multiple Views In
Exploratory Visualization (CMV ’03), pages 76 – 85. IEEE Computer Society, 2003.

[29] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan.
Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on
Graphics, 23:777–786, 2004.

[30] A. Buja, J. McDonald, J. Michalak, and W. Stuetzle. Interactive Data Visualization
Using Focusing and Linking. In Proceedings IEEE Visualization ’91, pages 156–163,
1991.

[31] T. Büring, J. Gerken, and H. Reiterer. User Interaction with Scatterplots on Small
Screens – A Comparative Evaluation of Geometric-Semantic Zoom and Fisheye Distor-
tion. IEEE Transactions on Visualization and Computer Graphics, 12:829–836, 2006.

[32] T. Butkiewicz, W. Dou, Z. Wartell, W. Ribarsky, and R. Chang. Multi-Focused Geospa-
tial Analysis Using Probes. IEEE Transactions on Visualization and Computer Graph-
ics, 14:1165–1172, 2008.

[33] S. Callahan, L. Bavoil, V. Pascucci, and C. Silva. Progressive Volume Rendering of
Large Unstructured Grids. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1307–1314, 2006.

[34] S. Card, J. MacKinlay, and B. Shneiderman. Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann Publishers, 1998.

[35] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and J. Favre. Remote Large Data Visu-
alization in the ParaView Framework. In 6th Eurographics Symp. on Parallel Graphics
and Visualization, pages 163–170, 2006.

[36] S. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining Interactivity While Exploring
Massive Time Series. In Proc. of the 3rd IEEE Symposium on Visual Analytics Science
and Technology (VAST 2008), pages 59 – 66. IEEE Computer Society, 2008.

[37] C. Chang and C. Lin. LIB-SVM. http://www.csie.ntu.edu.tw/~cjlin/libsvm/,
Last visited on Feb. 17th 2010.

[38] R. Chang, G. Wessel, R. Kosara, E. Sauda, and W. Ribarsky. Legible Cities: Focus-
Dependent Multi-Resolution Visualization of Urban Relationships. IEEE Transactions
on Visualization and Computer Graphics, 13:1169–1175, 2007.

[39] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record, 26:65–74, 1997.

[40] J. Chen, A. M. MacEachren, and D. J. Peuquet. Constructing Overview + Detail
Dendrogram-Matrix Views. IEEE Transactions on Visualization and Computer Graph-
ics, 15:889–896, 2009.

125

BIBLIOGRAPHY

[41] E. Chi. A Taxonomy of Visualization Techniques Using the Data State Reference Model.
In Proc. IEEE Symposium on Information Visualization 2000 (InfoVis 2000), pages 69–
75. IEEE Computer Society, 2000.

[42] E. Chi, J. A. Konstan, P. Barry, and J. Riedl. A Spreadsheet Approach to Information
Visualization. In ACM Symposium on User Interface Software and Technology, pages
79–80, 1997.

[43] W. Cleveland. The Elements of Graphing Data. Wadsworth Inc, 1985.

[44] A. Cockburn, A. Karlson, and B. B. Bederson. A Review of Overview+Detail, Zooming,
and Focus+Context Interfaces. ACM Computing Surveys, 41:2:1–2:31, 2009.

[45] E. F. Codd. Providing OLAP (On-line Analytical Processing) to User-Analysts. Codd
& Date Inc., 1993.

[46] C. Collins and S. Carpendale. VisLink: Revealing Relationships Amongst Visualiza-
tions. IEEE Transactions on Visualization and Computer Graphics, 13(6):1192 – 1199,
2007.

[47] G. Convertino, J. Chen, B. Yost, Y.-S. Ryu, and C. North. Exploring Context Switching
and Cognition in Dual-View Coordinated Visualizations. In Proc. of the Conf. on
Coordinated and Multiple Views In Exploratory Visualization (CMV ’03), pages 55–62.
IEEE Computer Society, 2003.

[48] A. Dasgupta and R. Kosara. Pargnostics: Screen-Space Metrics for Parallel Coordinates.
IEEE Transactions on Visualization and Computer Graphics, 16:1017–1026, 2010.

[49] Oxford English Dictionary. Aggregation. Oxford University Press, 2009.

[50] Oxford English Dictionary. Visualization. Oxford University Press, 2009.

[51] H. Doleisch. SIMVIS: Interactive Visual Analysis of Large and Time-Dependent 3D
Simulation Data. In Winter Simulation Conference, pages 712–720. WSC, 2007.

[52] H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specification for Fo-
cus+Context Visualization of Complex Simulation Data. In Proc. of the 5th Joint
IEEE TCVG - EUROGRAPHICS Symposium on Visualization (VisSym 2003), pages
239–248. Springer-Verlag, 2003.

[53] H. Doleisch and H. Hauser. Smooth Brushing for Focus+Context Visualization of
Simulation Data in 3D. In Journal of WSCG, volume 10, pages 147–154, Plzen, 2002.

[54] H. Doleisch, M. Mayer, M. Gasser, R. Wanker, and H. Hauser. Case Study: Visual
Analysis of Complex, Time-Dependent Simulation Results of a Diesel Exhaust System.
In Proc. of the 6th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization
(VisSym 2004), pages 91–96. Springer-Verlag, 2004.

[55] M. Dörk, D. Gruen, C. Williamson, and S. Carpendale. A Visual Backchannel for Large-
Scale Events. IEEE Transactions on Visualization and Computer Graphics, 16(6):1129
– 1138, 2010.

126

BIBLIOGRAPHY

[56] D. Dorling, A. Barford, and M. Newman. Worldmapper: The World as You’ve Never
Seen it Before. IEEE Transactions on Visualization and Computer Graphics, 12:757–
764, 2006.

[57] S. dos Santos and K. Brodlie. Visualizing and Investigating Multidimensional Functions.
In Proc. of the 4th Joint IEEE TCVG - EUROGRAPHICS Symposium on Visualization
(VisSym 2002), pages 173–ff. Eurographics Association, 2002.

[58] P. Doshi, G. Rosario, E. Rundensteiner, and M. Ward. A Strategy Selection Framework
for Adaptive Prefetching in Data Visualization. In SSDBM ’03: Proc. of the 15th
Intl. Conf. on Scientific and Statistical Database Management, pages 107–116. IEEE
Computer Society, 2003.

[59] N. R. Draper and H. Smith. Applied Regression Analysis, 3rd ed. John Wiley & Sons,
1998.

[60] J. Dykes, A. MacEachren, and M. Kraak. Exploring Geovisualization. Elsevier, 2005.

[61] S. Eick and A. Karr. Visual Scalability. Journal of Computational and Graphical
Statistics, 11(1):22 – 43, 2002.

[62] G. Ellis and A. Dix. By Chance: Enhancing Interaction with Large Data Sets through
Statistical Sampling. In AVI ’02: Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 167–176. ACM, 2002.

[63] G. Ellis and A. Dix. Enabling Automatic Clutter Reduction in Parallel Coordinate
Plots. IEEE Transactions on Visualization and Computer Graphics, 12(5):717 – 724,
2006.

[64] G. Ellis and A. Dix. A Taxonomy of Clutter Reduction for Information Visualisation.
IEEE Transactions on Visualization and Computer Graphics, 13(6):1216 – 1223, 2007.

[65] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the Dice: Multidimensional Visual
Exploration Using Scatterplot Matrix Navigation. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1539–1148, 2008.

[66] N. Elmqvist, D. Thanh-Nghi, H. Goodell, N. Henry, and J.-D. Fekete. ZAME: Interac-
tive Large-Scale Graph Visualization. In Proc. of the 2008 IEEE Pacific Visualization
Symposium (PacificVIS ’08), pages 215–222. IEEE Pacific, 2008.

[67] G. Faconti and M. Massink. Continuous Interaction with Computers: Issues and Re-
quirements. In Vol. 3 of the proc. of HCI International 2001, pages 301–305. Lawrence
Erlbaum, 2001.

[68] W. A. Farrand. Information Display in Interactive Design. PhD thesis, University of
California, Los Angeles, CA, 1973.

[69] S. Feiner and C. Beshers. Worlds within Worlds: Metaphors for Exploring n-
Dimensional Virtual Worlds. In UIST ’90: Proc. of the 3rd ACM SIGGRAPH Sympo-
sium on User Interface Software and Technology, pages 76–83. ACM, 1990.

127

BIBLIOGRAPHY

[70] J.-D. Fekete. The InfoVis Toolkit. In Proc. IEEE Symposium on Information Visual-
ization 2004 (InfoVis 2004), pages 167–174. IEEE Computer Society, 2004.

[71] J.-D. Fekete and C. Plaisant. Interactive Information Visualization of a Million Items.
In Proc. IEEE Symposium on Information Visualization 2002 (InfoVis 2002), pages
117 – 124. IEEE Computer Society, 2002.

[72] W. Felger and F. Schröder. The Visualization Input Pipeline – Enabling Semantic
Interaction in Scientific Visualization. Computer Graphics Forum, 11:139–151, 1992.

[73] D. Feng, L. Kwock, L. Yueh, and R. M. Taylor. Matching Visual Saliency to Confi-
dence in Plots of Uncertain Data. IEEE Transactions on Visualization and Computer
Graphics, 16:980–989, 2010.

[74] D. Fisher, S. Drucker, R. Fernandez, and S. Ruble. WebCharts: Extending Applications
with Web-Authored, Embeddable Visualizations. IEEE Transactions on Visualization
and Computer Graphics, 16:1157–1163, 2010.

[75] A. Flexer. On the Use of Self-Organizing Maps for Clustering and Visualization. Intel-
ligent Data Analysis, 5:373–384, October 2001.

[76] M. Florek and M. Novotny. Interactive Information Visualization Using Graphics Hard-
ware. In Poster Proceedings of Spring Conference on Computer Graphics, 2006.

[77] L. Fortnow and S. Homer. A Short History of Computational Complexity. Bulletin of
the EATCS, 80:95 – 133, 2003.

[78] A. Frederikson, C. North, C. Plaisant, and B. Shneiderman. Temporal, Geographical
and Categorical Aggregations Viewed Through Coordinated Displays: a Case Study
with Highway Incident Data. In Proc. Workshop on New Paradigms in Information
Visualization and Manipulation, pages 26 – 34. ACM, NY, 1999.

[79] J. H. Friedman and J. W. Tukey. A Projection Pursuit Algorithm for Exploratory Data
Analysis. IEEE Transactions on Computers, C-23(9):881–890, 1974.

[80] Y. Frishman and A. Tal. Multi-Level Graph Layout on the GPU. IEEE Transactions
on Visualization and Computer Graphics, 13:1310–1319, 2007.

[81] B. Fry. Visualizing Data: Exploring and Explaining Data with the Processing Environ-
ment. O’Reilly Media, Inc., 2008.

[82] Y.-H. Fua, M. Ward, and E. Rundensteiner. Hierarchical Parallel Coordinates for Ex-
ploration of Large Datasets. In Proceedings IEEE Visualization ’99, pages 43–50, 1999.

[83] R. Fuchs, J. Waser, and E. Gröller. Visual Human+Machine Learning. IEEE Transac-
tions on Visualization and Computer Graphics, 15:1327–1334, 2009.

[84] G. Furnas. The FISHEYE View: A New Look at Structured Files. Technical Memo-
randum #81-11221-9, Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A., 1981.

[85] G. Furnas. Generalized Fisheye Views. In Proc. of the ACM CHI ’86 Conf. on Human
Factors in Computing Systems, pages 16–23, 1986.

128

BIBLIOGRAPHY

[86] G. Furnas and A. Buja. Prosection Views: Dimensional Inference through Sections and
Projections. Journal of Computational and Graphical Statistics, 3(4):323–385, 1994.

[87] G. W. Furnas and B. B. Bederson. Space-Scale Diagrams: Understanding Multiscale
Interfaces. In Proc. of the SIGCHI Conf. on Human Factors in Computing Systems
(CHI ’95), pages 234–241. ACM Press/Addison-Wesley Publishing Co., 1995.

[88] J. Gantz. The diverse and exploding digital universe. White paper. International Data
Corporation, Framingham, MA, 2008.

[89] Gapminder Foundation. Gapminder. http://www.gapminder.org/, Last visited on
March 12th 2011.

[90] E. W. Gilbert. Pioneer Maps of Health and Disease in England. Geographical Journal,
124(2):172–183, 1958.

[91] A.S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers,
Inc, San Francisco, 1995.

[92] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[93] B. Goldstein. Sensation and Perception. Wadsworth, Thomson Learning, 2002.

[94] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,
and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[95] N. Greene. Environment Mapping and Other Applications of World Projections. IEEE
Computer Graphics and Applications, 6(11):21–29, November 1986.

[96] G. Grinstein, M. Trutschl, and U. Cvek. High-Dimensional Visualizations. In Workshop
on Visual Data Mining, 7th Conf. on Knowledge Discovery and Data Mining (KDD),
pages 77–87, 2001.

[97] D. Guo, J. Chen, A. M. MacEachren, and K. Liao. A Visualization System for Space-
Time and Multivariate Patterns (VIS-STAMP). IEEE Transactions on Visualization
and Computer Graphics, 12(6):1461–1474, 2006.

[98] Z. Guo, M. Ward, and E. Rundensteiner. Model Space Visualization for Multivariate
Linear Trend Discovery. In Proc. of the 4th IEEE Symposium on Visual Analytics
Science and Technology (VAST 2009), pages 75–82. IEEE Computer Society, 2009.

[99] C. Gutwin and C. Fedak. A Comparison of Fisheye Lenses for Interactive Layout
Tasks. In Proc. of Graphics Interface 2004 (GI ’04), pages 213–220. Canadian Human-
Computer Communications Society, 2004.

[100] C. Gutwin and A. Skopik. Fisheyes are Good for Large Steering Tasks. In Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems (CHI ’03), pages 201–208.
ACM, 2003.

[101] C. D. Hansen and C. D. Johnson. The Visualization Handbook. Academic Press, 2005.

129

BIBLIOGRAPHY

[102] M. C. Hao, U. Dayal, D. A. Keim, D. Morent, and J. Schneidewind. Intelligent Visual
Analytics Queries. In Proc. of the 2nd IEEE Symposium on Visual Analytics Science
and Technology (VAST 2007), pages 91–98, 2007.

[103] M. C. Hao, U. Dayal, R. Sharma, D. Keim, and H. Janetzko. Variable Binned Scatter
Plots. Information Visualization, 9(3):194 – 203, 2010.

[104] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data Cubes Efficiently.
SIGMOD Record, 25:205–216, 1996.

[105] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance Tradeoffs in Read-
Optimized Databases. In Proc. of the 32nd international conference on Very large data
bases (VLDB ’06), pages 487–498. VLDB Endowment, 2006.

[106] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd
Edition. Springer, 2009.

[107] H. Hauser. Generalizing Focus+Context Visualization. In Scientific Visualization: The
Visual Extraction of Knowledge from Data, pages 305 – 327. Springer, 2005.

[108] H. Hauser, F. Ledermann, and H. Doleisch. Angular Brushing of Extended Parallel Co-
ordinates. In Proc. IEEE Symposium on Information Visualization 2002 (InfoVis 2002),
pages 127–130, 2002.

[109] J. Heer and M. Agrawala. Software Design Patterns for Information Visualization.
IEEE Transactions on Visualization and Computer Graphics, 12(5):853–860, 2006.

[110] J. Heer and M. Agrawala. Design Considerations for Collaborative Visual Analytics.
Information Visualization, 7:49–62, 2008.

[111] J. Heer and M. Bostock. Declarative Language Design for Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 16:1149–1156, 2010.

[112] J. Heer, S. Card, and J. Landay. Prefuse: a Toolkit for Interactive Information Visual-
ization. In Proc. of the SIGCHI Conference on Human Factors in Computing Systems
2005 (CHI 2005), pages 421–430. ACM, 2005.

[113] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical Histories for Visualiza-
tion: Supporting Analysis, Communication, and Evaluation. IEEE Transactions on
Visualization and Computer Graphics, 14:1189–1196, 2008.

[114] Roman Heinzle. Machine Learning Methods and Their Application to Real-Time Engine
Simulation. PhD thesis, Johannes Kepler University Linz, 2009.

[115] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

[116] I. Herman, G. Melançon, and M. S. Marshall. Graph Visualization and Navigation in In-
formation Visualization: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000.

130

BIBLIOGRAPHY

[117] U. Hinrichs, H. Schmidt, and S. Carpendale. EMDialog: Bringing Information Visual-
ization into the Museum. IEEE Transactions on Visualization and Computer Graphics,
14:1181–1188, 2008.

[118] H. Hochheiser and B. Shneiderman. Dynamic Query Tools for Time Series Data Sets:
Timebox Widgets for Interactive Exploration. Information Visualization, 3:1–18, 2004.

[119] D. Holten. Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierar-
chical Data. IEEE Transactions on Visualization and Computer Graphics, 12(5):741–
748, 2006.

[120] D. Holten and J. van Wijk. Evaluation of Cluster Identification Performance for Dif-
ferent PCP Variants. Computer Graphics Forum, 29(3):793 – 802, 2010.

[121] K. Hornbaek and E. Frøkjaer. Reading of Electronic Documents: The Usability of Lin-
ear, Fisheye, and Overview+Detail Interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’01), pages 293–300. ACM, 2001.

[122] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading Aircraft Trajectories
Across Views to Support Iterative Queries. IEEE Transactions on Visualization and
Computer Graphics, 15:1017–1024, 2009.

[123] IBM. Cognos. http://www.ibm.com/software/data/cognos/, Last visited on Feb.
3rd 2011.

[124] Advizor Solutions Inc. Advizor. http://www.advizorsolutions.com, Last visited on
Feb. 3rd 2011.

[125] Kx Inc. kdb+. http://kx.com/Products/kdb+.php, Last visited on Feb. 3rd 2011.

[126] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel MDS on the GPU. IEEE
Transactions on Visualization and Computer Graphics, 15:249–261, 2009.

[127] A. Inselberg and B. Dimsdale. Parallel Coordinates: a Tool for Visualizing Multidi-
mensional Geometry. In Proceedings IEEE Visualization ’90, pages 361–378, 1990.

[128] V. Interrante and C. Grosch. Strategies for Effectively Visualizing 3D Flow with Volume
LIC. In Proceedings IEEE Visualization ’97, pages 421–424, 1997.

[129] P. Isenberg, D. Fisher, M. Ringel Morris, K. Inkpen, and M. Czerwinski. An Exploratory
Study of Co-located Collaborative Visual Analytics around a Tabletop Display. In Proc.
of the IEEE Conference on Visual Analytics Science and Technology (VAST 2010),
pages 179–186. IEEE Computer Society, 2010.

[130] Y. Ivanov, C. Wren, A. Sorokin, and I. Kaur. Visualizing the History of Living Spaces.
IEEE Transactions on Visualization and Computer Graphics, 13:1153–1160, 2007.

[131] S. Jayaraman and C. North. A Radial Focus+Context Visualization for Multi-
Dimensional Functions. In Proceedings IEEE Visualization 2002, pages 443–450. IEEE
Computer Society, 2002.

131

BIBLIOGRAPHY

[132] D. H. Jeong, C. Ziemkiewicz, B. Fisher, W. Ribarsky, and R. Chang. iPCA: An Inter-
active System for PCA-based Visual Analytics. Computer Graphics Forum, 28(3):767
– 774, 2009.

[133] D. F. Jerding and J. T. Stasko. The Information Mural: A Technique for Displaying
and Navigating Large Information Spaces. IEEE Transactions on Visualization and
Computer Graphics, 4:257–271, 1998.

[134] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing Structure within Clustered
Parallel Coordinates Displays. In Proc. IEEE Symposium on Information Visualization
2005 (InfoVis 2005), pages 125 – 132, 2005.

[135] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing Structure in Visualizations
of Dense 2D and 3D Parallel Coordinates. Information Visualization, 5:125–136, 2006.

[136] S. Johansson and J. Johansson. Interactive Dimensionality Reduction Through User-
defined Combinations of Quality Metrics. IEEE Transactions on Visualization and
Computer Graphics, 15(6):993–1000, 2009.

[137] C. Johnson, A. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. Interactive Simulation
and Visualization. IEEE Computer, 32(12):59–65, 1999.

[138] I.T. Jolliffe. Principle Component Analysis. Springer-Verlag, New York, 1986.

[139] A. K. Karlson, G. Robertson, D. C. Robbins, M. P. Czerwinski, and G. Smith.
FaThumb: A Facet-Based Interface for Mobile Search. In Proc. of the SIGCHI Conf.
on Human Factors in Computing Systems (CHI ’06), pages 711–720. ACM, 2006.

[140] D. Kasik, D. Ebert, G. Lebanon, H. Park, and W. Pottenger. Data Transformations for
Computation and Visualization. Information Visualization, 8(4):275 – 285, 2009.

[141] T. A. Keahey and E. L. Robertson. Nonlinear Magnification Fields. In Proc. of the
1997 IEEE Symposium on Information Visualization (InfoVis ’97), pages 51–58. IEEE
Computer Society, 1997.

[142] J. Kehrer, P. Filzmoser, and H. Hauser. Brushing Moments in Interactive Visual Anal-
ysis. Computer Graphics Forum, 29(3):813 – 822, 2010.

[143] D. Keim. Designing Pixel-Oriented Visualization Techniques: Theory and Applications.
IEEE Transactions on Visualization and Computer Graphics, 6(1):59–78, 2000.

[144] D. Keim and H. Kriegel. VisDB: Database Exploration using Multidimensional Visu-
alization. IEEE Computer Graphics and Applications, 14(5):40–49, 1994.

[145] D. A. Keim. Datenvisualisierung und Data Mining. Datenbank-Spektrum, 2(2):30–39,
2002.

[146] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, editors. Mastering The
Information Age – Solving Problems with Visual Analytics. Eurographics, 2010.

[147] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler. Visual Ana-
lytics: Scope and Challenges. pages 76–90, Berlin, Heidelberg, 2008. Springer-Verlag.

132

BIBLIOGRAPHY

[148] Daniel A. Keim. Information Visualization and Visual Data Mining. IEEE Transactions
on Visualization and Computer Graphics, 8(1):1–8, 2002.

[149] R. Kincaid. SignalLens: Focus+Context Applied to Electronic Time Series. IEEE
Transactions on Visualization and Computer Graphics, 16:900–907, 2010.

[150] A. Kobsa. User Experiments with Tree Visualization Systems. In Proc. IEEE Sympo-
sium on Information Visualization 2004 (InfoVis 2004), pages 9–16. IEEE Computer
Society, 2004.

[151] T. Kohonen. Self Organizing Maps. Springer Verlag, 1995.

[152] R. Kosara. Semantic Depth of Field - Using Blur for Focus+Context Visualization.
PhD thesis, Vienna University of Technology, Austria, 2001.

[153] R. Kosara, F. Bendix, and H. Hauser. TimeHistograms for Large, Time-Dependent
Data. In Proc. of the 6th Joint IEEE TCVG - EUROGRAPHICS Symposium on Vi-
sualization (VisSym 2004), pages 45–54, 2004.

[154] R. Kosara, F. Bendix, and H. Hauser. Parallel Sets: Interactive Exploration and Vi-
sual Analysis of Categorical Data. IEEE Transactions on Visualization and Computer
Graphics, 12:558 – 568, 2006.

[155] R. Kosara, H. Hauser, and D. Gresh. An Interaction View on Information Visualization.
In Eurographics 2003 State-of-the-Art Reports, pages 123–137, 2003.

[156] R. Kosara, S. Miksch, and H. Hauser. Focus + Context Taken Literally. IEEE Computer
Graphics and Applications, 22(1):22–29, 2002.

[157] R. Kosara, G. Sahling, and H. Hauser. Linking Scientific and Information Visualization
with Interactive 3D Scatterplots. In Proceedings of the 12th International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG),
pages 133–140, 2004.

[158] M. Kreuseler, N. López, and H. Schumann. A Scalable Framework for Information Visu-
alization. In Proc. IEEE Symposium on Information Visualization 2000 (InfoVis 2000),
pages 27–38, 2000.

[159] M. Kreuseler, T. Nocke, and H. Schumann. A History Mechanism for Visual Data
Mining. In Proc. IEEE Symposium on Information Visualization 2004 (InfoVis 2004),
pages 49–56. IEEE Computer Society, 2004.

[160] H. Lam, T. Munzner, and R. Kincaid. Overview Use in Multiple Visual Information
Resolution Interfaces. IEEE Transactions on Visualization and Computer Graphics,
13:1278–1285, 2007.

[161] J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies. In Proc. of the ACM CHI ’95 Conf. on
Human Factors in Computing Systems, pages 401–408, 1995.

[162] C. Law, W. Schroeder, K. Martin, and J. Temkin. A Multi-Threaded Streaming Pipeline
Architecture for Large Structured Data Sets. In Proceedings IEEE Visualization ’99,
pages 225–232. IEEE Computer Society, 1999.

133

BIBLIOGRAPHY

[163] E. A. Lee. The Problem with Threads. IEEE Computer, 39(5), 2006.

[164] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D. Owens. Glift: Generic, Effi-
cient, Random-Access GPU Data Structures. ACM Transactions on Graphics, 25:60–99,
2006.

[165] Y. Leung and M. Apperley. A Review and Taxonomy of Distortion-Oriented Presen-
tation Techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160,
1994.

[166] A. Lex, M. Streit, E. Kruijff, and D. Schmalstieg. Caleydo: Design and Evaluation of
a Visual Analysis Framework for Gene Expression Data in its Biological Context. In
Proc. of the 2010 IEEE Pacific Visualization Symposium (PacificVIS ’10), pages 57 –
64, 2010.

[167] Z. Liu and J. Stasko. Mental Models, Visual Reasoning and Interaction in Informa-
tion Visualization: A Top-down Perspective. IEEE Transactions on Visualization and
Computer Graphics, 16(6):999 – 1008, 2010.

[168] Z. Liu, J. Stasko, and T. Sullivan. SellTrend: Inter-Attribute Visual Analysis of Tem-
poral Transaction Data. IEEE Transactions on Visualization and Computer Graphics,
15(6):1025 – 1032, 2009.

[169] J. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic Presentation for Visual
Analysis. IEEE Transactions on Visualization and Computer Graphics, 13:1137–1144,
2007.

[170] J. Mackinlay, G. Robertson, and S. Card. The Perspective Wall: Detail and Context
Smoothly Integrated. In Proceedings of ACM CHI’91 Conference on Human Factors in
Computing Systems and Graphics Interface, ACM SIGCHI, pages 173–176, 1991.

[171] D.L. Massart, J. Smeyers-Verbeke, X. Capron, and K. Schlesier. Visual Presentation of
Data by Means of Box Plots. Practical Data Handling, LCGC Europe, 18(4):215–218,
2005.

[172] The MathWorks. Matlab. http://www.mathworks.com/, Last visited on Feb. 17th
2010.

[173] K. Matkovic, H. Hauser, R. Sainitzer, and E. Gröller. Process Visualization with Levels
of Detail. In Proc. IEEE Symposium on Information Visualization 2002 (InfoVis 2002),
pages 67–70. IEEE Computer Society, 2002.

[174] K. Matkovic, M. Jelovic, J. Juric, and Z. Konyha. Interactive Visual Analysis and Ex-
ploration of Injection Systems Simulations. In Proc. of the IEEE Conf. on Visualization
2005, pages 391–398. IEEE Computer Society, 2005.

[175] T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-
Wesley Professional, 2004.

[176] P. McCormick and J. Ahrens. The Visualization Handbook, chapter Large-Scale Data
Visualization and Rendering: A Problem-Driven Approach, pages 533 – 550. Academic
Press, 2005.

134

BIBLIOGRAPHY

[177] J. A. McDonald, W. Stuetzle, and A. Buja. Painting Multiple Views of Complex Ob-
jects. SIGPLAN Not., 25(10):245–257, 1990.

[178] B. McDonnel and N. Elmqvist. Towards Utilizing GPUs in Information Visualization:
A Model and Implementation of Image-Space Operations. IEEE Transactions on Vi-
sualization and Computer Graphics, 15:1105–1112, 2009.

[179] A. Mead. Review of the Development of Multidimensional Scaling Methods. The
Statistician, 33:27–35, 1992.

[180] B. S. Michel and H. Zima. SC’08 Workshop: Bridging Multicore’s Programmability
Gap, 2008.

[181] MicroStrategy. MicroStrategy Reporting Suite. http://www.microstrategy.com/
software/businessintelligence/, Last visited on Feb. 3rd 2011.

[182] T. Mihalisin, J. Timlin, and J. Schwegler. Visualizing Multivariate Functions, Data,
and Distributions. IEEE Compututer Graphics and Applications, 11(3):28–35, 1991.

[183] S. Miksch, W. Horn, C. Popow, , and F. Paky. Utilizing Temporal Data Abstraction
for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants.
AI in Medicine, 8(6):543–576, 1996.

[184] S. Miksch, A. Seyfang, W. Horn, and C. Popow. Abstracting Steady Qualitative De-
scriptions over Time from Noisy, High-Frequency Data. In Proc. of the Joint European
Conf. on AI in Medicine and Med. Decision Making (AIMDM99), pages 281 – 290,
1999.

[185] D. C. Montgomery and G. C. Runger. Applied Statistics and Probability for Engineers.
Wiley, 2003.

[186] P. Muigg, J. Kehrer, S. Oeltze, H. Piringer, H. Doleisch, B. Preim, and H. Hauser. A
Four-level Focus+Context Approach to Interactive Visual Analysis of Temporal Fea-
tures in Large Scientific Data. Computer Graphics Forum, 27(3):775–782, 2008.

[187] T. Munzner. A Nested Model for Visualization Design and Validation. IEEE Transac-
tions on Visualization and Computer Graphics, 15(6):921–928, 2009.

[188] E. Nam, Y. Han, K. Mueller, A. Zelenyuk, and D. Imre. Clustersculptor: A Visual
Analytics Tool for High-Dimensional Data. In Proc. of the 2nd IEEE Symposium on
Visual Analytics Science and Technology (VAST 2007), pages 75–82. IEEE Computer
Society, 2007.

[189] United Nations. UN Millenium Goals. http://www.un.org/millenniumgoals/, Last
visited on Feb. 1st 2011.

[190] D. Nekrasovski, A. Bodnar, J. McGrenere, F. Guimbretière, and T. Munzner. An
Evaluation of Pan & Zoom and Rubber Sheet Navigation with and without an Overview.
In Proc. of the SIGCHI Conf. on Human Factors in Computing Systems (CHI ’06),
pages 11–20. ACM, 2006.

135

BIBLIOGRAPHY

[191] P. Neumann, S. Schlechtweg, and M. Carpendale. ArcTrees: Visualizing Relations in
Hierarchical Data. In Proc. of Eurographics / IEEE VGTC Symposium on Visualization
(EuroVis 2005), pages 53–60, 2005.

[192] C. North and B. Shneiderman. Snap-Together Visualization: A User Interface for
Coordinating Visualizations via Relational Schemata. In Proc. of the Working Conf.
on Advanced Visual Interfaces (AVI ’00), pages 128–135. ACM, 2000.

[193] B. Nouanesengsy, S. Seok, H. Shen, and V. Vieland. Using Projection and 2D Plots
to Visually Reveal Genetic Mechanisms of Complex Human Disorders. In Proc. of the
4th IEEE Symposium on Visual Analytics Science and Technology (VAST 2009), pages
171–178. IEEE Computer Society, 2009.

[194] M. Novotný and H. Hauser. Outlier-Preserving Focus+Context Visualization in Parallel
Coordinates. IEEE Transactions on Visualization and Computer Graphics, 12(5):893–
900, 2006.

[195] National Academy of Engineering. Grand Challenges For Engineering. http://www.
engineeringchallenges.org/cms/challenges.aspx, Last visited on Feb. 1st 2011.

[196] G. M. Olson, T. W. Malone, and J. B. Smith. Coordination Theory and Collaboration
Technology. Lawrence Erlbaum Assoc., 2001.

[197] J. K. O’Regan. Solving the Real Mysteries of Visual Perception: The World as an
Outside Memory. Canadian Journal of Psychology, 46:461–488, 1992.

[198] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell. A Survey of General-Purpose Computation on Graphics Hardware. Computer
Graphics Forum, 26(1):80–113, 2007.

[199] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
3rd edition, 2007.

[200] T. Pattison and M. Phillips. View Coordination Architecture for Information Visual-
isation. In Proc. of the 2001 Asia-Pacific Symposium on Information Visualisation -
Volume 9 (APVis ’01), pages 165–169. Australian Computer Society, Inc., 2001.

[201] W. Peng, M. O. Ward, and E. A. Rundensteiner. Clutter Reduction in Multi-
Dimensional Data Visualization Using Dimension Reordering. In Proc. IEEE Sympo-
sium on Information Visualization 2004 (InfoVis 2004), pages 89–96. IEEE Computer
Society, 2004.

[202] C. Plaisant, D. Carr, and B. Shneiderman. Image-Browsers: Taxonomy and Guidelines
for Designers. IEEE Software, 12:21–32, 1995.

[203] M. Plumlee and C. Ware. Integrating Multiple 3D Views through Frame-of-Reference
Interaction. In Proc. of the Conf. on Coordinated and Multiple Views In Exploratory
Visualization (CMV ’03), pages 34 – 43. IEEE Computer Society, 2003.

136

BIBLIOGRAPHY

[204] M. D. Plumlee and C. Ware. Zooming versus Multiple Window Interfaces: Cognitive
Costs of Visual Comparisons. ACM Transactions on Computer-Human Interaction,
13:179–209, 2006.

[205] K. Potter, J. Kniss, R. Riesenfeld, and C. Johnson. Visualizing Summary Statistics and
Uncertainty. Computer Graphics Forum, 29(3):823 – 832, 2010.

[206] International Social Survey Programme. National Identity II. http://zacat.gesis.
org, Last visited on March 21st 2011, 2003.

[207] R. Rao and S. K. Card. The Table Lens: Merging Graphical and Symbolic Representa-
tions in an Interactive Focus + Context Visualization for Tabular Information. In CHI
’94: Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 318–322, New York, NY, USA, 1994. ACM Press.

[208] C. K. Reddy, S. Pokharkar, and T. K. Ho. Generating Hypotheses of Trends in High-
Dimensional Data Skeletons. In Proc. of the 3rd IEEE Symposium on Visual Analytics
Science and Technology (VAST 2008), pages 139 – 146. IEEE Computer Society, 2008.

[209] G. Reina and T. Ertl. Volume Visualization and Visual Queries for Large High-
Dimensional Datasets. In Proc. of the 6th Joint IEEE TCVG - EUROGRAPHICS
Symposium on Visualization (VisSym 2004), pages 255–260, Konstanz, Germany, 2004.

[210] J. C. Roberts. Waltz - An Exploratory Visualization Tool for Volume Data, Using
Multiform Abstract Displays. In Visual Data Exploration and Analysis V, Proc. of
the Society of Photo-Optical Instrumentation Engineers (SPIE), pages 112–122. SPIE,
1998.

[211] J. C. Roberts. State of the Art: Coordinated & Multiple Views in Exploratory Visu-
alization. In Proc. of the Fifth International Conf. on Coordinated and Multiple Views
in Exploratory Visualization (CMV ’07), pages 61–71. IEEE Computer Society, 2007.

[212] G. Robertson, D. Ebert, S. Eick, D. A. Keim, and K. Joy. Scale and complexity in
visual analytics. Information Visualization, 8(4):247–253, 2009.

[213] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness of An-
imation in Trend Visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1325–1332, 2008.

[214] J. F. Rodrigues, A. Traina, and C. Traina Jr. Frequency Plot and Relevance Plot
to Enhance Visual Data Exploration. In Proc. of the XVI Brazilian Symposium on
Computer Graphics and Image Processing (SIBGRAPI 2003), pages 117 – 124, 2003.

[215] B. Sajadi, M. Lazarov, M. Gopi, and A. Majumder. Color Seamlessness in Multi-
Projector Displays Using Constrained Gamut Morphing. IEEE Transactions on Visu-
alization and Computer Graphics, 15:1317–1326, 2009.

[216] B. Sajadi and A. Majumder. Markerless View-Independent Registration of Multiple Dis-
torted Projectors on Extruded Surfaces Using an Uncalibrated Camera. IEEE Trans-
actions on Visualization and Computer Graphics, 15:1307–1316, 2009.

137

BIBLIOGRAPHY

[217] R. Sargent. Verification and Validation of Simulation Models. In WSC ’94: Proc. of
the 26th Conf. on Winter Simulation, pages 77–87. Society for Computer Simulation
International, 1994.

[218] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Ar-
chitecture, Volume 2, Patterns for Concurrent and Networked Objects. John Wiley &
Sons, 2000.

[219] J. Scholtz, K. A. Cook, M. A. Whiting, D. Lemon, and H. Greenblatt. Visual Analytics
Technology Transition Progress. Information Visualization, 8(4):294 – 301, 2009.

[220] T. Schreck, T. von Landesberger, and S. Bremm. Techniques for Precision-Based Visual
Analysis of Projected Data. Information Visualization, 9(3):181 – 193, 2010.

[221] E. Segel and J. Heer. Narrative Visualization: Telling Stories with Data. IEEE Trans-
actions on Visualization and Computer Graphics, 16:1139–1148, 2010.

[222] J. Seo and B. Shneiderman. A Rank-by-Feature Framework for Unsupervised Mul-
tidimensional Data Exploration Using Low Dimensional Projections. In Proc. IEEE
Symposium on Information Visualization 2004 (InfoVis 2004), pages 65–72, 2004.

[223] J. Seo and B. Shneiderman. Knowledge Discovery in High-Dimensional Data: Case
Studies and a User Survey for the Rank-by-Feature Framework. IEEE Transactions on
Visualization and Computer Graphics, 12(3):311–322, 2006.

[224] P. Shanbhag, P. Rheingans, and M. des Jardins. Temporal Visualization of Planning
Polygons for Efficient Partitioning of Geo-Spatial Data. In Proc. of Information Visu-
alization (IV’05), pages 211 – 218, 2005.

[225] B. Shneiderman. Tree Visualization with Tree-Maps: 2-d Space-Filling Approach. ACM
Trans. Graph., 11:92–99, 1992.

[226] B. Shneiderman. Dynamic Queries for Visual Information Seeking. IEEE Software,
11(6):70–77, 1994.

[227] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, page
336. IEEE Computer Society, 1996.

[228] M. Sifer. User Interfaces for the Exploration of Hierarchical Multi-Dimensional Data. In
Proc. of the 1st IEEE Symposium on Visual Analytics Science and Technology (VAST
2006), pages 175–182, 2006.

[229] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and
Hall, 1986.

[230] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting Good Views of High-
Dimensional Data Using Class-Consistency. Computer Graphics Forum, 28(3):831 –
838, 2009.

[231] A. Slingsby, J. Dykes, and J. Wood. Configuring Hierarchical Layouts to Address
Research Questions. IEEE Transactions on Visualization and Computer Graphics,
15(6):977–984, 2009.

138

BIBLIOGRAPHY

[232] H. S. Smallman, M. John, H. M. Oonk, and M. B. Cowen. Information Availability in
2D and 3D Displays. IEEE Compututer Graphics & Applications, 21:51–57, 2001.

[233] G. Smith, M. Czerwinski, B. Meyers, D. Robbins, G. Robertson, and D. S. Tan.
FacetMap: A Scalable Search and Browse Visualization. IEEE Transactions on Vi-
sualization and Computer Graphics, 12:797–804, 2006.

[234] R. Snee. Validation of Regression Models: Methods and Examples. Technometrics,
19(4):415–428, November 1977.

[235] Tableau Software. Tableau software. http://www.tableausoftware.com, Last visited
on March 21st 2011.

[236] R. Spence. Information Visualization: Design for Interaction (2nd Edition). Prentice-
Hall, Inc., 2007.

[237] R. Spence and M. Apperley. Data Base Navigation: An Office Environment for the
Professional. Behaviour and Information Technology, 1(1):43–54, 1982.

[238] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analysis, and Visual-
ization of Multidimensional Relational Databases. IEEE Transactions on Visualization
and Computer Graphics, 8(1):52–65, 2002.

[239] C. Stolte, D. Tang, and P. Hanrahan. Query, Analysis, and Visualization of Hierar-
chically Structured Data Using Polaris. In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 112–
122, New York, NY, USA, 2002. ACM Press.

[240] C. Stolte, D. Tang, and P. Hanrahan. Multiscale Visualization Using Data Cubes. IEEE
Transactions on Visualization and Computer Graphics, 9(2):176–187, 2003.

[241] M. C. Stone, K. Fishkin, and E. A. Bier. The Movable Filter as a User Interface
Tool. In Proceedings of the SIGCHI conference on Human factors in computing systems:
celebrating interdependence, CHI ’94, pages 306 – 312. ACM, 1994.

[242] M. Stonebraker and U. Cetintemel. One Size Fits All: An Idea Whose Time Has Come
and Gone. In Proc. of the 21st International Conference on Data Engineering (ICDE
’05), pages 2–11. IEEE Computer Society, 2005.

[243] E. Tanin, R. Beigel, and B. Shneiderman. Incremental Data Structures and Algorithms
for Dynamic Query Interfaces. SIGMOD Rec., 25(4):21–24, 1996.

[244] A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnork, and
D. Keim. Combining Automated Analysis and Visualization Techniques for Effective
Exploration of High-Dimensional Data. In Proc. of the 4th IEEE Symposium on Visual
Analytics Science and Technology (VAST 2009), pages 59–66. IEEE Computer Society,
2009.

[245] D. R. Tesone and J. R. Goodall. Balancing Interactive Data Management of Massive
Data with Situational Awareness through Smart Aggregation. In Proc. of the 2nd IEEE
Symposium on Visual Analytics Science and Technology (VAST 2007), pages 67–74.
IEEE Computer Society, 2007.

139

BIBLIOGRAPHY

[246] M. Theus. Interactive Data Visualization using Mondrian. Journal of Statistical Soft-
ware, 7(11):1–9, 11 2002.

[247] J. J. Thomas and K. A. Cook. Illuminating the Path: The Research and Development
Agenda for Visual Analytics. IEEE Computer Society, 2005.

[248] C. J. Thompson, S. Hahn, and M. Oskin. Using Modern Graphics Architectures for
General-Purpose Computing: A Framework and Analysis. In Proc. of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO 35), pages 306–
317. IEEE Computer Society Press, 2002.

[249] W. Tobler. A Computer Movie Simulating Urban Growth in the Detroit Region. Eco-
nomic Geography, 46(2):234 – 240, 1970.

[250] C. Tominski, J. Abello, and H. Schumann. Axes-Based Visualizations with Radial
Layouts. In Proc. of the ACM Symposium on Applied Computing 2004 (SAC’04), pages
1242–1247. ACM Press, 2004.

[251] C. Tominski, J. Abello, and H. Schumann. CGV – An Interactive Graph Visualization
System. Computers & Graphics, 33(9):660–678, 2009.

[252] M. Tory, A. E. Kirkpatrick, S. Atkins, and T. Möller. Visualization Task Performance
with 2D, 3D, and Combination Displays. IEEE Transactions on Visualization and
Computer Graphics, 12:2–13, 2006.

[253] T. Toutin. Qualitative Aspects of Chromo-Stereoscopy for Depth-Perception. Pho-
togrammetric Engineering & Remote Sensing, 63(2):193–203, February 1997.

[254] R. C. Tryon and D. E. Bailey. Cluster Analysis. McGraw-Hill, New York, 1973.

[255] Y. Tu and H. W. Shen. Balloon Focus: a Seamless Multi-Focus+Context Method for
Treemaps. IEEE Transactions on Visualization and Computer Graphics, 14:1157–1164,
2008.

[256] E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
CT, USA, 1986.

[257] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[258] L. Tweedie, R. Spence, H. Dawkes, and H. Su. Externalising Abstract Mathematical
Models. In CHI ’96: Proc. of the SIGCHI conference on Human factors in computing
systems, pages 406–412. ACM, 1996.

[259] F. van Ham, M. Wattenberg, and F. B. Viegas. Mapping Text with Phrase Nets. IEEE
Transactions on Visualization and Computer Graphics, 15:1169–1176, 2009.

[260] J. van Wijk. The Value of Visualization. In Proceedings IEEE Visualization 2005, pages
79 – 86. IEEE Computer Society, 2005.

[261] J. van Wijk and R. van Liere. HyperSlice: Visualization of Scalar Functions of Many
Variables. In Proc. of the 4th Conf. on Visualization, pages 119–125. IEEE Computer
Society, 1993.

140

BIBLIOGRAPHY

[262] J. van Wijk and E. van Selow. Cluster and Calendar Based Visualization of Time Series
Data. In Proc. IEEE Symposium on Information Visualization 1999 (InfoVis ’99), pages
4 – 9, 1999.

[263] J. J. van Wijk and W. A. Nuij. Smooth and Efficient Zooming and Panning. In Proc.
IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pages 15–22. IEEE
Computer Society, 2003.

[264] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. ManyEyes: A Site
for Visualization at Internet Scale. IEEE Transactions on Visualization and Computer
Graphics, 13:1121–1128, 2007.

[265] J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with Massive
Data. ACM Computing Surveys, 33:209–271, 2001.

[266] T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman, G. Marchand,
V. Mukherjee, and M. Smith. Temporal Summaries: Supporting Temporal Categori-
cal Searching, Aggregation and Comparison. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1049–1056, 2009.

[267] M. O. Ward. A Taxonomy of Glyph Placement Strategies for Multidimensional Data
Visualization. Information Visualization, 1(3/4):194–210, 2002.

[268] C. Ware. Information Visualization: Perception for Design, Second Edition. Morgan
Kaufmann, 2004.

[269] M. Wattenberg. Sketching a Graph to Query a Time-Series Database. In CHI ’01
extended abstracts on Human factors in computing systems, CHI ’01, pages 381 – 382,
New York, NY, USA, 2001. ACM.

[270] M. Wattenberg. Visual Exploration of Multivariate Graphs. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems 2006 (CHI 2006), pages 811–819.
ACM, 2006.

[271] M. Wattenberg and J. Kriss. Designing for Social Data Analysis. IEEE Transactions
on Visualization and Computer Graphics, 12(4):549 – 557, 2006.

[272] C. E. Weaver. Building Highly-Coordinated Visualizations in Improvise. In Proc. IEEE
Symposium on Information Visualization 2004 (InfoVis 2004), pages 159–166. IEEE
Computer Society, 2004.

[273] C. E. Weaver. Improvise: A User Interface for Interactive Construction of Highly-
Coordinated Visualizations. PhD thesis, University of Wisconsin - Madison, 2006.

[274] C. E. Weaver. Conjunctive Visual Form. IEEE Transactions on Visualization and
Computer Graphics, 15(6):929–936, 2009.

[275] C. E. Weaver and M. Livny. Improving Visualization Interactivity in Java. In Proc. of
Visual Data Exploration and Analysis. IS&T/SPIE, 2000.

[276] D. Weiskopf. GPU-Based Interactive Visualization Techniques. Springer, 2006.

141

BIBLIOGRAPHY

[277] L. Wilkinson. The Grammar of Graphics. Springer-Verlag New York, Inc., 1999.

[278] L. Wilkinson, A. Anand, and R. Grossman. Graph-Theoretic Scagnostics. In Proc. IEEE
Symposium on Information Visualization 2005 (InfoVis 2005), pages 21–28, 2005.

[279] B. Wylie and J. Baumes. A Unified Toolkit for Information and Scientific Visualization.
In Proc. of Visualization and Data Analysis (VDA), page 72430H. SPIE, 2009.

[280] D. Yang, E. A. Rundensteiner, and M. O. Ward. Analysis Guided Visual Exploration
of Multivariate Data. In Proc. of the 2nd IEEE Symposium on Visual Analytics Science
and Technology (VAST 2007), pages 83–90, 2007.

[281] J. Yang, A. Patro, S. Huang, N. Mehta, M. O. Ward, and E. A. Rundensteiner. Value
and Relation Display for Interactive Exploration of High Dimensional Datasets. In Proc.
IEEE Symposium on Information Visualization 2004 (InfoVis 2004), pages 73–80, 2004.

[282] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive Hierarchical Di-
mension Ordering, Spacing and Filtering for Exploration of High Dimensional Datasets.
In Proc. IEEE Symposium on Information Visualization 2003 (InfoVis 2003), pages
105–112, 2003.

[283] J. Yang, M. O. Ward, and S. Huang. Visual Hierarchical Dimension Reduction for
Exploration of High Dimensional Datasets. In Proc. of the 5th Joint IEEE TCVG -
EUROGRAPHICS Symposium on Visualization (VisSym 2003), pages 19 – 28, 2003.

[284] J. Yang, M. O. Ward, and E. A. Rundensteiner. InterRing: An Interactive Tool for Vi-
sually Navigating and Manipulating Hierarchical Structures. In Proc. IEEE Symposium
on Information Visualization 2002 (InfoVis 2002), pages 77 – 84, 2002.

[285] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interactive Hierarchical Displays: a
General Framework for Visualization and Exploration of Large Multivariate Data Sets.
Computers & Graphics, 27(2):265–283, 2003.

[286] J. S. Yi, Y. Kang, J. Stasko, and J. Jacko. Toward a Deeper Understanding of the Role
of Interaction in Information Visualization. IEEE Transactions on Visualization and
Computer Graphics, 13:1224–1231, 2007.

[287] B. Yost and C. North. The Perceptual Scalability of Visualization. IEEE Transactions
on Visualization and Computer Graphics, 12:837–844, 2006.

[288] L. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

[289] S. Zhao, M. J. McGuffin, and M. H. Chignell. Elastic Hierarchies: Combining Treemaps
and Node-Link Diagrams. In Proc. IEEE Symposium on Information Visualization 2005
(InfoVis 2005), pages 57–64. IEEE Computer Society, 2005.

[290] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen. Visual Clustering in Parallel Coordi-
nates. Computer Graphics Forum, 27(3):1047 – 1054, 2008.

142

