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Introduction

Cinematic image quality has always been one of the most important challenges of com-
puter graphics. One of the key components, that realistic CG is comprised of, is illumina-
tion. In real-time graphics resources are limited, hence we cannot a�ord dynamic realistic
physcially accurate lighting. However, we can precalculate high-quality static lighting
- light mapping method. But we cannot use normal mapping with light mapping di-
rectly, because in light mapping, lighting is precalculated for one default normal direction
whereas in normal mapping normals are de�ned in a hemispherical domain. Irradiance
normal mapping methods overcomes such problems by using spherical or hemispherical
basis functions to encode the irradiance signal.

Our task is to compare the existing approaches to irradiance normal mapping visually
and analytically by implementing the irradiance normal mapping pipeline with the demo
application that demonstrates di�erent lighting methods and allows to switch between
them in run-time.

Figure 1: A scene without albedo maps showing the di�erence between light mapping
(left) and irradiance normal mapping (right).
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Chapter 1

Light Transport in Computer Graphics

1.1 The Rendering Equation

The rendering equation is a formulation of the problem of producing images in com-
puter graphics that is based only on physics. It is the gold standard by which all realisitic
computer graphics lighting must be measured. It was simultaneously introduced into
computer graphics by David Immel and James Kajiya in 1986 [8].

Firstly, we have to introduce some essential physical notions that are necessary for
understanding the rendering equation.

Radiance is the emitted energy per unit time in a given direction from a unit area
of an emitting surface. Radiance is a 5D function (3 spacial dimensions and 2 directional
dimensions). The radiance of a purely di�use surface is de�ned in terms of the surface's
irradiance.

Bidirectional re�ectance distribution function (BRDF) is a function that de-
�nes how light is re�ected at an opaque surface. This function de�nes the material
properties. For example, such surfaces as matte plastic or glossy metal will have di�erent
BRDFs.

We need to calculate the radiance at a surface point x in direction ω.
The total radiance is the sum of emitted and re�ected radiance.

L
(
x,

⇀
ωo

)
= Le

(
x,

⇀
ωo

)
+ Lr

(
x,

⇀
ωo

)
(1.1)

The rendering equation is an integral over a hemisphere of directions where L, the light
intensity function we are looking to calculate, appears on both sides of the equation:

L
(
x,

⇀
ωo

)
= Le

(
x,

⇀
ωo

)
+

∫
S

fr

(
x,

⇀
ωi →

⇀
ωo

)
L
(
x′,

⇀
ωi

)
G(x, x′)V (x, x′)dωi (1.2)

where

L
(
x,

⇀
ωo

)
is the radiance re�ected from position x in direction ωo

Le

(
x,

⇀
ωo

)
is the radiance emitted from x by the object itself

fr

(
x,

⇀
ωi →

⇀
ωo

)
is BRDF of the surface at point x, transforming incoming light ωi to

re�ected light ωo
L
(
x′,

⇀
ωi

)
is light from x' on another object arriving along ωi

G(x, x′) is the geometric relationship between x and x'
V (x, x′) is a visibility test, returns 1 if x can see x', 0 otherwise
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The problem with the rendering equation is computational di�culty, it is not a real-
time friendly operation. That is why a lot of di�erent attempts were made to reach close
results with the simpli�ed equations.

1.2 Di�use Surface Re�ection Model

The simplest lighting model is the di�use surface re�ection model also known as dot prod-
uct lighting. Assuming that we have k light sources, for each light source the intensity
⇀
c i (expressed in 3 values corressponding to RGB colors) is multiplied by the scalar dot
product between the unit surface normal

⇀
n and the unit vector towards the light source

⇀

l . This value is then multiplied by the surface color
⇀
s giving the �nal re�ected result:

I =
⇀
s

k∑
i=1

⇀
c i

(
⇀
n •

⇀

l i

)
(1.3)

By looking at this formula we can say that it �rst calculates the total amount of incoming

light from all directions and then scales it by the cosine of the angle between
⇀
n and

⇀

l
and multiplies the result by the surface re�ection function, which for a di�use surface is
just a constant color for all directions.

1.3 Irradiance Calculation

The radiance of a purely di�use surface is de�ned in terms of the surface's irradiance.
Irradiance is an integral of the �eld-radiance function multiplied by the Lambertian
cosine term over a hemisphere. The irradiance of a surface point

⇀
x with a surface normal

⇀
n is de�ned as

E
(
⇀
x,

⇀
n
)

=

∫
Ω+

L
(
⇀
x,

⇀
ω
)(

⇀
n • ⇀ω

)
d
⇀
ω (1.4)

The hemispheres are usually de�ned in tangent space, i.e. around the interpolated surface
normal, so that we do not need to keep track of the orientation of the hemispheres at
every point. Irradiance for all possible normal orientations is called the irradiance
distribution function.

1.4 Light Mapping

Lightmapping is the most used technique of static precomputed lighting for static ob-
jects. Quake was the �rst computer game to use light mapping to speed up rendering.
Lightmapping is used in most of the all �rst/third person games. The idea is to precal-
culate the lighting of the scene and store the irradiance values for the normal directions
in vertices or low-resolution textures called light maps. When creating lightmaps, any
precalculation method may be used such as ray tracing, photon mapping, radiosity etc.
During run-time, irradiance values stored in lightmap textures are multiplied with the
RGB color values stored in textures to obtain the �nal lit texel color. In case of irradi-
ance values stored in vertices they are �rst interpolated and then mixed with the colors
in textures.
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Quake (1996) Quake 2 (1997) Half-Life (1998)

Figure 1.1: Light mapping examples

1.5 Normal Mapping

Normal mapping is a popular technique used for faking the lighting of bumps and dents.
It is used to add details without using more polygons. A normal map is usually an RGB
image that corresponds to the X, Y, and Z coordinates of a surface normal from a more
detailed version of the object. A common use of this technique is to greatly enhance the
appearance and details of a low polygon model by generating a normal map from a high
polygon model. Normal mapping is used for such surfaces as brick walls, rocks, ground,
concrete etc.

Figure 1.2: Normal mapping example

1.6 Irradiance Normal Mapping

By irradiance normal mapping we mean the group of methods that combine two
popular techniques described above: light mapping and normal mapping. While light
mapping stores global, low-frequency illumination at sparsely sampled points in the scene,
normal maps provide local, high-frequency shading variation at a high resolution. The
problem with combining the two methods is that light maps store lighting information for
only one normal direction (the base surface normal) and therefore cannot be evaluated
using the normals stored in a normal map. To overcome this problem, the irradiance
(i.e., the incoming radiance integrated over the hemisphere) for all possible normal map
directions has to be calculated and stored for each illumination sample point on the
surface. Because the irradiance signal is low frequency in its directionality, it can be well
represented by lower order basis functions.

1.7 Orthogonal Basis Functions

Basis functions are small pieces of signal that can be scaled and combined to produce an
approximation to an original function, and the process of calculating how much of each
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basis function to sum is called projection. To approximate a function using basis functions
we must work out a scalar value that represents how much the original function f(x) is
like the each basis function Bi(x). We do this by integrating the product

∫
f(x)Bi(x)

over the full domain of f .
Using this projection process over all our basis functions returns a vector of approxima-

Figure 1.3: Function projection. Image from "Spherical Harmonic Lighting: The Gritty
Details"[5]

tion coe�cients. If we scale the corresponding basis function by the coe�cients and sum
the results we obtain our approximated function. In this example we have used a set of

Figure 1.4: Scaling the basis functions by the corresponding coe�cients. Image from
"Spherical Harmonic Lighting: The Gritty Details"[5]

Figure 1.5: Approximated function is a result of the scaled basis functions summation.
Image from "Spherical Harmonic Lighting: The Gritty Details"[5]

linear basis functions, giving us a piecewise linear approximation to the input function.
There are many basis functions we can use, but some of the most interesting are grouped
into a family of functions mathematicians call the orthogonal polynomials. Orthogonal
polynomials are sets of polynomials that have an intriguing property - when we integrate
the product of any two of them, if they are the same we get a constant value and if they
are di�erent we get zero which is the de�nition of orthogonality.∫ 1

−1

Fm(x)Fn(x)dx =

{
0, for n 6= m
c, for n = m

(1.5)
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We can also specify the more rigorous rule that integrating the product of two of these
polynomials must return either 0 or 1, and this sub-family of functions are known as the
orthonormal basis functions. Intuitively, it's a like the functions do not "overlap" each
other's in�uence while still occupying the same space, the same e�ect that allows the
Fourier transform to break a signal into it's component sine waves.

The problem is to select a good basis function set which could represent the irradiance
signal accurately using reasonable amounts of memory.

1.8 Spherical and Hemispherical Basis Functions

1.8.1 Spherical Harmonics

Spherical harmonics are the angular portion of a set of solutions to Laplace's equation.
They are known since 18th century. However, in computer graphics they were introduced
realtively not long time ago in a paper at Siggraph 2002 by Sloan, Kautz and Snyder [12]
in a technique for precalculated radiance transport (PRT). Before de�ning the spherical
harmonics basis function set we should introduce the Legendre polynomials.

The Legendre polynomials, speci�cally the Associated Legendre Polynomials are
an orthonormal basis functions. Traditionally represented by the symbol P, the associ-
ated Legendre polynomials have two arguments l and m, are de�ned over the range [-1,1]
and return real numbers (as opposed to the ordinary Legendre Polynomials which return
complex values). The two arguments l and m break the family of polynomials into bands
of functions where the argument l is the band index and takes any positive integer value
starting from 0, and the argument m takes any integer value in the range [0, l]. All poly-
nomials are orthogonal with a constant term. We can diagram this as a triangular grid
of functions per band, giving us a total of n(n+1) coe�cients for an n band approximation:

P 0
0 (x)
P 0

1 (x), P 1
1 (x)

P 0
2 (x), P 1

2 (x), P 2
2 (x)

...
The process for evaluating Legendre polynomials turns out to be quite involved, which

is why they're rarely used for approximating 1D functions. The usual mathematical
de�nition of the series is de�ned in terms of derivatives of imaginary numbers and requires
a series of cancellations of values that alternate in sign and this is not a �oating point
friendly process. Instead we turn to a set of recurrence relations (i.e. a recursive de�nition)
that generate the current polynomial from earlier results in the series. There are only three
rules we need:

1. (l −m)Pm
l = x(2l − 1)Pm

l−1 − (l +m− 1)Pm
l−2

The main term of the recurrence takes the two previous bands l-1 and l-2 and
generates a new higher band l from them.

2. Pm
l = (−1)m(2m− 1)!! (1− x2)

m/2

The expression is the best place to start from as it is the only rule that needs
no previous values. Note that x!! is the double factorial function which, as (2m-1)
is always odd, returns the product of all odd integers less than or equal to x. We
can use P 0

0 (x) = 1 as the initial state for an iterative loop that hoists us up from 0
to m.
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3. Pm
m+1 = x(2m+ 1)Pm

m

This expression allows us to lift a term to a higher band.

The associated Legendre polynomials are at the heart of the Spherical Harmonics
(SH), a mathematical system analogous to the Fourier transform but de�ned across the
surface of a sphere. The SH functions in general are de�ned on complex numbers but we
are only interested in approximating real functions over the sphere (i.e. irradiance), so
here when we refer to an SH function we will only be talking about the Real Spherical
Harmonic functions.

Given the standard parameterization of points on the surface of a unit sphere into
spherical coordinates:

(sinθcosφ, sinθsinφ, cosθ)→ (x, y, z) (1.6)

the SH function is traditionally represented by the symbol y

yml (θ, φ) =


√

2Km
l cos(mφ)Pm

l (cosθ),m > 0√
2Km

l sin(−mφ)P−ml (cosθ),m < 0
K0
l P

0
l (cosθ),m = 0

(1.7)

where P is the associated Legendre polynomials and K is just a scaling factor to normalize
the functions:

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!
(1.8)

In order to generate all the SH functions, the parameters l and m are de�ned slightly
di�erently from the Legendre polynomials -l is still a positive integer starting from 0, but
m takes signed integer values from -l to l.
The �rst 3 bands of SH functions (without Condon-Shortley phase) are:

Y 0
0 =

1

2

√
1

π
(1.9)

Y 1
−1 =

1

2

√
3

π
sinφ sin θ =

1

2

√
3

π
y (1.10)

Y 1
0 =

1

2

√
3

π
cos θ =

1

2

√
3

π
z (1.11)

Y 1
1 =

1

2

√
3

π
cosφ sin θ =

1

2

√
3

π
(1.12)

Y 2
−2 =

1

2

√
15

π
sin 2φ sin2 θ =

1

2

√
15

π
xy (1.13)

Y 2
−1 =

1

2

√
15

π
sinφ cos θ sin θ =

1

2

√
15

π
yz (1.14)

Y 2
0 =

1

4

√
5

π

(
3 cos2 θ − 1

)
=

1

4

√
5

π

(
3z2 − 1

)
(1.15)

Y 2
1 =

1

2

√
15

π
cosφ cos θ sin θ =

1

2

√
15

π
zx (1.16)

Y 2
2 =

1

4

√
15

π
cos 2φ sin2 θ =

1

4

√
15

π

(
x2 − y2

)
(1.17)
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Figure 1.6: Graphical representation of Spherical Harmonics. Marked as green is a positive
area, red - negative

1.8.2 Half-Life 2 Basis

Half-Life 2 basis [11] was developed by Valve for use in their Source engine and the game
Half-Life 2 in particular. It is a function set that is orthonormal over the upper unit

hemisphere Ω+ as well as full sphere Ω. It is de�ned by 3 basis vectors
⇀

hi:

⇀

h1 =

(
−1√

6
,
−1√

2
,

1√
3

)
(1.18)

⇀

h2 =

(
−1√

6
,

1√
2
,

1√
3

)
(1.19)

⇀

h3 =

(√
2

3
, 0,

1√
3

)
(1.20)

Figure 1.7: Half-Life 2 basis vectors

The explicit evaluation EHL2 is executed through the dot products of the evaluation
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direction
⇀
n and the basis directions weighted by their coe�cients:

EHL2 =
3∑
i=1

√
3

2π
ci
⇀
n ·

⇀

hi (1.21)

where ci are the basis coe�cients,
√

3
2π

is the normalization factor.

Figure 1.8: Graphical representation of Half-Life 2 basis

Though de�ned on the hemisphere, the three basis functions are, due to the linearity of
the basis, a rotated and hemispherically normed version of linear Spherical Harmonics,
which also consist of three cosine lobes.

Figure 1.9: Graphical representation of Half-Life 2 basis over a full sphere domain, showing
that they are rorated versions of the SH linear band.

1.8.3 Hemispherical Harmonics Basis

The hemispherical harmonics (HSH) basis was developed by P. Gautron in 2004 [4]. It
is a hemispherically orthonormal basis that is constructed by mapping negative pole at
(0,0,-1) to the border of the hemisphere, contracting the Spherical Harmonics functions
to hemispherical ones through a shifting operation without destroying their orthogonality.
This shifting is generated by replacing the cosθ term in the SH de�nition with 2cosθ− 1.
Due to this shifting, the basis functions become strongly non-polynomial and therefore
expensive to evaluate as they contain several square roots and divisions. This is impor-
tant since for irradiance caching, the basis functions are evaluated directly in the pixel
shader. Also due to the shifting, all basis functions are either 0 or constant at the border
of the hemisphere, causing severe errors localized at the border. This e�ect diminishes
with higher bands, but is dominant if only two or three bands are used since only one
constant color can be represented at the border of the hemisphere. Due to their spherical
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origin, their band structure is the same as Spherical Harmonics.

Figure 1.10: Graphical representation of the Hemispherical Harmonics

The �rst 3 bands of HSH functions are:

H0
0 =

1√
2π

(1.22)

H1
−1 =

√
6

π

√
(1− cos θ) cos θ sinφ = −

√
6

π
y

√
z

1 + z
(1.23)

H1
0 =

√
3

2π
(2 cos θ − 1) =

√
3

2π
(2z − 1) (1.24)

H1
1 =

√
6

π
cosφ

√
(1− cos θ) cos θ =

√
6

π
x

√
z

1 + z
(1.25)

H2
−2 =

√
30

π

(
cos2 θ − cos θ

)
sin 2φ = 2

√
30

π

xyz

1 + z
(1.26)

H2
−1 =

√
30

π

√
(1− cos θ) cos θ(2 cos θ − 1) sinφ (1.27)

=

√
30

π
y(2z − 1)

√
z

1 + z
(1.28)

H2
0 =

√
5

2π

(
6 cos2 θ − 6 cos θ + 1

)
=

√
5

2π

(
6z2 − 6z + 1

)
(1.29)

H2
1 =

√
30

π

√
(1− cos θ) cos θ(2 cos θ − 1) sinφ (1.30)

=

√
30

π
x(2z − 1)

√
z

1 + z
(1.31)

H2
2 =

√
30

π
cos 2φ

(
cos2 θ − cos θ

)
=

√
30

π
z

(
x2 − y2

1 + z

)
(1.32)
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1.8.4 Makhotkin Basis

This basis was developed by Oleg Makhotkin at Novosibirsk State University in 1996
[10]. Makhotkin basis is obtained by shifting Jacobi polynomials. This basis has the
same problems as HSH i.e. non-polynomial nature and severe errors at the border of the
hemisphere.
Makhotkin basis functions are:

M0
0 =

1√
π

√
cos θ =

1√
π
z (1.33)

M1
−1 =

√
3

π
cosφ

√
cos θ

√
1− (2 cos θ − 1)2 = 2

√
3

π
xz

√
1

1 + z
(1.34)

M1
0 =

1√
2π

√
cos θ(3(2 cos θ − 1)− 1) =

1√
2π

√
z(6z − 4) (1.35)

M1
1 =

√
3

π

√
cos θ

√
1− (2 cos θ − 1)2 sinφ = 2

√
3

π
yz

√
1

1 + z
(1.36)

M2
−2 =

1

2

√
15

π
cos 2φ

√
cos θ

(
1− (2 cos θ − 1)2

)
(1.37)

= 2

√
15

π
z
√
z
x2 − y2

1 + z
(1.38)

M2
−1 =

1

2

√
3

π
cosφ

√
cos θ(4 + 5(2 cos θ − 2))

√
1− (2 cos θ − 1)2 = (1.39)

=

√
3

π
xz(10z − 6)

√
1

1 + z
(1.40)

M2
0 =

√
3

π

√
cos θ

(
1 + 4(2 cos θ − 2) +

5

2
(2 cos θ − 2)2

)
(1.41)

=

√
3

π

√
z
(
1 + 16(z − 1) + 10(z − 1)2

)
(1.42)

M2
1 =

1

2

√
3

π

√
cos θ(4 + 5(2 cos θ − 2))

√
1− (2 cos θ − 1)2 sinφ = (1.43)

=

√
3

π
yz(10z − 6)

√
1

1 + z
(1.44)

M2
2 =

1

2

√
15

π

√
cos θ

(
1− (2 cos θ − 1)2

)
sin 2φ = 4

√
15

π
xy
√
z

z

1 + z
(1.45)
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Figure 1.11: Graphical representation of Makhotkin basis

1.8.5 Zernike Basis

Zernike basis is an orthonormal polynomial set on the unit circle that have been adapted
to the hemisphere by J. Koenderink in 1996 to represent BRDFs [9]. However, the adap-
tation introduces some square roors and divisions which are more expensive to evaluate
in comparison with purely polynomial basis sets. Because of the their two-dimensional
origin they feature a di�erent basis structure having only 2 functions in �rst band and
3 functions in the second band, resulting in 3 coe�cients up to the �rst band and 6 co-
e�cients up to the second band. This makes Zernike basis interesting for an irradiance
signal representation with only a few coe�cients.
Zernike basis functions are:

Z0
0 =

1√
2π

(1.46)

Z1
−1 = − 2√

π
sinφ sin

θ

2
= −

√
2

π
y

1√
1 + z

(1.47)

Z1
1 =

2√
π

cosφ sin
θ

2
= −

√
2

π
x

1√
1 + z

(1.48)

Z2
−2 = −2

√
3

π
sin 2φ sin2

(
θ

2

)
= −2

√
3

π

xy

1 + z
(1.49)

Z2
0 =

√
3

2π

(
4 sin2

(
θ

2

)
− 1

)
=

√
3

2π
(1− 2z) (1.50)

Z2
2 = 2

√
3

π
cos 2φ sin2

(
θ

2

)
=

√
3

π

(
x2 − y2

1 + z

)
(1.51)

Compared to shifted hemispherical bases, the Zernike basis does not su�er from severe
errors at the border of the hemisphere, because the basis functions vary there.
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Figure 1.12: Graphical representation of Zernike basis

1.8.6 H-basis

The H-basis is the newest basis, it was introduced in 2010 by R.Habel and M.Wimmer [7].
The H-basis is an orthonormal hemispherical basis which consist of only polynomial basis
functions up to a quadratic degree and therefore shares many properties with Spherical
Harmonics. Some of the basis functions are actually the same basus functions as Spherical
Harmonics, re-normalized on the hemisphere, that is why the H-basis can be seen as the
counterpart of Spherical Harmonics on the hemisphere up to the quadratic band.

This basis is explicitly constructed to carry hemispherical directional irradiance signals
and can provide similar accuracy with only 6 basis functions compared to 9 needed by
Spherical Harmonics.
The basis functions are:

H1 =
1√
2π

(1.52)

H2 =

√
3

2π
sinφ sin θ =

√
3

2π
y (1.53)

H3 =

√
3

2π
(2 cos θ − 1) =

√
3

2π
(2z − 1) (1.54)

H4 =

√
3

2π
cosφ sin θ =

√
3

2π
x (1.55)

H5 =
1

2

√
15

2π
sin 2φ sin2 θ =

√
15

2π
xy (1.56)

H6 =
1

2

√
15

2π
cos 2φ sin2 θ =

1

2

√
15

2π

(
x2 − y2

)
(1.57)
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The band structure of the H-basis (similar to Spherical Harmonics) provides a natural

Figure 1.13: Graphical representation of H-basis

way for controlling the level of approximation of the directional irradiance signal. For
example, given a normal from the normal map, we can use only the �rst 4 coe�cients
(corresponding to the constant and all linear basis functions) to calculate the irradiance.
If a higher accuracy is required, we can simply use the two quadratic functions H5 and
H6 in addition to the other 4 basis functions.

1.8.7 Modi�ed H-basis

For the objects that are far away we may want to use only light mapping without normal
mapping at all. In spherical harmonics constant term corresponds to a light map. But
if we want to use light map in H-basis we need H1 and H3, because they evaluate to
a non-zero value with a tangent space surface normal n = (0, 0, 1). To overcome that
problem H-basis was modi�ed by changing the H3 in the following way:

H3
mod

=

√
3

2π
(1− cos θ) =

√
3

2π
(1− z) (1.58)

Orthonormality, which is not required for representing directional irradiance, of the basis
set was sacri�ced for this advantage.
Through this modi�cation, the constant basis function H1 now represents the traditional
light map, while the high accuracy of the original H-basis is still maintained.
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Figure 1.14: Function H3 from H-basis and Hmod
3 from modi�ed H-basis.

1.9 Surface and Volumetric Representation

There are two main approaches when using irradiance normal mapping: surface represen-
tation and volumetric representation.

Surface representation is a method of storing additional textures with encoded
lighting information (using basis functions) for every object in the scene. For example,
if we decide to use 3 bands of Spherical Harmonics for Irradiance signal encoding, we
have to store 9 coe�cient textures. Although, di�erent objects in the scene may have the
same di�use texture, coe�cient textures with lighting information has to be unique for
every object because lighting may be di�erent at the places where di�use texture is the
same. But surface representation can be used only for static objects, because lighting is
precalculated and cannot be recalculated in real-time.

Volumetric representation, also called Irradiance Volumes [13] is a method for
lighting of the dynamic objects in the scene. The basic idea is to construct a volumetric
uniform grid of points in the scene and take Irradiance samples at every point and store
them in Spherical Harmonics (or other spherical basis function set) during the precompu-
tation step. Then in real-time for every dynamic object in their pixel shaders interpolate

Figure 1.15: Volumetric irradiance sampling grid [6]

the SH coe�cient values between closest samples and evaluate the Spherical Harmonics
in the same way as in surface representation.
The volumetric data can be sparse, because generally irradiance does not change fre-
quently in space.

Using this method global illumination e�ect could be acheived for the dynamic objects
in the scene. However, lighting interactions of dynamic objects with static objects such
as self-occlusion and shadows from dynamic objects are not provided.
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In practice, combination of these two approaches can be used: surface representation
for static objects and volumetric representation for dynamic objects.
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Chapter 2

Implementation

Figure 2.1: Implemented Irradiance Normal Mapping pipeline

The implemented Irradiance Normal Mapping pipeline consists of the following steps:

1. Scene creation and preparation (Autodesk Maya 2010)

2. Coe�cient maps baking (Turtle 5.1 + LUA scripts)

3. Conversion of volumetric data in XML to 3D dds

4. Scene export to Ogre3D (OgreMax Scene Exporter 2.2.7)

5. Irradiance Normal Mapping application (Ogre3D 1.7.2)
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2.1 Scene Creation and Preparation Step

During this step we create a scene in Autodesk Maya 2010 [1]. The complete scene is
set up, including geometry, materials and UV paramterization as well as lighting. When
creating materials the corresponding normal maps have to be added. Not only can we
create static objects, but also animated objects.

2.1.1 Preparation for the 2D Coe�cient Maps Baking

After the scene is created we have to prepare it for the coe�cient maps baking. For every
static object in the scene we have to create the secondary UV set in which every texture
coordinate lies in the range [0, 1] and is fully non-overlapping. This UV set will be used
for 2D coe�cient maps.

2.1.2 Preparation for Irradiance Volumes

In the case of Irradiance Volumes we have to create a uniform volumetric sample grid.
One way to do it in Maya 2010 is to create an array of realtively small quads and place
them with a constant distance step. Later the irradiance will be sampled at the vertices
of the quads. The number of the quads depends on the size of the scene and level of
detalization that is required (e.g. 16x16x16 quads or 32x32x32 vertices). We have to
make sure that the quads do not interact with other objects in the scene in terms of
lighting i.e. they do not create any shadows or re�ect any light. To ensure that we have
to adjust the following properties of the quads. In object render stats we have only to
leave the "Receive shadows" box checked. In the material settings: in the tab "Special
e�ects" we check "Hide source" and in the tab "Matte Opacity" select Matte Opacity
Mode "Black Hole".

Figure 2.2: Example of irradiance sample grid

2.2 Coe�cient Maps Baking

For 2D and volumetric coe�cent maps baking we used the rendering and baking Maya
plug-in Turtle 5.1 [2]. Turtle can be customised to bake out into any basis using LUA
scripting.
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2.2.1 Calculating Irradiance

To calculate Irradiance, using equation 1.4, we need to calculate the radiance L
(
⇀
x,

⇀
ω
)
.

Given the radiance L
(
⇀
x,

⇀
ω
)
, calculating E

(
⇀
x,

⇀
n
)
(equation 1.1) for a point

⇀
x corre-

sponds to �ltering L with a diï¬�use (cut cosine) kernel. Doing this in Euclidean or
spherical coordinates is prohibitively expensive because we have to ï¬�lter a large num-
ber of surface points. Instead, we use Spherical Harmonics as an intermediate basis in
which the ï¬�ltering can be done much more eï¬�ciently.

As shown by R. Ramamoorthi and P. Hanrahan, a spherical directional irradiance
signal is faithfully represented with 3 Spherical Harmonics bands (9 coeï¬�cients per
color channel). Therefore, we only need to use Spherical Harmonics up to the quadratic
band.

First, we rotate the sampled radiance of a surface point into the tangent space and
expand it into Spherical Harmonics coeï¬�cients slm by integrating against the Spherical
Harmonics basis functions Y l

m over the upper hemisphere Ω+:

slm =

∫
Ω+

L(~ω)Y l
m(~ω)d~ω (2.1)

In almost all cases, the coeï¬�cients are calculated using Monte Carlo Integration

slm ≈
2π

N

N∑
i=1

L(~ωi)Y
l
m(~ωi) (2.2)

where N is the number of hemispherical equally distributed radiance samples L(~ωi). More
advanced methods such as importance sampling can be applied, as long as a radiance
estimate represented in Spherical Harmonics is calculated. The diï¬�use convolution
reduces to an almost trivial step in this representation. Following R. Ramamoorthi and
P. Hanrahan, applying the Funk-Hecke-Theorem, integrating with a cut cosine kernel
corresponds to multiplying the coeï¬�cients of each band with a corresponding factor
al:

a0 = 1 a1 =
2

3
a2 =

1

4
(2.3)

to arrive at the ï¬�nal directional irradiance signal represented in Spherical Harmonics:

ESH(~n) =
∑
l,m

slmY
l
m(~n). (2.4)

We have built the necessary division by π for the exitant radiance into the diï¬�use
kernel so we do not have to perform a division at run-time.

2.2.2 Irradiance Tangent Space

In irradiance normal mapping it may happen that both normal and coe�cient map tangent
spaces have di�erent orientations and the normal map resides in a di�erent tangent space
than the irradiance.

Fortunately, both texture coordinate sets share the same vertices and geometric nor-
mals as well as interpolation in the rendering pipeline. By simply using the tangent and
bitangent of the normal map tangent space in the irradiance texture coordinates dur-
ing the precomputation, a tangent space for the the irradiance texture coordinates is
constructed that is correctly oriented with the normal and albedo map tangent space.
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Since both tangent spaces are aligned, we need neither the normals nor the (bi)tangents
of any tangent space when evaluating the irradiance at run-time. However, we need them
when using Irradiance Volumes method, because in that case we have to convert normals
from normal map in tangent space to object space for Irradiance evaluation.

2.2.3 Texture Normalization and Range Compression

The output of the precomputation are ï¬�oating point values which, can also be negative.
Though we could use ï¬�oating point texture formats to represent the sign and full
dynamic range of the irradiance, this option is prohibitively expensive in most cases,
though it leads to the best possible output.

We treat the map containing constant term (light map) di�erently, because it can
never get negative, in contrast to other coe�cients, Additionally, we change the color
space from linear to sRGB by exponentiation with 1/2.2 to avoid quantization artifacts
associated with an 8-bit linear representation. As with standard texture maps, we have
to interpret the texture as sRGB data when evaluating it at run-time.

Because coe�cients other than constant can be negative, we perform a similar range
compression as done with normal maps, keeping them in linear color space. If constant
coe�cient is in the range [0..1], a rule of thumb is that the other coeï¬�cients do not
exceed the range of [-0,75..0.75]. However, the range compression factor of 0.75 may be
changed according to the scene and lighting conditions to further increase the accuracy
of the coeï¬�cient representation over a range compression of [-1..1], as used in normal
mapping.

2.2.4 Texture Compression

Similar to light maps, the coe�cient maps can be compressed using DXT texture formats.
Since we do not need any alpha information, DXT1 compression can deliver a compression
rate of 6 : 1. Since we eï¬�ectively add up several DXT compressed textures, compression
artifacts may also add up to an intolerable level. These artifacts can be counteracted by
choosing a higher coe�cient map resolution or modulating the result with an albedo map
to obfuscate the color shifts.

2.2.5 Baking Volumetric Data

To bake volumetric data we �rst select our volumetric quads grid in Maya, then select in
Turtle to bake to vertices in XML format, using Spherical Harmonics LUA script. We
use Spherical Harmonics because in this case we deal with volumetric data and we need
to have Irradiance signal in a full sphere domain.

2.3 Conversion of Volumetric Data in XML to 3D dds

Volumetric data XML is converted into 3D dds format using a small console application,
which we specially developed for that purpose. It uses tinyxml library to read and process
XML data and then convert it to 3D dds using DirectX library.
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Listing 2.1: Pseudo-code for calculating the coe�cients for the modi�ed H-basis including
the texture optimizations.

for each su r f a c e po int do {

c o l o r SHc [ 9 ] //3 bands Sphe r i c a l Harmonics c o e f f i c i e n t s

//Monte−Carlo−I n t e g r a t i on in tangent space over
// the hemisphere to p r o j e c t i n t o SH [ ] b a s i s f unc t i on s
for each rad iance sample L( d i r e c t i o n ) in N do {
for each SHc do {
SHc [ ] += L( d i r e c t i o n )∗SH [ ] ( d i r e c t i o n )

}
}
SHc [ ] = (2∗PI/N)∗SHc [ ]

// Di f f u s e convo lu t i on
SHc [ 0 ] = SHc [ 0 ]
SHc [ 1 , 2 , 3 ] = 2 . 0/3 . 0∗SHc [ 2 , 3 , 4 ]
SHc [ 4 , 5 , 6 , 7 , 8 ] = 1 . 0/4 . 0∗SHc [ 4 , 5 , 6 , 7 , 8 ]

// Pro j ec t i on in t o modi f i ed H−b a s i s
c o l o r modHc [ 6 ] // modi f i ed H−b a s i s c o e f f i c i e n t s

//Transform matrix
for each c o l o r in modHc [ ] do {
modHc [ 0 ] = 0.70711∗SHc [0 ]+1 .2247∗SHc [2 ]+1 .1859∗SHc [ 6 ]
modHc [ 1 ] = 0.70711∗SHc [1 ]+0.59293∗SHc [ 5 ]
modHc [ 2 ] = −0.70711∗SHc [2 ]−1.3693∗SHc [ 6 ]
modHc [ 3 ] = 0.70711∗SHc [3 ]+0.59293∗SHc [ 7 ]
modHc [ 4 ] = 0.70711∗SHc [ 4 ]
modHc [ 5 ] = 0.70711∗SHc [ 8 ]

}

//Convert f i r s t c o e f f i c i e n t to sRGB
modHc [ 0 ] = pow(modHc [ 0 ] , 1 / 2 . 2 )

//Range compress r e s t wi th g l o b a l f a c t o r o f 0.75
for each modHc [ ] except modHc [ 0 ] do {
modHc [ ] = modHc [ ]+0 . 7 5/ ( 2∗0 . 7 5 )

}

wr i t e modHc [ ]
}
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Listing 2.2: HLSL code for evaluating the modi�ed H-basis, including a modulation with
an albedo map. The di�erent levels of detail are created by stopping the irradiance
calculation at the shown points.

f l o a t 3 n = 2∗ tex2D ( normal , texUV)−1; // tangent space normal map

f l o a t 3 i r r =
0.39894∗ tex2D (h1 , lightUV ) // i s sRGB lookup ( x ^2.2 )
// s top here f o r l owe s t LOD ( l i gh tmap )
+(2∗0.75∗ tex2D (h2 , lightUV )−0.75)∗0.69099∗n . y //not sRGB lookup
+(2∗0.75∗ tex2D (h3 , lightUV )−0.75)∗0.69099∗(1−n . z )
+(2∗0.75∗ tex2D (h4 , lightUV )−0.75)∗0.69099∗n . x
// s top here f o r middle LOD
+(2∗0.75∗ tex2D (h5 , lightUV )−0.75)∗1.54509∗n . x∗n . y
+(2∗0.75∗ tex2D (h6 , lightUV )−0.75)∗0.77255∗(n . x∗n . x−n . y∗n . y ) ;
// f u l l e v a l ua t i on

c o l o r = i r r ∗tex2D ( albedo , texUV) // i s sRGB lookup ( x ^2.2 ) ;

// wr i t e co l o r to sRGB frame b u f f e r ( x ^(1/2.2) )

2.4 Scene Export to Ogre3D

The scene is exported from Maya 2010 to Ogre3D [3] via Maya plug-in OgreMax Scene
Exporter. Before exporting, in OgreMax scene settings chekboxes "Generate Binormals"
and "Generate Tangents" have to be checked for use with Irradiance Volumes. If there is
any animation in the scene it has to be added in the OgreMax object settings.

2.5 Run-time Evaluation

2.5.1 Evaluation with 2D Coe�cient Maps

During run-time Irradiance values are obtained through basis function evaluation. This
step is performed in the pixel shader that takes as an input corresponding coe�cient
maps, normal maps, albedo textures.

2.5.2 Evaluation with Irradiance Volumes

Di�erence in evaluation of Irradiance Volumes from 2D evaluation is that instead of 2D
textures we have volumetric textures and additionaly normal, tangent and binormal vec-
tors. The main idea is to align the precomputed volumetric grid with the scene objects
in real-time application. To do that we have to know dimensions of the volumetric grid
and origin o�set of the center of the volumetric grid.
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Listing 2.3: HLSL code for evaluating the Irradiance Volumes with SH, including a mod-
ulation with an albedo map.

// a normal from normal map in tangent space
f l o a t 3 ts_normal = 2∗ tex2D (normalmap , normalUV)−1;

// i n t e r p o l a t e d normal in world space
normal = mul ( normal , toWorld ) ;

// f i n a l normal in world space
normal = normal ize ( normal ) ;
f l o a t 3 ws_normal = tangent ∗ ts_normal . x

+ binormal ∗ ts_normal . y
+ normal ∗ ts_normal . z ;

// widht , he i gh t , depth − dimensions o f the vo lume t r i c g r i d
f l o a t 3 width = f l o a t 3 ( width , height , depth ) ;

// centerx , centery , c en t e r z − o r i g i n o f f s e t o f the cen te r
// o f the vo l eme t r i c g i r d
f l o a t 3 o f f s e t = f l o a t 3 ( centerx , centery , c en t e r z ) ;

f l o a t 3 lightUVW = pos i t i on3d + ( width /2 ) ;
lightUVW += o f f s e t ;

// vo lumet r i c t e x t u r e coord ina te norma l i za t i on
lightUVW . x/=width . x ;
lightUVW . y/=width . y ;
lightUVW . z/=width . z ;

lightUVW . z = −lightUVW . z ;
lightUVW = lightUVW . zxy ;
ws_normal . xyz = ws_normal . xzy ;
ws_normal . y = −ws_normal . y ;

// SH eva l ua t i on
f l o a t 3 i r r = tex3D ( volume0 , lightUVW)∗0 .28209479 // i s sRGB lookup ( x ^2.2 )

+(2∗tex3D ( volume1 , lightUVW)−1)∗0.48860251∗(ws_normal . y )
+(2∗tex3D ( volume2 , lightUVW)−1)∗0.48860251∗(ws_normal . z )
+(2∗tex3D ( volume3 , lightUVW)−1)∗0.48860251∗(ws_normal . x )
+(2∗tex3D ( volume4 , lightUVW)−1)∗1.09254843∗ws_normal . x∗ws_normal . y
+(2∗tex3D ( volume5 , lightUVW)−1)∗1.09254843∗ws_normal . z∗ws_normal . y
+(2∗tex3D ( volume6 , lightUVW)−1)∗0.31539156∗(3∗ws_normal . z∗ws_normal . z−1)
+(2∗tex3D ( volume7 , lightUVW)−1)∗1.09254843∗ws_normal . z∗ws_normal . x
+(2∗tex3D ( volume8 , lightUVW)−1)∗0.54627421∗(ws_normal . x∗ws_normal . x
− ws_normal . y∗ws_normal . y ) ;

c o l o r = i r r ∗tex2D ( albedo , texUV) // i s sRGB lookup ( x ^2.2 ) ;

// wr i t e co l o r to sRGB frame b u f f e r ( x ^(1/2.2) )
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Chapter 3

Results

3.1 Analytical Comparison

Since all described basis function sets can carry an approximation of the same irradiance
signal we can directly compare them against each other to determine their accuracy. As
an error metric, we use the integrated mean square error.

IMSE =

∫
Ω

(
n∑
i=1

ciBi

(
⇀
x,

⇀
n
)
− E

(
⇀
x,

⇀
n
))

2d
⇀
n (3.1)

where E
(
⇀
x,

⇀
n
)
is the fully correct irradiance signal and ciBi the corresponding weighted

basis function of each basis. The IMSE of all bases with di�erent numbers of coefï¬�cients
averaged over 10,000 random irradiance signals is shown in Figure 3.1 and Table 3.1.

Table 3.1: Average of the integrated mean square error over 10,000 random irradiance
functions grouped by number of coefï¬�cients.

Number of basis functions
Basis 3 4 6 9
Spherical Harmonics - 0.02748 - 0.00231
Hemispherical Harmonics - 0.03705 - 0.01114
Makhotkin Basis - 0.06577 - 0.03030
Zernike Basis 0.05871 - 0.01010 -
H-basis (modi�ed H-basis) - 0.02779 0.00678 -
Half-Life 2 Basis 0.07718 - - -
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Figure 3.1: Average of the integrated mean square error over 10,000 random irradiance
functions grouped by number of coefï¬�cients.

3.2 Visual Comparison

Figures 3.3 and 3.4 show a direct comparison of all bases using two or three bands under
the same lighting conditions. The used lighting is an HDR environment map with the
sun at grazing angle, which poses a worst case situation because the irradiance changes
strongly in the longitudinal as well as latitudinal parameter. A typical in-game scene that
shows di�erent basis function sets is shown in Figure 3.5. According to the results of

Figure 3.2: Normal map used for visual comparison of basis function sets.

the visual comparison Spherical Harmonics is the most accurate method, but at least 9
functions are needed. SH are purely polynomial and contain only multiplications, they can
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Figure 3.3: Visual comparison of linear bands of di�erent basis function sets. SH with 9
functions are shown for clarity.

Figure 3.4: Visual comparison of quadratic bands of di�erent basis function sets

be e�ciently evaluated in the pixel shader. However, Irradiance in SH is not e�ciently
stored, because the data in lower hemisphere in never used, when using 2D coe�cient
maps.

Although, Hemispherical Harmonics unlike Spherical Harmonics contain information
only about the upper hemipshere, due to the shifting operation they become strongly
non-polynomial and expensive to evaluate in the pixel shader. In addition, there are
severe errors at the border of the hemisphere, which is clearly noticeable in Figure 3.3.
However, in Figure 3.4 we can see that error is decreasing with the increase of the number
of functions.

Makhotkin basis is also non-polynomial due to the shifting operation as well as HSH.
Furthermore, the error is higher than in HSH, which is clearly visible on Figures 3.3 and
3.4.

Half-Life 2 basis and Zernike basis are among the most inaccurate methods, but they
have the least memory requirements â�� only 3 functions are needed.

The most successful hemispherical basis is modi�ed H-basis, because it's error with 6
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functions is very close to SH with 9 functions. In case of 4 functions the error is almost
the same as SH with 4 functions. Modi�ed H-basis can be e�ectively evaluated in pixel
shader due to it's purely polynomial structure. As a result when using modi�ed H-basis
with 6 functions we get the Irradiance signal representation which is mathematically very
close to SH with 9 functions and visually indistinguishable from SH. In addition with
modi�ed H-basis we can easily control the level of detail of a scene by using only H1

(light mapping) for objects that are far away, and then adding sequentially the linear and
quadratic band.
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Figure 3.5: In-game scene showing di�erent basis function sets. Top to bottom (1) Light
Mapping, (2) Modi�ed H-basis, (3) Spherical Harmonics, (4) Half-Life 2 basis, (5) Hemi-
spherical Harmonics, (6) Makhotkin basis, (7) Zernike basis
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Figure 3.6: In-game scene with Irradiance volumes. Here 9 volumetric textures with the
resolution 16x16x8 are used to store 9 Spherical Harmonics coe�cients

In Figure 3.6 we can see that results obtained with Irradiance Volumes di�er from those
with 2D coe�cient maps. For example, several artifacts are caused by the interpolation of
Irradiance samples which are inside objects (black) and outside objects (white) resulting
in a gray color in lit object. However, such undesirable e�ect could be decreased by
using higher resolution volumetric coe�cient textures. Even better way would be to use
adaptive subdivision, such as Octree, of Irradiance grid instead of uniform grid.

Conclusion

We have implemented complete Irradiance normal mapping pipeline as well as discussed
necessary theoretical background and implementation details. We have compared visually
and analytically all current basis function sets used for Irradiance signal representation
and approaches to Irradiance normal mapping: Irradiance volumes and 2D coe�cient
maps.
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Figure 3.7: A scene with modi�ed H-basis
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Figure 3.8: The Sponza Atrium scene with modi�ed H-basis. Top to bottom (1) withoud
albedo, (2) with albedo, (3) with albedo and HDR tone mapping
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