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Abstract— In Augmented Reality applications it is important
to have a good description of the surfaces of real objects if a
consistent shading between real and virtual object is required.
If such a description of a surface is not available it has to be
estimated or approximated.
In this paper several methods are presented that deal with the
bi-directional reflectance distribution function (BRDF) approx-
imation in Augmented Reality. Of course an important thing
to discuss is whether the applications we present work in real-
time and compute real looking results.
Different methods can be used to achieve these goals. All of
the methods presented work via image based lighting. Some
require a 3D polygonal mesh representation of the object, for
which the BRDF shall be approximated. Some methods estimate
the BRDF parameters via error values and provide results at
each iteration.

I. INTRODUCTION

This paper provides a state of the art report about BRDF
approximation and estimation in respect to Augmented
Reality applications. We looked at several different
approaches and emphasized whether the presented methods
are applicable in AR environments.
Several papers deal with the problem of BRDF
approximation. If BRDFs for certain objects are not
known they have to be approximated as closely as possible.
In Augmented Reality applications it would be desirable to
do this during run-time.
We need a good representation of the reflection behaviours
of the surfaces and, what makes it even more difficult, we
need them in real-time in order to avoid a pre-modeling
step.
The most of the presented methods are rather similar, as
all use image based lighting. Still there are differences
in performance and photorealism which we will point
out at the end of each section. A complete summary and
conclusion are given in sections 7 and 8.

The papers presented are:

• Image-Based Rendering of Diffuse, Specular and Glossy
Surfaces from a Single Image, [1]
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• Recovery of material under complex illumination con-
ditions, [2]

• A Framework for Automatically Recovering Object
Shape, Reflectance and Light Sources from Calibrated
Images, [3]

• Recovering surface reflectance and multiple light loca-
tions and intensities from image data, [4]

• On-line estimation of diffuse materials, [5]

II. IMAGE-BASED RENDERING OF DIFFUSE, SPECULAR
AND GLOSSY SURFACES FROM A SINGLE IMAGE

This approach, developed by Boivin and Gagalowicz,
addresses the problem in an iterative way [1]. Every
iteration step adds another level of detail to the rendered
scene until the result - rendered with Ward’s BRDF
reflectance model [6] - looks good enough.
The input for this algorithm is a simple photograph and a
geometric model of the scene which includes camera position
and light sources that are not exact but approximated. For
the Ward reflectance model five parameters are needed:
the diffuse reflectance ρd , the specular reflectance ρs,
the anisotropy direction ~x and the anisotropic roughness
parameters αx and αy [1].

As stated before the algorithm works iteratively and
each iteration step is refined several times. Each subsequent
state refines the previous one based on an error picture
between the (offscreen) rendered picture and the original
photograph. The authors used a global illumination method
to compute the rendered picture. The algorithm runs through
a couple of assumptions where the next step is only
computed if the error value from the previous picture is
over a certain threshold.

A. Perfect diffuse

The error ε is computed as the ratio between the average
of the radiances from an object (more exactly its a group
of objects) in the real picture and in the synthetic one. The
diffuse reflectance ρd can be corrected iteratively now with
help of the error value. The steady refinement of ρd can be
seen in Fig. 1.



Fig. 1: In the top row are from left to right the refined images
based on the error pictures below. Picture from Boivin and
Gagalowicz [1].

If the perfectly diffuse (i.e. no highlights in the image)
assumption fails the second assumption is tried (perfectly
specular = all objects are mirrors). This is easy to accomplish
as you simply have to set the diffuse reflectance ρd = 0 and
the specular reflectance ρs = 1 and replace all the ρd with ρs.

If there are still objects that have a high error value,
they are now considered to have diffuse and specular
reflectance properties. To get good approximations to these
surface reflectances the diffuse reflectance ρd and the
specular ρs are computed together in a two dimensional
system of linear equations.

B. Isotropic surfaces

In this step the surfaces are assumed to have a certain
roughness factor α . This roughness factor is considered
in Ward’s BRDF Model [6]. Now ρd , ρs and α have to
be minimized. Boivin and Gagalowicz did this with the
downhill simplex method [7]. As the accuracy does not
have to be that high (10−2 for ρd and ρs and 10−4 for α

respectively), because the visual difference would become
imperceptible, the parameters can be found within two
minutes [1].

C. Anisotropic surfaces

In this section five parameters of Ward’s BRDF model
have to be taken into account: The diffuse and specular
reflectances ρd and ρs, the anisotropy direction ~x and the
roughness factors αx and αy. As the rather independent ρd
and ρs have already been computed, they do not have to be
calculated anew.
~x is determined from the original picture as follows. First the
authors consider the anisotropic surfaces as perfect mirrors,
compute a synthetic image and estimate the difference be-
tween this image and the real one. Next they compute the
index buffer for this mirror of all surfaces visible through it,
then they look at a surface which has the biggest reflection
area and which is closest to the mirror. Then they compute a
number of vectors where each one determines a direction to
traverse the error image and then they compute the average of
the standard error derivation. Finally they select the direction
for which the average error becomes smallest [1].

D. Textured surfaces

This is their final assumption. As the textures of the objects
in the real image are already illuminated by the light sources
they can not simply take those textures. So they introduce
the notion radiosity texture that balances the extracted texture
with an intermediate texture in order to minimize the error
between the real and the synthetic image [1].
To increase the speed of this method they propose several
alterations of the algorithm. For example, if the error after the
specular assumption is higher than 50% the algorithm goes
directly to the textured case as the isotropic and anisotropic
cases last the longest (almost 4 hours for the anisotropic
case).

Fig. 2: Result of the algorithm presented by Boivin and
Gagalowicz. These images show the usability of their ap-
proach for Augmented Reality applications as there have
been made some changes from the original image. The
image on the upper left side shows the original image with
some removed objects. The other ones show the same scene
under novel lighting conditions, new viewpoints or with new
objects. Picture from Boivin and Gagalowicz [1].

E. Discussion

The discussions at the end of each section is divided into
discussion about running time, input data and illumination
model.

1) Running time: The recovery of the image in the
anisotropic case took more than four hours. With the en-
hancements they made the algorithm does not have to try
the isotropic and anisotropic cases as they do not promise
to deliver better results. So the two most time consuming
parts of their algorithm can be skipped if the error after the
specular assumption is too high.
The rendering of Fig. 2 took about half an hour. The pre-
processing was of course more time consuming, the inverse
algorithm took them 4 hours and 40 minutes, where 4 hours
alone have been spent to recover the anisotropy parameters
for the aluminium surface [1].

2) Input data: The input data for this algorithm was a simple
photograph of the scene, where the position of the light
sources have to be known and a geometric model of the



scene. If both are available then the approach from Boivin
and Gagalowicz provides good looking results and is suitable
for AR applications.

3) Illumination model: The rendering was done via a global
illumination algorithm, because they had to compare the
whole scene with the photograph. The BRDF parameters
were retrieved for Ward’s BRDF model because they took
more advanced parameters like roughness into account.

III. RECOVERY OF MATERIAL UNDER COMPLEX
ILLUMINATION CONDITIONS

Wu et al. presented a method on how to recover the BRDF for
RADIANCE’s low parameter reflectance model [8], which
also uses Ward’s model, for a real homogenous object under
complex lighting conditions from a high dynamic range
(HDR) photograph of the object and one of the environment
to find the light sources [2].
Again their aim is to recover the BRDF ρ , where all other
variables are known. The parameters they need for their
modified RADIANCE reflectance model are specular, diffuse
and directional diffuse reflactance and transmission.
The BRDF model they used can be expressed as

fr = max(0,~q ·~np)
[

ρd

π
+ρs

]
+max(0,−~q ·~np)

[
τd

π
+ τs

]
(1)

where

ρd = pC(1−a4)

ρs = rs
fs(~q)√

(~q·~np)(−~v·~np)

τd = a6(1− rs)(1−a7)pC
τs = a6a7(1− rs)

gs(~q)√
(−~q·~np)(−~v·~np)

rs =

{
a4 plastic
{a1a4,a2a4,a3a4} metal

where ~q is the direction from the surface point to a light
source sample, ~v is the viewing vector, ~np is the surface
normal at the point p, C is the surface colour, p is the
material pattern and ai(i = 1, . . . ,7) are parameters. The
ρ-parameters define the reflection, the τ-parameters the
transmission coefficients [2].

After the acquisition of the illumination maps they
now proceed to recover the wanted materials for the object
which is illuminated by known lighting that is represented
as an illumination field. The recovery of the material
parameters is done, similarily to the method in the section
before, via the minimization of a difference value between
the real (Ir) and a synthetic rendered (Io) image of the
object. The difference in the mean of least squares is

χ2 = ‖Io− Ir‖2 (2)

This is a nonlinear optimization problem that Wu et al. solved
with a simulated annealing algorithm. The algorithm works
with a set of initial parameter values to optimize them and to
reduce χ2 step by step until a global minimum is found. So
we see that they also used a global illumination algorithm
to detect the differences between the original photograph
and the rendered scene. These calculated parameters are then
used to render the object with ray tracing. A result of their
work can be seen in Fig. 3.

Fig. 3: Left: Virtual objects rendered into a real (Augmented
Reality) scene. Right: Virtual objects rendered into a virtual
scene. Picture by Wu et al. [2].

A. Discussion

1) Running time: The recovery of the materials took them
about 2 to 3 hours on a Dell Dimension 4100 with a 667
MHz CPU and with 128 MB of working memory [2].

2) Input data: The method is similar to the method by
Boivin and Gagalowicz [1] but they do not need a geomet-
rical model of the scene which makes the pre-computations
more efficient. On the other hand they needed several low
dynamic range (LDR) pictures to derive a high dynamic
range image and high dynamic range environment maps.
Whereas the light sources - other than in the approach
described before - do not have to be known, the estimation
of the positions of the light sources takes some time.

3) Illumination model: Again the whole scene had to be
rendered with a global illumination algorithm in order to
be able to compare the images. The object’s surface was
reconstructed using a model which is similar to Ward’s
reflectance model.

IV. A FRAMEWORK FOR AUTOMATICALLY RECOVERING
OBJECT SHAPE, REFLECTANCE AND LIGHT SOURCES

FROM CALIBRATED IMAGES

Mercier et al. [3] present a method for recovering ob-
ject shapes, reflectance properties (for the modified Phong
model [9]) and the position of light sources from a set of
images. We will only focus on the surface and reflectance
recovery. The modified Phong model is expressed as

Lr =
Lskd

πr2 cosθ +
(n+2)Lsks

2πr2 cosθ cosn
φ (3)

where Lr is the radiance reflected, Ls is the radiance emitted
by a light source S arriving at P, r is the distance between



S and P, θ is the angle between the surface normal and
the direction of the light source, φ is the angle between the
mirror reflection direction and the actual reflection direction
and again ks and kd are the specular and diffuse parameters
and n is the specular exponent.

For each of the images in the image-set the position and
orientation of the camera have to be known.

They made different images for different purposes. They
made an overexposed image for segmentation of the surfaces
and a second image for reflectance and for the estimation of
the light sources.

Their first step is to acquire the object shape from these
images using a shape from silhouette approach. They used
a marching cubes algorithm that considers image pixels to
extract the polygonal surface and the surface normals that
are later needed to estimate BRDF parameters.
After they have acquired the polygonal mesh of the object
they now proceed to the estimation of the light source
directions [3].
During the estimation of the light sources they also present
an identification algorithm to provide the BRDF coefficients
again using an error function Ea.
They split the estimation of light sources into two classes.
The first one applies to diffuse - the second to glossy surfaces
(i.e. surfaces that reflect highlights). To find the appropriate
class of surface (diffuse or glossy) a variation coefficient
V class is computed from the radiance samples. Now for a
perfectly diffuse surface the variation coefficient equals zero.
V class increases directly proportional to the specular aspect of
the surface i.e., it is higher the glossier a surface is. Mercier
et al. applied an identification algorithm with the help of a
gradient descent method in order to minimize the error Ea
and hereby find the BRDF parameters. The parameters are
chosen so that Ea becomes as low as possible and the type
of surface is known.

A. Discussion

1) Running time: They used a Dual Intel Xeon 2.4 GHz
processor with 1 GB of working memory. The BRDF esti-
mation of a small object took 6 minutes and 30 seconds pre-
computation time. The approach by Mercier et al. has certain
limitations. For example is it hard to acquire the surface
properties if the object possesses a variety of textures [3].

2) Input data: As input they needed an overexposed image
for the estimation of the position of the light sources and
several images from the scene. In all of these images the
camera orientation and position have to be known. From
these images they estimate the mesh of the object.

3) Illumination model: Mercier et al. do not apply a global
illumination algorithm, therefore their method works faster
but only recovers a BRDF of a single object. The BRDF
parameters are retrieved for the modified Phong model.

V. RECOVERING SURFACE REFLECTANCE AND MULTIPLE
LIGHT LOCATIONS AND INTENSITIES FROM IMAGE DATA

Xu and Wallace presented a method to recover reflectance
properties from multiple objects using two intensity images
and one depth image. Their approach provides the diffuse
and constant specular reflectance parameters from object
images [4]. They also recover the light source parameters.

To get the surface geometry they used an active 3D
scanner and a stereo pair of CCD cameras. They split
their approach into two steps. The first step is to get the
light source parameters and the specular reflection for the
Phong-Blinn reflection model with the simplified formula
for the specular irradiance which also considers the light
intensity.

Ispec = ksL(P)(H ·N)n (4)

where L(P) is the light intensity at point P, N is the normal
at that point, n is the specular exponent and H is the halfway
vector which calculates as

H =
l +V
|l +V |

,

where l is the normalized vector pointing to the lightsource
and V is the viewing vector [4], [10].

A. Obtaining the specular reflectance

As said before they used two cameras. They assume that
both cameras have the same radiometric constant. The first
step is to calculate the difference between both camera
images. This way the part in the formula of the image
brightness for the diffuse reflectance disappears as the
diffuse reflectance is the same for each viewpoint and
only the specular reflectance differs. Now Xu and Wallace
compute the difference εr between the measured and the
predicted values.

To solve this minimization function f Xu and Wallace used
a gradient descent least-square optimization procedure on
f using the Levenberg-Marquardt method. To compute the
initial values for the specular coefficient ks j (the j parameter
is for multiple light sources) they solved a linear system
which is obtained by approximating the measured image
brightness difference ∆Im [4].

B. Obtaining the diffuse reflectance

Following the method to gain the specular reflectance Xu and
Wallace now use the calculated difference between the two
camera pictures to estimate the diffuse parameter for each



point. They again calculated the difference between the two
camera images and erased the points which are visible to the
relevant camera or light.
A result of Xu and Wallace’s work can be seen in Fig. 4.
The difference between the estimated specular parameters
and the ground truth was (at 1% additive noise) 4.76% for
the specular coefficient and 1.1% for the specular exponent.
This image had only one point light source. The error goes
up as the number of light sources increases.

Fig. 4: a) and b) are the two stereo images of the camel cup,
c) is the rendered image with the estimated parameters from
a new viewpoint [4].

C. Discussion

1) Input data: As input they took several images to estimate
the positions of the light sources and hereby detecting the
specular and diffuse attributes. They do not need a polygonal
mesh of the object as they used a 3D scanner and a pair of
CCD cameras to get the surface geometry.

2) Illumination model: Like the method presented by
Mercier et al., discussed in section 4, they do not use a global
illumination algorithm as their algorithm just detects BRDF
parameters for one single object. As illumination model they
used the Phong-Blinn reflection model.

VI. ONLINE ESTIMATION OF DIFFUSE MATERIALS

Ritschel and Grosch presented a way to get diffuse parts
of BRDFs at run-time from digital photographs [5]. They
do not really work in real-time environments but expect
their approach to also work in real-time. The only difference
really is the parametrization of the model (which has to be
done automatically at real-time). They used two HDR video
cameras to get the diffuse materials. The equation for the
outgoing radiance on a photograph at a surface point is

L0 =
∫
2π

fr(ωi,ω0)Li(ωi)cos(θi)dωi (5)

where fr is the BRDF of the surface, Li is the incoming
radiance from direction ωi and cos(θi) is the cosine of the
angle between incoming direction and surface normal.

The previously mentioned HDR cameras are positioned as
follows. One is observing the object whose BRDF shall be
approximated and the second is filming the light source. This
light-camera is at a fixed position and records the whole

environment illumination with a fisheye lens. The object-
camera should be moved as close to the object as possible
so we get the same illumination on the virtual object as there
is on the real object.
A marker is placed besides the object to track camera
position and orientation. This happens via optical tracking
with ARToolkit [11].
The images captured with this camera run through a couple
of processes which are out of the scope of this paper. The
software side of their procedure is divided into two steps:
Inverse Texturing (storing the camera images to a texture)
and Inverse Lighting (processing these textures to one final
reflectance texture).
As their approach only works for diffuse lighting, they
propose to factorize the software steps into orthogonal com-
ponents to get the specular part as well. A result of their work
can be seen in Fig. 5), where a real object gets duplicated.
The BRDF of the duplicated object is approximated so that
it matches the different allignment.

Fig. 5: A cloned donkey from Ritschel et al. [5]

A. Discussion

1) Running time: The algorithm presented by Ritschel and
Grosch has a performance of 5 fps with a model that has
100 facets and a resolution of 320x240. The most time
consuming process was the inverse lighting (70 ms). Of
course the performance always depends on the number of
pixels and texels.

2) Input data: As input data they used a polygonal mesh of
the object whose BRDF shall be approximated but they state
that an algorithm which approximates a surface model of a
given object on-line would also work.

3) Illumination model: Ritschel and Grosch approximate
a BRDF of one single object and give as output BRDF
parameters for the equation mentioned earlier (5).

VII. COMPARISON OF THE PRESENTED METHODS

A. Running time

If a fast solution is needed, the approach from Boivin and
Gagalowicz [1] is the best choice even though a fast ap-
proximation provides an image which is not the correct one.



If you change the threshold and the error value accordingly
you get a rough approximation after a very short time (if you
skip the isotropic and anisotropic assumptions it will always
be fast).
The only method which estimates a BRDF of a single object
on-line is the one presented by Ritschel and Grosch [5]

B. Input data

Several presented papers used image based methods to
estimate the BRDF parameters. Most need an HDR, or
couple of LDR pictures of the scene and a 3D model
of the scene/of an object. Some papers need a polygonal
mesh as input [1]. The other ones include or reference to a
parametrization method which is of course also costly.
So if a 3D polygonal mesh is known the Method from
Boivin and Gagalowicz [1] can be applied to approximate
or estimate the BRDF. Additionally the method from Boivin
and Gagalowicz [1] provides very good looking results with
an algorithm that is not hard to implement.
If the 3D polygonal mesh is not known one of the more
modern approaches should be used as some of them find the
shape of the objects just from images [3], [2], [5]. Xu and
Wallace [4] used an active 3D scanner and a pair of CCD
cameras which does not appear to be a low budget solution.

C. Illumination model

Some papers ( [3], [4]) used the Phong illumination model
or the Phong-Blinn model respectively. While Phong’s
model is widely used and simple it is still not physically
plausible. Other papers try to make their objects look more
realistic and adapt different illumination models. Two papers
approximated and estimated parameters for Ward’s BRDF
model [12], [1], others for RADIANCE [2] or a completely
different illumination algorithm [5].
The realism of the papers was generally rather good.

D. Suitable for Augmented Reality

The best solution for Augmented Reality applications was
presented by Boivin and Gagalowicz who also presented
some ways to deal with their method in Augmented Reality
(setting of a novel viewpoint, changing illumination condi-
tions, adding and removing objects). Most of the other papers
dealt only with the recovery of BRDF (or shape) of a certain
model as they assumed that the geometry is not known.
A summary of the comparison can be seen in table 1.

VIII. CONCLUSION

In our paper we presented 5 papers that deal with BRDF
approximation or estimation. All mention the possibility to
use their work in Augmented Reality applications which was
of course the topic and an important point of our paper.

TABLE I: Comparison of the methods

Method BRDF Input data Real-time
[1] Ward Mesh and image No
[2] RADIANCE LDR images No
[3] Modified Phong Images of the scene No

Camera, light sources
[4] Phong-Blinn Images of the scene No
[5] Own BRDF model Mesh Yes

In each section we summarized the parts of the papers that
dealt with BRDF approximation or estimation with respect
to their usage in Augmented Reality. We presented results of
the different papers and concluded each section with a short
paragraph about the performance (if given in the original
work) and problems that occurred or might occur when using
the corresponding algorithm. At the end we compared all
the relevant papers in respect to input data, running time,
the illumination method used (Phong, Phong-Blinn, Ward,...),
photorealism, whether or not a rough approximation of an
image before the actual computation of the end result is
possible, their usage in Augmented Reality applications and
whether the methods are costly or low budget solutions.
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