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Abstract
Displaying a large number of lines within a limited amount of screen space is a task that is common to many
different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node di-
agrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw
inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribu-
tion of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate
a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a
multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide vari-
ety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a
phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating
a second tensor field. Our approach achieves interactive rendering performance for large data sets containing
millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results
from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method.

1. Introduction

Lines are an integral part of many visualization methods.
However, in most cases the number of lines that is ren-
dered is directly proportional to the number of displayed data
items. For this reason, such line-based approaches quickly
suffer from cluttering and overdraw when large data sets
have to be visualized. Standard line rasterization decom-
poses each line into individual pixels without orientation
information. Thus, it can at most yield information about
the line density per pixel, e.g., by using additive blending.
We propose to generate additional data about line orienta-
tion on a per-fragment basis, which can be used to enhance
line-based visualizations. In earlier work [MKO∗08], a vec-
tor field has been used to store averaged line orientations per
pixel. However, this is not sufficient for many visualization
applications, as a vector field does not contain information
about the overall distribution of line orientations. For exam-
ple, distinguishing image regions where all lines are paral-
lel from regions where many lines are crossing is impossi-
ble when only a vector field is used. In contrast, the tech-
nique proposed in this work relies on a 2x2 tensor field that
is similar to structure tensor fields used in image process-
ing. In both cases, tensors are symmetric positive definite,
and the eigenvector corresponding to the largest eigenvalue
encodes directional information per pixel. In our approach,
this eigenvector corresponds to the most dominant line ori-
entation through a pixel, whereas in a structure tensor it rep-
resents the dominant image-gradient direction. Additionally,
the relation between eigenvalues λ1 and λ2 provides further

information that is complementary to the dominant line ori-
entation. We exploit this property to solve the problem of
distinguishing regions comprised of parallel lines from re-
gions with more evenly distributed line orientations. Further-
more, we construct the tensors representing the line orienta-
tions in such a way that they can be used directly as diffu-
sion tensors. We then apply anisotropic diffusion to a white
noise texture, driven by the directional information encoded
in the tensor field. The resulting texture is spatially coher-
ent in regions where the orientations of many lines are well
aligned. Complementarily, the more an area is comprised of
isotropically distributed line orientations, the more the re-
sulting texture approaches isotropically blurred noise. The
latter would also result from filtering with a Gaussian kernel.
However, in isotropic regions the diffused noise texture does
not convey additional information. We therefore adapt the
influence of the noise texture on the visualization according
to a local measure of anisotropy. Figure 1 compares parallel-
coordinates without (top) and with (bottom) the technique
proposed in this work. Line density is indicated by bright-
ness/color. Note that especially in regions of uniform line
density our approach provides pronounced visual cues that
convey general line orientation very well.

Furthermore, many visualization techniques rely on a fo-
cus+context rendering approach. Data selected/highlighted
by the user are displayed prominently as focus, whereas the
remainder of the data set is represented in a less obtrusive
style to provide context. In order to properly support this dif-
ferentiation between focus and context, we propose to use
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Figure 1: Comparison between parallel-coordinates plots where line density is linearly/logarithmically mapped to brightness
(first/second column, respectively), and color (third column), respectively. Each bottom-row image has been generated by ap-
plying our technique to the corresponding top-row plot. In the first and second columns, color is used for distinguishing between
focus (red) and context (grey-scale), respectively. Regions where line density does not vary strongly are improved most visibly.
The coherent noise texture employed by our method provides important information on line orientations that is otherwise lost.

two separate tensor fields. One field represents line orien-
tations for the overall data set (i.e., the context), and one
field stores line orientations weighted by a selection function
in [0,1] (i.e., the focus). This function is zero for unselected,
and one for selected data, respectively. Anisotropic diffu-
sion is either performed for a tensor field that is generated
by combining the respective fields for focus and context, or
for both tensor fields independently (see Section 4.5).

Since individual features can exist at different spatial
scales, choosing just one noise frequency for the whole im-
age plane is often not sufficient. Therefore, we propose to
utilize a multi-resolution approach which builds on an im-
age pyramid of the tensor field. Anisotropic diffusion is per-
formed for each level of this pyramid. The input-noise fre-
quency is adapted to the local scale of the tensor field. This
results in a second image pyramid containing smeared noise
textures which correspond to the different resolution levels
of the original tensor field. A final image compositing step is
used to blend multiple noise levels. Coarser noise is applied
to homogeneous regions, whereas fine-grained noise is used
in image areas exhibiting small-scale detail.

To summarize, the contributions of this work are:

• A generic image-space method that can enhance any vi-
sualization that draws many overlapping lines in 2D.

• Visual coherence via anisotropic diffusion of noise, driven
by a 2x2 tensor field that subsumes line orientations.

• Combined visualization of features at different scales.
• Support for focus+context rendering.
• Interactive performance with straightforward implemen-

tation and integration into existing code.

2. Related Work

The technique proposed in this work is quite general and
thus can be applied to a large class of visualization problems
that render many lines. One of the most prominent examples
is the parallel coordinates technique, which represents each
data item by one poly-line [Ins85]. For large data sets, the
main problem of this technique is cluttering in image space
due to line overdraw. Fua et al. [FWR99] propose to per-
form hierarchical clustering on the data in order to solve this
problem. A different approach based on image-based clus-
tering has been proposed by Novotny and Hauser [NH06].
Instead of clustering entire poly-lines, only line segments
between coordinate axes are grouped together in order to
greatly speed up rendering. Outlier detection is also per-
formed for line segments and not for entire poly-lines. Mc-
Donnell and Mueller [MM08] utilize different illustrative
techniques in combination with edge-bundling and cluster-
ing. Edge-bundling is also used in the context of graph vi-
sualization via link-node diagrams [Hol06, HvW09], which
could also be enhanced by our technique. Contrary to these
approaches, Johansson et al. [JLJC06,JLC07] do not rely on
a priori clustering of the data. Instead, a floating point texture
is used to accumulate line density data. Transfer functions
are then applied in order to reduce cluttering. Figure 1 shows
how our technique can be combined with this approach. So-
phisticated sampling strategies have also been used to reduce
overdrawing [EG06]. Ellis and Dix [ED07] provide a more
comprehensive classification of clutter reduction techniques.

Tensor fields are most commonly visualized by map-
ping tensor properties to glyph shapes such as super
quadrics [Kin04]. Depending on the properties of the
tensor field, more complex shapes/approaches can be
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used [WH06]. In earlier work, focusing on a specific appli-
cation, Zachow et al. [ZMH∗09] briefly mention an image-
based approach that also utilizes a 2x2 tensor field to en-
code line orientations per pixel. However, instead of driv-
ing anisotropic diffusion by this tensor field, it is used to
perform convolution with locally modified Gaussian filters.
Directionally-blurred noise has first been used in the con-
text of flow visualization. Van Wijk uses locally deformed
spots [vW91], whereas Cabral and Leedom [CL93] inte-
grate white noise along integral lines of the flow field.
Muigg et al. [MKO∗08] apply line integral convolution
to large-scale time series visualizations, computing a vec-
tor field to represent line orientations per pixel. Non-linear
anisotropic diffusion is most commonly applied in image
processing [Wei98], but has also been utilized for dense flow
visualization [DPR00].

The notion of a continuous scale space has been intro-
duced by Witkin [Wit83]. This concept of analyzing data
on different scales has been used in many different fields
in image processing as well as in visualization. Examples
are information-visualization approaches relying on hierar-
chical clustering [FWR99], or flow-visualization methods
based on a multi-resolution representation of the underlying
flow field [TS06]. Rasterizing discrete lines for data items
which are samples of a continuous data domain is not always
sufficient. Thus, Bachthaler and Weiskopf [BW08] propose
a continuous data representation for scatterplots, which has
also been extended to parallel coordinates [HW09]. Note
that even though no actual lines are drawn by this tech-
nique, data-density information is still transferred between
coordinate axes along certain trajectories. For example, for
two perfectly correlated attributes, these trajectories would
all be horizontal lines between the two corresponding axes.
Therefore, the tensor field driving our method could also be
generated for the continuous case.

3. Dense Encoding of Line Orientations

Standard line rasterization can at most provide line-density
information per pixel. Let us consider computing a line den-
sity function C(x,y) ∈ N during rasterization. This gives the
number of lines crossing the pixel at position (x,y), but dis-
cards all information on line orientation. In principle, the
gradient ∇C can be used to reconstruct some directional
information in image space. Consider an image with a sin-
gle rasterized line. The gradient at the edge of the line is
always perpendicular to the line, and can thus be used to ob-
tain information about line orientation without actually re-
quiring the original line. As soon as line density increases,
however, overdraw resulting from crossing or overlapping
lines rapidly reduces the accuracy of image-space gradients.
In regions of constant C(x,y), no orientation can be recon-
structed at all. In order to solve these problems, we gener-
ate additional data during rasterization. A 2D vector field
V (x,y) ∈ R

2 can be used to store the averaged line orienta-
tion for the pixel at position (x,y). On GPUs, such a field can
be generated easily by calculating multiple output values per

fragment during rasterization. These can be accumulated per
pixel and renormalized in a subsequent rendering pass. How-
ever, a vector field lacks information about the coherence of
line orientations through the pixel. No information about the
actual distribution of line orientations is retained. Averaging
different orientations may result in the same average. In this
case, it is impossible to distinguish a pixel through which
parallel lines are passing from one that is crossed by lines of
varying orientations. Treating both cases equally can lead to
misleading visualizations. Instead of averaging vectors, we
propose to employ symmetric positive-definite 2x2 tensors.
This is somewhat similar to the use of structure tensors in
image processing. The structure tensor for a 2D image I and
a 2D windowing function w is defined as

Sw(p) = ∑
u

(
w[p−u]

[
Ix(u)2 Ix(u)Iy(u)

Ix(u)Iy(u) Iy(u)2

])
, (1)

where u covers a neighborhood of p. Ix and Iy denote the
partial derivatives of the image in x and y, respectively. The
eigenvector of Sw(p) corresponding to the largest eigenvalue
λ1 represents the predominant gradient orientation in a local
neighborhood of p. This neighborhood is defined by the win-
dowing function w. The degree of anisotropy of the gradient
in a region (i.e., how unevenly gradient orientations are dis-
tributed) can be expressed by the relative anisotropy:

fr =
λ1 −λ2
λ1 +λ2

. (2)

If the gradient within the windowed region is constant, then
the smaller eigenvalue λ2 = 0, and hence fr = 1. If the gra-
dient orientations are distributed uniformly (isotropically),
λ1 = λ2, and thus fr = 0.

We exploit these properties to encode the orientations of
lines passing through a pixel p, instead of the gradient orien-
tations in the neighborhood of the pixel. Instead of using a
windowing function to define a region for which directional
information is accumulated, we sum over all normalized ori-
entations v = (vx,vy) of lines passing through a pixel p, with

O(p) := ∑vTv =

[
∑v2

x ∑vxvy

∑vxvy ∑v2
y

]
(3)

defining the line-orientation tensor-field O. Analogously
to structure tensors, the eigenvector corresponding to λ1
represents the predominant orientation of all lines passing
through p. Likewise, the anisotropy measure fr can be used
to obtain information about the overall distribution of orien-
tations. The tensor field O can be computed efficiently in a
GPU fragment shader during line rasterization, computing
O(p) for each fragment covering a pixel p. This approach
requires almost no change of the underlying visualization
method determining what and where lines should be drawn.

4. Visually Coherent Noise for Line Plots

Our method builds on the construction of the dense line-
orientation tensor-field O described above, in order to pro-
duce coherent line visualizations in image space. Figure 2
provides an overview of the overall rendering pipeline.
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Figure 2: The rendering pipeline that we use to synthesize the final coherent noise texture. Except for the line rasterization
stage itself, all operations are image-based. This makes the technique scalable to very large data sizes. The steps indicated in
yellow can be used to merge input from multiple subsets of the data set in order to accommodate focus+context visualizations.

During line rasterization, we compute the line orienta-
tion tensor O(p) for each pixel p, as well as a scalar line
density L(p), by summing up the contribution of each line
passing through the pixel. Additionally, in order to allow for
focus+context techniques, multiple tensor fields represent-
ing different subsets of the data can be generated. The two
stages highlighted in yellow in Figure 2 can be used to inte-
grate the data in the focus with the data in the context for
a cohesive focus+context visualization (Section 4.5). The
coherent noise texture which is used to indicate predomi-
nant line orientations in a dense way is synthesized via non-
linear anisotropic diffusion. In order to do this, O(p)/L(p)
is directly used as the diffusion tensor (Section 4.2). In or-
der to represent features at different spatial scales this dif-
fusion process is performed at multiple image resolutions
(Section 4.3). The output image is generated in a final com-
positing step that uses the coherent noise textures and an
anisotropy measure of O(p)/L(p) as input (Section 4.4).

4.1. Line Rasterization

The primary goal of the line-rasterization stage is the com-
putation of O(p) and L(p) for each pixel p. The contribution
to all pixels covered by a single line between points p0 and
p1 is equal to vTv with v = (p1 − p0)/|p1 − p0|. Additive
blending into a floating point render target can be used to
perform the component-wise summation of each line’s con-
tribution to O and L. In total, only four floating point values
per pixel are required to store both fields: three floats for
the symmetric 2x2 tensor O(p), and one float for the num-
ber of lines L(p) that contribute to the pixel. A single four-
component floating point render target is sufficient to store
all information required for coherent line visualization. Cur-
rent GPUs support simultaneously writing to multiple render
targets. This makes it straightforward to adapt existing visu-
alization methods to generate both fields without requiring
additional rendering passes. Furthermore, this approach can

easily be combined with techniques that cluster lines and
draw only one representative line per cluster. In this case,
the contribution of each representative line must simply be
weighted according to the number of lines in the cluster. For
n lines in a cluster, nvTv has to be added to O(p) at every
pixel, and L(p) must be increased by n instead of by 1.

4.2. Line-Orientation Driven Diffusion

After the fields O and L have been generated as described
above, they can be used to visualize the encoded orienta-
tions in a coherent manner. It is important that this is done in
a non-intrusive way that can be added easily to existing visu-
alization techniques, while retaining their overall properties.
For this reason, instead of using tensor visualization tech-
niques such as glyphs, we employ dense noise textures that
result from performing anisotropic diffusion of white noise.
The resulting noise textures are straightforward to integrate
into existing visualizations in image space by using them to
modulate brightness per pixel.

Diffusion is the process of equilibrating concentrations
within a spatial domain without generating or destroying
mass. The flux j that corresponds to the direction along
which mass is transported by the diffusion process is defined
by Fick’s Law:

j =−D ·∇u (4)

Here, u= u(x, t) is a scalar function that defines the temporal
evolution of concentrations over the spatial domain. In our
case, u ∈ [0,1] is the pixel intensity. D denotes the symmet-
ric positive definite diffusion tensor, which is used to steer
the strength and direction of the flux j. When the eigenval-
ues of D are equal (i.e., λ1 = λ2), the diffusion that results
from the flux is isotropic, because then j is parallel to ∇u.
Anisotropic diffusion results when λ1 �= λ2. In the extreme
case of λ2 = 0, flux parallel to the corresponding eigenvec-
tor is not permitted at all. Thus, the diffusion tensor locally
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Figure 3: Comparison of the influence of the contrast en-
hancement parameter β, and the number of iterations for
diffusion, respectively. A small number of iterations requires
higher values of β in order to generate comparable image
contrast. The reason for this is that the influence of the con-
trast enhancement function f increases over time.

steers the directional properties of the diffusion process. The
diffusion can be formulated as a partial differential equation
over time [Wei98]:

∂tu = div(D ·∇u) (5)

This means that the change of concentration over time is
equal to the negative divergence of the flux. As proposed
in the context of flow visualization [DPR00], this formula-
tion can be used to create a dense visualization of directional
information by diffusing a white noise texture and carefully
selecting the diffusion tensor D. For a vector field V , D can
be constructed such that the eigenvector corresponding to
the largest eigenvalue is always parallel to V . The remain-
ing degrees of freedom can be used to encode |V |. In our
method, the normalized tensor field O/L has already been
created with diffusion in mind, and can thus be used directly
as the diffusion tensor, i.e., we use D = O/L. The normaliza-
tion by L decouples diffusion strength from line density. It
restricts the values of λ1 and λ2 to the unit interval [0,1], re-
gardless of the number of lines contributing to a given pixel.
Without this normalization, the diffusion in regions with a
higher line density would be stronger than in sparse image
regions. Even if this effect would be desirable, a diffusion
tensor with large eigenvalues generates large fluxes, which
would require very small time steps for solving Equation 5.

Another important consideration is that diffusion gen-
erally reduces image contrast over time. Diewald et
al. [DPR00] proposed to introduce a contrast enhancement
function f . This function pushes pixels in the range [0.0,0.5)
towards 0.0, and pixels in the range [0.5,1.0] towards 1.0.
This can be incorporated into the diffusion equation as

∂tu = f (u)+div(D ·∇u) (6)

The contrast function that we use in our method is

f (u) := β · (−(2u− 1)3 +2u− 1), (7)

where β∈ [0,1] represents a scalar that is defined by the user

(a) (b)

Figure 4: Two different resolution levels of a coherent noise
texture synthesized with our technique. The input were two
sets of crossing lines. The set of lines that are packed tightly
together is represented well by the high-frequency noise (left
image), whereas the set of lines spread out more broadly is
also represented by low-frequency noise (right image).

and controls the strength of contrast enhancement. Figure 3
shows how different settings for β influence the diffusion.

The coherent noise texture u(x, t) is computed for time t
by performing explicit integration of Equation 6, evaluating

ui = ui−1 +Δt ( f (ui−1)+div(D ·∇ui−1)) (8)

for a desired number of iterations. The initial image u0 con-
tains black-and-white noise. The two major parameters that
influence the result of the diffusion are the number of it-
erations, and the contrast enhancement parameter β. More
iterations result in longer coherent structures, which is il-
lustrated in Figure 3. All results in this paper have been
created using between 128 to 256 iterations of Equation 8.
We use a second-order discretization of div(D · ∇ui−1),
[Wei98] (page 95), with Δt = 10−3 and pixel sizes of 1x1.

4.3. Visualizing Features of Different Scales

Multiple directionally-blurred noise textures to visualize
features of different spatial scale have been used in the con-
text of 2D vector field visualization [TS06]. Depending on
the actual underlying line-based visualization approach, the
tensor field O can also exhibit features of different spatial
scales. Figure 4 shows an illustrative example where two
groups of lines are crossing. The group of lines from the
top-left to the bottom-right is distributed broadly and repre-
sents a large-scale feature. Lines from the bottom-left to the
top-right are packed tightly, and thus can be considered to be
a small-scale feature. The region where both line groups are
crossing can also be regarded as a small-scale feature.

In Figure 4 (a), high-frequency noise has been used for
the diffusion process. The resulting coherent noise texture
shows both, the small-scale, and the large-scale features.
However, the small length of the coherent structures and the
high noise frequency result in a cluttered image. This specif-
ically affects the region of the large-scale feature, because
in that area a large number of short, narrow “blobs” is used
to represent orientations. The length of these structures is
limited by the number of iterations in the diffusion process.
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This number is in turn limited by the requirement that inter-
active frame rates should be retained during user interaction.
However, the length of the coherent noise structures can be
greatly increased by reducing the resolution of the domain
discretization on which the diffusion process is performed.
The number of “blobs” can be decreased by reducing the
spatial frequency of the input noise. To summarize, in or-
der to create fewer, longer coherent noise structures which
better represent large-scale features, lower-frequency input
noise and lower-resolution representations of O/L can be
used. Figure 4 (b) also shows the small- and large-scale fea-
ture. This time, a low-resolution version of O/L, as well as
low-frequency noise are used as input to the diffusion pro-
cess, which is likewise performed on a domain discretized
with lower resolution. This results in an image that is less
cluttered and contains much longer coherent structures along
the large-scale feature. However, the small-scale features are
less pronounced. Section 4.4 describes the blending tech-
nique that we employ to combine multiple noise resolutions
in order to capture both small-scale and large-scale features.

We exploit the automatic mip-map generation on GPUs
for the creation of multi-resolution image pyramids. The av-
eraging filter that is utilized by most GPUs per default is suf-
ficient to generate all mip-map levels of the four-component
floating point texture that contains the fields O and L. We use
Oi and Li to denote the i-th mip-map level, where i = 1 rep-
resents the original field. The resolution is reduced by one
half along each axis between subsequent levels. Here, the
field O is used instead of the field O/L since the latter does
not account for line density. Using O/L to generate the mip-
map pyramid would overemphasize directional information
from regions with low line densities. After mip-map genera-
tion, the diffusion step of the rendering pipeline is applied to
each renormalized tensor field Oi/Li separately. This creates
coherent noise images Ni in the noise pyramid N.

4.4. Final Image Compositing

In the final image compositing step, the results of previous
pipeline stages are combined into a single, grey-scale output
image S. This image is then used to enhance the underlying
line-based visualization technique by, for example, modu-
lating image brightness per pixel. All of the presented exam-
ples (Section 5) use simple brightness modulation in order
to combine a computed visualization result with the coher-
ent noise image S.

The primary task of this pipeline step is the blending
of the different coherent noise textures Ni described above.
These textures are weighted so that noise frequency corre-
sponds to local feature scale. Regions where small-scale fea-
tures are present use higher-frequency noise, whereas homo-
geneous regions use lower-frequency noise. In the follow-
ing, the salient features of the tensor fields Oi/Li are consid-
ered to be regions of high anisotropy and similarly oriented
eigenvectors. We have chosen anisotropy because the dif-

fusion process only generates coherent information on line-
orientation in regions of strong anisotropy. The scale of a
feature at pixel position p can be determined by consider-
ing how the anisotropy of Oi(p)/Li(p) changes with increas-
ing i. Large-scale features retain higher anisotropy values for
larger i than small-scale features. The averaging process that
is applied during mip-map generation reduces the anisotropy
of image regions corresponding to smaller features faster.
Therefore, the following weighted sum over a user-defined
number n > 1 of noise resolutions can be used to accumulate
the output image S:

S = (1−A1)+A1

(
n

∑
i=1

wiNi

)
/

(
n

∑
i=1

wi

)
(9)

wi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
∑
j=1

max(−A′′
j ,0), if i = 1

m
∑

j=n+d−1
max(−A′′

j ,0), if i = n

max(−A′′
i+d−1,0), else

(10)

Ai denotes fractional anisotropy for resolution level i and
is derived from the tensor-field image-pyramid by applying
Equation 2. It is not desirable to show the noise texture in
regions of low anisotropy, because these regions do not con-
tain well-defined coherent structures. Therefore A1 is used to
blend between the noise representation and a uniform white
background. While n denotes the lowest resolution mip-map
level from which noise is sampled, m is the smallest over-
all mip-map level. A′′

i represents a numerical approximation
to the second-order derivative of Ai with respect to i. It is
computed by using central differences:

A′
i = Ai+1 −Ai−1, A′′

i = A′
i+1 −A′

i−1 (11)

The noise weight wi for mip-map level i is determined by
this second-order derivative since it indicates the resolution
at which most of the anisotropy is lost due to the averag-
ing process. Large negative values in a region of A′′

i indicate
that isotropy will start to decrease quickly in the following
lower-resolution levels. A noise level j, which can represent
features at level i, has to be selected. The level j is not equal
to level i, because it is not possible to represent one pixel
of directional information with just one pixel of a coherent
noise texture. The integer parameter d is used to account for
this, where 2d × 2d noise pixels are used to represent one
pixel of directional data. Typically, d = 5 in our examples.
Since N1 is the highest frequency noise, it is used to repre-
sent all levels between 1 and d. This is accounted for by the
sum in row i = 1 in Equation 10. The case i = n handles the
weight computation for the noise of lowest resolution.

4.5. Focus + Context Visualization

The basis of all focus+context visualization techniques is
the definition of one or multiple subsets of the data which
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are of interest to the user. These subsets are called the fo-
cus, which have to be visualized in a prominent way. A
context representation is used in order to provide the user
with information on how the focus relates to the remain-
der of the data set. Many line-based visualization techniques
rely on focus+context approaches, e.g., via different brush-
ing/selection techniques. Our method facilitates easy inte-
gration of focus+context rendering. Primarily, a way to rep-
resent subsets of the data has to be established. Since the
proposed technique is image-based, this can be achieved by
supporting multiple input fields Oi and Li, where O1 and L1

denote fields representing the entire data set. In order to cre-
ate a proper focus+context representation, these fields have
to be combined to form a single output image. This is some-
what similar to multi-volume rendering [CS99]. Combina-
tion can be performed at different stages in the rendering
pipeline. A fast way to integrate l focus and context repre-
sentations is to blend all input fields directly after the line
rasterization stage:

O =

(
l
∑

i=1
biOi

)
/

(
l
∑

i=1
bi

)
, L =

(
l
∑

i=1
biLi

)
/

(
l
∑

i=1
bi

)
(12)

The weights bi can be used to emphasize data in the focus
over data in the context. After this blending step, the render-
ing pipeline is executed as described before.

Another alternative is to integrate focus and context in the
image compositing step. The entire rendering pipeline can
be executed for all image pairs Oi, Li separately. This results
in coherent noise image pyramids Ni, and subsequently in
multiple blended images Si. These images can then either
be combined by using the weights bi, just as in the previous
case, or the underlying visualization can use them individu-
ally to enhance the focus and context layers separately.

Both of these blending approaches have very distinctive
advantages and disadvantages. Blending all input fields af-
ter line rasterization requires only a single diffusion step,
which is the most time-consuming operation in our render-
ing pipeline. Furthermore, no additional texture memory is
required to represent the intermediate information that is
generated throughout the pipeline. The main drawback of
this approach is that prior blending of the orientation ten-
sor fields results in a field that does not exclusively rep-
resent the line orientations of the focus. This is illustrated
in Figure 5 (a). Here, the line orientations of the focus (in-
dicated in red) are only barely recognizable in the regions
where context lines are crossed. Figure 5 (b) clearly indi-
cates the orientations of lines in the focus throughout the
whole visualization. Additionally, the generation of just one
output image S restricts the way the underlying visualiza-
tion method can integrate our technique. This is not the case
when multiple output images Si are generated by executing
all pipeline steps multiple times for each data subset. Here,
the main drawbacks are the increased memory requirements,
and the necessity to compute multiple separate diffusions.

(a) (b)

Figure 5: Difference of blending the focus and the context,
at different stages in our rendering pipeline. (a) the two ten-
sor fields have been created separately for focus and context
during line rasterization, but are then immediately combined
to form a single composite field. (b) the entire rendering
pipeline is executed for both tensor fields separately, until
the final image compositing step merges their coherent noise
textures into the result image.

5. Evaluation and Discussion

Our visualization technique generates grey-scale images of
coherent noise which illustrate general line orientation. This
grey-scale output can be integrated into a multitude of visu-
alization techniques which rely on lines as rendering prim-
itives. We demonstrate this in the following by extending
three exemplary visualization methods accordingly. In all
three cases, the blended coherent noise texture S is com-
bined with the unmodified visualization V by means of opac-
ity modulation:

γSV +(1− γ)V (13)

The parameter γ is used to adjust how prominently the co-
herent noise should influence the original image. This ap-
proach retains the color information of the original visual-
ization, which is used to distinguish focus from context. If V
is a grey-scale image, image brightness instead of color has
to be retained. In this case a color transfer-function ftf can be
applied to S before the blending step. To prevent ftf(S) from
influencing image brightness, only colors of equal brightness
have to be selected for ftf.

The diffusion process has been applied to the focus and
the context portions of the data separately. For diffusion,
128 (Figures 1 and 7), or 256 iterations (Figure 6) have
been computed, using a contrast enhancement parameter of
β = 1.28e− 3. All application examples show data from the
same time-dependent and high-dimensional computational
fluid dynamics (CFD) data set. This data set contains simula-
tion results from a model of the regeneration process within
a diesel particulate filter [DMG∗04]. The combustion and
dissipation of soot within the filter has been simulated. The
data set is comprised of 20 time steps and 260K cells per
time step. Overall, 5.2 million data items, each consisting of
32 scalar values, are stored.
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Figure 6: Comparison between an original time series vi-
sualization (top), and our enhanced version (bottom). The
structure that is added by our technique helps the user to
discern general line orientation, especially in regions of
low image contrast. Here, the scalar attribute represents the
amount of soot within a CFD cell. The user-defined selection
highlights portions of soot that initially burns at a fast rate.

5.1. Parallel Coordinates

The parallel coordinates implementation that we have ex-
tended with our technique is based on an approach presented
by Novotny and Hauser [NH06], and thus scales well with
data size. Figure 1 shows two result images which have been
created by visualizing 10 different dimensions of the diesel
particulate filter data set while using three different line den-
sity transfer functions. A linear/logarithmic mapping is used
in the left/center images respectively whereas a color trans-
fer function is applied in the right-most visualizations. All
20 time steps are shown, which implies that 5.2M poly-lines
have to be drawn to create these results. Each poly-line is
made up of nine line segments. The right-most visualiza-
tions indicate that some pixels are crossed by nearly all of
the lines. The top-row images show the original visualiza-
tion results. Color is used to differentiate focus from context
in the first two visualizations. Red indicates selected data
items, whereas the context is visualized using a grey-scale
transfer-function. Our technique has been applied to the top-
row images in order to create the bottom-row images. Espe-
cially evenly populated regions benefit from the addition of
the coherent noise image, as it adds visual cues that indicate
line orientations. Furthermore, regions of parallel lines can
be clearly distinguished from regions where lines are cross-
ing, since anisotropy is used to attenuate the influence of the
coherent noise texture. Here, the parameters in Equation 9
have been set to n = 3 and d = 5, respectively.

5.2. Time-Series Visualization

The time-series visualization presented in this section is
based on a technique proposed by Muigg et al. [MKO∗08].
For each data item, i.e., cell in the case of the CFD data
set, one curve is drawn which represents the development

of a scalar attribute over time. Therefore, 260K poly-lines,
each comprised of 19 line segments, are displayed. The bot-
tom image in Figure 6 has been created by modulating the
top image with the coherent noise texture. Structure is added
in regions where the line-density to brightness mapping is
creating uniform regions which lack contrast. Similarly to
the parallel-coordinates implementation individual lines are
clustered which results in a highly scalable visualization ap-
proach. Selected data is indicated in red, whereas the context
is again visualized using a grey-scale representation. The vi-
sualizations in Figure 6 show plots of the amount of soot
per cell. Since soot is burning up over time, all curves are
decreasing monotonously. The user-defined selection repre-
sents portions of the data set where soot is initially burning at
a fast rate. Although the dissipation of soot starts early in the
selected regions, it takes longer to vanish completely com-
pared to the remainder of the data set. Here, the parameters
in Equation 9 have been set to n = 3 and d = 5, respectively.

5.3. Phase-Space Diagram

A phase-space diagram is a generalization of the time se-
ries visualization presented in the previous section. Instead
of plotting the evolution of one scalar value over time, curves
representing the evolution of each data item with respect to
two arbitrarily selectable data attributes are rendered. Again
260K poly-lines, each containing 19 line segments, are dis-
played in Figure 7. The x-axis is mapped to the temperature
within a cell, and the y-axis represents the amount of con-
tained oxygen O2. The focus represents the same subset of
the data as in Figure 6. In Figure 7 (right), our technique
has been used to enhance the phase-space plot shown in the
left image. The coherent structures added in the right fig-
ure nicely depict regions where data items evolve over time
in a similar fashion. The combustion process of the soot in
the selected regions can be tracked easily. The combustion
starts after a short heating period at the region indicated by
the blue ellipse. After this, temperature and oxygen concen-
tration drop off significantly. Here, the parameters in Equa-
tion 9 have been set to n = 3 and d = 4, respectively.
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Figure 7: Enhancing phase-space diagrams with our
method (right image). The focus data is the same as in Fig-
ure 6. For comparison, the original visualization is shown in
the left image.
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5.4. Impact on Rendering Performance

We evaluate the performance for the parallel-coordinates
visualization rendered to a 1024 × 768 view port on an
NVIDIA Geforce GTX 480 graphics card. Basic line rasteri-
zation has to be performed for most visualization approaches
which employ lines as rendering primitives. The line raster-
ization stage introduced in Section 4.1 can be performed as
part of the basic line rasterization by exploiting multiple ren-
der targets. Therefore, no separate rendering pass has to be
used to generate the fields O and L. Writing to additional ren-
der targets increases the fill-rate requirements of the original
algorithm. However, we found that this does not strongly im-
pact performance since the line rasterization process seems
to be limited by geometry throughput. We also found the
difference between rendering to a single or to three floating-
point render targets to be also barely measurable at 1 ms.
If the original visualization method uses only a single 8-bit
fixed-point render target, the overhead incurred by the addi-
tional two floating-point targets increases to 50 ms.

However, the most important property of the proposed
technique with respect to rendering performance is that the
remainder of the rendering pipeline is purely image-based.
For these stages, the data size does not influence rendering
speed at all. Instead, the output image resolution is the lim-
iting factor. In image space, computing the anisotropic dif-
fusion requires the most time, since a high number of iter-
ations has to be computed, where each iteration performs a
large number of texture fetches. For 128 iterations for both
focus and context data, i.e., 256 iterations in total, our sys-
tem needed 104 ms. Since mip-map generation is a hard-
ware feature of current GPUs, the impact on the overall ren-
dering time for the generation of the multi-resolution image
pyramid is negligible (below 1 ms). The evaluation of an
anisotropy measure also barely influences performance. The
final image-compositing step requires only 1 ms to blend
multiple noise levels for the final coherent noise texture.

5.5. Comparison to Previous Work

The techniques proposed in this paper extend previous work
published by Zachow et al. [ZMH∗09] in several important
ways. Our approach tightly integrates an anisotropy measure
into the visualization pipeline. This allows to better distin-
guish between regions of parallel lines and areas of more
uniformly-distributed line orientations. An example is given
in Figures 8 (a) and (b), which depict zoom-ins from the par-
allel coordinates plot shown in Figure 1. Our improved tech-
nique (b) can depict a group of lines which cross most of the
remaining lines at a right angle. The method proposed by
Zachow et al. (a) hides large parts of this important feature
(see blue rectangle). Figure 8 (d) depicts how multiple noise
resolutions are used to represent large-scale features (yellow
rectangle) and small-scale features (green rectangle). Also,
Zachow et al. use only high-resolution noise (Figure 8(c)).
An additional difference is that focus+context visualization

(c)(a) (b) (d)

Figure 8: Comparison of our method (b, d) and the tech-
nique proposed by Zachow et al. [ZMH∗09] (a, c).

is deeply integrated into our coherent noise-generation ap-
proach since multiple separate tensor fields are used. This is
not the case in the previous technique, which handles only
a single tensor field representing the whole data set. In ad-
dition to these conceptual differences, the noise diffusion it-
self has been improved. Instead of using convolution with
locally-deformed Gaussian kernels to emulate the diffusion
process without computing actual diffusion, this work solves
a partial differential equation iteratively via a stencil devel-
oped by Weickert [Wei98]. This alleviates the problem that
certain orientations (indicated as green dashed lines in Fig-
ure 8 (c)) are overemphasized when using simple convolu-
tion to perform the blurring.

6. Conclusions and Future Work

This work introduces a novel, generic image-based tech-
nique that can be used to enhance many existing visual-
ization methods that depict a large number of lines in 2D.
A 2D tensor field, subsuming line orientations per pixel, is
used to drive anisotropic non-linear diffusion of white noise.
The resulting coherent noise texture improves the percep-
tion of overall line orientations. Multiple noise frequencies
are combined, with blending weights determined by a lo-
cal feature-scale measure. Using this approach, line orien-
tations in large-scale features can be illustrated with low-
frequency noise, whereas high-frequency noise is used for
small-scale features. We presented two different ways of
how focus+context rendering can be integrated. The general
applicability and usefulness of our method has been demon-
strated on three different line-based visualization methods.

Future work will deal with extending continuous visu-
alization techniques, such as continuous parallel coordi-
nates [HW09], or continuous phase space diagrams. The lat-
ter would be a time-dependent extension to continuous scat-
ter plots [BW08, LT10]. Furthermore, additional blending
strategies for the combination of different noise levels could
be explored.
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