
DIPLOMARBEIT

Spectral Mipmapping

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Christian Niederreiter
Matrikelnummer 0726258

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuender Assistent: Dipl.-Ing. Dr.techn. Andrea Weidlich
Betreuer: Univ.Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer

Wien, 29.09.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien ⬝ Karlsplatz 13 ⬝ Tel. +43-1-58801-0 ⬝ www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Niederreiter
Eschenweg 4
4800 Attnang-Puchheim

Hiermit versichere ich, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig
angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und
Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent-
nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, am 29. September 2011

Christian Niederreiter

Der vorliegende Text ist auf Basis des LATEX-Templates zu [1] erstellt.
This text is based on the LATEX template of [1].

Abstract

Full-spectral color rendering capability of global illumination render-
ers is still in need of improvement, particularly regarding performance,
which is a reason why many modelling programs for global illumina-
tion are focused on three-component based color representation (e.g.
RGB). Full-spectral color representations are the basis for realistic
color appearance in realistic image synthesis. Currently, if compared
to common three-component rendering, the major disadvantage of full-
spectral rendering comes from higher computation costs because of
the greater amount of processed information. This thesis investigates
promising approaches of spectral color representation in the context
of a multi-level color rendering model called Spectral Mipmapping,
focused on the trade-off between time-efficiency and resulting image
quality in terms of perceived color difference. A test implementation
in a basic ray tracing renderer is used to evaluate results and make sug-
gestions concerning appropriate code design optimizations and spec-
tral sampling strategies. The influence of compiler optimization and
vector instruction use (based on SSE instructions) is discussed.

Kurzfassung

Die Fähigkeit zur Berechnung von Bildern unter Verwendung spek-
traler Farbrepräsentationen bei Programmen zur Abbildung global
beleuchteter virtueller Szenen ist noch immer verbesserungsbedürftig,
hauptsächlich betreffend die Berechnungsgeschwindigkeit. Dies ist ein
Grund weshalb viele Modellierungsprogramme auf dreikomponenten-
basierte Farbrepräsentation wie etwa RGB fokussiert sind. Spek-
trale Farbrepräsentationen sind die Basis für ein farblich realistis-
ches Erscheinungsbild. Der Hauptnachteil im Vergleich zu dreikom-
ponentenbasierter Farbrechnung (z.B. RGB) besteht im größeren
Rechenaufwand aufgrund der größeren Menge zu verarbeitender Infor-
mation. Die vorliegende Arbeit untersucht vielversprechende Ansätze
zur spektralen Farbrepräsentation im Rahmen eines mehrstufigen
Modells der spektralen Farbverarbeitung, genannt Spectral Mipmap-
ping, mit dem Schwerpunkt auf der Abstimmung von Zeiteffizienz und
Qualität des erzeugten Bildes im Hinblick auf den wahrgenommenen
Farbunterschied. Eine Testimplementierung in einem elementaren,
auf Strahlverfolgung basierenden Bildgenerator wird verwendet, um
Resultate zu bewerten und Ratschläge für eine passende Optimierung
des Quelltexts und eine geeignete spektrale Abtastung zu geben. Der
Einfluss von Compileroptimierung und der Verwendung von Vektor-
befehlen (anhand von SSE-Befehlen) wird diskutiert.

Acknowledgements

I would like to thank my supervising assistent Dr. Andrea Weidlich
for several ample introductory discussions and especially for volun-
tarily supporting my work after her change from the university to a
private corporation, and I thank my supervising professor Dr. Werner
Purgathofer for his organizational effort that arose from my master’s
thesis during its becoming.

Many thanks to my friends and family for their patience regarding my
long-standing inavailability during critical periods of my work.

Contents

1 Introduction 11
1.1 Domain Definition . 11

1.1.1 Realistic Image Synthesis . 11
1.1.2 Global Illumination . 11
1.1.3 Full-Spectral Rendering . 14

1.2 Objectives . 14
1.2.1 Essential Questions . 15

1.3 Notation Conventions . 15

2 State of the Art 17
2.1 Hardware and Software Optimization . 18
2.2 Perception and Color Reproduction . 19

3 Fundamentals 21
3.1 Perception, Color Spaces and Color Difference 21

3.1.1 Standard Colorimetric Observers . 23
3.2 Color Representations for Rendering . 25

3.2.1 Three Components compared to Full Spectrum 25
3.2.2 Full Spectrum Representations . 25

3.3 Code Optimization . 27

4 Preliminary Investigation 29
4.1 Mathematics of Light Distribution and Sampling 29

4.1.1 Observations in Time Domain concerning Color Difference 30
4.1.2 Observations in Frequency Domain concerning Color Difference 31
4.1.3 Color Multiplication and Color Difference 34

4.2 Evaluation of Alternatives to Plain Equidistant Sampling 38
4.2.1 Basis functions . 38
4.2.2 Composite Model . 39

5 Spectral Mipmapping 41
5.1 Resampling and Downsampling . 43

6 Implementation 45
6.1 The Renderer . 45

6.1.1 Description of the Minilight Ray Tracing Renderer 45
6.2 Adaptation of an RGB Renderer for Full-Spectral Rendering 47

6.2.1 Optimized Code Design . 47
6.2.2 Implementation of the Composite Model 49

9

6.2.3 Mipmapped Ray Tracing Pipeline with Level Feeler 51
6.2.4 Preprocessing . 52
6.2.5 Postprocessing . 53

7 Results 55
7.1 General Test Description . 55

7.1.1 Questions and Answers (regarding all tests) 56
7.1.2 Time Measurement . 56
7.1.3 Test Colors . 57

7.2 Tests . 57
7.2.1 Standard Cornell Box . 57
7.2.2 Colorful Scenes . 63
7.2.3 Color Difference Thresholds . 66
7.2.4 Operator Times . 69

8 Conclusion 73

A Color and Color Difference 75
A.1 Tonemapping . 75
A.2 Color-Matching Functions . 75
A.3 Spectra . 77

A.3.1 Light Source Spectra . 77
A.3.2 Reflector Spectra . 78

B Test Details 81
B.1 Test Design and Time Measurement . 81
B.2 Operating System, Compiler and Hardware 83

C Source Code Listings 85

List of Figures 88

List of Tables 90

Bibliography 91

10

Chapter 1

Introduction

1.1 Domain Definition

The considerations discussed in this work pertain to the area of realistic image synthesis,
which implies the use of global illumination techniques.

1.1.1 Realistic Image Synthesis

Realistic image synthesis is a long standing concern of computer graphics the objectives
and solutions of which developed in the past thirty years. The objective is to compute
photograph-like images of virtual threedimensional scenes that mimic real-world environ-
ments. The expected result is a deceptively real-looking picture, based on convincing light
propagation and color appearance. Furthermore, realistic image renderers are used in order
to visualize scenes which are impossible in the real world, such as illuminated fractal objects
[2] or cartoons, used for animations by the film industry.

Three selected examples for realistic image synthesis in practice:

• Render car paint [3].

• Render interior and exterior design [4].

• Landscape design [5].

1.1.2 Global Illumination

As opposed to “local illumination”, where surfaces are at least culled using a z-buffer, but
illuminated regardless of the physical influence of other, ambient surfaces, global illumination
renderers are at least equipped with the capabilities listed in table 1.1. Their mathematical
functioning is described by Kajiya’s Rendering Equation [6]:

I(x, x′) = g(x, x′)
[
ε(x, x′) +

∫
S
ρ(x, x′, x′′)I(x′, x′′)dx′′

]
(1.1)

11

Capability required for...
Light occlusion all scenes
Light reflection, indirect illumination all scenes
Light refraction transparent objects

Table 1.1: Global Illumination Basics.

The variables x, x′ and x′′ are points in the three-dimensional scene where x is the final
accumulation point of light collection, for instance a pixel on a two-dimensional image of the
scene and x′ a different point that may send energy (in the form of light) to the point x,
either by emitting light (amount defined by ε(x, x′)) or by transmitting/reflecting light from
all other sources in the entire scene x′′, accumulated by the integral term and scaled by the
function ρ(x, x′, x′′). In most cases, ρ acts as attenuator and g(x, x′) is 0 if x and x′ are
mutually invisible, otherwise it attenuates depending on the distance between them.

Ray Tracing and Radiosity are the fundamental techniques used for implementing global
illumination renderers and can be described in terms of the rendering equation.

Ray Tracing
(figure 1.1)

This technique simulates light propagation as described by the rendering equation along ran-
domly selected paths of photons. To avoid “photons” that miss the camera’s plane (final
image pixels), the paths are started at the pixels of the image (the 2D locations of which are
transformed to world space), instead of a light source, and to raise the number of light source
hits, the path may not only be randomly reflected or refracted but additionally branched di-
rectly to one of the light sources. In terms of the rendering equation, the x′′ variable is chosen
to be on a light source. Further improvements such as Photon Mapping can equip a ray tracer
with special capabilities for the efficient computation of caustics or diffuse interreflections.

Ray tracing implicitly delivers global illumination because of its lighting model that exhibits
similarities to physical light propagation. The scene geometry must be available in the form
of a data structure that allows for fast ray intersection in order to find reflecting and emitting
objects that contribute to the color of the resulting pixels. Hence, occlusion tests (and thus
shadows) are marginal, and indirect illumination is easily achieved by performing recursive
random reflections (in combination with direct emitter sampling). Recursive reflections are
described by the rendering equation’s recursive definition of I(x, x′′).

Radiosity

The concept behind the Radiosity technique [7] comes from heat propagation models. For
each pair of individual surfaces in a scene, so-called form factors are precalculated. Form
factors determine the exchange of energy between two surface patches if one of the patches
relays heat rays. They depend on the size of the patches and their relative orientation. For
computer graphics applications, this model can be applied on visible light rays instead of
heat rays, due to the fact that both are based on electromagnetic waves.

The investigations of this work are not focused on geometrical issues of light propagation,

12

 First Hit

Recursion

Pixel
Plane

 Emitter
Sampling

 Russian
Roulette

Termination

Camera

Reflector & Emitter

Reflector

Reflector
Reflector

g(x,x')=1

x

x'
ϵ(x,x')=0

ϵ(x',x")

x"

ρ(x,x',x")

Figure 1.1: Light Transport in a Ray Tracer.

therefore it can easier be emulated using a simple ray tracer instead of a radiosity renderer.
Therefore, a radiosity implementation is not regarded. However, the results produced in the
course of this work are useful for radiosity renderer implementations as well.

Refraction and Reflection of Light

The light reflection and refraction behavior is defined for each surface in the form of a bidi-
rectional reflectance distribution function (BRDF). The basic concepts of bidirectional re-
flectance are described in detail by [8]. Light rays that hit an object’s surface are redirected
by the surface. The simplest BRDFs are the BRDF of a mirror and the BRDF of an ideal
diffuser. The former redirects the light ray to a particular direction exactly defined by the
ray’s incidence direction relative to the surface. In contrast, the latter redirects the light
ray into an arbitrary direction, independent of its origin. In principle, ray tracing based
global illumination renderers are capable of emulating both specular and diffuse BRDF light
reflections, as well as refraction (in contrast, a pure radiosity renderer is limited to diffuse
reflection).

13

1.1.3 Full-Spectral Rendering

z(λ)¯

y(λ)¯ x(λ)¯

Figure 1.2: Spectral Colors with Color Matching Functions (see section 3.1.1).

Unlike frequently-used three-component based global illumination software that is primarily
designed to operate on RGB colors (e.g. Blender [9]), a full-spectral renderer is focused on
a physically based lighting model. For instance, the core of LuxRender [10] is capable of
full-spectral rendering color computations. Light propagation computations are performed
on digital representations of entire color spectra, which carry considerably more information
than three-component colors. This allows for a physically correct simulation of light-surface
interactions and physically-correct appearance, in particular if two or more light sources with
different spectra illuminate a surface. The major disadvantage of full-spectral rendering are
higher computation costs because of the higher amount of processed information. Even with
modern hardware, global illumination in general is extremely time-consuming and rendering
a complex scene can take several hours or even days. Therefore, a full-spectral rendering
implementation should not introduce considerably more computation costs.

This work investigates methods of optimizing full-spectral color computations using a new
approach called Spectral Mipmapping.

Spectral Color Input Spectral

Renderer
*(Scene Colors)

Spectral Color Output
(Image Colors)

Figure 1.3: Full-Spectral Renderer.

1.2 Objectives

The task underlying this master’s thesis is to research approaches of making spectral color
operations in a full-spectral renderer faster. This requires a controlled reduction of accuracy

14

in order to find a reasonable trade-off between accuracy and speed. The number of floating
point values representing a scene’s color spectra is to be minimized and thereby, the quality
of the rendered image, as perceived by the human standard observer, must not be influenced.

Spectral Mipmapping is a promising approach because it basically enables the renderer to find
an individual accuracy versus speed trade-off for each light ray, depending on the spectra the
light ray collects during its lifetime. Based on a test implementation, the capability of Spectral
Mipmapping is to be investigated.

1.2.1 Essential Questions

Essential questions that are to be answered in the course of the master’s thesis:

• Which kinds of spectral color representations are suited for a full-spectral renderer?

• Can the computer reliably guess the parameters that are necessary for an optimal
trade-off between time-efficiency and accuracy?

• Which speed improvements can be accomplished?

• How does the availability of optimization techniques influence the usefulness of promis-
ing spectral color representations?

• What must be regarded if a conventional three-component raytracer is to be prepared
for full-spectral rendering and Spectral Mipmapping?

1.3 Notation Conventions

Vectors are stated either in the form of n × 1 matrices or in the form transposed 1 × n
matrices. Vector symbols are bold. Unit vector example:

v =

1
1
1

 =
(
1 1 1

)T

Colors are either spectra in the visible wavelength range (“spectral color representation”)
or metamer classes (“three-component color representation”). Three-component colors are
specified in the form of R3 vectors.

Scalar Operations are multiplications or additions of two real numbers, i.e. numbers
a, b ∈ R (floating-point numbers).

15

16

Chapter 2

State of the Art

Johnson and Fairchild [11] comment on the necessity of full-spectral color calculations.

Leading rendering software for realistic image synthesis is primarily focused on three-
component (RGB) color rendering, although, for example, the core of LuxRender [10] can
operate on full-spectral colors. If one decides to equip an RGB-only renderer with full-spectral
rendering capability, very likely considerable parts of the core source code need to be rewrit-
ten in order to allow for efficient color operations, as the adaptation of the Minilight ray
tracer this thesis is based on indicates.

Spectral Color Representations Several mathematical methods exist for constructing
compressed representations of spectral information. (In fact, a certain amount of information
reduction always comes along with compression of spectral data.) Basic but not necessarily
effective methods such as point sampling, riemann summation or gaussian quadrature are dis-
cussed in various papers, for instance [12], [13], [14]. In the chapter Spectrum Decomposition
and Reconstruction of the comprehensive reference book Computational Color Technology
[15], its author points out that few components (scalar real numbers) are found to be suf-
ficient to accurately represent various lights or reflectance spectra. A full-spectral renderer
may benefit from the reduced memory consumption if the spectrum is suchlike compressed,
in particular when color representations are to be copied between memory locations during
the rendering process, provided that they do not complicate other essential color operations,
in particular light-surface reflection multiplications. Many application areas in the domain of
color-image processing, such as color transformation, white-point conversion and chromatic
adaptation are cited, but the usefulness in full-spectral renderers is not treated.

A sophisticated approach for compressing spectral color information has been proposed by
Sun [16]. The so called Composite Model splits the spectrum into a smooth part and a spiky
part, a hybrid representation of spiky spectra. Wilkie [17] argues that the special treatment
of added-on spikes in this hybrid approach makes computation more complicated. They
advocate the use of evenly-spaced sampling only. Both approaches, evenly-spaced sampling
only as well as the Composite model are investigated in the course of this thesis.

17

2.1 Hardware and Software Optimization

Recent successors of the Intel 8086 processor are equipped with an increasing number of
performance-optimizing extensions. Extensions such as MMX, SSE or 3DNow! turn an
SISD x86 CPU more or less into an SIMD CPU [18]. SISD is the abbreviation for single-
instruction stream–single data-stream, which basically means that data is processed in series
on a single core CPU. SIMD extensions (SIMD stands for single-instruction stream–multiple
data-stream) introduce machine instructions that allow for simultaneous execution of basic
operations (such as copy operations or arithmetic operations).

Modern PCs that are qualified for computer graphics tasks are usually equipped with a pow-
erful graphics processing unit (GPU) that is specialized in floating point operations. Recent
GPUs provide SIMD architectures and through CUDA [19] or OpenCL [20] they can be uti-
lized for costly general purpose processing that was otherwise done by the CPU. Suchlike
GPUs are called GPGPU (general purpose graphics processing unit). GPGPU processing
can particularly be useful for realistic image synthesis, for instance to do parallel light prop-
agation calculations inside a raytracing algorithm. OpenCL allows for heterogeneous com-
puting using all general purpose processing units that are part of the system. Unlike CUDA,
OpenCL programs are portable between arbitrary hardware platforms that support OpenCL
and therefore a seminal quasi-standard.

SIMD CPU or GPGPU instructions can make a full-spectral renderer that deals with equidis-
tant spectral samples considerably faster, because multiple samples can be handled in parallel.

Many performance-enhancing programming techniques have been proposed that allow for
software optimization focused on hardware, one of them is building loops so that they
can be unrolled by the compiler as illustrated in figure 2.1. The second step can be the
compiler-controlled grouping of successive operations in the form of SIMD vector operations.
Performance-enhancing techniques should definitely be taken into account as soon as possi-
ble when attempts are made to improve a full-spectral renderer, because they can affect a
program’s design. A comprehensive range of publications that cover basic concepts as well
as various treatments of particular use cases is available these days, for instance [21].

*
* *

*
*

*

n

0

* n-1

*
*
*
*

*

*

4

4

0

n/4-1

Figure 2.1: Frequently applied Optimizations: Loop Unrolling and Vector Operations.

18

2.2 Perception and Color Reproduction

The human visual system and appropriate color representations are described in the book
Color Science [22]. It is a comprehensive reference work that explains basic principles, pro-
vides useful data tables and describes how to estimate perceived color differences. However,
the integrity of this work should not hide the fact that the human visual system is still not
entirely understood, and will probably never be, because the human brain plays an important
role in perception models and is only coarsely understood these days due to its complexity.
This complexity is also reflected in the ongoing sophistication of the CIE color difference
formula and its imperfectness [23].

The manufacturers of color displays and printing devices are still constrained to rely on the
fact that metameric colors possessing different spectra share the same appearance under the
same illumination conditions, and mix few predefined colors in order to produce arbitrary
color impressions.

A color the spectrum of which is known can be accurately transformed into the corresponding
metamer produced by tristimulus color mixing through known computational algorithms
(given that the result is viewed by the standard observer). For verification purposes it must
also be possible to perform color comparisons. Perceived chromatic and intensity abberations
are to be estimated computationally. Therefor, uniform color spaces have been created and
standardized. Anyhow, color difference formulas, which are based on such uniform color
spaces, are still not fully developed. Nevertheless they are very useful and either already
standardized or available in the form of a draft publication.

19

20

Chapter 3

Fundamentals

3.1 Perception, Color Spaces and Color Difference

Young-Helmholtz Theory The most important color space in the computer graphics
area is the RGB color space: Based on the Young-Helmholtz theory of the trichromacy of
color, arbitrary human-visible colors can be produced by adding or subtracting the so-called
primary colors red, green and blue, which correspond to three types of photoreceptors that
are sensitive to long-wave, middle-wave and short-wave light.

R

G

B

a
b

c
d

Δab

Δcd

a*

L*

b*

e
f

g
h

Δef

Δgh

Trichromatic
Color Space

Uniform
Color Space

Figure 3.1: 3D plots of a trichromatic color space and a uniform color space.

Opponent-Colors Theory The Young-Helmholtz theory by itself is not sufficient to ex-
plain the perception of color differences: Trichromatic color spaces are not suited for straight-
forward estimation of perceived difference between two colors. If the trichromatic represen-
tations of four different colors a, b, c, d are plotted in an orthogonal coordinate system as
shown in the left part of figure 3.1, the perceived distances between the colors in the pairs
(a,b) and (c,d), ∆Eab and ∆Ecd, are not necessarily equal even if the euclidean distances
∆ab and ∆cd are. Uniform color spaces are an approach of converging euclidean distances
to perceived distances. Since such a convergance cannot be achieved in a trichromatic color
space, uniform color spaces rely on additional findings that were at first considered to be
incompatible with the Young-Helmholtz theory: Ewald Hering proposed the opponent-colors

21

red yellow
yellow green
green blue
blue red

Table 3.1: Opponent colors.

L* black light
a*/u* red green
b*/v* yellow blue

Table 3.2: L*u*v*/L*a*b* brightness and color pairs.

theory. According to this theory, the color pairs listed in table 3.1 are mixed in the form of
opposite neural signals in the human visual system, which produces the actual intermediate
hue impressions.

Zone Theory Zone theories assumes that both, the Young-Helmholtz theory as well as the
opponent-colors theory apply to the human visual system, in two successive zones:

Zone 1 Young-Helmholtz trichromatic input photopigments of cones (eye)
Zone 2 opponent-colors coding of cone signals neural network

Zones 3...? assumed to exist

In the CIELUV/CIELAB color spaces (L*u*v*/L*a*b*), which are based on a zone theory,
the color pairs of the original opponent-colors theory appear in a condensed form, supple-
mented by a brightness component (L*). Table 3.2 lists the brightness and color pairs. The
mathematical differences between CIELUV and CIELAB are shown by [24], [22] and colored
illustrations are provided by [25].

For the colors e, f , g, h plotted in figure 3.1, the following reasoning applies as opposed to
a, b, c, d:

e =
(
L∗e a∗e b∗e

)T
, f =

(
L∗f a∗f b∗f

)T
, g =

(
L∗g a∗g b∗g

)T
, h =

(
L∗h a∗h b∗h

)T

∆ef = ‖f − e‖ =
√

(∆L∗ef)2 + (∆a∗ef)2 + (∆b∗ef)2 (3.1)

∆gh = ‖h− g‖ =
√

(∆L∗gh)2 + (∆a∗gh)2 + (∆b∗gh)2 (3.2)

The CIE 1976 color difference formulae are defined as follows:

∆E∗uv =
√

(∆L∗)2 + (∆u∗)2 + (∆v∗)2 (3.3)

∆E∗ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (3.4)

The right sides of equations 3.1, 3.2 and 3.4 are basically the same, therefore:

∆E∗ab,ef = ∆ef , ∆E∗ab,gh = ∆gh

22

From this point of view, the L*a*b* color space can be used as straightforward as possible:
The color difference is always equal to the euclidean distance of the three components. But
recent refinements of the color difference formula clearly point up that this estimation is only
a coarse approximation of the much more complex real perception system, i.e. the L*u*v*
and L*a*b* color spaces are actually not uniform in terms of their use as color difference
estimators.

The CIEDE2000 color difference formula is a very complex set of formulae if applied on colors
that are given in the form of L*a*b* components. Several precalculations [26] prepare the
parameters for the final main formula which is defined as follows:

∆E00 =

√(∆L′
KLSL

)2
+
(∆C ′
KCSC

)2
+
(∆H ′
KHSH

)2
+RT

(∆C ′
KCSC

)(∆H ′
KHSH

)
(3.5)

The input parameters of the precalculations are the L*a*b* components of the colors that
are to be compared. In fact, the precalculations transform them into a completely different
color space that is reflected in the three quadratic terms of the main formula:

∆L′ Lightness difference, equals ∆L∗.

∆C ′ Chroma (saturation), ruled by the magnitudes (pos./neg.) of a∗ and b∗.

∆H ′ Hue difference: roughly the 2D orientation on the a∗, b∗ plane.

A C++ implementation of the CIEDE2000 color difference calculation is provided in the
appendix. Implementation notes can be found in [26] and [23] discusses mathematical dis-
continuities in the formulae.

However, figure 3.2 suggests that even the euclidean distance is still sufficient for many
applications, because the resulting difference value is always more conservative (higher) than
the CIEDE2000 result for the same color pair. The diagrams show the estimated color
difference (ordinate) plotted against changed L∗, a∗ and b∗ values of the compared colors,
which are varied in the range −150.0...150.0 (abscissae). The test source code is listed in the
appendix. Even if all 3 components are arbitrarily different, the ∆E00 value will be below
the ∆E∗ab value, and near 0 they converge. Therefore use of the euclidean distance might be
favored over the CIEDE2000 formulae particularly in time-critical applications if the accuracy
of high difference estimations is of little importance.

Further information regarding color perception and color difference can be found in [27], [24],
[22], [28].

3.1.1 Standard Colorimetric Observers

This section gives a brief review of the pioneering experiments that were conducted in order
to scientifically describe the nature of perceived colors and how the XYZ color space was
created. The facts are extracted from Wyszecki and Stiles [22].

CIE 1931 Standard Colorimetric Observer The Commission Internationale de
l’Eclairage, CIE, played the major role in defining standards regarding the link between elec-
tromagnetic waves and perceived appearance. The basis for this link was created by Guild
and Wright in the first half of the 20th century, who independently performed color matching

23

a

-150
-100

-50
0

50
100

150

-150 -100 -50 0 50 100 150

0

50

100

150

200

250

300

'./ciede2000.txt'
'./simple.txt'

b

-150
-100

-50
0

50
100

150

-150 -100 -50 0 50 100 150

0

50

100

150

200

250

300

'./ciede2000.txt'
'./simple.txt'

c

-150
-100

-50
0

50
100

150

-150 -100 -50 0 50 100 150

0

50

100

150

200

250

300

'./ciede2000.txt'
'./simple.txt'

Figure 3.2: CIEDE2000 (red dots) compared to Euclidean (CIE 1976) Perceived Color Dif-
ference (black dots) plotted against L∗ (plot a), a∗ (plot b), b∗ (plot c).

experiments with two different trichromatic colorimeters. They presented monochromatic
light stimuli in the wavelength range from 400 to 700 nanometers to a couple of observers
(Guild: 7 observers, Wright: 10 observers) who had to match them by adjusting three pri-
mary lights. Wright used monochromatic primaries having wavelenghts of 460 (blue), 530
(green) and 650 (red) nanometers, respectively (Guild produced wavelength bands by filtering
the light of an incandescent tungsten lamp). The intensities of the adjusted primary lights
were recorded for each of the presented stimuli and can be plotted in a wavelength/intensity
diagram in the form of three curves, known as color-matching functions (curves in figure 1.2
in the introduction). Guild transformed his and Wright’s results to a common system in
order to define a “standard observer”, the CIE 1931 Standard Colorimetric Observer (thus,
the average of overall 17 human observers), the basis for applied colorimetry since 1931.

CIE 1964 Supplementary Standard Colorimetric Observer The color-matching
functions of this standard observer are defined in a wider wavelength range (360 to 380
nanometers). It is intended for use when the colors of large angular areas are in question.

The color-matching functions are smooth curves, defined in the form of 1nm equidistant
samples (for practical reasons). For computational reasons, negative chromaticity coordi-
nates were undesirable. In order to avoid them, the CIE invented new (imaginary [22])
primary stimuli X, Y and Z that allow for non-negative color-matching functions. The orig-
inal trichromatic system invented by Guild and Wright can be transformed into the XYZ
system and back simply by applying a threedimensional transformation matrix.

The CIE 1931 color-matching functions x̄(λ), ȳ(λ) and z̄(λ) are listed in appendix A.

24

3.2 Color Representations for Rendering

3.2.1 Three Components compared to Full Spectrum

In Computer Graphics, colors are usually represented by three components, namely red,
green and blue, short hand RGB, that are stored in the form of three integer or floating point
values. The red, green and blue components are mixed by synchronous presentation on a
small surface patch in order to produce most of the colors the human visual system is able
to distinguish (visible colors within the RGB/CMY/... gamut of the device).

Three-component color representations are perception-based and therefore they solely carry
the information required to describe the colors that can be distinguished by the human visual
system. In fact, they exploit the nature of metamerism.

Metamerism Two light sources with different spectra may possess equal appearance. This
also applies to the reflectance of surfaces if the illuminator spectrum is left unchanged.

Metamerism is one reason why the usefulness of three-component colors in physically-based
rendering tasks is limited compared to color representations that preserve most of the available
information, ideally the power intensity at each visible wavelength. A further reason is
introduced if realistic wavelength-dependent refraction effects and fluorescence effects are of
major importance. Table 3.3 lists the major limits of three-component rendering.

Rendering Operation RGB/Three Components
Additive Color Mixing sufficient
Reflection can be sufficient in case of a single light source
Refraction, Fluorescence Effects realistic simulation impossible

Table 3.3: Three Component Rendering Constraints.

3.2.2 Full Spectrum Representations

Three different characteristics of spectra can be observed:

Type A: Wavy Spectrum with Noise Possesses waves having turbulent shape, for in-
stance the spectrum of daylight [22].

Type B: Smooth Wavy Spectrum Typically feature one major maximum and different
intensity levels dependent on the wavelength. They may result from the sketchy re-
construction of a type A spectrum (for example if measured using a spectrophotometer
device).

Types A+S/B+S: Spiky Spectrum Possesses steep gradients at certain wavelength
ranges. Spikes of fluorescent lamps occupy wavelength ranges of less than 10 nm.
Often, spiky spectra possess a type A or B part that is obviously independent of the
spikes.

Ideal Spectrum Representation A spectrum is completely represented in the visible
range by a function f(λ), λ ∈ R, defined in the interval [λvisible,min, λvisible,max], which is the
range of human-visible wavelengths of light.

25

Because of the huge amount of data, it is impractical to store a color spectrum in this form.

Spectrophotometer Spectra
Database

Emitted
or Reflected

Electromagnetic
Waves

3 Component

Representation

RGB

XYZ

...

Algorithm that tries to guess

the original spectral

intensity distribution

Spectral
Renderer

λ

Point
Sampling

*

Figure 3.3: Acquisition of Spectral Data for Rendering.

Real Spectrum Representation Spectral color representations can be synthesized, but
in most cases they stem from databases or they are measured from in-house patterns, using
a spectrophotometer device. A spectrophotometer usually samples the color of (reflected)
light in equidistant wavelength intervals, for instance 10nm. Although this results in less
than 50 intensity samples, for most spectra only a negligible amount of information is lost.
The resulting representation is a point sampled spectrum. A spectrophotometer can either be
monochromatic or multichromatic, for instance in the form of an image scanner to generate
spectral-colored textures or in the form of a camera.

Area Preserving Sampling Using the same number of samples, more accuracy can be
achieved if, instead of point sampling, the surroundings of the sample wavelength are regarded
by integrating the intensities in the surrounding wavelength range. For instance, to calculate
the average intensity round 650nm, assumed the sampling interval is 10nm,

∫ 655
λ=645 f(λ)dλ is

the recommended computation. Then possible peaks between 645nm and 650nm and between
650nm and 655nm are, as opposed to point sampling, not dropped but incorporated into the
total value of the sample. The area formed by the wavelength interval and the intensities
is preserved. The ranges beyond 645nm and 655nm contribute to the neighboring samples
at 640nm and 660nm, respectively. Area preserving sampling should be used whenever a
spectrum is to be resampled (resampling is discussed in section 5.1).

26

RGB devices can produce most of the colors the human visual system can distinguish. But
real colors contain a good deal more information than three floating point values may store.
They are mixtures of electromagnetic waves with different amplitudes that possess virtually
infinite different light wave frequencies/wavelengths. Thus, assumed that no simplifications
can be applied (this is discussed in the following chapter), huge arrays of floating point values,
where successive floating point values represent the energy of successive wavelength ranges
in the spectrum, are necessary to precisely store arbitrary natural color spectra on a digital
device.

3.3 Code Optimization

Since a global illumination renderer is a CPU-bound (or GPU-bound) process, code and
compiler optimizations, ideally adapted to specific capabilities of the target processor, are of
vital importance in order to provide time efficiency.

Many performance optimization recommendations and techniques can be found in literature.
Besides inlining and cache-friendly programming, three of them are of primal importance
(provided that C++ is used for programming):

• Avoid unnecessary copies.

• Prefer stack allocations over heap allocations or use a memory pooling technique.

• Allow for (or apply) loop optimizations and the use of vectorization.

Stalls and Branches Modern CPUs preload instructions into their processing pipeline.
Branches in the machine code can lead to preloaded instructions that must be descarded
because of a decision for a branch that does not use the instructions. This is called a pipeline
stall. Thus, branches are precarious constucts and should be avoided if they are not really
required.

Where branches cannot be avoided, they can be optimized by the use of jump tables if switch
statements are used. A jump table uses the switch case integers as indices und provides
addresses for further code executions. This minimizes the costs of condition testing. However,
this does not combat pipeline stalls.

Loop Optimization A full-spectral renderer inherently requires loops with a considerable
control overhead compared to the loop body for color processing. The individual loop itera-
tions are usually independent of each other and the number of iterations is not unpredictable.
The compiler is usually capable of detecting these conditions if the source code is written
properly (for instance, the count number of a for loop should be an integer literal or constant).
To reduce the loop overhead, the compiler can put several iterations into a single iteration to
be serially performed or in parallel using SIMD instructions (this may require a compiler flag,
for example -msse if G++ should apply SSE instructions). To force the complete elimination
of loop overhead by entirely unrolling a loop, the loop may need to be unrolled manually. But
afterwards the resulting machine code instructions should be examined in order to estimate
whether they will fit into the instruction cache of the processor.

27

28

Chapter 4

Preliminary Investigation

4.1 Mathematics of Light Distribution and Sampling

This section discusses the expected influence of the interaction of sampling and light dis-
tribution on the difference d(sr1 , sr2) between the reconstructions of two sample representa-
tions sr1(i) and sr2(j) of a spectrum, sampled at different rates r1 6= r2, i ∈ {1, 2, 3, ..., n1},
j ∈ {1, 2, 3, ..., n2}, n1 6= n2, in a global illumination renderer.

The following operations are integral parts of a global illumination renderer:

Scaling used for attenutation (e.g. dependent on the angle of incidence of a light ray)

Multiplication used for reflection (light-surface interaction)

Addition used for power accumulation (pixel color)

They are the fundamental operations of light distribution.

Renderer as Digital Signal Processor The question how sampled light and reflection
spectra interact with applying these operations can be answered using the signal theory: A
plotted light spectrum can be regarded as an electronic signal simply by changing the meaning
of the wavelength axis. The intensities at different wavelengths change to the intensities at
consecutive points in time, then the plotted spectrum has the meaning of an oscillogram. The
oscillogram shows the sum of the signal’s oscillations. Actually each signal is a composition
of up to infinite different sine and cosine oscillations. Each of these oscillations has a unique
frequency and the corresponding wavelength. For the rest of this section, the terms frequency
ω and wavelength λ are defined as follows:

Frequency ω frequency of a signal oscillation (i.e. not the reciprocal of photometric wave-
length)

Wavelength λ photometric wavelength (= signal time)

A photometric spectrum only carries a finite amount of information, a sampled spectrum
no more than the information of its samples (usually floating-point numbers). Therefore,
the number of oscillations is also a finite number and the signal is bandlimited at fmax, the
maximum frequency that is part of the oscillation frequencies. Furthermore, the signal’s
appearance beyond the limits of the visible range is irrelevant and usually unknown if human

29

individuals are the final information receivers. Thus, it might recur beyond those limits and
so it can be considered to be a periodic function.

Since the wavelength axis is the equivalent of a signal plot’s time axis, a light spectrum is a
periodic function of time if it is regarded in time domain.

4.1.1 Observations in Time Domain concerning Color Difference

Scaling on Sampled Spectrum/Signal

tr1(i) = sr1(i) ∗ a

tr2(i) = sr2(i) ∗ a

Scaling changes the intensities and does not distort the signal. In the case of attenuation
(scaling factor < 1.0) the color difference is expected to decrease: d(tr1 , tr2) < d(sr1 , sr2).
From this point of view this operation is unproblematic and will not further be examined.

Multiplication of Sampled Spectra/Signals

tr1(i) = sr1(i) ∗ ar1(i)

tr2(i) = sr2(i) ∗ ar2(i)

Multiplication of two spectra corresponds to an amplitude modulation of two signals: One
signal modulates the other and the result is a distortion of the modulated signal. If two slopes
that are within the same time range in both spectra and the gradients of the slopes both
point up or down, the resulting slope will be steeper which might require a higher sampling
rate to avoid d(tr1 , tr2) > d(sr1 , sr2). This problem is discussed in the next section with the
aid of the Fourier transform.

Addition of Sampled Spectra/Signals

tr1(i) = sr1(i) + ar1(i)

tr2(i) = sr2(i) + ar2(i)

Addition also leads to a result the shape of which differs from the shapes of sr1(i) and ar1(i).

How this affects d(tr1 , tr2)
d(sr1 , sr2) and d(tr1 , tr2)

d(ar1 , ar2) respectively is discussed in the next section.

30

4.1.2 Observations in Frequency Domain concerning Color Difference

To examine a sampled signal s(i) in frequency domain, it is to be transformed using the
Discrete Fourier Transform. Because light spectra can be regarded as periodic functions, the
following formula applies to the continous reconstruction of the spectrum f(t) = reconst(s):

f(t) = a0
2 +

∞∑
ν=1

(aν cos νω0t+ bν sin νω0t) (4.1)

(formula 4.1 copied from [29])

The index ν is increased in integer steps. The coefficients aν and bν describe the amplitudes
of oscillations that form the signal. They can be calculated using the sampled signal.

n ... number of samples
ω0 = 2π

n

aν =
n∑
i=1

s(i) cos νω0 (4.2)

bν = −
n∑
i=1

s(i) sin νω0 (4.3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

20

40

60

80

100

120

140

160

180

I

ν = 0 10 20 30 40 50 60 70 80 90

-60

-40

-20

0

20

40

60

80

100

120

a
b

Figure 4.1: Sampled Green Light Spectrum and its Fourier Coefficients.

Figure 4.1 shows the fourier coefficents of an arbitrarily chosen spectrum’s signal. The bars
in the lower diagram represent the oscillations that contribute to the signal: The abscissa

31

(horizontal) shows the values of ν which correspond to the oscillation frequency, and the ordi-
nate (vertical) shows the amplitude (absolute value of the oscillation’s maximum/minimum).
The information represented by the lower diagram is a complete representation in frequency
domain of the sampled signal.

The leading bar represents the signal’s constant component (ω = 0), the further bars cosine
and sine frequencies of νω0. Noticeable tendency: the higher the frequency the lower the
amplitude. Amplitudes beyond ν = 10 almost disappear. The recurrence of amplitudes
round ν = 36 can be explained using Shannon’s Sampling Theorem.

Shannon’s Sampling Theorem

A time function f(t) is uniquely defined by a set of equidistant samples if it is bandlimited
at ωmax (oscillations having ω > ωmax filtered) and sampled at π/ωmax intervals [29](page
236). Hence, after bandlimiting, the highest residual frequency determines the maximum
gap between two samples so that the entire information carried by the bandlimited signal
is preserved. Frequencies of arbitrary signals that exceed the band limit corresponding to a
certain sampling rate get lost when sampling the signals at that rate, thus sampling includes
bandlimiting.

Frequency Aliasing The recurring amplitudes in figure 4.1 are aliasing artifacts. The
artifact oscillations run through the same ordinate values at the sample locations as the true
oscillations do. The first aliasing block starts with ν = 18. Only the oscillations at ν = 1...17
are actually useful. This observation confirms the sampling theorem.

Figure 4.2 shows merely six equidistant samples of the spectrum of figure 4.1. Aliasing blocks
considerably overlap in the frequency domain diagram, i.e. major oscillations are lost, and
correspondingly in time domain the signal’s original shape can only be guessed from the
samples. Accurate reconstruction is impossible and the reconstructed signal will notably
differ from the original.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

20

40

60

80

100

120

140

160

I

ν = 0 5 10 15

-60

-40

-20

0

20

40

60

80

100

120

a
b

Figure 4.2: Spectrum of figure 4.1, samples dropped.

32

This example shows that the fourier coefficient plot is a practical aid for evaluating the
appropriateness of a certain sampling rate for a certain spectrum. Using this aid, the influence
of basic light distribution operations on the color difference can be estimated:

Multiplication of Sampled Spectra/Signals
(Amplitude Modulation)

Figure 4.3 shows the spectrum multiplied by itself and figure 4.4 discloses the consequences of
this operation: The range of considerable amplitudes stretches on the abscissa. In fact, new
oscillations with sum and difference frequencies of the original oscillations are introduced.
This is a known effect of amplitude modulation. Hence, to completely avoid information loss,
the sampling rate needs to be doubled.

Consecutive Multiplications It is required to initially sample each spectrum at intervals
of π/(ωs,max+ωt,maxnmul) in order to avoid further information loss after the initial sampling
caused by amplitude modulation, where ωs,max is the maximal frequency that occurs in factor
s(i), ωt,max is the maximal frequency that occurs in factor t(i) and nmul is the number of
multiplications that are to be carried out in succession. For example: Assuming maximum
frequencies of π/20 (frequencies that are preserved if sampled at 20nm intervals or less), to
achieve a lossless result after 3 reflections, a sample spacing of

π
π
20 + 3π

20
nm = 1

4
20
nm = 5nm

is required.

Thus, multiplication is a considerable source of color difference increase candidate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

20

40

60

80

100

120

140

160

180

I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

5000

10000

15000

20000

25000

30000

I

Figure 4.3: Spectrum of figure 4.1 (upper diagram) multiplied by itself (lower diagram).

33

ν = 0 10 20 30 40 50 60 70 80 90

-60

-40

-20

0

20

40

60

80

100

120

a
b

ν = 0 10 20 30 40 50 60 70 80 90

-10000

-5000

0

5000

10000

15000

a
b

Figure 4.4: Fourier coefficients of the figure 4.3 spectra.

Addition of Sampled Spectra/Signals

The oscillations of the summands are added. Apparently, no new oscillations emerge and the
initial sampling rate will be adequate for the resulting signal. Therefore, the choice of the
sampling rate will not systematically moderate the influence of additions on color difference.

Conclusion

Successive multiplications of spectra as they usually occur in global illumination renderers
(particularly in the recursive part of a ray tracer) cause information loss during the rendering
process. Therefore, the color difference between two images generated at distinct sampling
rates is expected to increase with the number of successive multiplications.

4.1.3 Color Multiplication and Color Difference

If the sample spacing is chosen by the renderer itself for performance optimization and a
particular color difference threshold is given to assure an expected minimum quality for the
resulting image, color difference pretests are required to decide whether the sample spacing
is actually dense enough.

In order to design a meaningful pretest, the developing characteristic of the color difference
over successive spectrum-by-spectrum multiplications (surface reflections) is of vital impor-
tance. Figure 4.5 shows the development of color differences between the results of reference
multiplications and the results of multiplications of resampled spectra. The reference spectra
are reflectances of real surfaces measured using the GretagMacbeth EyeOne spectrophotome-
ter (see [30]) and stored in the form of 36 equidistant samples (∆λ = 10nm). They are
resampled at ∆λ = 30nm in order to produce the test colors. Two tests were performed:

34

Test 1: Single Spectrum Sequence 20 randomly chosen spectra are multiplied by them-
selves 30 times. Simulates successive reflections at equally colored surfaces.

Test 2: Multiple Spectra Sequence Randomly chosen spectra are multiplied in 20 se-
quences, 30 times per sequence. Simulates successive reflections at differently colored
surfaces.

The resulting color differences are listed in tables 4.1 and 4.2 in the form of CIEDE1976
measures.

Test procedure for one sequence:

1. Select the first spectrum s1(i), i ∈ {1, 2, ..., 36} and resample it at 1/3 of the original
rate (s1,resamp(j), j ∈ {1, 2, ..., 12}).

2. Illumination: Scale s1(i) and s1,resamp(j) by 1000.

3. Calculate XYZ representations of the resulting spectra and multiply the XYZ represen-
tation by a scale factor to fit into the range

(
0.0 0.0 0.0

)T
...
(
0.95047, 1.0, 1.08883

)T
(black...reference white) if it is outside this range in order to produce realistic L*a*b*
values.

4. Calculate the color difference ∆E (CIEDE1976) and store it.

5. Multiply the resulting spectra by the second spectrum in the sequence and its resampled
counterpart.

6. Perform steps 3 and 4 again.

7. Continue with the third spectrum in the sequence...

The L*a*b* values underlying the color differences are listed in tables A.2 and A.3 in the
appendix.

Discussion of the Test Results

Test 1 The color errors show differing tendencies until the tenth multiplication is reached
(figure 4.5.a): They stay at a moderate level round the just noticeable difference (∆E =
1.0...2.0), slowly increase, or drastically increase, reach a peak and then converge to zero.
During the first iterations, the color difference in almost every sequence rises. Particularly,
spectra with steep gradients show drastic color difference rises. This can be explained using
the signal theory: Steep gradients imply high frequency components with considerable am-
plitudes, and therefore huge sum and difference frequencies after an amplitude modulation
(multiplication). Hence, the constant bandlimit defined by the sampling rate becomes too
low during the iterations.

Test 2 Random spectrum sequences in most cases generate less aggressive color difference
increases (figure 4.5.b) because for most multiplications, steep gradients of the factors do not
overlap regarding their wavelength ranges.

35

Conclusion

The subsequent multiplication of a spectrum by itself can be a good indicator for the required
color difference level, although this approach does not allow for an accurate prediction of the
maximum color error. Pretests in a global illumination renderer may classify spectra accord-
ing to this finding if they include a reasonable tolerance between the estimated maximum
color difference and the desired threshold.

a

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

co
lo

r
di

ffe
re

nc
e

Δ
E

 (
C

IE
D

E
19

76
)

multiplication number

b

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

co
lo

r
di

ffe
re

nc
e

Δ
E

 (
C

IE
D

E
19

76
)

multiplication number

Figure 4.5: Development of the color difference between spectra sampled at two rates,
(a) Test 1 plots (single spectrum sequences), (b) Test 2 plots (randomly chosen spectra).

36

0.873 0.992 1.193 1.943 2.745 3.511 4.126
0.700 0.770 0.820 0.862 0.902 0.946 0.993
0.621 0.596 0.595 0.599 0.693 0.887 1.006
0.758 0.935 1.102 1.228 1.291 1.286 1.235
0.739 0.875 1.000 1.114 1.217 0.959 0.579
0.718 0.842 0.967 0.635 0.284 0.026 0.002
0.893 1.045 1.780 3.337 5.126 7.017 8.861
0.456 0.351 0.283 0.269 0.487 0.330 0.146
0.744 0.888 1.026 1.153 0.748 0.393 0.090
0.948 1.086 0.167 0.002 0.000 0.000 0.000
0.110 0.572 1.458 2.043 2.300 2.266 2.023
0.728 0.853 0.968 1.073 1.167 0.921 0.555
1.361 1.308 1.542 2.582 4.685 7.630 11.032
0.807 0.978 1.139 1.293 1.443 1.591 1.743
0.676 0.716 0.739 0.759 0.784 0.816 0.854
0.873 1.013 1.020 0.909 0.710 0.466 0.254
0.110 0.572 1.458 2.043 2.300 2.266 2.023
0.638 0.692 0.781 0.908 1.071 1.265 1.483
0.329 0.096 0.345 0.790 0.883 0.693 0.374
0.135 1.151 2.041 2.569 2.814 2.877 2.813

Table 4.1: Test 1 results.

0.700 0.702 0.720 0.805 0.863 0.901 0.098
0.758 0.527 0.574 0.571 0.608 0.620 0.368
0.504 0.754 0.698 2.803 3.952 1.514 0.402
0.966 0.286 0.135 0.044 0.005 0.022 0.002
0.725 0.745 1.643 2.788 1.403 1.468 1.445
0.873 1.002 1.096 4.007 4.076 3.968 1.363
3.203 3.315 3.395 4.620 2.991 0.487 0.066
0.733 0.853 0.968 2.368 1.587 2.136 1.155
0.797 1.079 1.133 0.676 0.671 0.201 0.008
0.744 0.670 0.763 1.734 0.478 0.543 0.252
0.651 1.278 1.316 1.039 0.729 0.111 0.035
0.638 0.542 0.663 0.453 0.149 0.117 0.062
0.797 0.480 0.554 0.021 0.000 0.000 0.000
0.728 0.981 1.085 1.192 1.278 0.789 0.181
1.074 1.078 1.101 0.520 0.740 1.004 0.178
0.729 0.748 0.264 0.770 0.729 0.502 0.339
0.733 0.862 0.842 0.834 0.549 0.547 0.126
1.023 2.810 2.829 4.729 0.344 0.002 0.000
0.621 0.706 1.243 3.074 2.902 2.859 0.220
0.724 0.387 0.353 0.465 1.374 1.050 1.183

Table 4.2: Test 2 results.

37

4.2 Evaluation of Alternatives to Plain Equidistant Sampling

4.2.1 Basis functions

The sine or cosine functions of a fourier-transformed signal are only one of many types of
basis functions. If sampled signals with n samples are regarded as n-dimensional feature
vectors, given multiple training signals, principal component analysis (PCA) can be used to
find orthonormal vectors that point into the directions of greatest variance in the point cloud
of signal vectors in Rn. Each orthonormal vector is an orthonormal basis function. The
basis functions can be scaled by weights and added up in order to reconstruct the individual
signals. The less signals are involved and the more similar they are, the less basis functions are
required for a sufficient signal reconstruction. That is, a PCA transform allows for superior
compression rates of color spectra if few colors are being used and if they possess similar
spectra. In many cases, five basis functions (and five weights per color spectrum) or less
provide enough information for a proper signal reconstruction. Gaussian quadrature and
further transformation methods based on basis functions can also be used for compression in
similar ways. Compression using basis function usually comprises information loss.

Basis Functions and Color Operations

Spectra transformed using basis functions are tempting as an efficient replacement for three
component colors if they can be represented using few weights [12]. A comparison is given in
table 4.3. But the number of required basis functions (and weights) depends on the number
of different spectra in a scene and also their distinctiveness. If the algorithm decides to use an
amount of three basis functions, a multiplication already requires nine scalar multiplications
(plus six scalar additions). Five basis functions require 25 multiplications, even though the
majority of spectra could be sufficiently represented by 20 samples or less.

Reflection using Basis Functions:

• m basis functions E1(λ)...Em(λ)

• per light spectrum L: m basis function weights εL,1...εL,m

• per reflectance spectrum R: m basis function weights εR,1...εR,m

Reflectance matrix calculation for three coefficients and diffuse reflection:

MR =

∫
λ εR,1(λ)E1(λ)dλ

∫
λ εR,1(λ)E2(λ)dλ

∫
λ εR,1(λ)E3(λ)dλ∫

λ εR,2(λ)E1(λ)dλ
∫
λ εR,2(λ)E2(λ)dλ

∫
λ εR,2(λ)E3(λ)dλ∫

λ εR,3(λ)E1(λ)dλ
∫
λ εR,3(λ)E2(λ)dλ

∫
λ εR,3(λ)E3(λ)dλ

 (4.4)

Application of the reflectance matrix:εout,1εout,2
εout,3

 = MR

εin,1εin,2
εin,3

 (4.5)

38

Operation RGB/Three Components Basis Function (n weights)
Addition 3 fp additions n fp additions
Multiplication 3 fp multiplications n2 fp multiplications

n(n− 1) fp additions

Table 4.3: Basis Functions: Computational Costs (fp...floating point).

4.2.2 Composite Model

Based on the observation that spikes occur sparse in the visible wavelength range of certain
spiky spectra (see table 4.4), it is a promising approach to cut off the spikes and handle them
separately from the rest of the spectrum, which is often wavy and free of steep gradients.
Sun [16] proposed this approach in his Composite Model.

Daylight < 10 major peaks
Mercury Vapor Lamp 5 spikes
Common Fluorescent Lamp 4 spikes
High Pressure Xenon Lamp 4 major spikes
Zirconium Concentrated-Arc Lamp 3 major spikes

Table 4.4: Selection of Spiky Light Sources (see [22]).

In fact, the Composite Model is a savvy decomposition of spectra that are obviously the sum
of two distinct signals:

Smooth Signal low frequency signal
continuous
entire wavelength range

Spike Signal high frequency and amplitude
> 0 at a certain wavelength or narrow wavelength range

The smooth part and the individual spikes can be considered as if they stem from separate
light sources. For the smooth part, the sampling rate can be drastically reduced compared
to the sampling rate required for the spectrum inclusive of spikes (in most cases 1/4 or less).

The Composite Model is tested in the implementation part of this work.

39

40

Chapter 5

Spectral Mipmapping

The idea of Spectral Mipmapping is to provide several accuracy levels for each color. When
the color is used in a calculation, the appropriate level can be chosen. The term Mipmapping
(The acronym “mip” is from the Latin phrase “multum in parvo,” meaning “many things in a
small place.” [31]) is borrowed from texture mipmapping. Texture mipmaps are precalculated
resolution levels of twodimensional images which are to be rendered in different sizes.

A typical use case of mipmaps are texture images on threedimensional objects that are placed
in different distances to the viewer: If a texel is smaller than a pixel on the screen, the texel
may be dropped and its information gets lost, there exist spacial frequencies ω in the texture
image that are higher than the sampling frequency π/ωg, which also leads to frequency
aliasing if the human observer tries to reconstruct the image. In other words: Frequency
aliasing influences the image appearance, hence bandlimiting should be applied. This is a
costly process and therefore better done before the actual render process is started: Copies
of the texture image having a resolution of 2n are generated at resolution levels of 2n−1,
2n−2,... During the render process, for each pixel, the color of the nearest texel per each
of two best-matching resolution levels is taken and the final color is interpolated according
to the level suitable for the texel’s distance. This approach is much faster than applying a
bandlimiting filter for each pixel.

The Spectral Mipmapping approach translates this the concept of texture mipmapping from
the image domain into the domain of spectral color representations, but instead of bandlimit-
ing, the primal objective is time-efficiency: The rendering process of a full-spectral raytracer
should become faster by reducing the number of scalar operations that are part of color
calculations as much as possible, without affecting the visual appearance of the resulting
image.

Based on the experience that equidistant samples of color spectra can be used in a straightfor-
ward way in sample-by-sample scalar operations that allow for compiler optimizations, they
are the feedstock of this approach. Light and reflection spectra that occur in the scene are
available in the form of high-resolution representations, comparable to the original image that
is to be filtered using texture mipmapping. For instance, such a representation consists of 36
floating point numbers (or even 81 to represent spiky/turbulent spectra). At first glance, it
makes sense to reduce the number of floating point numbers as far as possible, depending on
the dominance of high frequency oscillations in the signal of each individual spectrum. This
is a reasonable approach, but it poses the question how two colors represented by different

41

Level 0 Class of length-32 vectors
Level 1 Class of length-16 vectors
Level 2 Class of length-8 vectors
Level 3 Class of length-4 vectors

Table 5.1: Levels as Vector-Length Classes.

numbers of floating point values should interact, e.g. equal white light, that requires less than
four samples for a sufficient representation, reflected by a green surface that is bandlimited
to the range of 530 to 550 nm, with a reflectance of nearly 1.0, requiring 16 or more samples.
(The light-surface interaction is an element-by-element multiplication of two floating point
vectors.) There are two possible solutions to this question:

• Either try to find a way how to multiply two vectors of different lengths,

• or provide a color representation for the light’s color that holds the same number of
floating point numbers as the surface color’s representation does and vice versa.

The first solution has not turned out satisfactory, particularly for reflection multiplications.
For instance, if a 16-sample light color is to be multiplied by an 8-sample surface color,
this can be done in an efficient way if each surface sample is spread onto two light samples.
This results in a 16-sample reflected light. Unfortunately, due to the missing interpolation,
sawtooth artifacts are introduced that considerably impair the result’s accuracy, even though
it provides 16 samples for reconstruction.

The latter solution remedies this problem. It implies that for each class of nSCL occurring
classes of surface color levels, each light color that occurs in the scene must be represented by
nSCL vectors of the according lengths, and vice versa for each class of nLCL occurring light
color levels. If a scene has two lights and 15 surface colors, each light color is represented
by 15 sample vectors or less with different numbers of samples, and each surface color of no
more than two with different numbers of samples. Suchlike dimensions are reasonable. But
for optimization reasons, a predefined number of vector length classes is preferred (e.g. four
classes: 4, 8, 16 and 32 floating point values).

Thus, each light or surface color, they are known before the rendering process starts, is to be
classified. A color is provided in the form of Clsuf ∈ Cl, where Cl is the set of vector length
classes and Clsuf is the set of vector length classes with vector lengths (numbers of samples)
that sufficiently represent the color. Hence a mipmapped color consists of the following parts:

• One or more vectors of floating point numbers that represent the color’s spectrum. (A
color of level l must also be available for levels 0...l − 1.)

• An integer number that identifies the class of the color’s minimum length vector, called
level (see table 5.1).

42

5.1 Resampling and Downsampling

If the sample spacing or phasing of color spectra taken from a database does not correspond to
the sampling defined for the most accurate level (Level 0), the resampling method described
by figure 5.1 can be applied.

66
%

10
0% 33
%

33
%

66
%

10
0%

10
0%66

%

10
0%

10
0% 66
%

33
%

Figure 5.1: Level Generation: Resampling.

It is used in the test implementation (chapter 6). The percentages denote the intensity flow
from sample to sample. It is applicable for downsampling as well as upsampling.

Downsampling: Advantage over Dropping Samples If samples are simply dropped,
the intensities of the dropped samples disappear entirely and do not contribute to the new
samples, which results in unnecessary information loss. See also section 3.2.2.

Downsampling for Level Generation

Figure 5.2 depicts the relation between two possible mipmapping levels, for instance Level
0, l = 0 (upper samples) and Level 1, l = 1 (lower samples). The upper samples are spaced
by intervals of ∆λl=0 = 10nm, the lower samples by intervals of ∆λl=1 = 2∆λl=0, shifted by
∆λl=0/2.

43

380
nm

390
nm

400
nm

410
nm

420
nm

430
nm

385

nm

405

nm

425

nm

Figure 5.2: Level Generation: Downsampling.

44

Chapter 6

Implementation

The implementation serves the following purposes:
• Gain information about the performance impact induced by full-spectral colors.
• Eliminate specific bottlenecks (instruction count and instruction cache faults).
• Test the Spectral Mipmapping approach in combination with the Composite model

by Sun [16].
• Appraise the relevance of color difference measures applied in pretests for performance

optimization purposes.

6.1 The Renderer

Since this work is focused on fundamental research regarding spectral rendering, a simple ray
tracer with the essential capabilities of a global illumination renderer and a well arranged
source code structure was chosen for the test implementation. Minilight [32] is a renderer
that largely fulfills these requirements.

6.1.1 Description of the Minilight Ray Tracing Renderer

Minilight is a basic global illumination ray tracing renderer that features Monte-Carlo path-
tracing transport. It is currently available on the web at http://www.hxa.name/minilight/
[32] under the “New BSD License”, inclusive of the entire source code in various programming
languages. The C++ implementation was chosen for the research this thesis is based on and
preferred over the C version for human readability reasons.

The C++ source code of the renderer can be compiled by every standard-compliant C++
compiler, for instance G++. No additional libraries are required.

The scenes are defined in human-readable scene files by specifying geometric objects in the
form of absolute triangle vertex positions and their metameric colors in the form of RGB
triples: emitted light colors as well as diffuse surface colors (reflecting colors). During the
rendering process, which iteratively invokes the raytracing algorithm a predefined number
of times, the result is successively refined and stored in a PPM format image file, at most

45

after each iteration. The PPM format allows for plain text storage with arbitrary debug
information in the form of comment lines.

The C++ source code of Minilight is structured and compact and thus can easily be extended
for academic and research purposes with minimum effort. Extensions (such as full-spectral
color computations) can be added in the form of additional classes requiring a minimal number
of changes in the preexisting code.

Geometric Object Representation triangle primitives
Spatial Data Structure Octree
Surface Type (Emitter, Reflector) ideal diffuse
Light Propagation Monte-Carlo, Importance Sampling
Ray Termination Russian Roulette based on reflectance magnitude
Scene Input plain text
Image Output tone-mapped RGB to PPM (binary or plain text)

Table 6.1: Minilight Renderer Capabilities Summary.

Ray Tracing Algorithm and Tone Mapping

Through each pixel of the resulting image, one ray starting at the imaginary camera is sent
into the scene. For example, for an image size of 320× 320 pixels, 102400 rays are sent. The
ray is handed over to the raytracing algorithm, which intersects it with the objects in the
scene. At the first intersection point, the following color calculations are executed in order
to determine the overall radiance at the intersection point:

• The radiance is set to the light emitted from the triangle surface.

• Emitter Sampling: One emitter of the scene is randomly selected, its light is added to
the radiance.

• Monte Carlo path tracing: Starting at the intersection point, the ray is successively
reflected at further intersection points in the scene in random directions (cosine-weighted
importance) in recursive function calls. Recursion levels are added until the reflectance
magnitude of the currently intersected surface is below a random threshold that differs
from recursion level to recursion level (russian roulette). This ensures the recursion
will most likely terminate with a finite number of levels, i.e. in finite time. Emitter
sampling, as described above, is performed in each recursion level, but local emission
directly at the intersection point is solely added once in the first recursion level.

This procedure is repeated in multiple iterations until the user terminates the process or a
predefined iteration limit is reached.

The pixels of the scene image are multiplied by a tone mapping factor before they are written
to the result image file (linear tone mapping). Therefore, the final luminance of each pixel
depends on all other pixels. As tone mapping affects lightness, it influences the perception
of color differences/the just-noticeable difference threshold between two images rendered at
different quality settings. In other words: The quality of an image is difficult to estimate
before the tone mapping step.

46

Color calculations

The original Minilight renderer deals with three-component colors (RGB triples) that rep-
resent the light and surface colors in the scene. They are stored in threedimensional vector
objects the class of which provides operators for element-wise addition/subtraction and mul-
tiplication as well as multiplication/division by scalars, and further important methods such
as dot product calculation. Basically, all color related operations and calculations are encap-
sulated in this vector class. If color computation is to be adapted, almost all changes can
be done inside a copy of this class (the original vector class must be kept unmodified for
calculations in the geometric part of the renderer), unless performance optimizations are to
be done. In the rest of the code, solely the type declarations are to be adjusted to the name
of the new color class. However, performance-related weaknesses, predominantly unnecessary
object constructions and copies, most likely necessitate substantial changes to the code to
allow for meaningful performance tests.

6.2 Adaptation of an RGB Renderer for Full-Spectral Rendering

The following explanation is based on Minilight C++.

6.2.1 Optimized Code Design

Because of their compactness, three-component color objects (as well as 3D vectors in geo-
metric computations), containing three floating point values, are handled like atomic data
type variables. They are constructed in stack-based memory and copied between procedures.
But when dealing with full-spectral colors, one color may consist of up to 80 or even more
floating point values in a vector representing the spectrum’s point or area samples. Hence,
each copy operation is to be uncovered and scrutinized.

Unnecessary color object copies usually occur...

• when incoming light colors are accumulated at certain points in the raytracing process
(the colors are copied from subroutines)

• and, in general, whenever overloaded binary operators such as * or + are applied.

Binary Operators

For color calculations, the Color+Color, Color*Color and Color*float operators are defined
and used for RGB operations. They are way too inefficient if applied as arbitrary-dimensional
vector operations as it is the case in spectral color computations, because the operation’s
result is stored on stack-based memory and copied to the target object when the operator
method returns.

47

Therefore, each occurrence of an overloaded binary operator should be replaced by a method
of the form

void (TypeC& out, const TypeA& inA, const TypeB& inB)

which gets passed a reference to the target object. In most cases, an in-place operation of
the form

void (TypeC& inOut, const TypeB& inB)

is applicable.

Color-Centered View of the Renderer

In other words, the hierarchy of functions that handle color information is to be flattened.

A common ray tracing algorithm can be regarded as an information pipeline with one main
thread and some branches. Indirect illumination requires the main thread to be recursively
called, i.e. it is a branch of itself. In each branch, color information is gathered from surfaces
or lights, mixed by color-by-color multiplications and accumulated in the main thread.

The Minilight renderer is a prime example of a ray tracer implementation which entirely
ignores the room for improvement that arises from this aspect.

Original design of the Minilight ray tracer:

• getEmission equation 6.1

• sampleEmitters equation 6.2

• getRadiance equation 6.3

The following equations describe the color information flow for a single pixel over multiple
iterations. All bold symbols name R3 vectors which carry either geometrical positions or
RGB triples.

pe,i,j,k = ei,j,k
Aetri,i,j,k(−veray,i,j,k · netri,i,j,k)

d2 (6.1)

pse,i,j = (pe,i,jne)rrtri,i,j
|vray,i,j · nrtri,i,j |

π
(6.2)

pi,j = pe,i,j + pse,i,j + rrtri,i,j
rrtri,i,j ·

(
1 1 1

)T pi,j+1 (6.3)

pi = pi−1 + pi,0 (6.4)

(Symbol descriptions are given on the following page.)

The variable ei,j,k together with the numerator in the fraction of equation 6.1 correspond to
the ε term of the rendering equation, whereas the denominator represents the g term. The
fraction in 6.2 corresponds to the ρ term. The I term of the rendering equation is represented
by p... variables. (The rendering equation is described in section 1.1.2.)

48

i ∈ {1, 2, ..., niter} iteration index
j ∈ N0 recursion index
k ∈ {1, 2} k = 1: local emitter

k = 2: sampled emitter
ei,j,k emitter color
Aetri,i,j,k emitting triangle area
d reflector-emitter distance
ne number of emitters
rrtri,i,j reflector color
veray,i,j,k ray to emitter
vray,i,j ray to reflector
netri,i,j,k normal vector of emitting triangle
nrtri,i,j normal vector of reflecting triangle
p... “power” (intermediate colors)

Pipeline Optimization: Recommendations for Improvement

The values of pe,i,j,k, (pe,i,jne), pse,i,j , (rrtri,i,j/rrtri,i,j ·
(
1 1 1

)T
) and pi,j are stored in

intermediate stack variables in the ray tracing algorithm.

The following improvements are recommended for color representations with considerable
memory consumption (e.g. spectral samples):

• Replace the mentioned intermediate stack variables by preallocated class variables that
can be reused over all iterations.

• The pipeline structure allows for a throughout use of in-place operations.

• If equidistant samples are used, combine assignment or addition and scaling in hybrid
operations. This saves one iteration over the sample set per pass.

6.2.2 Implementation of the Composite Model

(see also section 4.2.2)

Spike Detection Sun suggests to use the gradient information in order to detect spike
occurrences. This obviously works well with spikes the energy of which is completely rep-
resented by one sample. Wider peaks may possess foothills with gradients smaller than the
threshold of the detector. That is, even though the foothills belong to a spike, they remain
among the rest of the spectrum. High foothills unnecessarily introduce high-frequency os-
cillations and thus may prevent resampling at low rates. Therefore, the gradient threshold
should be as low as possible: slightly higher than the steepest gradient of the smooth part of
the spectrum, hence individually set for each (spiky) spectrum. In the test implementation, a
more sophisticated two-pass approach is used: A Gauss filter is applied to blur the spectrum.
The result is compared to the unblurred spectrum in order to classify each sample as spike/no
spike. After the peaks are removed, the result is blurred once again to detect the remaining
foothills and classify them as parts of a spike.

49

Sun expresses spikes in terms of delta functions. In fact, information about one spike (or
foothill) is completely represented by two floating point values, the first of which represents
the spike location, i.e. its wavelength, and the second represents the spike’s height (the distance
between the smooth part of the spectrum and the spike’s peak).

A color object contains the samples of a color spectrum in a field of floating point values that
is allocated on the heap. The Composite model can be added on without changing this basic
design, in further heap space.

Spike Pattern

Spike Heights

Color Object

Smooth Part

Spike Pattern Database

Downsampling

Figure 6.1: Spike Separation.

Pattern Database As described above, a spike/foothill is represented by one location and
one height value. Height values have a different scope than location values: Spike heights are
changed over and over again in the information flow during the raytracing process, whereas
location values never change. Rather they are fixed patterns that can be stored outside the
color objects in a small database that holds each spike pattern that occurs in the scene once
in a field of floating point values. The spike patterns are directly accessible by the raytracing
procedures.

Consequently, color objects only allocate storage space for spike heights, but not for spike
locations.

Preparation of Spectra Assuming the source colors are provided to the renderer in the
form of equidistant samples with small distances of 1, 5 or 10 nm, spikes are to be separated
as described above and afterwards, the smooth parts can be resampled at lower rates (please
refer to section 5.1). (The preparation process can try to resample the spectrum even if no
spikes are detected.) After the preparation process, spiky spectra hold two heap addresses
and one pattern identifier (field index or heap address): the former address the sample field
and spike height field, respectively, whereas the latter references the spike location pattern
field.

Colors with multiple Spike Patterns occur if more than one light source with a spiky
spectrum is part of the scene. They emerge from additions of light colors which stem from

50

different spiky light sources. So, a color object is capable of storing more than one spike
height field.

All operator methods that are already provided for flat and wavy spectrum operations (op-
erations on equidistant samples) are to be equipped with appropriate spike operations. One
peculiarity is common for spike operations in general: Since one color object may hold mul-
tiple spike height fields, the spike operation must be capable of handling two or more height
fields consecutively. Apart from that, the operations are quite different:

Addition Color c = Color a + Color b If the addition is not in-place (i.e. c 6= a), place
the spike heights of a in newly allocated heap space owned by c. Add the spike heights of b
to the spike heights of c for patterns that occur in both a and b or else place them in newly
allocated heap space owned by c.

Multiplication Color c = Color a * Color b The multiplication operation for spikes
is considerably more expensive, as both the spiky part and the smooth part of the color are
involved. If one can assume that surface colors are free of spikes, a is the light and b is the
surface color, it is sufficient to multiply the spikes of a with the samples of b. Otherwise,
this must also be done the other way round and, moreover, it might occur that spikes of the
surface color overlap with spikes in the light. Thus, spike-by-spike multiplications must be
carried out if necessary.

The most important part of the multiplication operation with spikes is the spikes-by-samples
multiplication. Since a spike may be located between two samples (as a result of resampling
the spectrum at a lower rate), the value of the spectrum’s smooth part at the spike’s location
must be interpolated. For performance reasons, linear interpolation is the sole possible choice:
It does not require information about more than two neighboring samples and is way less
expensive than spline-interpolation, which requires a system of equation to be solved, or more
complicated interpolation methods.

For each spike, the spike-by-sample multiplication requires at least 4 scalar-by-scalar multi-
plications plus 4 scalar-by-scalar additions/subtractions.

Multiplication Color c = Color a * float b This operation is a simple scaling of the
spike heights.

6.2.3 Mipmapped Ray Tracing Pipeline with Level Feeler

The level (vector-length class) of operation is determined for an entire pixel iteration, as it is
described by the equations 6.1–6.4 on page 48, to avoid a costly parallel processing of multiple
levels. Thus, all operations and intermediate variables between scene color queries and final
pixel accumulation are single-level.

Level Feeler

At the beginning of each pixel iteration, the level variable is set to the least accurate level
(minimum vector length). That followed, in the course of the ray tracing process, the level
feeler collects references to emission and reflection colors and lifts the level variable value
whenever a color requires a more accurate representation. All geometrical calculations are
performed and the calculated attenuation factors are kept in scalar variables. Finally the

51

Local Emission

Global Emission

Local Reflectivity

Main Thread

Lvl 3
Lvl 2

Lvl 1
Lvl 0

add to pixel

Pixel

getEmission

sampleEmitters

getReflection

Geometry

Collect Parameters

Level Selection

Actual Color

Computations

Collect References,

"Level Feeler"

Figure 6.2: Spectral Mipmapping Color Pipeline Thread.

required level, references to all contributing colors and attenuation factors are known and the
actual color computations can be performed in a compact code block using the selected level.

Summing up, the level feeler probes the level required for the color operations, based on the
most accurate level among the levels of contributing colors in the pixel iteration.

Since the level is determined individually per iteration, after multiple iterations one pixel
contains one or more sample vectors with different sample counts.

6.2.4 Preprocessing

The preprocessing phase takes place before the actual rendering process starts. Basically, a
scene’s light and surface spectra are resampled at the minimum required accuracy level and
the levels with higher accuracy.

The minimum required level is determined by pretests, for instance:

A Compare resampled spectrum to reference and compare the resulting color difference to
a predefined threshold, for instance ∆E = 2.0.

B Multiply the spectrum several times by itself, as the conclusion of section 4.1.3 suggests,
perform A on the result.

C Do B with randomly selected spectrum sequences.

52

Pretests of type A and type B can be accomplished with reasonable computational effort. C
is especially promising if a huge amount of random sequences is appended to each spectrum
occurring in the scene.

6.2.5 Postprocessing

λ
* X Y Z R G B

Power Spectrum
(Light Source or Reflected Light)

Figure 6.3: Postprocessing.

Postprocessing is done after the final spectral colors are stored for each pixel. If Spectral
Mipmapping is implemented, each pixel may contain distinct spectra at different levels, as
well as spikes height fields of different patterns.

Spectrum to XYZ

ΔE=0.2824 ΔE=0.9988

ΔE=0.5775 ΔE=1.9002

Figure 6.4: Reconstruction of a Spectrum with and without Interpolation.

Figure 6.4 illustrates reconstruction examples. The unfilled bars show the original spectrum,
the red bars show the downsampled equivalent and the black bars the reconstructed spectrum.
For calculating the ∆E values, the XYZ triples were transformed into the L*a*b* color space.
The ∆E statements inform about the perceived difference between the original spectrum and
its reconstruction. The plots in the upper row show simple reconstructions whereas the lower
row plots show linearly interpolated reconstructions. The interpolation acts as a smoothing
filter and extends the sphere of influence of the downsampled representation’s samples beyond

53

their wavelength interval, which amplifies the aberration. Therefore, linear interpolation is
inapt for reconstruction.

Spikes to XYZ

The spike height field is iterated and, according to the spike pattern, the appropriate X, Y
and Z values are extracted from the color matching function table. Potentially, spike patterns
define arbitrary spike positions in the form of wavelengths. To account for this, X, Y and Z
values can be interpolated during reconstruction in order to accomplish maximum accuracy.

Final Output Conditioning

The resulting XYZ values are added up to gain the final pixel color. The final value is
converted to RGB and tone mapped as described in the appendix A.1. Caution: Tone
mapping considerably rescales the three-component color.

54

Chapter 7

Results

7.1 General Test Description

The following tests were run under three optimization conditions on an Intel Core 2 Duo
processor. For a detailed description of the processor, please refer to the appendix B.

No Optimization Compiler optimizations are disabled.

Compiler Optimization The maximum possible optimization level (-O3) is requested from
the compiler to ensure inlining and the actual use of SIMD operations in the Com-
piler+Vector Optimization condition.

Compiler+Vector Optimization Co-operation of compiler and vector optimizations.

The pure Vector Optimization condition was dropped because vector optimization is done by
the compiler solely if compiler optimization is turned on.

Each test is headed by a reference run with a constant number of 81 equidistant samples
per color (Spectral Mipmapping and the Composite Model are disabled in this run). The
reference and test cases are described below in section 7.2.1.

Pretest Each spectrum is resampled at the rates of the levels. The reference white for
XYZ-to-L*a*b* transformation is

xrwhiteyrwhite
zrwhite

 =

0.4124564 0.3575761 0.1804375
0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041

1

1
1

where the unit vector represents the brightest possible RGB output. The matrix is the inverse
of the XYZ-to-sRGB matrix (D65 illuminant).

Pixel Color Difference: Blur Filter In order to reduce noise artifacts, all images are
compared in blurred form. The applied blur filter is 5× 5 pixels wide.

55

7.1.1 Questions and Answers (regarding all tests)

Q: Why the sample counts 80, 40 and 20?

A: 80 samples are used for spiky spectra, 40 and 20 for wavy spectra. For most spectra,
less than 20 samples are sufficient, some require more (less than 40). The chosen sample
counts are multiples of four in order to optimally exploit SIMD 4-parallel vector instructions.
Consequently, further recommended sample counts are 8, 16 and 32.

Q: Why is the minimal sample count not less than 20? For many spectra, far less samples
are sufficient. Why no more than three levels?

A: Because the raytracer is controlled by random parameters, reflections and emitter hits
and their colors cannot be predicted and thus not sorted by level. Hence the current level
will often vary from ray to ray. Therefore, level-specific instructions for each level should be
kept in the instruction cache in order to avoid time-consuming cache-faults. The less levels
are generated, the less level-specific code must fit into the instruction cache of the CPU. If
vector optimization is turned on, the number of consecutive multiplications drops to 5 at
the 20-sample level. This is a reasonable instruction count, in particular if the avoidance of
further accuracy levels reduces the risk of cache faults.

In the following tests, the times of three accuracy levels (80, 40 and 20 samples) are compared.
These results can be used for extrapolations of expected times for levels with less than 20
samples, if such an implementation is intended.

Q: Why a threshold of ∆E∗ab,thresh = 5.0?

A: This threshold is a good choice for the test computations insofar as it is well above the
average just-noticeable difference threshold of ∆E∗ab = 1.0...2.0: Aberrations of ∆E∗ab > 5.0
are expected to stand out in the test images.

7.1.2 Time Measurement

Source code optimizations were exclusively performed in the color-related, geometry-
independent part of the program, in order to evaluate the performance gains induced by
Spectral Mipmapping as well as spike separation using the Composite Model. Therefore, the
following stopwatches are regarded as representative:

• Color-related code chunk stopwatches

• Per-operation stopwatches

The former measure the time consumed by the color-related code chunks, the sum of which
represents the entire (time-critical) color-related code of the renderer. The latter measure
the time consumption of atomic operations such as color-by-color multiplications or spikes-
by-color multiplications.

The stopwatches make use of a high-resolution per-process timer from the CPU. Time that
elapses between two timer queries is determined prior to each time measurement and sub-
tracted from the result in order to minimize adulterations induced by the stopwatches. A
detailed description of the stopwatch implementation is given in appendix B.

56

RDTSC The time measurements are validated using cycle count measurements provided
by the rdtsc machine code instruction (rdtsc is the abbreviation for read time stamp counter),
which is described in detail in the appendix.

The times are listed in seconds for all test results.

7.1.3 Test Colors

The used colors and their spectra are listed in the appendix. In the test descriptions, they
are referred to by L... (light color) and R... (reflector color), respectively.

Light Colors One equal light (L1) and one non-equal, spiky light (L2) are used as light
colors, except for the multi light scene. L2 is provided to the renderer at an accuracy of 81
equidistant samples.

Surface Colors The surface colors are sampled Macbeth Colour Checker patches.

7.2 Tests

7.2.1 Standard Cornell Box

This test is focused on visible errors and time efficiency. The resulting images are shown in
figure 7.3. All times and cycle counts (rdtsc) averaged over 200 iterations. Color difference
threshold in pretest: ∆Eab,thresh = 5.0.

Level Sample Count Times Emit. Times Refl.
Level 0 80 0 0
Level 1 40 0 0
Level 2 20 2 32

Table 7.1: Standard Cornell Box: Level Decisions.

Spectra The scene coloring consists of light-wavy spectra only (R1, R2 and the rest of the
walls as well as the boxes R3). Hence, whithout exception, the pretest always decides for
level 2 (least-accurate level), for reflectors as well as emitters (table 7.1). The intention of
this scene is to exhaust the maximum possible performance gain induced by the mipmapping
approach.

Visible Errors Figures 7.3.c and 7.3.f respectively show the color difference distribution
on the image plane. In the pretest, the color errors for the red and orange walls reached
∆E∗ab,max(pretest) = 3.31 and 3.03 respectively. The color errors in the resulting image are
greater than 6.0 for 12 pixels at the area of the red wall and less for all other pixels. This
result is within the expectations based on the findings in section 4.1.3. The mean error is
∆E∗ab,mean = 0.563.

57

Time efficiency The color-related operation times are listed in table 7.2. If the compiler
translates the C++ code command-by-command into machine instructions (case No Opt.),
rougly 140 milliseconds are spent on processing color-related code (see figure 7.1). Since the
scene colors are all sampled at the lowest rate (20 samples), in the test cases (ML and ML-C),
the computation costs considerably drop to less than 50 milliseconds, which is roughly a third,
even though not a quarter as expected if the sample count ratio of 20/81 is regarded. ML
and ML-C roughly differ because the scene is spikeless. For this scene, the Spectral Mipmap-
ping approaches are obviously superior to fixed sample count implementations. Compiler
optimization Compil.Opt. brings a performance improvement of more than 3/4 and an over-
all improvement of roughly 90% if combined with sample reduction. The contribution of
vector operations is marginal C+Vec.Opt. if compared to compiler optimization in general,
but nevertheless they are a welcome bonus that is ease to achieve. Considering that the
vector operations merely parallelize four operations, a greater amount of parallel operations
as provided by recent GPUs can particurly be beneficial for high-sample count spectra.

Figure 7.2, stemming from an earlier stage of development, gives an impression of the influence
of function calls on the relative differences between the reference and test cases: For this
measurement, operations are located in functions and the function call overhead considerably
diminishes the relative improvement by the lower sampling rate. This suggests that the
renderer should be designed using aggressive inlining instead of function calls.

No Opt. Compil.Opt. C+Vec.Opt.
Ref. (seconds) 0.128971 0.0262309 0.0283894
ML (seconds) 0.0385935 0.0133063 0.0132475
ML-C (seconds) 0.0390271 0.0126055 0.012462
Ref. (rdtsc) 3.08742e+08 5.11619e+07 5.43243e+07
ML (rdtsc) 6.34737e+07 2.23608e+07 2.33346e+07
ML-C (rdtsc) 6.72401e+07 2.37181e+07 2.50209e+07

Table 7.2: Standard Cornell Box: Average single-iteration time in seconds and cycles mea-
sured by rdtsc spent processing color-related code.

Description of the table rows:

Ref. = Reference Run 81 samples (fixed).

ML = Multi-Level Spectral Mipmapping algorithm, levels automatically chosen: 20...80
samples.

ML-C = Multi-Level Composite Spectral Mipmapping algorithm with Composite
Model implementation: levels automatically chosen, 20 or 40 samples, spikes separated.

58

���� �� ����

	

	�	A

	�	B

	�	C

	�	D

	�	E

	�	F

	�	�

	�	�

	�	�

	�A

	�AA

	�AB

	�AC

	�AD

	�AE

	�AF

�������

�����������

����������

���� �� ����

	�		AB			

C�		AB		D

E�		AB		D

F�		AB		D

��		AB		D

��		AB		�

��C	AB		�

��E	AB		�

��F	AB		�

���	AB		�

C�		AB		�

C�C	AB		�

C�E	AB		�

C�F	AB		�

C��	AB		�

��		AB		�

�������

�����������

�B��������

Figure 7.1: Standard Cornell Box: Charts of table 7.2.

���� ���� �� ���	

�

���A

��B

��BA

��C

��CA

DEF����

	E���������

	���������

Figure 7.2: Standard Cornell Box: Overhead of Function Calls.

a b c

ΔE=0 ΔE=max

Figure 7.3: Standard Cornell Box. Reference image (a, d), ML result (b), ML-C result (e),
color differences ∆E (c: a vs. b; f: d vs. e). The horizontal bar shows the color coding of
∆E.

59

Spiky light in the Cornell Box

To clarify the question how prominent the influence of the spiky spectrum parts is under
average conditions, figure 7.5 compares the original scene (first column, i.e. 7.5.a, d, g) with
the same scene, but spikes dropped (second column, i.e. 7.5.b, e, h). The last column shows
the color differences.

All times and cycle counts are averaged over 200 iterations. Color difference threshold in
pretest: ∆Eab,thresh = 5.0.

Evaluation of the Composite Model In the No Opt. condition of the spiky-light scene,
the Composite model (ML-C) scores better than equidistant sampling (ML), as chart 7.4.a
suggests. But the charts hint at a weakness of the Composite model: If compiler optimizations
and in particular vector operations come into play, the benefit disappears or ML is even faster
because the Composite model implementation actually cannot make use of SIMD instructions.

Interpretation of the resulting images:

• The prominent spikes below 440nm desaturate the light. This is why the second image
appears slightly more yellowish.

• For two reasons, the color difference reaches its maximum at the light source:

– The light source is the brightest part of the image.

– Spikes are not filtered by reflections. (In the ray tracing process, the light-source
pixels are directly illuminated.)

• As expected, the red wall is relatively insensitive to missing spikes, because the highest
density in redish spectra is above 600nm, distant to the spikes below 440nm. This
finding can be seen as a hint for future full-spectral renderer implementations: If the
Composite Model is implemented, spikes in ranges that are not covered by high densities
in the scene’s reflection colors can actually be dropped without noticeable influence on
the perceived image appearance.

Level Sample Count Times Emit. Times Refl.
Level 0 80 2 if spikes present else 0 0
Level 1 40 2 if spikes dropped else 0 0
Level 2 20 0 32

Table 7.3: Spiky-Light Cornell Box: Level Decisions for ML (= equidistant sampling only).

Level Sample Count Times Emit. Times Refl.
Level 0 40 2 0
Level 1 20 0 32

Table 7.4: Spiky-Light Cornell Box: Level Decisions for ML-C (= equidistant sampling +
Composite Model).

60

No Opt. Compil.Opt. C+Vec.Opt.
Ref. (seconds) 0.139787 0.0285388 0.0284563
ML (seconds) 0.094341 0.0250236 0.0199028
ML-C (seconds) 0.0790766 0.0259461 0.0263739
Ref. (rdtsc) 2.63287e+08 5.00027e+07 5.00512e+07
ML (rdtsc) 1.5827e+08 5.80304e+07 3.65298e+07
ML-C (rdtsc) 1.461e+08 4.6761e+07 4.39784e+07

Table 7.5: Spiky-Light Cornell Box: Average single-iteration time in seconds spent processing
color-related code.

No Opt. Compil.Opt. C+Vec.Opt.
Ref. (seconds) 0.154131 0.0301018 0.0288795
ML (seconds) 0.0572969 0.0182942 0.0185523
ML-C (seconds) 0.0602847 0.0189722 0.0189955
Ref. (rdtsc) 2.90461e+08 4.98838e+07 5.27637e+07
ML (rdtsc) 1.10911e+08 3.24872e+07 3.01975e+07
ML-C (rdtsc) 9.81445e+07 3.21536e+07 3.19167e+07

Table 7.6: Spiky-Light Cornell Box (spikes dropped): Average single-iteration time in seconds
spent processing color-related code.

a ���� �� ����

	

	�	A

	�	B

	�	C

	�	D

	�	E

	�	F

	�	�

	�	�

	�	�

	�A

	�AA

	�AB

	�AC

	�AD

	�AE

	�AF

�������

�����������

����������

b ���� �� ����

	

	�	A

	�	B

	�	C

	�	D

	�	E

	�	F

	�	�

	�	�

	�	�

	�A

	�AA

	�AB

	�AC

	�AD

	�AE

	�AF

�������

�����������

����������

Figure 7.4: Spiky-Light Cornell Box: Charts of tables 7.5 (chart a) and 7.6 (chart b).

61

a b c
∆E∗ab,mean = 6.609
∆E∗ab,max = 12.09

d e f
∆E∗ab,mean = 6.521
∆E∗ab,max = 12.08

g h i
∆E∗ab,mean = 5.973
∆E∗ab,max = 10.50

ΔE=0 ΔE=max

Figure 7.5: Spiky-Light Cornell Box. Ref. (a–c), ML (d–f), ML-C (g–i).

62

7.2.2 Colorful Scenes

The tests are focused on visible errors and time efficiency in more heterogeneous light and
surface color environments. The resulting images are shown in figures 7.7 and 7.8. All times
are stated in seconds, averaged over 200 iterations. Color difference threshold in pretest:
∆Eab,thresh = 5.0.

The following spectra are applied in the multi-light scene (figure 7.7):

• L1 and L2 are the light spectra.

• R1...R8 are the reflector spectra.

The following spectra are applied in the colorful Cornell box scene (figure 7.8):

• L3...L10 are the light spectra.

• R3 is an equal spectrum and describes all reflectors in the scene.

The iteration time charts (figure 7.6) largely conform to the Standard Cornell Box time chart
7.1. In general, the Composite model appears to be slightly faster than plain equidistant
sampling, but the ML-C case of the multi-light scene is ambivalent: The inferiority of the
optimized ML-C cases might be due to the fact that rays with more than one accumulated
spiky spectra need to access their patterns and height fields separately for each subsequent
operation which induces time penalties. But also memory cache effects might be a cause,
because the equidistant sample color representation imples less spread memory accesses than
the retrieval of a spiky spectrum’s smooth part, its spike pattern and its spike heights. For
the multi-light scene, the light sources are all hybrid and their entire information is used
randomly during the entire rendering process. However, the more realistic setting of the
colorful Cornell box with two distinct light sources (one smooth, the other with spikes) and
colors with sample counts at all levels casts a positive light on the Composite model approach.

Even though the color difference threshold is ∆E∗ab,thresh = 5.0, for the multi-light scene, the
maximum color error among the pixel errors does not exceed 7.35 for ML and 9.18 for ML-C
respectively, the mean errors are 0.15 and 0.59 respectively. The maximum color error of the
colorful Cornell box scene is 9.09 for ML and 8.11 for ML-C respectively and the mean errors
are 0.42 and 0.81. The spatial error distributions are shown in figures 7.7.c, 7.8.c, 7.8.f.

Level Sample Count Times Emit. Times Refl.
Level 0 80 96 0
Level 1 40 0 0
Level 2 20 0 784

Table 7.7: Multi-Light Scene: Level Decisions for ML (= equidistant sampling only).

Level Sample Count Times Emit. Times Refl.
Level 0 80 2 20
Level 1 40 0 6
Level 2 20 2 8

Table 7.8: Colorful Cornell Box: Level Decisions for ML (= equidistant sampling only).

63

No Opt. Compil.Opt. C+Vec.Opt.
Ref. (seconds) 0.0454618 0.0121505 0.0120491
ML (seconds) 0.024926 0.00770605 0.00770262
ML-C (seconds) 0.0226315 0.0084848 0.00978644
Ref. (rdtsc) 8.99419e+07 2.1872e+07 2.23589e+07
ML (rdtsc) 4.37697e+07 1.40397e+07 1.34597e+07
ML-C (rdtsc) 3.69719e+07 1.6986e+07 1.72476e+07

Table 7.9: Multi-Light Scene: Average single-iteration time in seconds spent processing color-
related code.

No Opt. Compil.Opt. C+Vec.Opt.
Ref. (seconds) 0.117355 0.0245464 0.0235157
ML (seconds) 0.0710397 0.0187738 0.0178573
ML-C (seconds) 0.0548471 0.0175328 0.0149872
Ref. (rdtsc) 2.29202e+08 4.26293e+07 4.43836e+07
ML (rdtsc) 1.13546e+08 3.37784e+07 3.93586e+07
ML-C (rdtsc) 1.04791e+08 3.35788e+07 3.03262e+07

Table 7.10: Colorful Cornell Box: Average single-iteration time in seconds spent processing
color-related code.

a ���� �� ����

	

	�	A

	�	A

	�	B

	�	B

	�	C

	�	C

	�	D

	�	D

	�	E

	�	E

F������

�����������

����������

b ���� �� ����

	

	�	A

	�	B

	�	C

	�	D

	�	E

	�	F

	�	�

	�	�

	�	�

	�A

	�AA

	�AB

	�AC

	�AD

	�AE

	�AF

�������

�����������

����������

Figure 7.6: Colorful Scenes: Charts of tables 7.9 (chart a) and 7.10 (chart b).

64

a b c

ΔE=0 ΔE=max

Figure 7.7: Multi-Light Scene. Reference image (a), ML-C result (b), color differences ∆E
(c). The horizontal bar shows the color coding of ∆E.

a b c

d e f

ΔE=0 ΔE=max

Figure 7.8: Colorful Cornell Box. Reference image (a, d), ML result (b), ML-C result (e),
color differences ∆E (c: a vs. b; f: d vs. e). The horizontal bar shows the color coding of
∆E.

65

7.2.3 Color Difference Thresholds

This test is focused on color difference versus speed. Resulting images are shown in figure
7.10. All times are stated in seconds, averaged over 200 iterations. Color difference threshold
in pretest: ∆Eab,thresh = 5.0.

Level decision distributions are tabulated in table 7.11.

The plot of relative developments (figure 7.9.b) shows that in all optimization conditions, the
color difference considerably stronger rises than the computation times drops (the No Opt.
condition considerably fluctuates, presumably due to measuring inaccuracy, but the overall
tendency is a slight decrease). In other words: A slightly higher computation time allows for
significantly more accurate results. Anyhow, even in the ∆E∗ab,thresh = 7.0 case (figure 7.10.e,
f, g), actually no difference is visually identifiable between the reference image and the test
case image. Thus, if accuracy is not of overall importance, the performance gain will most
likely outweigh the accuracy loss, which argues for a mipmapping implementation.

∆E Thresh. Level Sample Count Times Emit. Times Refl.
3.0 Level 0 80 2 22

Level 1 40 0 8
Level 2 20 2 4

4.0 Level 0 80 2 22
Level 1 40 0 4
Level 2 20 2 8

5.0 Level 0 80 2 20
Level 1 40 0 6
Level 2 20 2 8

6.0 Level 0 80 2 20
Level 1 40 0 4
Level 2 20 2 10

7.0 Level 0 80 2 10
Level 1 40 0 12
Level 2 20 2 12

Table 7.11: Comparison of Color Difference Thresholds: Development of Level Decisions for
ML (equidistant sampling only).

∆E∗ab,thresh ∆E∗ab,mean Number of Pixels with ∆E∗ab...
< 1.0 < 2.0 < 3.0 < 4.0 < 5.0 ≥ 5.0

3.0 0.236 24282 865 328 91 23 0, 1, 11
4.0 0.379 22859 1862 493 301 31 43, 1, 10
5.0 0.384 22844 1866 496 307 31 45, 1, 10
6.0 0.396 22718 1969 494 325 34 48, 2, 10
7.0 0.443 22455 2153 548 342 37 50, 2, 8, 5

Table 7.12: Comparison of Color Difference Thresholds: Color Errors in the final image.

66

���������	�A�B ���������	�A�C ���������	�A�D ���������	�A�E ���������	�A�F

��D

��DD

��E

��ED

��F

��FD

���

���D

���

���D

�

�������

�����������

����������

������	��

Figure 7.9: Comparison of Color Difference Thresholds: Development of processing times and
resulting mean color differences ∆E∗ab,mean against rising color difference threshold (abscissa).
The processing times are plotted relative to the computation time at ∆E∗ab,thresh = 3.0 (No
Opt.: 72millisec; Compil.Opt.: 21millisec; C+Vec.Opt.: 21millisec) and color differences are
plotted relative to ∆E∗ab,mean = 0.443 (table 7.12).

Color differences of figure 7.10 on the next page:

Figure ∆E∗ab ∆E∗ab,max ∆E∗ab,mean
7.10.a 3.0 0.236 7.977
7.10.b 4.0 0.379 7.977
7.10.c 5.0 0.384 7.977
7.10.d 6.0 0.396 7.977
7.10.e 7.0 0.443 8.106

67

a b

c d

e f g

ΔE=0 ΔE=max

Figure 7.10: (a–e) pixel color errors for pretest color difference thresholds of ∆E∗ab,thresh =
3.0–7.0, (f) Ref. and (g) ML are the results with ∆E∗ab,thresh = 7.0.

68

7.2.4 Operator Times

The following time-critical operations/queries (“fast operation”, identifier fop; “fast query”,
identifier fq) are part of the full-spectrum color class in the adapted Minilight ray tracer:

fop-ipl:mulsource-c Multiplication of the spectrum by a reflector or light source spectrum,
inclusive of spikes (in-place operation).

fop-ipl:addsource-cs Addition of a scaled reflector or light source spectrum, inclusive of
spikes (in-place operation).

fop-ipl:addsingle-c Addition of an arbitrary single-level spectrum, inclusive of spikes (in-
place operation).

fop-ipl:addsingle-cs Addition of an arbitrary scaled single-level spectrum, inclusive of
spikes (in-place operation).

fop-ipl:clearsingle Clear single level and spikes. Used for global intermediate variables.

fop-ipl:setsource-c Set the spectrum to a reflector or light source spectrum.

fop-ipl:setsource-cs Set the spectrum to a scaled reflector or light source spectrum.

The test scene is the spiky-light Cornell box of section 7.2.1. All times are accumulated
during 200 ray tracing iterations and stated in seconds.

Multiplication
(Table 7.13)

The use of vector operations drastically reduces the difference between the time costs of the
reference calculation Ref. and the test cases ML and ML-C. However, they are still somewhat
faster. The spike part is pretty costly, because of the separate handling. This points out a
weakness of the Composite model.

fop-ipl:mulsource-c
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 8145468 6.826 0.931 0.655
ML Level 0 6653696 4.359 0.804 0.626

Level 1 0 0 0 0
Level 2 428187 0.061 0.015 0.014

7081883 4.421 0.820 0.640
ML-C Level 0 6679898 2.071 0.408 0.508

Level 1 431476 0.067 0.019 0.017
7111374 2.138 0.426 0.525

Spikes 2.461 1.252 0.878

Table 7.13: Spectrum-by-Spectrum Multiplication.

69

Addition, Clear and Set
(Tables 7.14 and 7.15)

Except for fop-ipl:addsingle-cs, the ratio between reference and test cases is similar to that
of the multiplication operation. The third table (addition of scaled spectrum) suggests that
the scaling of spikes using the Composite model is a costly task.

fop-ipl:addsource-cs
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 3863954 3.549 0.481 0.489
ML Level 0 29327 0.020 0.004 0.003

Level 1 0 0 0 0
Level 2 0 0 0 0

29327 0.020 0.004 0.003
ML-C Level 0 29298 0.011 0.002 0.002

Level 1 0 0 0 0
29298 0.011 0.002 0.002

Spikes 0.004 0.001 0.001

fop-ipl:addsingle-c
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 5120000 5.077 1.525 1.453
ML Level 0 3385668 2.444 0.579 0.540

Level 1 0 0 0 0
Level 2 1734332 0.368 0.146 0.139

5120000 2.812 0.724 0.679
ML-C Level 0 3386530 1.258 0.343 0.321

Level 1 1733470 0.389 0.135 0.138
5120000 1.647 0.478 0.459

Spikes 0.620 0.145 0.222

fop-ipl:addsingle-cs
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 4629492 4.219 0.559 0.535
ML Level 0 4290740 3.191 0.896 0.609

Level 1 0 0 0 0
Level 2 0 0 0 0

4290740 3.191 0.896 0.609
ML-C Level 0 4299832 1.772 0.577 0.574

Level 1 0 0 0 0
4299832 1.772 0.577 0.574

Spikes 0.731 0.260 0.334

Table 7.14: Spectrum-by-Spectrum Additions.

70

fop-ipl:clearsingle
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 3900524 1.561 0.276 0.250
ML Level 0 2982665 0.822 0.173 0.160

Level 1 0 0 0 0
Level 2 1067068 0.168 0.055 0.036

4049733 0.989 0.228 0.196
ML-C Level 0 2980720 0.451 0.128 0.089

Level 1 1063832 0.162 0.043 0.031
4044552 0.613 0.171 0.120

Spikes 0.118 0.028 0.011

fop-ipl:setsource-c
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 1219476 0.804 0.178 0.172
ML Level 0 403003 0.342 0.119 0.130

Level 1 0 0 0 0
Level 2 667264 0.171 0.088 0.076

1070267 0.514 0.207 0.205
ML-C Level 0 405810 0.216 0.100 0.093

Level 1 669638 0.165 0.085 0.069
1075448 0.382 0.185 0.162

Spikes 0.038 0.011 0.016

fop-ipl:setsource-cs
Call Count (Compil.Opt.) No Opt. Compil.Opt. C+Vec.Opt.

Ref. 8145468 7.315 1.173 1.224
ML Level 0 6653696 3.821 0.941 0.659

Level 1 0 0 0 0
Level 2 428187 0.063 0.033 0.024

7081883 3.884 0.974 0.683
ML-C Level 0 6679898 2.124 0.637 0.629

Level 1 431476 0.085 0.028 0.024
7111374 2.209 0.665 0.652

Spikes 0.816 0.273 0.279

Table 7.15: Clear and Set Operations.

71

72

Chapter 8

Conclusion

Full-spectral global illumination renderer implementations require a different design strategy
than implementations of three-component based renderers. A properly designed renderer that
is programmed using advanced performance programming techniques with the objective of
efficient machine code generation allows for fast operations on sampled spectra. The perfor-
mance gain induced by the support of aggressive compiler optimizations, can be 75% or more.
Further considerable performance gains can be achieved by the use of Spectral Mipmapping,
but they are only noticeable if function calls are eliminated by manual inlining. The effec-
tiveness of Spectral Mipmapping always depends on a certain heterogeneity of spectra: Few
spectra with high sample counts and a huge amount of spectra with low sample counts best
exhibit the potential of Spectral Mipmapping. The Spectral Mipmapping approach allows for
a fine-tuning of sample counts. This is especially useful for scenes possessing multiple light
sources or surface colors with differently shaped spectra with regard to the required number
of samples. Depending on the hardware characteristics, the reduction of samples may lead to
a considerable performance gain, particularly if few of a scene’s spectra require 80 samples
or more, such as spiky or other turbulent types of spectra.

Under certain conditions, the Composite model by Sun [16] is more efficient than plain
equidistant sampling, even if 4-parallel SIMD instructions are used which are not necessarily
beneficial for a Composite model implementation. However, one spike already necessitates
eight scalar operations if multiplied by a smooth spectrum (please refer to section 6.2.2) and
the spectrum of a common fluorescence lamp possesses four major spikes, not to mention
their foothills, at least 32 not necessarily parallelizable scalar operations must be performed,
merely to handle the spikes without the smooth part which requires further scalar operations.
If, in a ray tracer, a recursive ray collects more than one spike pattern with four or more
spikes, belonging to different light sources, 64 or more scalar operations are required solely
to handle the spikes.

Particularly with regard to the growing parallel processing capabilities of modern computer
systems, concerning both CPUs and Graphical Processing Units, which can handle large
sample vectors entirely parallel for applying a common scalar operation on their compo-
nents, plain sample representations of spectral colors are advantageous. But even if massive
parallelization is possible, Spectral Mipmapping can help using the resources more efficiently.

73

The weak point of the Spectral Mipmapping multi-level approach is the pretest phase. The
color difference threshold can only roughly define the effective maximum pixel error in the final
image if the pretests do not cover all possible light-surface interactions that may occur during
the rendering process, which is roughly as time-consuming as the entire rendering process
and therefore not an option. However, forecasts can be made based on likely color difference
developments (please refer to section 4.1.3 for details) and a color difference (∆E∗ab) threshold
of 5.0 seems to be a good choice. In order to decide for a threshold that is appropriate for a
certain scene, a preview can be rendered at a low resolution and few iterations and compared
to a reference preview rendered from the same scene in blurred form (blurring eliminates the
noise).

The number of vector length levels for a Spectral Mipmapping implementation should be
chosen wisely: Although many levels provide more choices to appropriately classify the indi-
vidual spectra, if the machine code is aggressively optimized for performance, each individual
level gets its own machine code procedures. Since the level chosen for processing varies from
pixel iteration to pixel iteration, the procedures of all levels need to be available and should
therefore reside in the instruction cache. Otherwise, cache faults may induce considerable
performance penalties. In addition, the levels are restricted by the set of vector operation
instructions. If SIMD instructions are used, which handle four scalars per operand in paral-
lel, the level pool can be restricted to vector lengths of multiples of four. Three levels, for
instance 80, 40 and 20 samples, are a suitable choice.

Methods based on basis functions depend on the shape and number of spectra that occur in
a scene since each spectrum contributes to the shape of the basis functions. The information
loss stemming from the basis function representation therefore depends on the individual
scene and is hard to estimate. Besides, light-surface interactions are matrix multiplications
and thus, akin to the Composite model, less suitable for SIMD vector operations.

Future Work

The peculiarities of different processor types should be investigated in order to recommend or
advise against a multi-level approach. Fully developed global illumination renderers that are
based on full-spectral rendering, such as LuxRender [10], could be equipped with a multi-level
approach as a method of choice. A guide for new renderer projects and modeling tools may
help the developer team make the renderer’s design full-spectrum ready and appropriately
optimized. The required effort is marginal but considerably upvalues the final product.

Particularly the automated accuracy choice for Spectral Mipmapping needs improvement,
possibly based on experience with sampling rates for known spectra and a classification algo-
rithm for newly measured or synthesized spectra that classifies spectra by shape comparison.

74

Appendix A

Color and Color Difference

A.1 Tonemapping

Since a full-spectral renderer inherently operates on device-independent colors in the form
of spectra, the result is to be tonemapped in order to ensure a realistic appearance on the
output device (i.e. computer monitor, printer,...). In the test scenes, the surface luminance
highly varies between emitting surfaces and non-emitting surfaces that are illuminated.

Tonemapping requirements:

• Preserve chromacity appearance.

• Avoid clamping.

Tonemapping (RGB color space): rogo
bo

 = factor ·

rg
b

 (A.1)

The values ro, go and bo are the RGB colors sent to the output device.

The following formula satisfies the requirements mentioned above with minimal effort:

factor = 1
a+ luminance

(A.2)

luminance = 0.27r + 0.67g + 0.06b
0.27 + 0.67 + 0.06 = 1

The tone mapping formula is based on formula (3) discussed by [33].

For all rendered images, a was set to 5.

A.2 Color-Matching Functions

The Color-Matching Functions were used to perform spectrum-to-XYZ color space conver-
sions for color difference tests and rendering. The values are copied from [22].

75

Wavelength λ x̄(λ) ȳ(λ) z̄(λ)
380nm 0.0014 0.0000 0.0065
385nm 0.0022 0.0001 0.0105
390nm 0.0042 0.0001 0.0201
395nm 0.0076 0.0002 0.0362
400nm 0.0143 0.0004 0.0679
405nm 0.0232 0.0006 0.1102
410nm 0.0435 0.0012 0.2074
415nm 0.0776 0.0022 0.3713
420nm 0.1344 0.0040 0.6456
425nm 0.2148 0.0073 1.0391
430nm 0.2839 0.0116 1.3856
435nm 0.3285 0.0168 1.6230
440nm 0.3483 0.0230 1.7471
445nm 0.3481 0.0298 1.7826
450nm 0.3362 0.0380 1.7721
455nm 0.3187 0.0480 1.7441
460nm 0.2908 0.0600 1.6692
465nm 0.2511 0.0739 1.5281
470nm 0.1954 0.0910 1.2876
475nm 0.1421 0.1126 1.0419
480nm 0.0956 0.1390 0.8130
485nm 0.0580 0.1693 0.6162
490nm 0.0320 0.2080 0.4652
495nm 0.0147 0.2586 0.3533
500nm 0.0049 0.3230 0.2720
505nm 0.0024 0.4073 0.2123
510nm 0.0093 0.5030 0.1582
515nm 0.0291 0.6082 0.1117
520nm 0.0633 0.7100 0.0782
525nm 0.1096 0.7932 0.0573
530nm 0.1655 0.8620 0.0422
535nm 0.2257 0.9149 0.0298
540nm 0.2904 0.9540 0.0203
545nm 0.3597 0.9803 0.0134
550nm 0.4334 0.9950 0.0087
555nm 0.5121 1.0002 0.0057
560nm 0.5945 0.9950 0.0039
565nm 0.6784 0.9786 0.0027
570nm 0.7621 0.9520 0.0021
575nm 0.8425 0.9154 0.0018

580nm 0.9163 0.8700 0.0017
585nm 0.9786 0.8163 0.0014
590nm 1.0263 0.7570 0.0011
595nm 1.0567 0.6949 0.0010
600nm 1.0622 0.6310 0.0008
605nm 1.0456 0.5668 0.0006
610nm 1.0026 0.5030 0.0003
615nm 0.9384 0.4412 0.0002
620nm 0.8544 0.3810 0.0002
625nm 0.7514 0.3210 0.0001
630nm 0.6424 0.2650 0.0000
635nm 0.5419 0.2170 0.0000
640nm 0.4479 0.1750 0.0000
645nm 0.3608 0.1382 0.0000
650nm 0.2835 0.1070 0.0000
655nm 0.2187 0.0816 0.0000
660nm 0.1649 0.0610 0.0000
665nm 0.1212 0.0446 0.0000
670nm 0.0874 0.0320 0.0000
675nm 0.0636 0.0232 0.0000
680nm 0.0468 0.0170 0.0000
685nm 0.0329 0.0119 0.0000
690nm 0.0227 0.0082 0.0000
695nm 0.0158 0.0057 0.0000
700nm 0.0114 0.0041 0.0000
705nm 0.0081 0.0029 0.0000
710nm 0.0058 0.0021 0.0000
715nm 0.0041 0.0015 0.0000
720nm 0.0029 0.0010 0.0000
725nm 0.0020 0.0007 0.0000
730nm 0.0014 0.0005 0.0000
735nm 0.0010 0.0004 0.0000
740nm 0.0007 0.0003 0.0000
745nm 0.0005 0.0002 0.0000
750nm 0.0003 0.0001 0.0000
755nm 0.0002 0.0001 0.0000
760nm 0.0002 0.0001 0.0000
765nm 0.0001 0.0000 0.0000
770nm 0.0001 0.0000 0.0000
775nm 0.0000 0.0000 0.0000
780nm 0.0000 0.0000 0.0000

Table A.1: CIE 1931 Standard Colorimetric System: Color-Matching Functions.

76

A.3 Spectra

The first sample of each spectrum is centered at 380nm.

A.3.1 Light Source Spectra

L1 is an artificial equal spectrum and L2 is the spectrum of a flourescent lamp. L2...L10
are resampled reflector spectra measured from the Macbeth Colour Checker (see [30]) and
resampled at 81 samples. The spikes of L2...L10 are random generated. Except for L1, all
light source spectra are sampled at 5nm intervals.

L1
max:
1000.000

L2
max:
3498.000

L3
max:
245.000

L4
max:
408.100

L5
max:
467.650

L6
max:
202.250

L7
max:
335.375

L8
max:
523.000

L9
max:
508.400

L10
max:
508.600

77

A.3.2 Reflector Spectra

The reflector spectra are sampled from the Macbeth Colour Checker and sampled at 36
equidistant locations at intervals of 10nm.

R1
max:
0.767

R2
max:
0.846

R3
max:
0.500

R4
max:
0.568

R5
max:
0.655

R6
max:
0.353

R7
max:
0.581

R8
max:
0.584

78

L*a*b* 97.8 9.7 86.9
97.9 8.9 87.3

96.3 15.8 130.0
96.5 14.9 129.9

95.3 20.4 148.0
95.3 20.3 146.9

94.5 23.6 153.2
94.3 24.6 151.5

94.0 26.0 154.2
93.5 28.1 152.5

∆E 0.873 0.992 1.193 1.943 2.745
L*a*b* 98.1 8.4 5.3

97.9 9.0 5.1
98.0 8.4 5.0
97.9 9.1 4.7

98.0 8.5 4.5
97.8 9.3 4.2

98.0 8.7 4.1
97.8 9.5 3.8

98.0 8.8 3.6
97.8 9.7 3.3

∆E 0.700 0.770 0.820 0.862 0.902
L*a*b* 94.0 25.7 29.1

93.9 26.3 28.8
89.0 47.5 49.3
88.9 48.0 49.2

83.8 69.6 66.4
83.7 70.2 66.6

79.3 89.4 80.9
79.2 89.7 81.4

75.6 105.2 93.1
75.6 105.2 93.8

∆E 0.621 0.596 0.595 0.599 0.693
L*a*b* 100.0 −5.8 36.4

100.0 −5.0 36.2
100.0 −15.9 61.6
100.0 −15.1 61.4

100.0 −23.6 81.8
100.0 −22.5 81.5

100.0 −29.6 97.7
100.0 −28.4 97.4

100.0 −34.6 109.9
100.0 −33.3 109.6

∆E 0.758 0.935 1.102 1.228 1.291
L*a*b* 98.2 7.9 5.7

98.0 8.6 5.4
98.2 7.6 5.9
98.1 8.4 5.5

98.3 7.3 6.0
98.1 8.2 5.5

98.4 7.1 6.1
98.1 8.0 5.6

98.4 6.9 6.2
98.2 7.9 5.6

∆E 0.739 0.875 1.000 1.114 1.217
L*a*b* 98.1 8.1 4.4

98.0 8.7 4.1
98.2 7.9 3.2
98.0 8.6 2.8

98.2 7.8 2.0
98.0 8.6 1.5

51.0 4.5 0.5
50.9 5.1 0.1

11.0 1.8 −0.1
10.9 2.1 −0.3

∆E 0.718 0.842 0.967 0.635 0.284
L*a*b* 100.0 −15.3 86.7

100.0 −16.2 86.9
100.0 −29.5 131.4
100.0 −30.4 130.9

100.0 −40.5 150.2
100.0 −40.0 148.5

100.0 −49.3 155.8
100.0 −46.7 153.6

100.0 −56.3 157.4
100.0 −51.5 155.6

∆E 0.893 1.045 1.780 3.337 5.126
L*a*b* 89.4 45.6 52.4

89.3 46.0 52.4
82.4 75.8 87.0
82.3 76.1 87.1

78.0 94.8 110.4
78.0 95.0 110.5

75.4 106.0 123.4
75.4 106.2 123.3

35.7 65.0 61.3
35.9 65.4 61.5

∆E 0.456 0.351 0.283 0.269 0.487
L*a*b* 98.2 7.9 5.0

98.0 8.6 4.7
98.2 7.6 4.4
98.1 8.4 4.0

98.3 7.3 3.7
98.1 8.2 3.2

98.4 7.1 3.0
98.1 8.1 2.5

51.9 4.1 1.4
51.8 4.7 1.0

∆E 0.744 0.888 1.026 1.153 0.748
L*a*b* 98.1 8.4 2.6

97.9 9.2 2.3
80.1 7.2 −0.3
80.1 8.2 −0.7

3.8 0.9 −0.3
3.7 1.0 −0.4

0.0 0.0 −0.0
0.0 0.0 −0.0

0.0 0.0 −0.0
0.0 0.0 −0.0

∆E 0.948 1.086 0.167 0.002 0.000
L*a*b* 97.3 11.7 115.5

97.3 11.6 115.4
94.8 22.5 146.2
94.7 22.8 145.7

93.3 29.0 152.0
93.0 30.2 151.2

92.2 33.4 152.6
91.8 35.2 151.8

91.5 36.7 152.4
91.0 38.8 151.7

∆E 0.110 0.572 1.458 2.043 2.300
L*a*b* 98.2 7.9 5.7

98.0 8.6 5.4
98.2 7.6 5.9
98.1 8.3 5.5

98.3 7.3 6.0
98.1 8.1 5.5

98.4 7.0 6.1
98.2 8.0 5.6

98.4 6.9 6.2
98.2 7.9 5.6

∆E 0.728 0.853 0.968 1.073 1.167
L*a*b* 100.0 −87.1 33.3

100.0 −85.8 32.9
100.0 −147.1 57.7
100.0 −145.8 57.9

100.0 −180.5 72.6
100.0 −179.1 73.3

100.0 −199.9 80.9
100.0 −197.4 81.6

100.0 −212.1 85.6
100.0 −207.5 86.2

∆E 1.361 1.308 1.542 2.582 4.685
L*a*b* 98.0 −6.7 −3.5

97.8 −6.0 −3.8
93.5 −20.7 −11.2
93.3 −19.7 −11.5

90.0 −33.0 −17.3
89.8 −31.9 −17.6

87.2 −43.9 −22.1
87.0 −42.6 −22.5

85.0 −53.2 −25.8
84.8 −51.9 −26.3

∆E 0.807 0.978 1.139 1.293 1.443
L*a*b* 98.0 8.5 5.5

97.9 9.2 5.3
98.0 8.8 5.3
97.8 9.5 5.1

97.9 9.1 5.1
97.7 9.8 4.9

97.8 9.5 4.8
97.6 10.2 4.6

97.7 9.8 4.5
97.5 10.6 4.3

∆E 0.676 0.716 0.739 0.759 0.784
L*a*b* 94.9 22.0 12.9

94.7 22.8 12.6
91.8 35.3 20.6
91.6 36.2 20.2

88.9 47.7 28.5
88.7 48.6 28.2

86.3 59.0 36.6
86.1 59.8 36.4

84.0 68.9 44.7
83.8 69.6 44.7

∆E 0.873 1.013 1.020 0.909 0.710
L*a*b* 97.3 11.7 115.5

97.3 11.6 115.4
94.8 22.5 146.2
94.7 22.8 145.7

93.3 29.0 152.0
93.0 30.2 151.2

92.2 33.4 152.6
91.8 35.2 151.8

91.5 36.7 152.4
91.0 38.8 151.7

∆E 0.110 0.572 1.458 2.043 2.300
L*a*b* 98.3 7.2 6.7

98.2 7.8 6.5
98.6 6.2 7.4
98.4 6.9 7.3

98.8 5.3 8.1
98.6 6.0 7.9

99.0 4.4 8.6
98.8 5.3 8.4

99.2 3.6 9.0
98.9 4.6 8.7

∆E 0.638 0.692 0.781 0.908 1.071
L*a*b* 75.1 107.5 77.2

75.0 107.6 77.5
70.4 127.6 117.6
70.4 127.7 117.6

69.0 133.6 118.7
69.1 133.3 118.8

68.3 136.7 117.6
68.4 136.0 117.9

67.8 138.7 116.9
68.0 137.9 117.1

∆E 0.329 0.096 0.345 0.790 0.883
L*a*b* 92.8 30.9 101.2

92.9 30.8 101.1
88.4 49.8 138.6
88.2 50.7 137.9

85.6 61.9 143.8
85.2 63.7 142.9

83.7 70.2 142.1
83.2 72.5 141.2

82.3 76.2 140.3
81.7 78.8 139.3

∆E 0.135 1.151 2.041 2.569 2.814

Table A.2: Test 1 results (see section 4.1.3).

79

L*a*b* 98.1 8.4 5.3
97.9 9.0 5.1

94.0 25.8 28.7
93.9 26.4 28.4

96.4 15.4 54.7
96.3 16.0 54.4

96.6 14.5 54.8
96.5 15.2 54.4

96.8 13.6 53.9
96.7 14.3 53.6

∆E 0.700 0.702 0.720 0.805 0.863
L*a*b* 100.0 −5.8 36.4

100.0 −5.0 36.2
80.4 84.5 44.7
80.3 85.0 44.6

80.5 84.2 44.4
80.3 84.7 44.2

80.6 83.7 44.9
80.4 84.3 44.9

80.8 82.7 44.7
80.7 83.3 44.6

∆E 0.758 0.527 0.574 0.571 0.608
L*a*b* 79.2 89.8 −19.3

79.1 90.3 −19.2
69.4 97.4 −52.8
69.4 98.2 −52.8

52.0 87.8 −82.7
51.9 88.4 −82.9

88.6 49.2 13.6
88.0 51.7 12.5

65.6 42.6 −59.3
64.6 46.0 −61.1

∆E 0.504 0.754 0.698 2.803 3.952
L*a*b* 98.0 8.6 3.3

97.8 9.4 2.8
100.0 −17.8 104.8
100.0 −18.1 104.7

56.0 −11.5 64.5
56.1 −11.6 64.5

24.8 −6.6 35.3
24.8 −6.6 35.3

3.4 −1.6 5.2
3.4 −1.6 5.2

∆E 0.966 0.286 0.135 0.044 0.005
L*a*b* 98.2 8.0 5.8

98.0 8.6 5.5
98.4 6.9 6.7
98.2 7.6 6.5

81.2 −13.8 −32.4
80.9 −12.3 −33.0

82.7 −89.7 −29.7
82.2 −87.1 −30.6

100.0 −163.4 2.8
100.0 −162.2 2.2

∆E 0.725 0.745 1.643 2.788 1.403
L*a*b* 94.9 22.0 12.9

94.7 22.8 12.6
100.0 −11.5 96.5
100.0 −10.5 96.2

100.0 −12.1 96.6
100.0 −11.0 96.3

100.0 −66.8 31.4
100.0 −63.1 29.9

100.0 −66.9 30.8
100.0 −63.1 29.3

∆E 0.873 1.002 1.096 4.007 4.076
L*a*b* 75.1 −35.9 −42.9

74.3 −33.2 −44.3
74.5 −34.7 −43.9
73.6 −31.9 −45.4

73.3 −24.1 −46.0
72.4 −21.2 −47.5

73.1 −103.4 23.3
72.4 −99.1 21.8

27.2 −48.1 −11.2
26.8 −45.4 −12.3

∆E 3.203 3.315 3.395 4.620 2.991
L*a*b* 98.2 8.0 5.7

98.0 8.6 5.4
98.2 7.6 6.0
98.1 8.4 5.6

98.3 7.5 4.8
98.1 8.3 4.3

77.9 −35.6 −38.1
77.3 −33.5 −39.1

41.3 50.8 −101.2
40.9 52.2 −101.8

∆E 0.733 0.853 0.968 2.368 1.587
L*a*b* 98.1 8.3 2.9

97.9 9.0 2.7
98.3 7.3 −1.4
98.1 8.3 −1.9

78.3 22.0 21.6
78.3 23.1 21.3

37.4 12.2 12.3
37.4 12.8 12.1

35.7 11.4 12.2
35.7 12.1 12.0

∆E 0.797 1.079 1.133 0.676 0.671
L*a*b* 98.2 7.9 5.0

98.0 8.6 4.7
94.6 23.2 5.1
94.5 23.8 5.0

94.7 22.7 5.2
94.6 23.4 5.0

79.4 0.0 −35.6
79.1 1.6 −36.1

50.6 73.3 −85.2
50.7 73.7 −85.0

∆E 0.744 0.670 0.763 1.734 0.478
L*a*b* 98.0 8.6 5.6

97.9 9.2 5.4
100.0 −30.8 70.5
100.0 −31.9 71.0

100.0 −47.4 41.2
100.0 −48.4 42.0

100.0 −27.1 56.8
100.0 −27.8 57.6

52.6 −16.5 32.4
53.0 −16.8 33.0

∆E 0.651 1.278 1.316 1.039 0.729
L*a*b* 98.3 7.2 6.7

98.2 7.8 6.5
98.3 7.4 2.7
98.2 7.9 2.6

98.3 7.2 1.5
98.2 7.8 1.2

37.0 3.0 −1.3
36.9 3.3 −1.6

9.9 28.1 2.8
9.8 28.2 2.7

∆E 0.638 0.542 0.663 0.453 0.149
L*a*b* 98.1 8.3 2.9

97.9 9.0 2.7
78.9 6.9 0.4
78.9 7.3 0.2

47.6 4.4 47.0
47.8 3.9 47.2

1.1 0.2 1.5
1.1 0.2 1.5

0.0 0.1 0.0
0.0 0.1 0.0

∆E 0.797 0.480 0.554 0.021 0.000
L*a*b* 98.2 7.9 5.7

98.0 8.6 5.4
95.0 21.5 13.0
94.8 22.3 12.6

95.1 21.0 13.1
94.9 21.9 12.7

95.2 20.6 13.2
95.0 21.6 12.7

95.3 20.2 13.3
95.0 21.3 12.8

∆E 0.728 0.981 1.085 1.192 1.278
L*a*b* 62.4 96.1 −64.8

62.8 96.9 −64.2
62.1 95.6 −65.3
62.4 96.5 −64.8

73.6 114.0 −27.1
73.4 114.5 −26.2

44.9 110.8 −95.0
44.9 111.3 −95.0

44.4 110.5 −95.9
44.2 111.2 −96.1

∆E 1.074 1.078 1.101 0.520 0.740
L*a*b* 98.2 7.9 5.7

98.0 8.6 5.4
98.4 6.9 6.7
98.2 7.6 6.5

93.6 27.4 29.0
93.6 27.6 28.9

87.5 53.7 107.8
87.7 53.0 108.0

87.8 52.7 108.0
87.9 52.0 108.2

∆E 0.729 0.748 0.264 0.770 0.729
L*a*b* 98.2 8.0 5.7

98.0 8.6 5.4
98.2 7.6 5.9
98.1 8.4 5.5

98.2 7.7 2.4
98.0 8.4 1.9

98.4 6.7 3.2
98.3 7.4 2.8

91.2 37.8 31.5
91.1 38.2 31.2

∆E 0.733 0.862 0.842 0.834 0.549
L*a*b* 100.0 −75.1 77.5

100.0 −74.1 77.3
100.0 −112.6 53.0
100.0 −109.8 52.4

100.0 −112.5 52.0
100.0 −109.8 51.2

57.4 −17.5 −23.5
56.6 −13.1 −25.2

1.7 −1.1 −2.1
1.6 −0.8 −2.3

∆E 1.023 2.810 2.829 4.729 0.344
L*a*b* 94.0 25.7 29.1

93.9 26.3 28.8
94.2 24.9 29.1
94.1 25.5 28.8

50.6 47.5 −85.2
50.3 48.7 −85.6

53.7 4.0 −79.9
53.0 6.8 −81.1

53.4 5.1 −80.3
52.8 7.7 −81.4

∆E 0.621 0.706 1.243 3.074 2.902
L*a*b* 98.0 8.4 5.1

97.9 9.1 4.8
98.0 8.5 2.6
97.9 8.9 2.5

92.2 33.5 39.8
92.2 33.8 39.5

92.4 32.9 39.3
92.3 33.2 39.0

40.2 −15.8 −8.7
40.0 −14.6 −9.3

∆E 0.724 0.387 0.353 0.465 1.374

Table A.3: Test 2 results (see section 4.1.3).

80

Appendix B

Test Details

B.1 Test Design and Time Measurement

To minimize function call overhead, all non-recursive functions (C++ methods) within mea-
surement periods are inlined using the inline statement.

Listing 1 shows the timer macros that were applied for performance measurement. The
clock gettime function, if called with the CLOCK PROCESS CPUTIME ID argument, delivers
the current value of a high-resolution per-process timer. To debunk measurement errors
induced by the design of this timing function, the macros are provided in the form of a
different implementation using the rdtsc machine instruction, which returns the number of
cycles since the process start. Due to power-saving capabilities of modern processors, it can
not be considered reliable and therefore it is primarily used for verification purposes.

The RDTSCLL macro is inline assembly in order to minimize latency times. The volatile
keyword ensures that the code sticks to its location during compilation. The cpuid call
precedes the rdtsc call in order to circumvent out-of-order execution of machine code in-
structions at run-time. The eax register is deleted in order to provide the cpuid instruction
with a fixed parameter, the output of cpuid affects registers rax...rdx, therefore they are
given in the clobber list. The following line finally executes the rdtsc instruction and stores
the result in val (=A → registers eax and edx).

Delays induced by the time/cycle queries are determined before and after each time mea-
surement by querying the current time/cycle counter twice without intermediate instructions
and then subtracted from the measured time.

81

Listing 1 Time Measurement.
1 #include <time.h>
2
3 /*
4 * RDTSC Macro
5 */
6 #define RDTSCLL(val) \
7 __asm__ __volatile__ ("xor %%eax, %%eax; cpuid":::"%rax", "%rbx", "%rcx", "%rdx"); \
8 __asm__ __volatile__ ("rdtsc" : "=A" (val));
9

10 /*
11 * Operation Timer Macros
12 *
13 * These provide system calls for short-time measurements.
14 *
15 */
16 #ifndef RDTSC_TIME
17
18 #define TIMER_VARIABLES \
19 struct timespec tmeas_start, tmeas_end; \
20 double tmeas_d0, tmeas_d1;
21
22 #define TIMER_START \
23 { \
24 /* first latency measurement */\
25 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_start); \
26 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_end); \
27 \
28 tmeas_d0 = (double)(tmeas_end.tv_sec-tmeas_start.tv_sec) + \
29 ((double)(tmeas_end.tv_nsec-tmeas_start.tv_nsec))*0.000000001; \
30 \
31 /* start actual measurement */\
32 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_start); \
33 }
34 #define TIMER_STOP(timevar) \
35 { \
36 /* end actual measurement */\
37 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_end); \
38 timevar += (double)(tmeas_end.tv_sec-tmeas_start.tv_sec) + \
39 ((double)(tmeas_end.tv_nsec-tmeas_start.tv_nsec))*0.000000001; \
40 \
41 /* second latency measurement */\
42 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_start); \
43 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tmeas_end); \
44 \
45 tmeas_d1 = (double)(tmeas_end.tv_sec-tmeas_start.tv_sec) + \
46 ((double)(tmeas_end.tv_nsec-tmeas_start.tv_nsec))*0.000000001; \
47 timevar -= (tmeas_d0+tmeas_d1) * 0.5; \
48 }
49
50 #else
51
52 #define TIMER_VARIABLES \
53 unsigned long long tmeas_start, tmeas_end; \
54 double tmeas_d0, tmeas_d1;
55
56 #define TIMER_START \
57 { \
58 /* first latency measurement */\
59 RDTSCLL(tmeas_start); \
60 RDTSCLL(tmeas_end); \
61 \
62 tmeas_d0 = (double)(tmeas_end-tmeas_start); \
63 \
64 /* start actual measurement */\
65 RDTSCLL(tmeas_start); \
66 }
67 #define TIMER_STOP(timevar) \
68 { \
69 /* end actual measurement */\
70 RDTSCLL(tmeas_end); \
71 timevar += (double)(tmeas_end-tmeas_start); \
72 \
73 /* second latency measurement */\
74 RDTSCLL(tmeas_start); \
75 RDTSCLL(tmeas_end); \
76 \
77 tmeas_d1 = (double)(tmeas_end-tmeas_start); \
78 timevar -= (tmeas_d0+tmeas_d1) * 0.5; \
79 }
80
81 #endif

82

B.2 Operating System, Compiler and Hardware

Operating System (kernel): Linux version 2.6.32-24-generic (builddpalmer) (gcc
version 4.4.3 (Ubuntu 4.4.3-4ubuntu5)) #43-Ubuntu SMP Thu Sep 16 14:17:33
UTC 2010 (Ubuntu 10.04 Lucid Lynx)

C++ Compiler: g++ (Ubuntu 4.4.3-4ubuntu5) 4.4.3

The tests were run in a single process on a dual-core CPU.

Output of cat /proc/cpuinfo:
processor : 0
vendor id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU T5500

1.66GHz
stepping : 6
cpu MHz : 1667.000
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fdiv bug : no
hlt bug : no
f00f bug : no
coma bug : no
fpu : yes
fpu exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8

apic mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe
lm constant tsc arch perfmon pebs bts
aperfmperf pni dtes64 monitor ds cpl est
tm2 ssse3 cx16 xtpr pdcm lahf lm

bogomips : 3325.28
clflush size : 64
cache alignment : 64
address sizes : 36 bits physical, 48 bits

virtual
power management:

processor : 1
vendor id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU T5500

1.66GHz
stepping : 6
cpu MHz : 1667.000
cache size : 2048 KB
physical id : 0
siblings : 2
core id : 1
cpu cores : 2
apicid : 1
initial apicid : 1
fdiv bug : no
hlt bug : no
f00f bug : no
coma bug : no
fpu : yes
fpu exception : yes
cpuid level : 10
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8

apic mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe
lm constant tsc arch perfmon pebs bts
aperfmperf pni dtes64 monitor ds cpl est
tm2 ssse3 cx16 xtpr pdcm lahf lm

bogomips : 3325.13
clflush size : 64
cache alignment : 64
address sizes : 36 bits physical, 48 bits

virtual
power management:

Speed Stepping During the tests, speed stepping was disabled by setting the CPU fre-
quency governor to “performance”.

83

84

Appendix C

Source Code Listings

The following code snippet (listing 2) shows the algorithm that was applied for all XYZ-to-
L*a*b* conversions in the course of this work.

Listing 2 XYZ-to-L*a*b* Conversion (C++).
1 float ColorCalc::labFunc(float t, float epsilon, float kappa)
2 {
3 if(t > epsilon)
4 return ::powf(t, 1.f/3.f);
5 else
6 return (kappa*t + 16.f) / 116.f;
7 }
8
9 void ColorCalc::xyzToLab

10 (
11 float& l, float& a, float& b,
12 float x, float y, float z,
13 float refWhiteX, float refWhiteY, float refWhiteZ
14)
15 {
16 float epsilon = 216.f/24389.f;
17 float kappa = 24389.f/27.f;
18
19 float fx = labFunc(x / refWhiteX, epsilon, kappa);
20 float fy = labFunc(y / refWhiteY, epsilon, kappa);
21 float fz = labFunc(z / refWhiteZ, epsilon, kappa);
22
23 l = 116.f*fy - 16.f;
24 a = 500.f * (fx-fy);
25 b = 200.f * (fy-fz);
26 }

Listing 3 on the following page shows a C++ implementation of the CIEDE2000 formula.
The listing is intended for verification purposes and as a complement to the mathematical
description for analyzing purposes.

85

Listing 3 CIEDE2000 (C++).
1 float ColorCalc::deltaEcie2000
2 (
3 float l1, float a1, float b1,
4 float l2, float a2, float b2
5)
6 {
7 float lBarPrime = (l1 + l2) * 0.5f;
8 float c1 = ::sqrtf(a1*a1 + b1*b1);
9 float c2 = ::sqrtf(a2*a2 + b2*b2);

10 float cBar = (c1 + c2) * 0.5f;
11 float cBarPow7 = ::powf(cBar, 7);
12 float g = (1.f - ::sqrtf(cBarPow7 / (cBarPow7 + 6103515625.f))) * 0.5f;
13 float a1Prime = a1 * (1.f + g);
14 float a2Prime = a2 * (1.f + g);
15 float c1Prime = ::sqrtf(a1Prime*a1Prime + b1*b1);
16 float c2Prime = ::sqrtf(a2Prime*a2Prime + b2*b2);
17 float cBarPrime = (c1Prime + c2Prime) * 0.5f;
18 float h1Prime = ::atan2f(b1, a1Prime);
19 if(h1Prime < 0.f) h1Prime += 2.f*M_PI;
20 float h2Prime = ::atan2f(b2, a2Prime);
21 if(h2Prime < 0.f) h2Prime += 2.f*M_PI;
22 float hBarPrime = ((h1Prime-h2Prime) > M_PI)?
23 (h1Prime + h2Prime + 2.f*M_PI) * 0.5f:
24 (h1Prime + h2Prime) * 0.5f;
25 float t = 1.f
26 - 0.17f * ::cosf(hBarPrime - (30.f*M_PI) / 180.f)
27 + 0.24f * ::cosf(2.f * hBarPrime)
28 + 0.32f * ::cosf(3.f * hBarPrime + (6.f*M_PI) / 180.f)
29 - 0.20f * ::cosf(4.f * hBarPrime - (63.f*M_PI) / 180.f)
30 ;
31 float dhPrime = ((h2Prime-h1Prime) <= M_PI)?
32 h2Prime - h1Prime:
33 (h2Prime <= h1Prime)?
34 h2Prime - h1Prime + 2.f*M_PI:
35 h2Prime - h1Prime - 2.f*M_PI
36 ;
37 float dLPrime = l2 - l1;
38 float dCPrime = c2Prime - c1Prime;
39 float dHPrime = 2.f * ::sqrtf(c1Prime*c2Prime) * ::sinf(dhPrime*0.5f);
40 float lBarPrimeMinus50 = lBarPrime - 50.f;
41 float lBarPrimeMinus50Sq = lBarPrimeMinus50*lBarPrimeMinus50;
42 float sL = 1.f +
43 (0.015f * lBarPrimeMinus50Sq) /
44 ::sqrtf(20.f + lBarPrimeMinus50Sq) ;
45 float sC = 1.f + 0.045f*cBarPrime;
46 float sH = 1.f + 0.015f*cBarPrime*t;
47 float tmp = (hBarPrime - (275.f*M_PI) / 180.f) / 25.f;
48 float dTheta = 30.f * ::expf(-(tmp*tmp));
49 float cBarPrimePow7 = ::powf(cBarPrime, 7);
50 float rC = ::sqrtf(cBarPrimePow7 / (cBarPrimePow7 + 6103515625.f));
51 float rT = -2.f * rC * ::sinf(2.f*dTheta);
52 float kL = 1.f;
53 float kC = 1.f;
54 float kH = 1.f;
55
56 // return deltaE (CIE 2000):
57 float tmpa = dLPrime / (kL * sL);
58 float tmpb = dCPrime / (kC * sC);
59 float tmpc = dHPrime / (kH * sH);
60 return ::sqrtf(
61 tmpa*tmpa + tmpb*tmpb + tmpc*tmpc +
62 rT * (dCPrime / (kC * sC)) * (dHPrime / (kH * sH))
63);
64 }

86

List of Figures

1.1 Light Transport in a Ray Tracer. 13
1.2 Spectral Colors with Color Matching Functions (see section 3.1.1). 14
1.3 Full-Spectral Renderer. 14

2.1 Frequently applied Optimizations: Loop Unrolling and Vector Operations. . . 18

3.1 3D plots of a trichromatic color space and a uniform color space. 21
3.2 CIEDE2000 (red dots) compared to Euclidean (CIE 1976) Perceived Color

Difference (black dots) plotted against L∗ (plot a), a∗ (plot b), b∗ (plot c). . . 24
3.3 Acquisition of Spectral Data for Rendering. 26

4.1 Sampled Green Light Spectrum and its Fourier Coefficients. 31
4.2 Spectrum of figure 4.1, samples dropped. 32
4.3 Spectrum of figure 4.1 (upper diagram) multiplied by itself (lower diagram). . 33
4.4 Fourier coefficients of the figure 4.3 spectra. 34
4.5 Development of the color difference between spectra sampled at two rates,

(a) Test 1 plots (single spectrum sequences), (b) Test 2 plots (randomly chosen
spectra). 36

5.1 Level Generation: Resampling. 43
5.2 Level Generation: Downsampling. 44

6.1 Spike Separation. 50
6.2 Spectral Mipmapping Color Pipeline Thread. 52
6.3 Postprocessing. 53
6.4 Reconstruction of a Spectrum with and without Interpolation. 53

7.1 Standard Cornell Box: Charts of table 7.2. 59
7.2 Standard Cornell Box: Overhead of Function Calls. 59
7.3 Standard Cornell Box. Reference image (a, d), ML result (b), ML-C result

(e), color differences ∆E (c: a vs. b; f: d vs. e). The horizontal bar shows the
color coding of ∆E. 59

7.4 Spiky-Light Cornell Box: Charts of tables 7.5 (chart a) and 7.6 (chart b). . . 61
7.5 Spiky-Light Cornell Box. Ref. (a–c), ML (d–f), ML-C (g–i). 62
7.6 Colorful Scenes: Charts of tables 7.9 (chart a) and 7.10 (chart b). 64
7.7 Multi-Light Scene. Reference image (a), ML-C result (b), color differences

∆E (c). The horizontal bar shows the color coding of ∆E. 65
7.8 Colorful Cornell Box. Reference image (a, d), ML result (b), ML-C result (e),

color differences ∆E (c: a vs. b; f: d vs. e). The horizontal bar shows the
color coding of ∆E. 65

87

7.9 Comparison of Color Difference Thresholds: Development of processing times
and resulting mean color differences ∆E∗ab,mean against rising color difference
threshold (abscissa). The processing times are plotted relative to the compu-
tation time at ∆E∗ab,thresh = 3.0 (No Opt.: 72millisec; Compil.Opt.: 21mil-
lisec; C+Vec.Opt.: 21millisec) and color differences are plotted relative to
∆E∗ab,mean = 0.443 (table 7.12). 67

7.10 (a–e) pixel color errors for pretest color difference thresholds of ∆E∗ab,thresh =
3.0–7.0, (f) Ref. and (g) ML are the results with ∆E∗ab,thresh = 7.0. 68

88

List of Tables

1.1 Global Illumination Basics. 12

3.1 Opponent colors. 22
3.2 L*u*v*/L*a*b* brightness and color pairs. 22
3.3 Three Component Rendering Constraints. 25

4.1 Test 1 results. 37
4.2 Test 2 results. 37
4.3 Basis Functions: Computational Costs (fp...floating point). 39
4.4 Selection of Spiky Light Sources (see [22]). 39

5.1 Levels as Vector-Length Classes. 42

6.1 Minilight Renderer Capabilities Summary. 46

7.1 Standard Cornell Box: Level Decisions. 57
7.2 Standard Cornell Box: Average single-iteration time in seconds and cycles

measured by rdtsc spent processing color-related code. 58
7.3 Spiky-Light Cornell Box: Level Decisions for ML (= equidistant sampling only). 60
7.4 Spiky-Light Cornell Box: Level Decisions for ML-C (= equidistant sampling

+ Composite Model). 60
7.5 Spiky-Light Cornell Box: Average single-iteration time in seconds spent pro-

cessing color-related code. 61
7.6 Spiky-Light Cornell Box (spikes dropped): Average single-iteration time in

seconds spent processing color-related code. 61
7.7 Multi-Light Scene: Level Decisions for ML (= equidistant sampling only). . . 63
7.8 Colorful Cornell Box: Level Decisions for ML (= equidistant sampling only). 63
7.9 Multi-Light Scene: Average single-iteration time in seconds spent processing

color-related code. 64
7.10 Colorful Cornell Box: Average single-iteration time in seconds spent processing

color-related code. 64
7.11 Comparison of Color Difference Thresholds: Development of Level Decisions

for ML (equidistant sampling only). 66
7.12 Comparison of Color Difference Thresholds: Color Errors in the final image. . 66
7.13 Spectrum-by-Spectrum Multiplication. 69
7.14 Spectrum-by-Spectrum Additions. 70
7.15 Clear and Set Operations. 71

A.1 CIE 1931 Standard Colorimetric System: Color-Matching Functions. 76
A.2 Test 1 results (see section 4.1.3). 79

89

A.3 Test 2 results (see section 4.1.3). 80

90

Bibliography

[1] T. Gockel, Form der wissenschaftlichen Ausarbeitung. Springer-Verlag, Heidelberg,
2008, begleitende Materialien unter http://www.formbuch.de.

[2] T. Martyn, “Efficient ray tracing affine IFS attractors,” Computers & Graphics, vol. 25,
no. 4, pp. 665–670, 2001.

[3] J. Günther, T. Chen, M. Goesele, I. Wald, and H.-P. Seidel, “Efficient Acquisition and
Realistic Rendering of Car Paint,” in Proceedings of 10th International Fall Workshop -
Vision, Modeling, and Visualization (VMV) 2005, G. Greiner, J. Hornegger, H. Niemann,
and M. Stamminger, Eds. Akademische Verlagsgesellschaft Aka GmbH, Nov. 2005, pp.
487–494.

[4] Trinetram, “3D Rendering Studio,” online source, 2009, http://www.3drendering-studio.
co.uk.

[5] Drafix Software Inc., “PRO Landscape,” online source, 2010, http://www.prolandscape.
com.

[6] J. T. Kajiya, “The Rendering Equation,” in SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive techniques. ACM, 1986, pp.
143–150.

[7] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the Interaction
of Light Between Diffuse Surfaces,” in SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques. ACM, 1984, pp. 213–222.

[8] R. L. Cook and K. E. Torrance, “A Reflectance Model for Computer Graphics,” ACM
Transactions on Graphics, vol. 1, no. 1, pp. 7–24, 1982.

[9] Blender Foundation, “Blender,” online source, 2010, http://www.blender.org.

[10] LuxRender, “LuxRender GPL Physically Based Renderer,” online source, 2010, http:
//www.luxrender.net.

[11] G. M. Johnson and M. D. Fairchild, “Full-Spectral Color Calculations in Realistic Image
Synthesis,” Computer Graphics and Applications, vol. 19, no. 4, pp. 47–53, 1999.

[12] M. S. Peercy, “Linear Color Representations for Full Spectral Rendering,” in SIGGRAPH
’93: Proceedings of the 20th annual conference on Computer graphics and interactive
techniques. ACM, 1993, pp. 191–198.

[13] M. S. Peercy and L. Hesselink, “Wavelength selection for true-color holography,” Applied

91

Optics, vol. 33, no. 29, pp. 6811–6817, 1994.

[14] G. Rougeron and B. Péroche, “An Adaptive Representation of Spectral Data for Re-
flectance Computations,” in Eurographics Rendering Workshop. Springer, 1997, pp.
127–138.

[15] H. R. Kang, Computational Color Technology. The International Society for Optical
Engineering, 2006.

[16] Y. Sun, “A Spectrum-based Framework for Realistic Image Synthesis,” Ph.D. disserta-
tion, 2000, adviser-F. David Fracchia.

[17] A. Wilkie, R. F. Tobler, and W. Purgathofer, “Raytracing of Dispersion Effects in Trans-
parent Materials,” in Winter School of Computer Graphics Conference Proceedings, 2000.

[18] M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Transac-
tions on Computers, vol. 21, no. 9, pp. 948–960, 1972.

[19] NVIDIA, “CUDA Zone,” online source, 2010, http://www.nvidia.com/object/cuda
home new.html.

[20] Khronos Group, “OpenCL,” online source, 2010, http://www.khronos.org/opencl.

[21] D. Bulka and D. Mayhew, Efficient C++. Addison-Wesley, 2000.

[22] G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data
and Formulae, 2nd ed. Wiley-Interscience, 1982.

[23] G. Sharma, W. Wu, E. N. Dalal, and M. U. Celik, “Mathematical Discontinuities in
CIEDE2000 Color Difference Computations,” in Twelfth Color Imaging Conference. The
Society for Imaging Science and Technology, 2004.

[24] G. Sharma and H. J. Trussell, “Digital Color Imaging,” IEEE Transactions on Image
Processing, vol. 6, no. 7, pp. 901–932, 1997.

[25] B. Hill, T. Roger, and F. W. Vorhagen, “Comparative Analysis of the Quantization of
Color Spaces on the Basis of the CIELAB Color-Difference Formula,” ACM Transactions
on Graphics, vol. 16, no. 2, pp. 109–154, 1997.

[26] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 Color-Difference Formula: Im-
plementation Notes, Supplementary Test Data, and Mathematical Observations,” Color
Research & Application, vol. 30, no. 1, pp. 21–30, 2005.

[27] J. P. J. Pinel, Biopsychology, 6th ed. Pearson Education, 2006.

[28] F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative Study of Metrics for Spectral
Match Quality,” in CGIV 2002. The Society for Imaging Science and Technology, 2002.

[29] O. Föllinger, Laplace-, Fourier- und z-Transformation, 9th ed. Hüthig-Verlag, 2007.

[30] X-Rite Inc., “X-Rite,” online source, 2010, http://www.xrite.com/home.aspx.

[31] L. Williams, “Pyramidal Parametrics,” SIGGRAPH Computer Graphics, vol. 17, no. 3,
1983.

92

[32] “Minilight A Minimal Global Illumination Renderer,” online source, 2010, http://www.
hxa.name/minilight.

[33] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic Tone Reproduction
for Digital Images,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 267–276, 2002.

93

