Aim and Scope of the Work

Today’s real-time applications, such as computer games or virtual environments, need to display more and more geometrically complex surfaces. Texturing mapping is insufficient to produce such high geometric complexity.

This thesis proposes a cell-based approach to model and render repetitive fine scaled details with a high visual quality providing local parallax, correct occlusions and convincing silhouettes. Since cell-based objects are displayed with a ray tracing sophisticated effects such as specular self-reflection and refraction are also possible to render.

Implementation 1: Silhouettes, Parallax and Self-Occlusions

A first hit rendering is performed to get the inside cell’s boundary to finally calculate a local illumination, such as phong shading.

Implementation 2: Specular Self-Reflection

Higher order rays are traversed to calculate specular self-reflection by using the law of reflection.

Implementation 3: Refraction

Refraction is calculated by traversing higher order rays based on Snell’s law.

Rendering

The precomputed cell-based objects are displayed with ray tracing. By rendering the basic mesh, the object’s surface is the entry point for the ray tracing algorithm. Rays are shot in eye direction to hit an inside cell’s boundary by performing a linear search with a subsequent binary search.

Conclusion

The new cell-based approach in combination with ray tracing opens new ways for rendering high frequent, repetitive, fine scaled details with a high visual quality. Further sophisticated effects such as self-shadowing, caustics, translucency, ambient occlusion and many more can be easily integrated into the cell-based ray tracer.

Contact

Marcel Nürnberg (marcel.nuernberg@chello.at)
Stefan Jeschke (jeschke@cg.tuwien.ac.at)
Michael Wimmer (wimmer@cg.tuwien.ac.at)