
Sketch-Based Steering in Visdom

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik & Digitale Bildverarbeitung

eingereicht von

Roman Gurbat
Matrikelnummer 0525731

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Jürgen Waser

Wien, 25.11.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Sketch-Based Steering in Visdom

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Roman Gurbat
Registration Number 0525731

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Jürgen Waser

Vienna, 25.11.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Roman Gurbat

Ölweingasse 3-5/19, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken

oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-

ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to com-

plete this thesis. First of all, I would like to thank Eduard Gröller for his supervision

and guidance. Also I would like to thank the VRVis for allowing me to do the practical

part of my thesis there. I would like to thank Jürgen Waser, the founder of Visdom, and

my supervisor at the VRVis. He helped out with implementation details and the devel-

opment of this work. A special thank goes to Hrvoje Ribičić, for his valuable inputs and

strong support during the implementation and the writing of this thesis.

My deepest gratitude goes to my parents for giving me as much support as they where

able to ante up. Finally, I would like to express my sincere thanks to Nicole, for her

patient and unconditional support.

This thesis was supported in part by a grant from the Austrian Science Fund (FWF):P

22542-N23 (Semantic Steering).

iii





Abstract

Natural phenomena like earthquakes or floods cannot be avoided or controlled by hu-

mans but ignoring them can be fatal. In order to understand their characteristics and

behavior computer simulations can be used. The gained knowledge is used to find

strategies and countermeasures to minimize the damage caused by such disasters.

Visdom is a modular integrated visualization system which is developed to support the

analysis of flood simulations. It provides the ability to test different decisions made

by the user for example the establishment of barrier arrangements. These alternative

scenarios can be visualized and analyzed in order to find the solution which minimizes

damage in the vicinity. For modifying the flood, the simulation parameters have to be

varied. In Visdom, this has to be done by inserting numeric values into textfields or

using sliders. In most cases, the system is intended to be used in time-critical situa-

tions where fast interaction and testing is required. Therefore a sketch-based interface

is introduced into Visdom which should simplify and accelerate the modification of sim-

ulation parameters. This kind of interaction increases the productivity and efficiency of

the whole work-flow due to its intuitive and straightforward usage.

Since Visdom is based on a modular data-flow system, the new functionality is im-

plemented within a new node. The so-called Spline Node provides methods to create

and manipulate a spline. It requires the drawn user input points which are captured by

a view node. Due to the fact that Visdom is based on the data-flow concept, a new

mechanism called Modular Interactors has to be introduced to enable interaction com-

munication between nodes especially upstream. In order to support the user during the

sketching process the system provides visual feedback. The sketched stroke is repre-

sented using a tubular geometry which is directly visualized in the 3D view.

v



After the spline is constructed it has to be interpreted to trigger commands which in-

fluence the simulation. For this issue two additional nodes are introduced. The Spline

To Barrier Node is responsible for translating the sketch to a sandbag barrier or a mo-

bile protection wall. Manipulating the spline allows for changing the properties of the

established barriers. The second interpretation possibility is implemented by the Spline

To Force Node. It creates a force field according to the appearance of the spline which

manipulates the fluid simulation directly. Also for this task visual feedback is essential

which should provide information about the acting forces. Therefore a new render com-

ponent is implemented which takes a vector field as input and generates an arrow plot.

This component is also used to visualize the internal flow of the fluid.



Kurzfassung

Naturereignisse, wie Erdbeben oder Überflutungen, können von der Menschheit nicht

verhindert werden. Sie zu ignorieren wäre jedoch ein fataler Fehler, der zu katastro-

phalen Folgen führen kann. Computersimulationen werden verwendet, um die Eigen-

schaften und das Verhalten der Naturgewalten zu analysieren. Das gewonnene Wissen

wird verwendet, um Strategien und Gegenmaßnahmen zu entwickeln, mit deren Hilfe

die Schäden vermindert werden sollen.

Visdom ist ein modulares integriertes Visualisierungssystem, das entwickelt wurde, um

Überflutungssimulationen zu analysieren. Benutzer können Barrieren in verschiedenen

Konstellationen errichten und deren Effizienz testen. Die dadurch entstehenden Alterna-

tivszenarien können visualisiert und analysiert werden, um jene Lösung zu finden, die

den Schaden, der in der Umgebung angerichtet wird, minimiert.

Um die virtuelle Überflutung zu manipulieren, müssen die Simulationsparameter verän-

dert werden. In Visdom werden diese über numerische Werte oder Schieberegler gesteu-

ert. Die meisten Anwendungsfälle sind zeitkritisch und benötigen eine schnelle Inter-

aktion zwischen dem Benutzer und dem System. Das Erweitern von Visdom durch ein

sketch-basiertes Interface soll die Steuerung der Simulation vereinfachen und beschleu-

nigen. Die Produktivität und Effizienz des gesamten Workflows soll durch die intuitive

Handhabung gesteigert werden.

Visdom ist durch das auf Nodes basierte Design hoch modular. Die neue Funktionalität

wird durch die Implementierung eines neuen Nodes, genannt Spline Node, ermöglicht.

Dieser bietet die Möglichkeit, eine Spline zu erzeugen und zu manipulieren. Als Input

werden jene Punkte verwendet, die der User durch das Zeichnen in dem 3D Fenster

vii



definiert. Visdom basiert auf dem Data-flow Konzept, welches einen strikten Ablauf der

Daten vorsieht. Um die Kommunikation zwischen den Nodes, vor allem entgegen der

üblichen Flussrichtung, zu ermöglichen, wird das neue Konzept der Modular Interactors

eingeführt. Visuelles Feedback wird verwendet, um den Benutzer während des gesam-

ten Prozesses zu unterstützen. Die gezeichnete Spline wird durch eine schlauchförmige

Geometrie repräsentiert, die direkt in dem 3D Fenster angezeigt wird.

Nach der Konstruktion muss die Zeichnung des Benutzers in einen Befehl umgewandelt

werden, der die Simulation beeinflusst. Dies wird durch zwei weitere Nodes realisiert.

Der Spline To Barrier Node wandelt die Spline in Barrieren aus Sandsäcken oder mo-

bilen Schutzwänden um. Die Eigenschaften dieser Objekte können mit Hilfe der Spline

und deren Manipulationsmöglichkeiten bestimmt werden. Als visuelles Feedback wer-

den die Barrieren in einem Preview-Modus angezeigt, was Benutzern das frühzeitige

Auffinden von potenziellen Fehlern ermöglicht.

Der Spline To Force Node ist verantwortlich für die Interpretation der Spline als Kraft-

feld, welches die Partikel der Flüssigkeitssimulation direkt beeinflusst. Einflussbereich

und Richtung des Feldes können wieder durch die Manipulation der Spline bestimmt

werden. Um einen effizienten Ablauf zu ermöglichen, werden dem Benutzer Informa-

tionen über die wirkenden Kräfte durch ein Feld aus Richtungpfeilen bereitgestellt. Um

dieses Feld aus einem Vektorfeld zu generieren, wurde eine neue Komponente entwi-

ckelt. Die Visualisierung durch Richtungspfeile wird auch verwendet, um Informationen

über die interne Struktur der Flüssigkeit anzubieten.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Aim of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Simulation Steering 9
2.1 Flood Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Steering Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 World Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Visdom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Sketch-Based Interaction 39
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Modular Interactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Spline Creation and Manipulation . . . . . . . . . . . . . . . . . . . . 55

4 Translation to Boundary Conditions 67
4.1 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Case Study 87

6 Conclusion 99

Bibliography 103

ix





CHAPTER 1
Introduction

1.1 Motivation

Mankind always had to cope with the unpredictability of the forces of nature. Every

year natural disasters like droughts, earthquakes, storms or floods affect thousands of

people and wreak havoc all over the world. According to the Centre for Research on the

Epidemiology of Disasters (CRED), floods were the most common natural disasters in

2010 [27].

Because of world-wide climatic change, the probability of climate-related hazards will

even increase. For example, due to global warming the additional amount of water

which flows into the rivers after the ice melts every year could lead to flash floods

throughout Europe and the rest of the World. Also, heavy rainfalls can cause flooding,

as happened in August 2010 in the border area between the Czech Republic, Poland

and Germany. Many rivers and creeks burst their banks and overwhelmed near villages.

Due to the flood, many households where cut from the power supply [30]. If a criti-

cal building, like a hospital or another important institution, would lose the connection

to the electric supply network, the number of victims could increase dramatically. As

a protective measure the European Union published a directive on the assessment and

management of flood risks [24] which aims to reduce the damage caused by floods.

Member states have to create flood hazard maps and flood risk maps which define po-

1



Figure 1.1: Satellite image of hurricane Katrina [48]

tential consequences of floods. Based on these maps, flood risk management plans have

to be established in order to lay out a strategy of how to protect the vicinity and prevent

the escalation of flood events. Every six years these plans have to be reviewed and up-

dated if necessary.

Countries which are situated at the seaside could be even more affected by the perils

induced by climate change. Coastal regions, especially those located in low-lying areas,

have to face a higher risk of flooding caused by the sea-level rise and a growth of stormi-

ness [44]. One of the most disastrous storms in the last years was Hurricane Katrina (see

Figure 1.1). According to a report of the National Hurricane Center [48], Katrina was

the costliest and one of the five deadliest hurricanes ever to strike the United States.

The storm first hit Florida as a Category-1 hurricane on the Saffir-Simpson Hurricane

Scale before reaching the Gulf of Mexico, where it increased intensity and became a

Category-5 hurricane. On 29 August 2005 Katrina struck the coastline along the north-

ern Gulf of Mexico, the coast of Louisiana, Mississippi and Alabama. 1833 people died

in this devastating natural disaster. Many of them perished directly in the actual hurri-

2



Figure 1.2: Breach at the Industrial Canal (top left and top right), the London Avenue

Canal (bottom left) and the 17th Street Canal (bottom right) [3]

cane, but most of the fatalities were caused by the subsequent floods. With a property

damage of over 81 billion dollars due to destroyed homes and businesses throughout

entire neighborhoods in the New Orleans metropolitan area, Katrina caused twice as

much damage as the previously most expensive storm Andrew in 1992.

In 2007, two years after the catastrophe, the American Society of Civil Engineers pub-

lished a report where they analyzed the happening and tried to understand why things

had gone wrong [3]. Like in many other cities, large areas of New Orleans are situated

below sea level. To protect the inhabitants from the water of the Gulf of Mexico, Lake

Borgne and Lake Pontchartrain, the United States Army Corps of Engineers (USACE)

designed and built a flood protection system. The system consists of levees, floodwalls

and one of the largest pumping systems in the world. But as Katrina hit New Orleans

the system failed catastrophically. During and after the hurricane many of those protec-

tion structures could not stand the pressure. Multiple breaches occurred in more than

50 locations, allowing the water of the gulf and the lakes to rush into the city. Over 80

3



Figure 1.3: Helicopters dropping sandbags to close levee-breaches [65] [68] [76]

percent of the city was flooded and some neighborhoods were submerged more than 10

feet deep in water. The major breaches were at the Industrial Canal, the London Avenue

Canal and the 17th Street Canal (see Figure 1.2). The levees and floodwalls breached

because of a combination of unfortunate choices and decisions made at almost all levels

of responsibility. The report by the American Society of Civil Engineers also states that

if the protection system had not failed, two-third of the deaths would not have occurred.

During every hurricane with the strength and intensity of Kathrina, some damage and

major flooding are expected as well as some levee overtopping. But in the case of Kat-

rina, the protection structures breached way before the maximum exposure was reached.

The breach of the levee situated at the 17th Street Canal was the most catastrophic and

responsible for most of the flooding in the city. The USACE tried to close it for the

restoration efforts to continue [15]. First they tried to close the breach by dropping

3000 lb sandbags deployed by U.S. Army Chinook and Black Hawk helicopters (see

4



Figure 1.3). This initial attempt failed because the sandbags were dropped too close

to the breach and were too light, so they were washed away by the flood. The engi-

neers noticed that the task of closing the breach was not straightforward and thus, many

attempts were needed to finally make a stable barrier and seal the breach. Later they

increased the size of the sandbags and used some with a weight of 6000 and 7000 lbs.

The plans in the field for closing the breach were changed many times. Such trial-and-

error procedures are common in case of emergencies, because there exists no standard

procedure or systematic research in the field of routines during a flood event.

To gain more insight and to learn from the natural disaster in New Orleans Sattar et

al. [79] carried out a case study of breach closure procedures. They constructed a 1:50-

scale model based on the situation in New Orleans and simulated the 17th Street Canal

levee breach and the subsequent flood in a hydraulic laboratory. Such a real-world

simulation is very accurate and reliable, but also very expensive and time-consuming.

Moreover there is no possibility to compare alternative scenarios in an efficient way.

Therefore computer applications were developed to perform such case studies in a vir-

tual environment. These so-called steering applications provide the ability to execute

and control the simulation. The scenario can be set up and adjusted easily which allows

the user to explore multiple alternatives with less effort.

1.2 Problem Statement

Within a steering application, the user is able to specify the terrain geometry and start a

fluid simulation. As response a visualization of the impact of the flood is received. By

changing the input parameters of the simulation, the influence of decisions made can be

investigated. An example of an input parameter is the positioning of sandbag barriers.

In emergency situations caused by natural catastrophies like floods, it is important that

the on-site action force team leader takes appropriate actions quickly, such as the place-

ment of these barriers. Fast decision-making is essential to minimize environmental

damage and to protect people in the immediate vicinity. The team leader, as an expert,

has the knowledge and experience needed to handle such situations.

However, traditional applications do not have an intuitive input interface, which would

5



enable a quick interaction. In these systems, the user has to insert inexpressive numbers

into tables by hand if changes have to be done. This is tedious and slows down the

workflow. Additionally the user needs to have special knowledge about how specific

parameters effect the actual simulation.

In the majority of cases it is not possible to find the optimal solution on the first try.

Therefore the user has to test different possibilities. Without an appropriate interaction

interface, exploring alternatives might be cumbersome. A more convenient method than

putting numbers into tables is a natural input interface like sketching.

1.3 Aim of the Work

To handle complex and crucial situations where time-critical decision-making is re-

quired, the process of examining alternative scenarios and finding the optimal solution

should be as fast and as simple as possible. This is often essential for saving many lives

and the property of people. The convenience should be achieved by using sketching as

an input method of the steering system. Because of the similarity to writing and draw-

ing, this is an intuitive way of communicating. Sketch-based interaction is natural and

easy to understand and learn. The user should have the possibility to sketch directly into

the visualization monitor of the simulation system. This allows for the modification of

the environment to influence the fluid simulation indirectly or directly. To change the

fluid indirectly, the user can set the boundary conditions of the simulation by positioning

sandbags or other barriers into the scene. By setting pseudo-forces into the scene, the

user has direct influence on the fluid. Due to the close interactive cycle of the system,

the user should receive immediate feedback on how the sketches are going to affect the

simulation. This enables quick responses to decisions made, which is essential for an

efficient workflow. The important task is to answer the question of how to realize this

feedback visualization to support the user as good as possible.

6



1.4 Methodological Approach

To achieve these goals a sketch-based interface is introduced in Visdom. Visdom is a

steerable integrated visualization system for computational fluid dynamics, based on the

data-flow concept. The system consists of modules called nodes which provide different

functions. To enable sketching, interactors have to be introduced. Interactors allow

nodes to interact with other nodes. One interactor should be established which receives

user input data and constructs a spline. This spline then can be interpreted as boundary

conditions or forces in the fluid simulation in Visdom. The user has the ability to interact

with the simulation directly by sketching pseudo-forces into the fluid to realize effects

like additional in-flow or wind. The user can also control the simulation indirectly by

sketching barriers onto the terrain. According to a real-world procedure [79], sandbags

are dropped from a helicopter to build the barriers. A real-time feedback visualization

provides the user with information on how a sketch might influence the simulation. For

the barriers, this can be a transparent preview of the sandbags, and for the pseudo-forces,

glyphs, such as color coded arrows, can be used.

7





CHAPTER 2
Simulation Steering

Floods can cause tremendous property damage as well as threaten human lives when

they occur in densely populated areas. Due to the unpredictability of inundations and

other natural disasters they can appear suddenly and unexpectedly. This is also the

reason why such incidences cannot be avoided. The only thing which can be done is to

prepare as much as possible to minimize damage in case of an emergency. To be capable

of doing so, experts of the responsible authorities have to understand the behavior of

flooding. This knowledge supports the decision making in time-critical situations. To

gain insight into the matter they have to explore the characteristics of floods which

can be eased by using simulations in virtual environments. A sufficient framework

should offer a suitable technique for simulating floods in real-time. Providing interactive

steering should enable testing of decisions and analysis of their outcome. The user

should be able to study the influences of individual input parameters like the velocity

of the flood or some geometric boundaries. In an iterative exploration process the user

should be able to test alternative solutions and receive immediate feedback about the

impact. Intuitive and clear analyses have to be offered to give the expert a clue for new

solution approaches which can be established in combination with previous knowledge.

9



2.1 Flood Simulation

For an efficient framework, which should help to investigate the characteristics of a

flood, a suitable flood simulation tool is essential. The chosen method should allow for

the replication of the conditions of the real-world scenario as accurately as possible.

Furthermore, the needed simulation model should be flexible and should offer a good

tradeoff between the speed of the computation and the accuracy of the results.

The standard approach for simulating floods and similar phenomena is the use of one- or

two-dimensional hydraulic models. The Hydrological Engineering Center (HEC) of the

United State Army Corps of Engineers (USACE) uses a one-dimensional river hydraulic

model for an integrated package called River Analysis System [11]. The system pro-

vides hydraulic simulations and analysis of the flow in rivers and channels. Dhondia and

Stelling [22] show an approach that combines a one-dimensional and a two-dimensional

model for the simulation of flooding and overland flows. Using the combination they

were able to bring the model’s behavior closer to real physical behavior. Another exist-

ing model for flood modeling and flood forecasting was developed by Blöschl et al. [7],

which is in operational use in northern Austria. Their model is distributed spatially and

provides flash flood forecasting. Lamb et al. [51] implemented a fast 2D floodplain

simulation model based on the JFLOW diffusion wave model using GPUs as high per-

formance parallel processors.

The shallow water equations [77] are equations that describe the evolution of an in-

compressible fluid. They are derived from the well-known Navier-Stokes equations [8]

and are a simple form of the motion equation that can be used to describe the horizon-

tal structure of an atmosphere. Shallow water equations can be used to simulate urban

inundations and dam-break scenarios with performance close to real-time. Mignot et

al. [58] used the shallow water equations to model floods in an urban area. They imple-

mented a solver for the 2D version of the equations to simulate floods in dense urban

localities. Wenli et al. [97] solve the shallow water equations using MacCormack’s

predictor-corrector technique to simulate 2D flood waves caused by a dam-break. An-

other example of a dam-break flood simulation solver is provided by Song et al. [83]

using unstructured meshes. Begnudelli et al. [6] and Liang et al. [53] use a Godunov-

10



based approach to solve the equations and simulate urban flooding and dam- and dyke-

break scenarios.

Using the 2D shallow water equation has a crucial drawback. Since the model is just an

approximation, it is not possible to apply it to all problems. The equation only describes

one vertical level which enables the possibility to simulate large scale scenarios where

the 3D fluid information is not important. To gain an exact solution and all the informa-

tion about the evolution of the fluid, the full Navier-Stokes equations for incompressible

fluids have to be solved.

The Navier-Stokes equations [8] are actually a set of partial differential equations which

are valid throughout the whole fluid. The set consists of two equations, where the first

one is called the momentum equation

advection = −pressure+ viscosity + externalforces (2.1)

and the second one the incompressibility condition

divergence = 0 (2.2)

The momentum equation again consists of three differential equations and can be de-

rived from Newton’s second law. This part of the Navier-Stokes equations tells us how

the fluid accelerates due to the forces acting on it. How the quantities of the fluid or the

fluid itself move with the velocity field, is called advection:

ρ

(
∂�v

∂t
+ �v · ∇�v

)
(2.3)

where �v is the velocity, ρ is the density and t is the time.

The three components describe the forces acting on the fluid. The first component rep-

resents the pressure existing inside the fluid:

∇p (2.4)

where p is the pressure. Since ∇ is the gradient operator, this expression represents the

change of pressure.

11



The second component is the viscosity of the fluid:

μ∇2�v (2.5)

where �v is the velocity and μ stands for the viscosity.

Finally the third component represents the external forces acting on the fluid, like grav-

ity:

ρ�g (2.6)

where �g represents the body forces and ρ is the density.

The second part of the Navier-Stokes equation, the incompressibility condition, indi-

cates, that the velocity field of the fluid has to be divergence-free. That means that the

volume of the fluid should be constant over time, which is a property of incompressible

fluids. Divergence can be calculated with the equation:

∇ · �v (2.7)

where �v is the velocity.

One of the most sophisticated tasks of fluid simulation is to consider and to handle

the boundary conditions [8] correctly. In comparison to the forces mentioned above,

which determine the interior state of the fluid, the boundary conditions dictate how the

fluid should behave on its boundaries. A boundary for a fluid could be a solid wall or

a free surface, for example the boundary between the fluid and the not simulated air, or

even the surface between two fluids. At a solid wall or at another solid obstacle, the fluid

should not be allowed to flow into or out of the object. To achieve this, the component

of the velocity which is normal to the boundary has to be zero.

�v · n̂ = 0 (2.8)

where �v is the velocity and n̂ is the normal vector at the boundary area.

This condition is called the “no-stick” condition. If the fluid should be viscid, this

12



condition is not enough, because the fluid should also be not allowed to move along the

boundary. This leads to the condition that the velocity on the boundary should be zero

�v = 0 (2.9)

which is called the “no-slip” condition. At a free surface boundary, the velocity should

not be manipulated. Instead the pressure of the surrounding atmosphere has to be set

to a constant value, for example zero. Boundary conditions are a physical phenomenon

which are imposed by nature. When simulating fluids numerically an additional concern

appears, namely the proper numerical implementation of the boundary conditions. The

subject of proper and accurate boundary conditions is very important in Computational

Fluid Dynamics [96].

The area of Computational Fluid Dynamics (CFD) uses numerical methods to solve the

Navier-Stokes equations and to get a final numerical description of the complete flow

field of interest [96]. Some methods simplify the equations by dropping the viscosity

term to yield the Euler equations. The viscosity forces are important for the simulation

of viscid liquids like honey or tiny water droplets, but for the majority of tasks, viscosity

plays a minor role [8]. The traditional techniques from the field of Computational Fluid

Dynamics provide good results when simulating flooding [87]. Gouda et al. [29] use

a package based on the finite volume method to implement a dam-flooding simulation.

Another traditional technique, the finite difference method [86] [96], achieves good re-

sults for flood simulation as well, but the calculation is too slow to provide an interactive

user experience, especially for time-critical applications.

Every traditional Computational Fluid Dynamics approach is based on numerical meth-

ods. A numerical solution calculates the result of the equation only for discrete points

in the domain, called grid points [96]. The domain of interest is subdivided into smaller

cells which form a grid. In grid-based approaches the interaction between the cells can

be described using the Euler or the Navier-Stokes equations. One example of the grid-

based approach is the Lattice Boltzmann method (LBM) [84], which is a fast technique

for viscous fluid dynamics. With this method, complex boundaries can be implemented

13



Figure 2.1: Comparison of the Eulerian (left) and the Lagrangian Viewpoint (right)

relatively easy. Judice et al. [45] compared the Lattice Boltzmann method with another

lattice based approach, the Lattice Gas Cellular Automata technique, for the modeling

and animation of fluids in computer games.

There are two different ways to simulate or even to look at a fluid (see Figure 2.1) [8].

The first way is called the Eulerian viewpoint. It is the viewpoint used in grid-based

approaches, where the fluid motion is observed at specific locations in space through

which the fluid flows as time passes. At this specific points, the fluid quantities, such

as density, velocity or temperature, can be measured. The second approach involves

examining the fluid quantities by following an individual part of the fluid as it moves

through space in time. This is the particle-based Lagrangian approach. Müller et al. [63]

present a less accurate particle-based method which allows for stable and fast compu-

tation of fluid effects. Particle-based approaches are preferred to Eulerian ones when

simulation at interactive rates is desired. They are a good fit for the task of simulating

flooding or similar phenomena for interactive visualization and analysis. The advantage

of particle-based methods is that no time-consuming grid modeling is necessary, which

also costs memory and computation time during the simulation. Furthermore, the geo-

metric boundaries do not have to be voxelized, like when using grid-based approaches.

A particle-based approach interprets the fluid as a set of particles. To realize the advec-

tion part of the Navier-Stokes equation in such a system, it is enough to use a so-called

14



Figure 2.2: A particle object and the values stored

simple particle system [8]. This kind of system calculates the movement of the particles

without any particle-particle interaction. Only a set of particles is needed where every

particle stores its mass, the current position, the current velocity and the external forces

acting on it (see Figure 2.2). Such a system can be implemented very efficiently, espe-

cially with the help of parallel computation on the GPU, and a large number of particles

can be simulated. The only equations which have to be calculated for every particle are:

ẋi = vi (2.10)

and

v̇i =
fi
mi

(2.11)

The first equation describes, that the change of the position of an arbitrary particle i (ẋi)

is determined by its velocity (vi). The second equation determines, that the change of

the velocity of a particle i (v̇i) is the force fi acting on it divided by its mass mi. These

two simple equations are enough for the implementation of the advection part.

If a flooding simulation would only be implemented with a simple particle system,

the result would be very unrealistic and insufficient. It is essential that the particles

influence each other and collide. There is a need to add additional forces to imple-

ment particle-particle interaction [8]. This pairwise interaction issue, also known as

the N-body problem, is well known and can often be found when dealing with physi-

cal simulation. The brute-force approach of solving the problem is to calculate all the

15



interactions between two distinct particles. Nyland et al. [70] implemented this tech-

nique and even reached real-time performance. They achieved high efficiency by using

the power of the graphics processing unit (GPU) via CUDA [17] and some other opti-

mizations. Apart from the brute-force approach there exist many other techniques used

to implement the N-body problem. For example the Fast Multipole method [5] can be

used to avoid the calculation of forces between particles which are far away from each

other. The magnitude of the interaction force between two particles only depends on the

distance between these two. An approximation of this magnitude can be determined by

the Lennard-Jones potential [69].

Smoothed Particle Hydrodynamics

As mentioned before, a realistic fluid simulation is based on the Navier-Stokes equa-

tions. Müller et al. [63] show, that it is possible to apply the equations on particles.

The method they use is called Smoothed Particle Hydrodynamics (SPH). This method

was originally developed in the field of astrophysics by Monaghan et al. [61]. Later,

the method was adapted for use in the simulation of incompressible fluids. With SPH,

it is possible to simulate flooding with real-time performance and to visualize it in a

realistic way, as shown by Kipfer and Westermann [47]. They present an interactive

technique to simulate and render rivers using the SPH approach. SPH can also be used

for simulating fluid on a large terrain, which might be important for the implementation

of flooding scenarios. Chatelain et al. [14] demonstrate this by periodically remeshing

the particles using high-order interpolation kernels. Ghazali and Kamsin [28] used SPH

to reconstruct the flash flood incident that struck Kuala Lumpur in 2007. The objective

was to show that this approach is able to produce realistic simulations and renderings,

and thus enable more precautions and countermeasures to prevent such natural disasters.

To apply the Navier-Stokes equations with the help of particles, the two equations men-

tioned above have to be applied to them. The first equation is the momentum equation,

which forces the conservation of the momentum (see Equation 2.1). The second is the

incompressibility condition, which forces the conservation of mass (see Equation 2.2).

The equation of momentum can again be split in its three components. Due to the

movement of the particles, the advection component corresponds to the change of the

16



Figure 2.3: 2D (left) and 3D (right) visualization of the kernel function

velocity, thus the acceleration ai of the particles [8]:(
∂�v

∂t
+ �v · ∇�v

)
→ d�vi

dt
= ai =

fi
ρi

(2.12)

The incompressibility condition can also be simplified when using particles. Due to the

fact that the number of particles in a system is constant and the fact that they always have

the same mass during the simulation, the mass conservation is guaranteed. This holds if

some rules are considered when setting up the SPH equations, which will be explained

later in this chapter. To apply the resulting equation the SPH approach can be used. The

basic idea of SPH is to build the necessary continuous global field over the whole fluid

domain by summing up smooth local fields. Every particle induces such a local field.

The most important component for the SPH methods is the so-called smoothing kernel

Wi(�x), also known as the kernel function (see Figure 2.3) [8]:

Wi(�x) = W (|�x− �xi|) (2.13)

where �x is an arbitrary point and �xi is the position of particle i.

The kernel defines a scalar weighting function around each particle. It is symmetric

and its value at a certain position �x depends only on the distance to the particle. Since

the stability, accuracy and speed of the whole method highly depends on the smoothing

kernel, choosing the right one for a specific purpose is essential. It is also possible to use

different kernels for advection, pressure and the viscosity calculation [63]. A popular

choice for a kernel function is the poly6 kernel:

Wpoly6(r) =
315

64πd9

{
(d2 − r2)3 0 ≤ r ≤ d

0 otherwise
(2.14)

17



where r is the distance between the particles with position �xi and an arbitrary position

�x (see left side of figure 2.3). The letter d stands for the core radius of the kernel. This

value determines the region of influence of the particles.

With the help of the kernel function, a global density field ρ(�x) can be computed from

the individual positions �xj and masses mj of the particles using the following equation:

ρ(�x) =
∑
j

mjW (|�x− �xj|) (2.15)

The density for an arbitrary �x is achieved by calculating the sum of the masses of all

particles weighted by the kernel function. According to this, the density of a specific

particle is the density calculated for the position of the particle. The density of a particle

is important for calculating the quantity fields. First we come back to the conserva-

tion of mass issue. As mentioned before, one important property has to be considered.

To guarantee the conservation of mass, the kernel function has to be normalized. This

causes the integral of the density field to be the sum of all particles masses.

The next step is to calculate smoothed fields of arbitrary attributes As(�x), with the help

of the density values ρj for the individual particles. This is realized by summing up the

desired quantities Aj of all particles weighted by the particle densities ρj , the particle

masses mj and the kernel function W (|�x− �xj|):

As(�x) =
∑
j

mj
Aj

ρj
W (|�x− �xj|) (2.16)

The smoothed fields have a very important characteristic. Using this formulation, it is

easy to calculate the gradient of smoothed fields by just applying the gradient operator

∇ only to the kernel function. This property is very useful when constructing the equa-

tions for the other forces to fulfill the Navier-Stokes equations. As mentioned above, the

advection component corresponds to the acceleration of the particles. Since the accel-

eration is calculated by means of the forces acting on the particles, the three remaining

components, pressure, viscosity and the external forces, can be interpreted as additional

forces. Equations 2.17 and 2.18 show the transformation of the pressure and the viscos-

ity components of the Navier-Stokes equations to the corresponding smoothed fields.

18



f pressure
i = −∇p(xi) = −

∑
j

mj
pj
ρj
∇W (|xi − xj|) (2.17)

f viscosity
i = μ∇2v(xi) = μ

∑
j

mj
vj
ρj
∇2W (|xi − xj|) (2.18)

Because these two forces are not symmetric and would contradict Newton’s law “actio

est reactio”, the equations have to be adapted to achieve symmetry.

f pressure
i = −

∑
j

mj
pi + pj
2ρj

∇W (|xi − xj|) (2.19)

f viscosity
i = μ

∑
j

mj
vj − vi
ρj

∇2W (|xi − xj|) (2.20)

The external forces, such as gravity or collision forces, can be applied directly to the

particles, considering the density.

f external
i = ρig (2.21)

When implementing a simulation using the SPH approach, a spatial data structure, such

as a KD-tree, could be used to avoid comparisons of all particle pairs. The resulting

algorithm only consists of three steps, which have to be done for every particle. Step

one is the computation of the density. Step two is the computation of the force acting on

the particle and the update of the particle velocity. Step three is the check for collisions

and the update of the position.

One of the biggest advantages of SPH is that it does not need a grid. The constraints

of a finite grid do not have to be considered. Unnecessary computations, for example

in the case of empty grid cells, are avoided and the tracking of free surfaces is easy.

Furthermore, the gridlessness has the advantage that the fluid can change shape easily.

This feature is essential for simulating flooding scenarios, where levees can breach or

barriers can be added to the scene, changing the area of the fluid. Due to the structure

of the algorithm for SPH, the implementation is easy to parallelize, which enables the

use of the power of the GPU [2] [32].

19



Some open source GPU-accelerated implementations of the SPH approach are avail-

able [35] [34]. The GPU-SPHysics code was used by Dalrymple and Herault to simu-

late a flooding scenario with various types of levee failures [19]. NVIDIA also provides

a free and efficient GPU implementation of the SPH algorithm in their PhysX pack-

age [18].

NVIDIA PhysX

The NVIDIA PhysX package was initially developed to integrate physical animation

and simulation into games. To guarantee high performance the package uses the com-

putational power of the GPU. With PhysX, many different physical models can be simu-

lated, for example rigid bodies, soft bodies, characters, vehicles, cloths and even fluids.

The fluids component allows for the simulation of liquids and gases using a particle sys-

tem. The use of the SPH method can be enabled or disabled. If it is disabled, a simple

particle system is used. Another very important feature is collision detection. PhysX

supports one-way and two-way interaction between fluids and other physical objects,

like rigid bodies or cloth. These additional forces are very important for floods, namely

to simulate the reaction of the fluid when it collides with geometry and the behavior

of the geometry itself after the contact. To influence the simulation, NVIDIA PhysX

provides the concept of force fields. The use of force fields will be explained in a later

chapter.

Although the main focus of the engine is not accuracy, it allows the system to repro-

duce the case study of the laboratory with high performance. Additionally, NVIDIA

PhysX implements all the functionality needed to simulate flooding scenarios with dy-

namic barriers and forces. Therefore this package is a good choice to be integrated as

the simulation component of a simulation-steering application.

2.2 Steering Applications

After simulating the fluid with an appropriate method, the results can be rendered to

visualize the flooding scenario. But the visualization alone is not enough to support

decision making. To gain more knowledge about hazards and the behavior of the water,

20



the researcher should be able to modify the simulation by changing the environment

or the fluid directly. This ability is essential for the analysis of how decisions made

influence the flood. The traditional workflow of handling simulations is to prepare the

input parameters and to execute the simulation. The visualization of the results is often

implemented as a post-processing step. An application which runs these steps concur-

rently is more efficient, productive and provides more insight into the behavior of the

flood. The user has to be able to change the input parameters interactively and receive

visual feedback of the decisions made immediately. This is the basic idea of simulation

steering, also known as computational steering [90].

Simulation steering is a powerful concept because the user, who should be an expert for

floods, can guide the simulation into a desired region of interest. This could dramati-

cally speed up the process of decision making in time-critical situations. Liere et al. [90]

describe the requirements and the basic architecture of computational steering applica-

tions and introduce an implementation of the concept called Computational Steering

Environment (CSE). Mulder et al. [62] provide a survey of Computational Steering En-

vironments for scientific and engineering simulations, where they identify the scope and

describe the architecture and the user interface of each environment.

Modular Visualization Environments (MVE) are a class of applications which use the

concept of modules to simplify the access to complex visualization data [13]. A module

is a building block of code which encapsulates its functionality in an object-oriented

manner. Many modular visualization environments, for example AVS [40] or IRIS Ex-

plorer [64], are based on the visualization pipeline model [31].

The visualization pipeline consists of four main steps (see Figure 2.4). The first step is

data acquisition. Data can be provided by measurements, for example from MRI scan-

ners or computer tomographs, by modeling or by simulations, like flow simulations.

After this step, the raw data can be passed on to the second step, the data enhancement.

The raw data is modified to get the information that is necessary for subsequent steps.

The data might be filtered to suppress noise, be interpolated to get additional values or

be resampled to enable its use on a different-resolution grid. After the data is processed,

the main step of the visualization pipeline occurs. The so-called visualization mapping

21



Figure 2.4: Visualization Pipeline

transforms the data into a renderable representation. The representation might be ge-

ometry, for example glyphs or icons, an iso-surface or even voxel attributes like color

and transparency. The last step is the rendering of the mapped data to generate an image.

A Modular Visualization Environment provides modules to accomplish every step of

the visualization pipeline. The biggest advantages of a modular approach are extensi-

bility and flexibility. Functionality can easily be exchanged by using another module,

which implements the desired functionality. The modules can be represented as nodes,

with input and output connectors. The visualization pipeline can be established by con-

necting nodes in the correct order. The node for step one of the pipeline would then be

connected with the node implementing the second step. This leads to a data-flow archi-

tecture where the data flows between connected nodes which all run as separate entities.

The data-flow concept is commonly used for visualization systems [99]. An example

of a steering application which is implemented using these concepts is SCIRun [73].

Miller et al. [59] implemented a distributed infrastructure for SCIRun to enable large-

scale scientific computations. Although SCIRun provides some monitoring of running

applications and allows for small modifications to be made to the data-flow network,

it does not provide sufficient functionality for simulation steering [62]. Most data-flow

22



systems lack the ability to preserve states. Saving and restoring states is essential for it-

erative problem solving and also essential for supporting decision making. Without state

handling, the user cannot compare alternative decisions made at a specific time and can

not find out which one would be the better choice. GRASPARC [9] is a problem solving

environment which implements a history tree to record simulation information during

the computation to allow for backtracking. The HyperScribe mechanism is based on

the GRASPARC idea and integrates the history tree as a data-flow module into IRIS

Explorer.

Vetter and Schwan [91] implemented an application for steering physical simulations

called Magellan. The main focus of this application is the high performance of the steer-

ing process itself and the ability to steer multiple applications simultaneously. Magellan

uses a server-client architecture to separate the computation from the user interface.

The user interface is text oriented, and steering commands have to be specified with a

language construct called ACSL. Another server-client based steering application for

physical systems is RealityGrid [10]. Using a server-client architecture can have many

advantages. First of all, the server and the client can be implemented in different pro-

gramming languages. They have different tasks and so also the requirements for the

languages are different. Furthermore, this architecture enables a distributed implemen-

tation of the system, where heavy tasks can be split and solved by many computers in

parallel.

To ensure sufficient support for interactive flooding scenarios, the application should

be able to cope with computational fluid dynamics simulations. Kreylos et al. [50]

describe a system which allows the user to explore computed solutions of a fluid sim-

ulation and find regions of interest. Afterwards, the grid can be refined interactively

in these regions to get more details where needed. Matkovic et al. [56] use a system

of multiple views, to enable computational steering for the development of automotive

system components. The linked views are 2D scatter plots, 3D scatter plots, histograms

and parallel coordinates. The views provide a comprehensive insight into the results

of the simulation process. The linked views and the 1D computational fluid dynamics

simulation are connected, which enables the user to see first results early. With this

information and the help of brushing, new simulation runs with particular parameters

23



can be triggered for parameter ranges of interest.

The multiple views paradigm is another useful concept for steering applications while

providing more insight for the user and helping to keep track of the simulation results.

A distributed visualization and simulation environment for the analysis and forcasting

of lake Erie is described by Marshall et al. [55]. POSSE [60] is another computational

steering system for large-scale computational fluid dynamics simulations, the results

of which can even be visualized using virtual reality facilities like CAVEs and RAVEs.

SimVis [23] is a framework for interactive visual analysis of large, multidimensional and

time-dependent data sets from computational fluid dynamics simulations using multi-

ple heterogeneous views. Providing information and tools to support decision makers

during the process of city-flood emergency-management is the target of the Flood Sim-

ulation and Decision Support System (FSDSS) described by Zhao et al. [101].

All the traditional systems lack intuitive and productive input interfaces. For example,

the Computational Steering Environment uses text fields, sliders and buttons to receive

user input [90]. The workflow of today’s computational simulations is much more com-

plex, with many different input parameters and large amounts of heterogeneous data

results. In time-critical situations it is important to be able to interact quickly with the

system. Furthermore, it would increase the productivity of an environment if the user

can start more simulation runs, each with distinct parameters. This feature enables the

user to compare and analyze many alternative scenarios, which help to make the right

decisions.

2.3 World Lines

Due to their complexity, natural phenomena are difficult to predict. This is the reason

why it is difficult to handle flooding scenarios even within steering applications. Also

for domain experts with many years of experience it is very hard to assess the situation

and to identify the hazards in advance. Even if a correct prediction would be possible,

it would be hard to find the optimal countermeasures against floods. One possibility

is to search for the best solution using trial-and-error. Within the application, the ex-

pert should be able to explore multiple scenarios simultaneously. Comparing a set of

24



related alternative solutions should provide more information about the whole scenario

and should support the decision-making process.

World Lines [93] is an interactive visualization concept which allows the user to manage

multiple simulation runs. The result of each run is determined by a specific decision of

the user. The World Lines are intended as a control component in a system of linked

views. The user can monitor various runs and even modify their settings to control the

execution interactively. World Lines can also be used to visualize analysis results di-

rectly which supports the user’s ability to understand complexity.

Every individual simulation run is represented as a track, which is visualized as a hor-

izontal bar inside the World Lines view panel (see Figure 2.5). The length of the bar

indicates the duration of the simulation run and the horizontal position determines when

the run starts and when it ends. The horizontal dimension of the World Lines view panel

can be interpreted as a timeline. Every track is distinguished by its own set of input pa-

rameters called settings. A track consists of many consecutive frames, where each frame

represents the state of the simulation at a specific time value, considering the settings of

the track. The so-called active frame is the frame of the selected track at the selected

point in time and defines the data and settings used to update the linked views in order to

visualize the simulation state. By defining the active frame, via selecting or moving the

provided cursor onto it, the user can specify up to which point the simulation should be

executed. The execution is performed when the record button is clicked. After the data

is simulated the user has the ability to go back to any point in time to review the state of

the simulation there. If the user encounters a point of interest, the system’s settings can

be modified in order to explore the scenario with different parameters. A user interac-

tion, as well as an external data update, is registered by the system as an event. An event

causes an action called branching to be triggered, which creates a new track. The new

track starts at the point of time belonging to the actual frame and has the same settings

as the parent track apart from the parameter or parameters which caused the branching.

Afterwards, the simulation of both tracks is possible, which leads to the ability to navi-

gate between these tracks to compare two or more alternative scenarios. The alternative

tracks may overlap temporally implicating the existence of more than one frame for a

given point in time. These frames are called parallel worlds for a specific time value.

25



Figure 2.5: World Lines View [93]

Figure 2.6: World Lines Layers [93]

A set of consecutive tracks, created by a sequence of events, is called a World Line and

indicates a possible outcome (see blue tracks in Figure 2.5). The problem of finding

the optimal solution is now mapped on the problem of finding the World Line with the

desired outcome.

The World Lines are organized as a hierarchical tree where the tracks are the nodes

and the branches are the connections between these nodes (see Figure 2.5). Each track

can be uniquely identified by a number. The relationship between a parent track and

26



its branch is visualized by a connection called the incoming branch. The tracks and

branches are color coded to indicate the progress of their simulation. The different col-

ors originate from the different visual layers from which the tracks are composed (see

Figure 2.6). The base layer represents the whole track, independent of its simulation

progress. On top of it is the progress layer, which indicates which frames have already

been simulated. The third layer is the active layer and highlights the selected World

Line, which is currently in focus.

World Lines are regarded as a control component for a steering environment with mul-

tiple views which are synchronized with the active frame. The active frame is defined

by the active track and the current time. To be able to navigate through time and paral-

lel worlds, the active frame has to be accessible in a convenient way. The user has the

opportunity to select the active frame directly by clicking on a desired frame anywhere

in the World Lines tree. Additionally, there is the possibility to use the World Lines

Cursor. This cursor is a vertical line designed to indicate the current time and to mark

the active frame (see Figure 2.6). The cursor has a box in order to enable dragging it to a

desired position. When the system is recording or playing back the simulation, the cur-

sor always surrounds the active frame along the active World Line. The user can choose

to follow the active frame to avoid the cursor leaving the view. To concentrate on some

specific regions of interest the user can zoom into the World Lines view horizontally and

vertically using scrollbars. If the user creates many tracks while experimenting, World

Lines provide a mechanism which resizes and rearranges the tracks automatically. If the

user is unsatisfied with the result, the layout can be changed manually. The thickness

and vertical position of the tracks can also be manipulated. Uninteresting tracks can be

collapsed into their parent track to keep the view clean and clear.

The World Lines view provides two modi, one for managing the simulation runs, called

steering mode, and one for comparing them, called the visualization mode. In the steer-

ing mode, the user can generate, create, and manipulate multiple simulation runs. The

advantage of the multi-view framework can be exploited by steering in one of the linked

views. An example is a 2D view where the user can place geometric objects into the

scene. It is also possible to change the settings of a track without creating a branch.

This feature is important for situations where a change has to be applied to the base

27



Figure 2.7: World Lines visualization mode to display analysis results, for example the

number of flooded buildings, per frame. Green frames indicate time-steps where few

buildings are flooded, whereas red frames represent a high number of flooded buildings.

track and the whole subtree. Since all tracks, apart from the root track, are based on a

parent track, a change in the settings of the parent track invalidates all of its child tracks.

This leads to the invalidation of all subsequent tracks because the calculated simulation

data in these tracks is no longer useful. The data has to be deleted and simulated again

with the new settings.

The second mode is the visualization mode in which the user gets an overview showing

the outcomes of the simulation. While handling the simulation runs is a very impor-

tant task, analyzing the results is even more important. World Lines provide a com-

prehensive visualization view to enable interactive visual analysis (see Figure 2.7). A

traditional method used by World Lines is Linking and Brushing, used by many visual

analysis applications [46]. World Lines visualizes the simulation data using multiple

views which are linked together. The linking ensures that the views are synchronized. If

some settings change, all views are updated to have the focus on the same data. Brush-

ing allows the user to interactively select a specific region of interest in the views. Due

28



to linking, all corresponding regions in the other linked views are highlighted as well.

World Lines uses brushing to select a set of tracks to visualize and compare the out-

comes in parallel worlds.

The simulation results can be analyzed with different mechanisms. By default the per-

frame analysis is used, where the system is synchronized with the active frame and

shows the results for one track at the current point in time. World Lines supports three

different visualization methods. For our purpose, the most important method is the

frame-wise visualization. With this option the user can see the changes of the analysis

result as the simulation progresses. Every frame stores its own value and is colored

according to a transfer function.

Using World Lines reduces the effort of exploring multiple scenarios significantly. A

quick comparison of many possible actions is essential for handling flood situations.

With World Lines, a domain expert has the ability to test many countermeasures based

on previous knowledge to quickly find a good solution. While navigating through a

set of alternatives and comparing them, the expert should gain more information about

the performance of each action, which enhances decision-making. World Lines should

be used as a control component within a comprehensive simulation and visualization

system to unleash its full power.

2.4 Visdom

A simulation-steering system which provides direct simulation analysis and interactive

steering could support the user in the decision-making process. The system should be

flexible and clear, to enable adaption to various problems and to guarantee easy han-

dling. On the other hand, it should be comprehensive and expressive to provide the best

possible support for the user in critical situations. The World Lines concept is imple-

mented as a module in the steering and visualization system Visdom [93].

Visdom [1] is a steerable integrated visualization system for computational fluid dynam-

ics simulations which is developed by VRVis Vienna together with the ETH Zürich. It

provides all the features needed for effective problem solving, such as clear interfaces

29



Figure 2.8: The visualization of a node as a box, in this case the Simulation Node. On

the left side are the input connectors and on the right side the output connectors.

to control simulations and comprehensive visualizations to view and analyze the results.

Using the power of the GPU, Visdom is an effective tool to handle simulations. Visdom

is highly modular and supports comprehensive analysis via multiple linked views. This

framework simplifies steering simulations and enables quick knowledge gathering and

understanding of complex scenarios.

Visdom is implemented as a server-client system which enables web-based usage. This

architecture could also enable the involvement of other web services and online data like

hydrological and geological information. The server is responsible for the management

and simulation of the data, and for the rendering of the results. This means all the heavy

computations are handled by the server, which allows the client to be a lightweight ap-

plication. The client can thus be used on a mobile device, as no extensive resources are

required. The client’s responsibilities are handling user interaction and controlling the

system. If the client needs something to be calculated, it sends a request to the server.

The request is an XML structure with information about the desired task. The server

completes the task and sends the result back to the client. The used programming lan-

guages are different for client and server, and chosen to fit the tasks of the components.

The server is implemented using C++ to guarantee high performance which is also as-

sured by the use of CUDA [17]. The client application is based on Adobe Flex [43]

which uses MXML for defining layouts and interface behavior, and ActionScript for the

logic implementation.

To achieve a high degree of flexibility, Visdom is designed exceedingly modular. The

framework is implemented as a node-based system using the data-flow concept to con-

30



trol the work-flow. Every functionality is encapsulated into a node. A node can be seen

as a black box with a well defined input and output interface (see Figure 2.8). Every

node processes the input according to its purpose and produces output data. Some nodes

do not have input connectors. These nodes are called producers and are used to provide

data by creating it according to settings and user inputs, or loading it from a file. The

last nodes in the data-flow pipeline are usually view nodes. These nodes have no out-

put connectors and are responsible for the rendering and the display of the results. An

example of a node which has input and output connections is the simulation node. The

simulation node receives inputs like the geometry or the terrain used for calculating col-

lisions, and outputs the positions of the particles and the velocities for each. Currently

this node is implemented using PhysX as an engine, but due to the modularity of Visdom

every other simulation method can be integrated. The node-based architecture enables

easy integration of new functionality by just implementing a new node representing a

new module or an existing external component. In addition to the data-flow, Visdom

provides a so-called meta-flow [94], which flows vertically whereas the data-flow flows

from left to right. Through the meta-flow, the normal data-flow modules are connected

with special configuration modules. These modules have the ability to control other

nodes. The meta-flow can also be established between two data-flow nodes in order to

add another communication channel. Each node has its own settings and additional to

the data-flow output it can produce other results. Both of these new properties can be

sent over the meta-flow to communicate with other nodes.

The Visdom client provides two views, a design view for establishing the data-flow and

a semantic view for steering and analyzing the simulation. The design view (see Figure

2.9) is an interactive flow diagram to set up a steering system according to the task. The

user can construct the data-flow system by inserting nodes and connecting them. This

interface is very intuitive and enables a quick creation of the desired work-flow. The

settings of the nodes can be accessed in the design view by clicking on the desired node

icon. The settings determine how the node processes its input, and the user can change

the way the node computes the output by modifying the parameters. Some of the nodes

used in the data-flow pipeline create semantic windows. A semantic window is either

a view, which displays the result of the simulation, or an interactive component. In the

semantic view (see Figure 2.10), the user can see all the semantic windows. They are

31



Figure 2.9: Visdom Design View: The center panel provides a canvas where the data-

flow can be established. The nodes are accessible from the left panel. They can be

added via drag-and-drop. The settings of a selected node is shown in the right panel.

Figure 2.10: Visdom Semantic View: Shows the window layout created by the flow

diagram in Figure 2.9

32



created automatically by the data-flow which is established in the design view. Exam-

ples of views are the 3D monitor and the 2D slicer view. An interactive component

provides the ability to change the settings of a node via a visual user interface. An ex-

ample of such a component is the transfer function view. This view is created by the

transfer function node, which outputs a vector representing the transfer function. The

user can alter the function in the provided semantic window by choosing colors and

opacity values which should be used for specific data values. Each semantic window

listens to the node which it was created from to update its content if the corresponding

node’s settings or the settings from a linked node are changed. The semantic windows

are linked together. If something is changed in one window, all the other windows also

get updated to correspond to the new state of the system.

Visdom is the ideal system to be used with World Lines. As mentioned before, World

Lines should be used as a control component to add functionality and new features to

a simulation and visualization system. With the concept of the meta-flow, Visdom has

the perfect infrastructure for it. From a design viewpoint, World Lines are implemented

as a configuration node using the meta-flow to control specific nodes (see Figure 2.11).

From the semantic point of view it is another interactive component, so if the World

Lines node is created in the design view, a semantic window will be created and inte-

grated into the semantic view panel. The World Lines view provides, as explained in

the previous chapter, the functionality to create simulation runs, to manage them, and to

analyze the results.

This resulting system consisting of Visdom and World Lines allows for reproducing the

flood scenario case study of New Orleans which was the aftermath of hurricane Kat-

rina. The system can be used to investigate the scenarios in a virtual environment to

gain insight and to be able to test and evaluate breach-closure procedures. During the

development of Visdom a test scenario was established, where a village situated near a

river is protected by a levee. The system supports the user handling situations where

the levee breaches. The resulting flow diagram can be seen in Figure 2.11. First of all,

geometry is needed to fill the scenario with the terrain and the levee. Visdom provides

many nodes which are able to produce geometry, for example, the Model Loader Node

(second brown node in Figure 2.11) which loads a mesh from a file. This node can be

33



Figure 2.11: Simple Network (Design View). In the center is the Simulation Node

(blue). Geometry Nodes (brown) and Flood Protection Nodes (ocher) are connected as

inputs. The output of all nodes is sent to the View Node (red) for visualization. The

World Lines Node (white with yellow border) controls all other nodes via ropes.

used for the terrain if geological information is available from some source. For simple

or dummy objects the user can create the geometry using the Model Designer Node

(first brown node in Figure 2.11) and an interactive component. For integrating the SPH

simulation, a simulation module, namely the PhysX Node (blue node in Figure 2.11),

has to be added. The previously created geometry nodes have to be connected as input to

the simulation node to enable correct collision calculation. Afterwards, a view node, in

our case the OpenGL Node (red node in Figure 2.11), has to be provided to visualize the

scenario. All geometry nodes and the simulation node need to be connected to the view

node in order to affect the visualization. Now we have a scene, where a constant ge-

34



Figure 2.12: Simple Network (Semantic View): Shows the window layout created by

the flow diagram in Figure 2.11

ometry exists, consisting of a village and a levee with a breach. To test breach-closure

procedures, the ability to drop sandbags interactively must be provided. This can be

achieved by inserting the Bag Model Designer Node (ocher node in Figure 2.11) into

the data-flow network. The output geometry of this node has to be delivered to both the

simulation node and the OpenGL node. The simulation node needs the geometry for

collision calculation and the OpenGL node needs it for rendering. Finally, the World

Lines Node (white node with yellow border in Figure 2.11) is added to the data-flow

and a meta-flow is established to control the other nodes.

To work with the developed system, the user has to switch to the semantic view. Some

of the chosen nodes create semantic windows which are accessible there. The geometry

nodes and the simulation node do not create views, so settings have to be used if the user

wants to change their behavior. The OpenGL node creates a 3D monitor which displays

the visualization of all objects connected to the node. To navigate through the scene in

35



the 3D monitor, tools like pan, rotate and zoom are provided. The Bag Model Designer

Node creates an interactive component. It is a 2D view showing the horizontal projec-

tion of the entire scene. By clicking the user can position several sandbags which are

represented by simple rigid boxes to increase performance. The last important semantic

window is the World Line view, which is an interactive component responsible for the

steering functionality of the system. Figure 2.12 shows the semantic view correspond-

ing to the data-flow in Figure 2.11.

To test countermeasures for the levee-breach the user first has to simulate the flood-

ing scenario. As mentioned above, all semantic windows are linked together, so if the

user adds some bags by means of the Bag Model Designer view, both the 3D monitor

and the World Lines view get updated. The 3D monitor shows the created sandbags

rendered as boxes dropped into the scene. In the World Lines view, a new branch is

created at the current point in time indicating the decision made by the user. An im-

portant value for comparing countermeasures is the number of flooded buildings in the

village. This value can be visualized directly in the World Lines view. The user can also

use more than one frame to analyze the simulation. For example, the path, which spe-

cific objects would follow while floating in the fluid, can be analyzed and visualized by

combining the information of several frames [80]. Additionally, the user is able to com-

bine even multiple frames of multiple tracks to perform comparative visualization [78]

which enables concurrent visualization and comparison of alternative simulation runs

with different parameters.

Due to the flexibility and functionality of the system, many scenarios can be repro-

duced and analyzed in real-time to support decision making. For this reason, Visdom

is a powerful framework with several fields of application [92]. First of all, the system

can be used for offline planning of actions to mitigate the consequences of flooding, or

other actions which should be taken if a flood actually occurs. This means Visdom is

capable of creating the flood-risk management plans ordered by the EU [24]. Another

offline application is the training of on-site action forces which have to handle emer-

gency situations caused by floods. Due to the possibility to test alternative decisions

and analyze the outcome, action force members learn to cope with the problem and gain

more insight. Additionally, they are given a better understanding of the behavior of the

36



flood and the influences of decisions made. The third field of application is the use in

on-site operations during floods. Used on a mobile device, the system could support the

action-force team-leader in decision making. After loading geological and hydrological

data, previous knowledge can be used to try several approaches solving the problem and

analyze them to find the one which minimizes the damage in the vicinity.

Chapter Summary

Visdom is a powerful and comprehensive and nevertheless flexible and intuitive appli-

cation which combines simulation, visualization and analysis of computational fluid

dynamics. It can be used in offline and online situations to support the user in the

decision-making process. If the user is searching for a solution using the trial-and-error

approach, it is essential that the system allows for interaction in an intuitive and quick

way. Especially in time-critical cases of operation, during a flood or when imminent

danger is present, a sufficient solution must be found as soon as possible to save as

many lives as possible.

37





CHAPTER 3
Sketch-Based Interaction

For efficient and productive steering applications, user interaction is an essential part

of the workflow. Therefore, the selection of an appropriate interface has to be well-

considered. Most traditional steering applications offer input fields and buttons to the

user as a means of setting the parameters. Working in this way with complex scenarios

can be very cumbersome. Visdom provides inline widgets and the ability to modify

the values by means of two-dimensional linked views and interactive components. This

improves the usability significantly, but for some specific tasks the interaction could be

even more natural to increase working speed and efficiency at the same time. If the user

is currently working on a flood scenario and wants to test different barrier arrangements,

the individual sandbags have to be created in the Bag Model Designer. This interactive

component allows for the creation of only one bag at a time, making the creation of a

whole arrangement a tedious task.

The main contribution of this thesis is the augmentation of the Visdom application by

implementing a sketch-based user interface for specific tasks. This has been accom-

plished during an internship at the VRVis Zentrum für Virtual Reality und Visualisierung

Forschungs-GmbH in Vienna. The goal is to allow the user to create desired barriers

or to introduce forces by sketching into the 3D view directly. To realize this within

the data-flow based system, a new concept of modular interactors has to be introduced.

They make use of upstream communication between nodes. It is necessary to provide

39



visual feedback of how the user’s sketches affect the simulation. To visualize the stroke,

a spline is displayed in the 3D scene, which can be manipulated afterwards. The effect

of the spline, which depends on the further usage of the stroke, is visualized directly

inside the view. The feedback visualization should support the user by providing feed-

back faster, which is especially important in time-critical situations. The interface has

to be useful without additionally complicating the workflow.

3.1 Related Work

According to van Dam [89] the evolution of user interfaces can be subdivided into four

stages. During the first phase, there was no real user interface because in the early 1950s

the computers were controlled by punched-cards. For a single program many of these

cards were needed. The users had to prepare the cards as a preprocessing step and after

finishing, they stacked them into the card reader and ran the computation. The result

of the program was printed using a line-printer. Due to this type of processing, called

batch-mode processing, no real interaction was possible during the computation. In the

early 1960s the user was able to interact with the computer by typing in commands with

parameters for the first time. This type of interaction was also used years later by operat-

ing systems such as DOS and Unix. The third phase was the most important one because

it was the beginning of the graphical user interfaces which are used nowadays. Xerox

developed the first workstation using the so-called WIMP paradigm. WIMP stands for

window, icon, menus and pointing device, which are the components of the user inter-

face. Apple popularized this paradigm with the Macintosh which introduced the menu

bar and window management. The for the present last phase, which van Dam called the

post-WIMP stage, started in 1990. New user interfaces were developed which tried to

go further and use more natural paradigms like gesture and speech recognition.

At the time when WIMP was introduced, the focus was on the functionality and the

performance of the system and thus of the user interface. When the computer started

to be used in every household, the importance shifted to the usability. A user interface

had to be clear and easy to learn but also productive and efficient. However, WIMP

interfaces tend to become very complicated when the complexity of the application in-

creases. Users often have to pay more attention to the interface than to the task. Another

40



disadvantage of WIMP is that it is not suitable for interacting with objects in a 3D en-

vironment. The paradigm would map all 3D controls to traditional GUI widgets. The

user would have to press buttons, use sliders or input numerical values into textfields

to manipulate the object, which is accurate but not very intuitive. Furthermore, no in-

teractive feedback visualization is possible if several parameters have to be set before

the execution of the modification. Thus, the user has to execute the command again and

again until the desired result is produced.

A more advanced solution is to provide the ability to directly manipulate the 3D object.

For example widgets which are part of the 3D world could be used. These can allow

to modify the object in a specific way while guiding the user visually. An even more

intuitive way of communicating with the computer is to use sketching via freeform-user

interfaces [36]. Using WIMP interfaces, the parameters have to be set to exact values,

which is extremely cumbersome or even not suitable for many tasks. If an idea or re-

quest could be sketched directly, it would enable a quick and fluent interaction between

the user and the computer. This workflow is perfectly suited for problems where the

user has to explore different approaches quickly to find a sufficient solution. The user

should be able to concentrate completely on the task without being distracted by the

interface.

Sketch-based interfaces are a natural way of interacting with computers. Drawing

strokes is familiar to almost everyone and therefore a convenient and efficient way

to express requests. Sketch-based interfaces are easy to learn and to use due to their

intuitive nature [98]. According to van Dam [89], in history user interfaces were al-

ways optimized to the available hardware. Keeping this in mind, we expect that the

steady replacement of traditional mouse-keyboard interfaces by more natural devices

like touch-sensitive ones would lead to an increasing interest in sketch-based interfaces.

Devices which use touch inputs are on the market no less than ten years. The first ex-

ponents were pen-based tablet PCs which used stylus interaction to provide more direct

control [54]. In the last years, the market for multi-touch devices like smartphones and

tablets is booming. This devices use intuitive gestures like wiping to navigate through a

menu.

41



Figure 3.1: Pipeline of a sketch-based interface for modeling [72]

42



Olsen et al. [72] provide a comprehensive survey of sketch-based modeling, where they

also go into detail about the common architecture. All sketch-based approaches are

based on a pipeline which consists of three stages: sketch acquisition, sketch filtering

and sketch interpretation (see Figure 3.1).

Sketch Acquisition

At the beginning of every interaction, the system has to acquire the sketch from the

user. A sketch can be composed of one or many strokes, where every stroke is a set of

2D points. The mouse is a common device for the acquisition of user input, but multi-

touch screens are more suitable for freehand strokes because their usage is similar to

drawing or writing on paper. The distribution of the points along the stroke depends on

the speed of the user’s drawing. When the user draws quickly, fewer points are passed

to the system due to the regular sampling rate of the devices. The points are represented

mostly in window coordinates. In many cases, namely when the user wants to interact

with a 3D scene, this representation is not sufficient. The mapping of a 2D stroke into

the 3D world is not trivial but essential.

Sketch Filtering

The obtained points cannot be used directly for the interpretation because of their ir-

regularity. Furthermore, noisy or erroneous samples can exist, caused by the user or

the used device. Thus in the second stage, the strokes have to be filtered for further

use. This stage can contain more than one step necessary to clean and transform the

input. An often used filter method is to resample the stroke. This has the effect that

the spacing between the points becomes more regular and that the noise is decreased.

Igarashi et al. [39] removed undesired points by resampling the input to form a smooth

polyline, which is a coarse approximation of the original stroke. The raw input can

also be smoothed to get rid of the noise in the signal by applying a filter, for example

a Gaussian or a similar one [85]. Another possibility of simplifying the stroke is trying

to find an approximation of the original input in another representation. Curve fitting

is a common example, where the simplification is achieved by using a curve defined

by some control points which correspond to the original input. The appropriate rep-

resentation can be found using different curve-fitting algorithms like polynomial curve

43



fitting or least-squares polynomial fitting [49]. A better approach is to fit the points

to parametric curves like Rational Bezier curves [74] or B-splines [88]. For all these

approaches it holds, if the stroke has to be reconstructed, the user has to evaluate the

curve, which leads to a computational effort. Another possible preprocessing step is a

technique called beautification [38]. This approach tries to interpret and compose the

users strokes considering geometric constraints like symmetry, parallelism or linearity.

If the user draws a stroke and wants to modify it by sketching some parts anew, a tech-

nique called oversketching has to be implemented [26] [57]. This feature allows the

drawing of arbitrary free-hand strokes and preserves important sections which would

possibly get lost due to the fitting process. The method introduces a smooth transition

between the old and the new stroke section.

Sketch Interpretation

After acquiring and preprocessing the raw points, the next step is to interpret the in-

put. This step depends greatly on the task and can be complicated due to the potential

ambiguity of free-hand strokes. This holds especially for 2D strokes, which should be

interpreted as commands for a 3D scene. However, in all cases the system has to iden-

tify the stroke and run the action corresponding to its meaning.

In the past, sketch-based approaches were used for many different tasks. For example,

SILK [52] is an application which supports the user in creating user interfaces. The

main idea is based on using early sketches of ideas for an interface. Interface design-

ers are used to drawing some scribbles in order to discuss ideas during a brainstorming

session. SILK allows the designers to sketch a draft of an interface directly into the

system using a tablet and a stylus. This drawing is flexible and interactive, so the user

can modify it if necessary or illustrate behaviors. Finally, the draft can be transformed

semi-automatically into an operational interface. SILK uses 2D sketches which are in-

terpreted only as commands for a 2D world, as interfaces are usually planar. Schroeder

et al. [81] use a sketch-based interface to allow artists to draw into an illustrative visu-

alization of a 2D vector field. For example, they can add additional streamlines or crop

some if they disturb the overall impression of the visualization. Another widely spread

use for sketch-based interfaces is the modeling of three-dimensional objects. Tradition-

44



Figure 3.2: WIMP-based Interface in Autodesk Maya [41]

ally, a 3D modeling application like Autodesk Maya [41] has a WIMP based interface to

provide accuracy for high quality production. The artist creates objects by constructing

a mesh consisting of vertices which can only be modified by moving them individually.

The translation, rotation or scale values can be set by entering parameters into the input

fields of the interface (see Figure 3.2). This approach is very accurate and allows for the

use of scripting for advanced modeling. However, modifying a complex mesh solely in

this way is extremely cumbersome and the workflow is not easy to learn and to remem-

ber. Therefore, a new set of applications appeared, which use sketch-based interaction

for a more intuitive and efficient way of modeling objects. Autodesk Mudbox [42] is

an example of such a sculpting application, which tries to imitate the workflow of a

sculptor. The artist can paint details onto the surface directly in an intuitive and natural

way (see Figure 3.3). This kind of application is actually able to lift or lower some parts

of a mesh. Thus a mesh, or at least a basic shape of the object, must already exist.

A more complex approach is the creation of 3D objects from scratch using sketching

interaction. Instead of starting with a basic shape like a sphere or a cube, which is often

used for modeling, the user sketches the desired shapes which are then automatically

transformed into a three dimensional mesh by the system. Sketch-based modeling ap-

45



Figure 3.3: Sketch-based Interface in Autodesk Mudbox [42]

plications aim to increase productivity and efficiency through the use of more natural

and therefore faster user interaction. These systems can be used to create low-detail

models for rapid prototyping or design work [72]. For modifying the model, no ver-

tices have to be touched, the user just oversketches the previous shapes or uses special

strokes to trigger commands. Teddy [39] is an application which works this way, provid-

ing operations to create, augment, erase, extrude, smooth, transform and cut geometry

with simple strokes. When the user sketches a shape, the system inflates it automati-

cally to create the three dimensional object. Another famous sketch-based application

is SKETCH [100] which follows a different approach. This system tries to recognize

the strokes and interpret them as a command to create a predefined object. In this appli-

cation, just basic shapes are used, but other systems provide complete models which are

stored in a database [82]. Nealen et al. [67] present a method which enables the modi-

fication of an existing mesh by selecting an area from a specific viewpoint and drawing

a new silhouette for this part (see Figure 3.4). Another approach by the same author is

provided in the FiberMesh system [66]. After creating a simple and rough 3D model,

the user can refine the mesh by sketching curves directly onto the mesh. These curves

46



Figure 3.4: Modeling via Silhouette Sketching [67]

can then be used as control handles to modify the shape of the object. Olsen et al. [71]

describe a method where the mesh is refined at the positions where additional detail is

desired by the user indicated through a sketch. A completely different technique was

presented by Pihuit et al. [75] for the modeling of vascular systems. They do not use

an interactive process to create the model, but instead a finished drawing which is trans-

formed into a 3D model at once.

Although modeling is the biggest field for the use of sketch-based interfaces, they are

also used for other tasks. Davis et al. [21] present a technique which transforms 2D

sketches into an animation. The user has to draw a character in the desired key-frame

positions to enable the system to calculate the skeleton poses. The result should be re-

garded as a pre-version which has to be refined in another animation-software package.

Another wide field of research is the use of sketch-based interaction to give instructions

to the system which can be realized by gestural interfaces. The input stroke has to be

preprocessed to recognize the gesture, which then has to be translated into a command.

The application must have a database of existing templates enabling the comparison of

the current user gesture with the stored gestures in order to find a match which indicates

the desired operation. Using gestural interfaces to give instructions can be more intuitive

and natural than the traditional way of using menus and buttons. A simple example is the

navigation in today’s smartphones. With the gesture of wiping over the screen, the ac-

tion of moving the content is triggered, which is extremely straightforward. Teddy [39]

47



Figure 3.5: Representation of the Spline Node with output and meta-flow connectors.

provides some commands like cutting and erasing executed by a drawn stroke or sketch.

An application should give sufficient visual feedback showing what gesture was recog-

nized by the system and which action will be triggered on account of this.

Most traditional applications use 2D strokes, even if they are transformed into 3D com-

mands. Drawing a 3D stroke instead is even more complicated, because every two

dimensional point is a representative of infinitely many points in the three dimensional

world. The system has to find the appropriate stroke which was intended by the user.

Das et al. [20] consider that the 2D input curve is the projection of the 3D curve desired.

Thus they propose that the correct 3D stroke should be the back-projection with the

smallest curvature. Another approach of defining a stroke in a three dimensional world

was introduced by Igarashi et al. [37]. They use existing objects in the scene to project

the user input stroke onto their surface, which leads to an unambiguous definition of the

curve.

Sketch-based interfaces are an intuitive and fast way of capturing the user’s input and

commands which makes them suitable for experimental tasks. Using them increases the

productivity and supports the user in the decision-making process.

3.2 Modular Interactors

To implement the sketching ability in Visdom, some requirements have to be consid-

ered. The sketch-based interface should allow the user to interact with the simulation,

for example, by sketching a barrier directly in the 3D view monitor. As mentioned be-

fore, Visdom is based on the data-flow concept. Nodes are connected with each other

and if a node computes output, it passes it on to the next node. A traditional data-flow

48



network is set up once and should then perform a specific computation. This leads to the

fact, that data only flows downstream from source nodes to sink nodes. To implement

the sketching functionality, the user input has to be captured from the 3D view monitor

and used by another node in the system. The view node, as sink node, is situated at

the end of the data-flow network. The ability to interact with the view node, in order to

manipulate the settings of nodes which are further upstream, is required. An example

for such a node is the Spline Node (see Figure 3.5). The Spline Node is a node which

receives the user input points from the view node and processes them so they can be

used to control the simulation as desired by the user. As in the static data-flow graph the

3D view node is situated downstream of the Spline Node, there is no possibility to pass

information from the view node to the Spline Node via the traditional data-flow con-

nections. The meta-flow concept has been implemented in Visdom to allow upstream

communication [94]. Nodes which are further down the data-flow network are able to

update settings of other nodes. The concept enables sending the user input points, which

are essential for processing the interaction, from the 3D view node, where they are cap-

tured, to an arbitrary node. When a meta-flow rope is established between two nodes,

modular interactors, if available, are created automatically. Modular interactors extend

the interaction interface of view nodes by providing tools (see Figure 3.6).

A node can make one or more interactors available. The Spline Node provides one

interactor called the Spline Interactor. Other examples of interactors are the Camera

Interactor and the Selection Interactor which handle camera movement and selection

events respectively. An interactor always has a logical relationship to two nodes, which

in some cases might be the same node. The first node is the creator node which pro-

vides a specific functionality. The second node is the host node which wants to use this

functionality interactively. In our case the first one is the Spline Node and the second

one is the 3D view node. The Spline Node provides the functionality of manipulating

the simulation which can be triggered inside the 3D view node by using so-called tools.

An interactor can provide one or more tools to the host node. Tools are represented by

icons which can be used to activate a specific functionality of the interactor. The icons

are shown in the context of the host node (see Figure 3.7). For example, tools provided

by the Camera Interactor are the rotation tool or the move tool. The Spline Interactor

provides tools for creating and manipulating the spline.

49



Figure 3.6: Meta-flow connection effectuates creation of interactors (tools) in the 3D

monitor

Interactors are implemented on the client-side of the system but the implementation

of the nodes’ functionality is on the server-side to ensure high performance. This leads

to the fact that if the user wants to use a tool, the interactor has to send a method call to

the server in order to trigger the computation. Such a request is an XML file with all the

information necessary for the server to execute the procedures and to return the desired

result. To allow the interactor to communicate with the server we use the linking mech-

anism provided by Visdom. This mechanism uses the meta-flow between two data-flow

nodes to gain an additional communication channel where parameters can be sent and

50



Figure 3.7: Modular Tool Bar in Visdom. Tools are created automatically by interactors

when a meta-flow connection is established.

node relations can be defined. The connectors on the top and bottom side of the node

allow meta-flow connections between different nodes (see Figure 3.5). When a connec-

tion is established, a special linker node is created between the two nodes. With the

help of this node, the user can modify the properties of the link. On the meta-flow chan-

nel, the communication is not required to follow the traditional source to sink direction

of the data-flow. This means that information can be sent to nodes upstream. A node

can send its settings object or its so-called results object over the meta-flow. A result

is another set of parameters which can be generated by some nodes during execution.

The settings or results object is then pushed over the meta-flow to another node where

it affects its settings. The source of a meta-flow connection can be either a setting or a

result whereas the destination is always a setting. This leads to two different kinds of

linkings, settings-to-settings linkings and result-to-settings linkings.

51



The first type is used for shared settings and executes exclusively on the client-side.

If two nodes have a setting which corresponds, a settings-to-settings linking can be es-

tablished to connect the value of one setting to the value of the other one. If the user

changes one of the two settings the system automatically updates the other one. Another

example for the use of this linking type is adding additional parameters to some nodes,

like adding particle emitters to simulation nodes or light sources to view nodes.

The result-to-settings linking is used to synchronize the client. If a node needs to update

the settings of another node, the first one can use the linking to send a result object in

order to change the settings of the second node. Everytime a result is calculated by a

node and pushed over the result-to-settings linking connection, a run request is sent to

the server. This leads to a data-flow execution starting from the node whose settings

where changed.

Modular interactors use the communication channel of the result-to-settings linking.

This concept ensures that every change at the source is reflected immediately in the des-

tination which fits the task of interaction perfectly. Every interactor, or more precisely

every tool, has a different type of request which is sent to the server. Examples are the

rotate request or the pick request of the Camera Interactor. These contain all the infor-

mation the server needs to execute the correct methods. For different types of requests

the server produces different types of results, so the rotate request for example leads to

a camera change result.

The linking system is based on the publish-subscribe model [4]. Every node can specify

which settings or results it wants to publish. These objects are then categorized as pub-

lishables and are available to other nodes. In order to gain access to the setting or the

result, other nodes have to listen for changes of the publishables. This can be achieved

by a subscription to a specific entry. The desired publishables and subscriptions can be

defined in the linking settings of each node.

For the purpose of introducing a sketch-based interface into Visdom, the Spline Node

was implemented. The node is responsible for the processing of the user input to enable

the manipulation of the simulation. The Spline Node provides one interactor, called

52



Spline Interactor, which can be used in all semantic windows with the category mon-

itor3D, which corresponds to a 3D view node. When the view node activates the in-

teractor, it receives the ability to use the tools. The Spline Interactor provides tools for

sketching a spline and for manipulating an existing one. When the user clicks on the

3D monitor, the mouse event callbacks are triggered and a request to the server is sent.

The content of this request depends on the selected tool and on the actual event. For ex-

ample, with the sketch tool selected, the mouse down event signalizes the start whereas

the mouse up event signalizes the end of a stroke. As the mouse moves over the screen,

events are triggered which send requests to capture the current points. The linking set-

tings of the Spline Node are rather simple. The most important is the subscription for

getting the points which are published by the 3D view node. The mouse events always

provide the location of the mouse pointer in screen space, which is a 2D coordinate. To

use the points in a meaningful way, the Spline Node needs the 3D coordinates in world

space. This is the reason why the 2D points have to be preprocessed before they are

useful to the Spline Node. The subscription actually listens for these transformed points

and not the original 2D user input points. The transformation takes place in the 3D view

node and is handled by the Dragger classes which will be explained in detail in the next

chapter. It is important that the Spline Node receives the points transformed correctly

into world space coordinates.

Figure 3.8 illustrates the communication flow between the view node and the spline

node according to the client-server based architecture of Visdom (see Figure 3.8). The

lower half of the figure shows the Spline Node and the 3D view node on the client-

side. Above are the representatives of the nodes on the server-side which encapsulate

the functionality. The first step is an information request, which contains the 2D mouse

points, from the view node on the client to the server (1). This event is triggered af-

ter the user has clicked into the 3D scene with a spline tool activated. The server-side

implementation of the view node receives the 2D points from the client and transforms

them into points in world space. Thereafter, the view node sends the interaction infor-

mation to the server-side representative of the Spline Node (2). This data transfer is

an upstream communication and thus has to be realized using the meta-flow. The view

node publishes the transformed points as a result for the purpose of making them avail-

able to the Spline Node. The linking mechanism causes the modification of the result

53



Figure 3.8: Communication flow between server and client while sketching. (1) Infor-

mation request from client to server. (2) View Node sends interaction information to

the Spline Node via meta-flow ropes. (3) Synchronization of client settings with server

settings. (4) Data-flow execution. (5) The View Node sends the final image to the client.

to be reflected in the settings object of the destination node. The change of the settings

triggers a callback function of the Spline Node to handle the modification and update

itself. Next, the client settings need to be synchronized with the server settings. For this

reason, the server sends a result object with all the important settings information to the

client, which allows for the synchronization of the client-side Spline Node (3). On the

server, the Spline Node computes the new output according to the current settings. This

update leads to an execution of the data-flow (4). The Spline Node passes its output to

all connected nodes which have to be updated as well. The data flows down the network,

and after all affected nodes have computed their outputs it finally reaches the 3D view

node. According to the input data and its settings, the view node renders the final image

which is then transmitted to the client (5). The user receives a visual feedback of the

sketch after the 3D monitor is updated.

54



Modular Interactors allow for the implementation of an interactive feedback cycle in

the context of a data-flow based system. Interactivity is essential when handling user

inputs and is fundamental for a sketch-based interface. Using the linking mechanism of

Visdom, the Spline Interactor is able to ensure that the Spline Node receives all user-

input data immediately. The aim of the sketch-based interface is to allow the user to

manipulate the simulation via drawing strokes directly into the 3D monitor. As men-

tioned before, the user input points cannot be used directly to interpret the sketch. Thus,

the Spline Node has to prepare the data for later use, and provide sufficient visual feed-

back and manipulation options to the user.

3.3 Spline Creation and Manipulation

The most important factor of a sketch-based interface is the user input data. The system

has to be able to handle and interpret it correctly. Sketched user input is never noiseless.

Noise can be induced by the user himself or by devices used. An appropriate system

has to reduce the noise and create a clean stroke which corresponds to the intention of

the user. The system also has to provide visual feedback to the user in order to make

the effect of the sketch visible. Furthermore, it should be possible to manipulate exist-

ing strokes quickly and easily. Every component of the system has to be intuitive and

efficient to support the user in the solution-finding process.

The whole sketch-based user-interface functionality is split up among different nodes.

Figure 3.9 shows the sketching pipeline and the nodes responsible for each step.

The first task is the acquisition of the sketch. As mentioned before, the Spline Node

receives the transformed user input points from the 3D view node and saves them into a

list in the settings object. The computation of the new points takes place in a component

of the view node called the Dragger. This component is responsible for handling and

transforming the points which are created when the user moves the mouse pointer over

the screen. The task of finding a point in world space which corresponds to a point in

screen space is not trivial. A way to resolve the existing ambiguity is to project the 2D

point onto a defined plane or an existing plane in the scene. This approach is fast and

easy to implement, and suited perfectly to the Dragger. A precarious issue is the choice

55



Figure 3.9: Sketching pipeline with responsible nodes

of the plane. In order to define a plane two parameters have to be given. First, a point

which should lay on the plane and second, a vector which should be perpendicular to the

plane. The plane is defined using the first user input point and the scene’s up vector. As

a result, the plane is parallel to the floor of the scene. To calculate the 3D coordinate for

the first point the system uses the depth buffer information. Reading the buffer is a lot

slower than projecting a 2D point onto a plane but necessary for obtaining the first point.

The world space coordinates of all following points can then be calculated quickly us-

ing the screen-space position and camera information. With this implementation, the

points can only be dragged on the same height which can be problematic if the terrain

has many bumps or valleys. In our scenario the aim of the user is to build up barrier

arrangements of sandbags or mobile protection walls. These are often established on

flat regions because of stability reasons. Additionally, the sandbags are not positioned

directly but dropped by a virtual helicopter according to the real-world scenario in New

Orleans 2005 [15]. The sketch determines the desired dropping target positions. Using

this procedure, the barrier will adapt to the terrain automatically according to the phys-

ical simulation.

After the sketch acquisition, the Spline Node holds the points in world space coordi-

nates in its settings object, and can proceed with the next step, the sketch filtering. The

mouse event of the 3D monitor triggers every time when the mouse changes its posi-

tion. Therefore the system captures plenty of points and provides them all to the Spline

Node. There are too many to be used efficiently, and they also contain noise induced

56



Figure 3.10: Chaikin’s scheme (left) and reverse Chaikin scheme (right) [33]

by the user and the device. Furthermore, the points are distributed irregularly along the

stroke because their density depends on the drawing speed of the user. The filter should

create a smaller and better distributed set of points. It should remove the noise without

destroying the features which are intended by the user. To achieve this, the Spline Node

implements the functionality of translating the set of points to a curve represented by

control points. The advantage is that only a few control points are necessary to represent

a complex curve. With this parametric representation, the stroke can later be evaluated

on every arbitrary point as densely as desired.

To realize the required filtering, the reverse Chaikin algorithm presented by Hassan

et al. [33] is implemented by the Spline Node. This method is a reverse subdivision

algorithm which means that it calculates a coarse representation of a given curve. If the

Chaikin subdivision scheme is applied to the result, the original curve is reconstructed

almost perfectly. This approach is not as accurate as other curve fitting algorithms but

it is much faster which is an essential characteristic for our purpose.

Figure 3.10 shows Chaikin’s scheme on the left and the reverse Chaikin scheme on the

right. The large circles on the left side of the figure are points of an arbitrary polygon.

The set of small circles is the result of one subdivision step using the Chaikin scheme.

On the right side of the figure the small circles are the points of the original polygon

and the large circle is the result of one reverse subdivision step calculated with the help

of the two black circles. These two points are candidates for the result. The actual re-

57



sult is calculated by averaging the candidates, which introduces an error. If the original

polygon was created by the Chaikin scheme, the two points would be at the same po-

sition which reduces the error to zero. Cherlin et al. [16] filter the input stroke of their

sketch-based modeling system by fitting a B-Spline curve to the set of points using the

reverse Chaikin algorithm. This is possible because the method is based on a quadratic

B-Spline where the coarse representation of the original curve can be interpreted as the

control points of the B-Spline. Every time the reverse Chaikin subdivision is applied,

the number of points is decreased and the curve becomes smoother which reduces the

noise. But every application also increases the error value which represents the distance

to the original curve. It is important to find an acceptable number of iterations for suffi-

cient denoising without losing too much information about the original points. Cherlin

et al. point out that three subdivision passes are satisfactory for their purpose.

For one point of the coarse representation, the reverse Chaikin algorithm interpolates

four points of the original polyline. Following this idea, the information about the first

points is lost. The same problem can be observed at the end of the stroke. After ev-

ery iteration of the reverse Chaikin algorithm, the stroke loses some points at the start

and the end which leads to the effect that the curve shortens and changes its general

appearance. This problem is not relevant if the method is applied on a closed curve.

However, for a sketch-based interface where the strokes are usually not closed, this be-

havior is unacceptable. Especially for the purpose of sketching a barrier, where the first

and the last points of the user input are the most important ones. They determine where

the user wants the barrier to start and to end, and this information has to be preserved.

The Spline Node implements an adapted version of the reverse Chaikin algorithm to

preserve the first and the last point of the stroke by adding them to the resulting curve.

Due to this modification, it is no longer possible to obtain the original curve by applying

the traditional Chaikin scheme to the result of the reverse subdivision step. The Spline

Node provides the ability to change the number of filter iterations as desired. The user

can choose a specific filter level. The system converts the spline which was previously

calculated with an arbitrary filter level, to the spline, calculated with the new filter level.

If the user wants to move from a higher filter level to a lower one, the Chaikin algorithm

has to be applied. As mentioned before, the traditional scheme cannot be used if the

previous spline was calculated with the adapted reverse Chaikin method. A solution

58



Figure 3.11: Construction of one curve segment with the Catmull-Rom method [12]

is to use an adapted version of the Chaikin scheme which ignores the first and the last

point of the original polyline for the calculation. Another possibility is to always use

the reverse subdivision method on the original user input. Since the points are stored in

the settings object of the Spline Node, the filter process can use them as long as they are

available to achieve the desired filter level.

Due to the adaption of the reverse Chaikin subdivision scheme, the resulting curve no

longer has the characteristics of a B-Spline. Therefore, another representation for the

user input points has to be found. The idea is to combine a set of cubic Bézier curves

to construct a so-called piecewise Bézier curve [12]. This representation allows for

an easy handling of a long and complicated stroke without the complexity of a higher

degree curve. Every pair of filtered points is defined as the start and the end point of

a distinct degree-three Bézier curve. A Bézier curve of degree three has four control

points which determine its appearance. The first and the last point lie on the curve,

but the second and the third do not. If the set of filtered points has an odd number of

points, an additional point is added for the calculation. This definition ensures that the

curve is continuous and that it interpolates the filtered points. Thus, they all lie on the

final curve, which is important because they are used as the control points of the spline.

The user should have the ability to manipulate the spline by moving parts of it directly

instead of trying to alter the curve with control points lying in its vicinity.

59



Figure 3.12: Comparison of the Catmull-Rom (left) and the Bessel-Overhauser (right)

method for the interpolation of non-evenly spaced point sets [33].

There are several ways to define interpolating piecewise Bézier curves. A common ap-

proach is using Catmull-Rom splines which is described by Buss [12]. The result of

the Catmull-Rom method is a piecewise Bézier curve that interpolates all the points of

the original set except the first and the last point. For this reason, these two points have

to be duplicated in order to be taken into account. Figure 3.11 shows the construction

of one segment of the Catmull-Rom splines. The start and the end of each segment is

given by two successive points pi and pi+1 of the filtered set. To define a Bézier curve

of degree three, two additional control points p+i and p−i+1 are needed. These two can

be calculated by constructing the tangents for the start and end point. For point pi the

tangent is parallel to the line 2li which connects the previous (pi−1) and the next point

(pi+1) in the filtered set. The additional control points are defined as:

p+i = pi +
1

3
li (3.1)

and

p−i = pi − 1

3
li (3.2)

where

li =
1

2
(pi+1 − pi−1) (3.3)

60



Figure 3.13: Casteljau algorithm: evaluation of the curve point for the parametrization

value 0.33 [33]

The Catmull-Rom interpolation type is typically used for point sets which are already

more or less evenly spaced. If this is not the case, a bad overshoot can occur, especially

in situations where two close control points are next to widely separated ones. The

user-input data is not necessarily evenly spaced due to the varying drawing speed of

the user. Thus, the Catmull-Rom interpolation might cause problems in special cases.

The Spline Node implements an alternative, suggested by Buss [12], which is a gen-

eralization of the Catmull-Rom method. The so-called Bessel-Overhauser splines ap-

proach uses chord-length parameterization to modify the calculation of the additional

control points. In Figure 3.12, the comparison between the Catmull-Rom splines and

the Bessel-Overhauser splines is illustrated. The region around point p4 and p5 shows

the critical segment where the Catmull-Rom method induces an overshoot of the curve.

The Bessel-Overhauser method is fast and easy, making it unnecessary to store the ad-

ditional control points as they can be calculated in real-time.

For the construction of the whole stroke, all Bézier curves have to be evaluated at a

single sample rate. To realize this, the Spline Node implements the commonly used

de Casteljau’s method [12]. This method is much simpler and more stable than using

formulas of the Bézier curves. Figure 3.13 illustrates the evaluation of the curve.

After the filtering and with the ability to evaluate the curve on any point, the sketch

is ready for the interpretation step. How the system translates the spline to user com-

61



Figure 3.14: Unfiltered preview version (top) and filtered version (bottom) of the spline

mands for manipulating the simulation will be explained in the next chapter.

Another very important issue is the feedback visualization. For an interactive steering

system a sufficient feedback concept is essential. It is important that the user receives

information about decisions made and their effect on the system. The feedback visual-

ization should support the user to be faster in the decision making process, especially in

time-critical situations.

First of all the user’s stroke has to be visualized. In order to realize this, the Spline Node

constructs a tubular mesh around the calculated curve points. This mesh can be transmit-

ted to the 3D view node in order to be rendered into the scene. The user can modify the

appearance of the Spline by changing the settings object. It provides options to change

the color, the thickness or the mesh’s level of detail. The Spline Node implements an

optimization during the spline creation. When the user clicks on the 3D monitor and

starts to sketch, the spline is visualized using a preview version. For this visualization,

62



the sketch is not filtered. The Spline Node skips the reverse Chaikin step and calculates

the curve points and the mesh directly from the user input points. This is done to achieve

high performance during the sketching process and to provide instant feedback. When

the user releases the mouse button in order to finish his stroke, the Spline Node executes

the complete filtering process to obtain an optimized and smooth spline. Figure 3.14

shows the difference between the preview version and the final version of the spline.

Fine Tuning

For the final version, the Spline Node provides a mesh which represents the filtered

points in order to visualize them in the 3D monitor. An interactive sketch-based inter-

face is insufficient without the ability to change the stroke. The user should be able to

sketch an idea, to analyze the visual feedback and then to modify the stroke until the

desired configuration is reached. Therefore, the Spline Node provides the functionality

needed to manipulate the filtered points. As mentioned before, the filtered points are

defined as start and end points of Bézier splines. Since the whole sketch is composed

of multiple Bézier splines whose additional control points are calculated interactively,

manipulating the filtered points provides full control over the stroke. Thus the filtered

points can be interpreted as the control points of the user’s sketch.

The control points are visualized as 3D widgets directly on the spline. If the user clicks

on a control point, the change of color confirms the selection (see Figure 3.15). Addi-

tionally, the Spline Node provides a visual guide which is associated with the imple-

mented manipulation functionality. Moving a point in a 3D scene can sometimes be

tricky because of the three degrees of freedom. The user has to communicate in which

direction the point should be translated. To provide an easy and unambiguous way

of manipulating the control points, the Spline Node implements the concept of view-

dependent interaction. The basic idea of this approach is to constrain the degrees of

freedom depending on the view direction. If the user looks onto the spline from above,

the control points can only be manipulated along a plane which is spanned by the x and

y axes. This functionality is implemented by the component called 2D Dragger. When

the user moves the camera and views the spline from the side, the constraint changes

and the manipulation is only allowed in the z direction, which is the up direction of the

63



Figure 3.15: Standard control point visualization (top) and selected control point (bot-

tom)

scene. In this case, the 1D Dragger is responsible for computing the new positions. This

approach follows the idea that the user first changes the camera to achieve an appropri-

ate view before the control point is manipulated. It is unlikely that the user changes to

the top view if the point has to be translated in the z direction. It is more likely that

the camera is positioned according to the desired manipulation direction. Visual guides

are used to provide feedback which constraint is currently activated (see Figure 3.16).

The view-dependent manipulation approach provides a clean and intuitive interface for

modifying control points. It provides assistance for the task without complicating the

workflow additionally. The user does not have to change the manipulation direction

64



Figure 3.16: View Dependent Manipulation: horizontal (top) and vertical (bottom)

manipulation constraints and visual guides

65



manually which increases the productivity and allows for fast interaction.

Chapter Summary

The Spline Node provides comprehensive functionality to visualize and manipulate the

user-input sketch. For the visualization, a spline is displayed in the 3D scene, which

can be manipulated afterwards using the control points and a view-dependent approach.

The system supports a fast and intuitive interaction cycle by providing sufficient feed-

back and the ability to modify the stroke. This allows a fast decision making process for

emergency situations.

The next task is to use the stroke for influencing the simulation. This can be achieved by

sketching barriers or forces into the scene in order to change boundary conditions which

affect the SPH simulation. A mapping which translates the spline to commands modi-

fying the conditions has to be found. For this issue, visual feedback is again essential to

understand the effect of decisions made. The appropriate mapping and visualization is

discussed in the next chapter.

66



CHAPTER 4
Translation to Boundary Conditions

In sketch-based systems, one of the most challenging tasks is the interpretation of the

sketch, which is the last step of the pipeline. The user draws a stroke with the intention

to construct something, to modify an existing object, or to trigger a specific command.

The system should be able to assign a specific meaning to the stroke. It has to under-

stand the intent of the user and execute the appropriate operations to accomplish the

desired result.

Our sketch-based system is used within a simulation-steering application which has the

aim to analyze the impact of floods and similar catastrophies. For such applications, it

is necessary that the user is able to establish barrier arrangements and test their stability.

Furthermore, it should be possible to change the flow velocity and the flow direction.

This provides the ability to test different configurations in order to cope with the un-

predictability of the flood. To realize these two functionalities, the simulation settings

have to be modifiable. The user input, which is already represented as a spline, has

to be translated into a modification of the simulation’s boundary conditions. Finding

a mapping from the spline to commands which modify the conditions allows for the

implementation of a fast and intuitive way of changing simulation parameters.

In order to realize this, additional nodes are integrated into the present system. These

nodes implement the functionality needed to map the spline to desired parameters. The

67



first new node is responsible for defining barriers and is called Spline To Barrier Node.

The second one, called Spline To Force Node, allows for the direct manipulation of

the simulation to change flow parameters. Both types of nodes have to be connected

to the output connector of the Spline Node which provides the spline. To provide the

result of its computation to other nodes in the data-flow network, the Spline Node de-

fines different outputs. The geometry output is needed to offer the mesh data in order to

enable visualizing the spline in a 3D monitor. The other output connector supplies the

calculated control points of the spline. Since these points represent the whole spline and

contain all information needed to reconstruct it, they are everything that is needed by

nodes which have to use the spline for further calculations. Thus both nodes, the Spline

To Barrier Node and the Spline To Force Node, have an input connector which expects

the control points of the spline. The output computation of these two nodes is the topic

of the next two sections.

4.1 Barriers

The most important task during the analysis of countermeasures against the expansion

of a flood is testing different barrier arrangements. The user should be able to establish

barriers quickly in order to start analyzing and modifying them until the desired result

is achieved. The existing barrier-creation workflow is time-consuming. Barriers have to

be created in the Bag Model Designer Node which provides an additional 2D interactive

component in the semantic view of Visdom. By clicking onto this view, the user is able

to place single sandbags (see Figure 4.1). Thus creating a whole barrier arrangement

is extremely time-consuming. The sketch-based interface increases the productivity of

this process tremendously to provide support for decision makers in time-critical situa-

tions. The user should have the ability to draw barriers directly into the 3D scene and

modify them afterwards if desired.

The Spline To Barrier Node is introduced to integrate the sketch-based interface into

the barrier-creation pipeline. This node is responsible for translating the spline into a

barrier. The mapping between the spline and the barrier has to be transparent and clear

to the user to enable intuitive usage. Using the spline should feel like modifying the bar-

rier directly. It should be possible to manipulate the spline fast and efficiently without

68



Figure 4.1: Workflow of the existing sandbag arrangement tool. (1) An interactive

component is available to create the barriers which shows the scenario from the top.

(2) Via a context menu, triggered with a right mouse-button click, a single bag can be

created. (3) A sandbag icon is used to visualize the bag. (4-6) The barrier is established

by creating multiple bags using the context menu.

69



struggling with the mapping itself. The node should use the input spline to determine

the positions of multiple sandbags simultaneously. Furthermore, it has to arrange the

bags and visualize them as a preview in order to provide visual feedback. If the user is

unsatisfied with the result, the node should provide the ability to modify the barriers by

manipulating the spline.

First, the Spline To Barrier Node fetches the control points from the input connector.

In order to be able to determine the correct positions for the sandbags, the curve has to

be evaluated. Therefore, the additional control points of the Bézier curves are calculated

in real time. The method for the computation is the same as used in the Spline Node.

The main task of the Spline To Barrier Node is the placement of the sandbags. To

achieve real-time performance during the simulation, the sandbags are represented by

boxes. The size of the boxes can be modified by using the object-dimension parameters

in the settings of the Spline To Barrier Node. All sandbags have to lay on the spline

which represents the position of the barrier as desired by the user. In order to realize

this, the Spline To Barrier Node evaluates the spline, starting from the tail. After placing

a sandbag at this start position, the node evaluates the next point on the curve. This new

potential sandbag position cannot be used without considering the previous sandbag.

The node first has to calculate the distance between the new evaluated position and the

previous position. If this distance is not big enough for a new sandbag to be placed, the

current position is skipped and a new one has to be calculated. This procedure has to

be repeated until an appropriate position for placing the sandbag is found. The aim of

this procedure is to avoid the sandbags intersecting with each other which would lead

to undesired behavior during the dropping. The step size for evaluating the curve has

to be chosen carefully. A too large value can lead to undesired big gaps between the

boxes. Choosing a too small step size means that the evaluation has to be executed of-

ten, which can cause a decrease in performance. The distance calculation for placing

the sandbags depends on their arrangement. The Spline To Barrier Node provides the

ability to choose how the sandbags should be oriented in order to allow for the testing of

different strategies. Two different modi are available which are compared in Figure 4.2.

The top of the figure shows the first option, where the bags are aligned to the axes of the

global coordinate system. The calculation of the distances for this mode is simple be-

70



Figure 4.2: Alignment Modi: axis aligned (top) and spline aligned (bottom)

71



Figure 4.3: Deformed spline to indicate that the sandbags have to be stacked in order

to create higher barriers

cause it considers only the width of the boxes. In the other option, shown on the bottom,

the sandbags are oriented along the spline. To achieve this, the local x axes of the bags

are aligned with the draw direction of the user’s sketch. For this mode, the calculation

of the distances has to consider the diagonal length of the bags which can be calculated

at interactive rates.

A barrier is constructed by placing multiple sandbags on top of each other. Some ar-

eas need more bags than others, depending on different circumstances. The user has to

place the sandbags according to the behavior of the flood and the resources available.

The number of sandbags which should be stacked at a specific point can be determined

by changing the height of the spline. After the spline is drawn, it gets lifted by default to

obtain at least one layer of sandbags. Employing the control points, the user can modify

the height of the spline and stack the bags as desired (see Figure 4.3).

The sandbags are visualized as boxes in the 3D monitor to provide visual feedback. In

72



the application, the user does not place the boxes directly, but only determines the de-

sired target position. According to the real-world procedure, the sandbags are dropped

from a specific height by virtual helicopters. Therefore, the actual positions are de-

termined by the simulation system. Rendering the boxes with transparency is used to

indicate the preview mode (see Figure 4.3). After the simulation starts, the visualization

changes from preview to live mode, where the sandbags are dropped one after another

from the defined height. In this mode the boxes are rendered fully opaque.

The Spline To Barrier Node has two outputs. The first output provides a mesh which

represents the geometry of the barrier. This data can be used by view nodes in order to

visualize the preview of the arrangement as sketched by the user. Since this data is sent

directly to the view node and therefore is not affected by the simulation, it can only be

used as a preview.

The second output is responsible for making the barrier available to the simulation node.

Since Visdom is implemented in a highly modular manner, many different simulation

systems can be integrated. Therefore, an interface has to be defined which enables the

communication between the simulation node and other nodes. The Spline To Barrier

Node has to provide the information about the positions and the orientations of the bar-

rier’s components. The components, which in the standard case are boxes representing

sandbags, have to be lifted to the dropping height defined by the system. Furthermore,

the dimensions of the bags have to be supplied as well as the weight of each one in order

to perform collision detection and calculate physical reactions correctly.

The current simulation system of Visdom is implemented using PhysX [18]. The system

is responsible for simulating the fluid representing the flood. In order to create barriers

which are able to influence the water, physical representatives which serve as colliders,

called actors, have to be created. PhysX provides different types of objects which can

be used to represent actors. Most of them are simple geometrical objects like spheres,

which provide better performance. For our purpose, the box shape fits perfectly as a

representative of the sandbags. PhysX uses the actors to calculate the rigid body inter-

action between them and the fluid.

73



The physical simulation depends on the initial states and the boundary conditions of

all components. For creating the actors which should represent the sandbags, the initial

values have to be determined. These are the position, the mass and the forces acting

on the object. The Spline To Barrier Node is responsible for the calculation and the

supply of these values. The node computes the position and the orientation of each

sandbag and stores them as transformation matrices. A vector of such matrices can then

be transmitted to the simulation node and can be used to determine the initial values.

Compared to the preview mode, the boxes have to be lifted to the dropping height to be

simulated correctly. The Spline To Barrier Node also has to provide the dimensions of

the boxes and their weight. The only force which acts on the boxes right from the start

is the gravity. This value is provided by the simulation system itself and can be modified

using the settings object of the simulation node.

After establishing the initial state of the actors representing the barrier, the simulation

can be executed for every frame. The system calculates the new positions of the actors.

These values are supplied as matrices and can be accessed by other nodes in order to

visualize the result.

The 3D view node uses a renderable called clone renderer to render the boxes of the

barrier in real time. The principle of renderables will be explained in the next section.

The clone renderer takes a vector of matrices and a geometry mesh as input. Every

matrix defines the position and the orientation of one instance of the input geometry.

Instead of using the standard type of barriers which consists of sandbags the user can

choose to use other objects. This way, mobile protection walls can be built-up which

are another important countermeasure against floods (see Figure 4.4). The user can gen-

erate or load any geometry and send it to the input connection of the Spline To Barrier

Node. The node calculates the bounding box of the geometry and uses this mesh as the

collision object in the simulation.

Using the introduced workflow, the user can analyze the stability and efficiency of dif-

ferent barrier arrangements which can be helpful while testing alternative solutions. For

a comprehensive analysis, other influences have to be considered as well, for example,

74



Figure 4.4: Mobile Protection Walls in real-world (top) and created by the system

(bottom)

75



the behavior of the flood itself. The user should be able to change some properties of

the fluid in order to test different scenarios. How this is realized in our system is the

topic of the next section.

4.2 Forces

During floods, tremendous damage is caused due to the cumulative power which arises

when masses of water are set into motion. A high amount of turbulence inside the fluid

and a constantly changing environment lead to highly complex behavior. This is the rea-

son why it is almost impossible to predict the actual movement and the characteristics

of floods. When analyzing flooding scenarios by testing different barrier arrangements,

this fact has to be kept in mind. An established set of barriers might be stable for the

current situation but unstable for a later time step since the fluid can change quickly and

unexpectedly. For a feasible solution, the user has to test the barriers under different

circumstances. To support this, the system should provide the ability to change the pa-

rameters of the fluid interactively. Such parameters might be the flow velocity or the

direction. Until now, the only way to affect the fluid is by manipulating the emitters.

This method is insufficient for accomplishing a comprehensive analysis. A more intu-

itive and productive solution can be established when using the sketch-based interface.

The user should be able to sketch onto the fluid and change or influence its behavior

directly. Using this ability, the user can establish different scenarios where some param-

eters of the fluid could vary in order to test the established barrier arrangement. This

allows the user to cope with the uncertainty of the natural phenomena as well as apply-

ing upcoming changes of circumstances like additional rain.

To realize the desired functionality, the Spline To Force Node was implemented. It

uses the sketch-based interaction system and is responsible for translating the user-input

sketch to forces which enable interaction with the fluid by influencing the simulation.

The user input should be determined using the Spline Node. We provide two types

of manipulation forces which can be used to achieve the desired result. The first one

should manipulate the fluid in a natural way. This method influences the existing flow

by adding realistic forces. With this method, natural phenomena like wind can be sim-

ulated. The second type should manipulate the fluid directly by adding pseudo forces.

76



These are forces which actually do not exist but induce a constraint on specific regions

of the fluid. All forces have to be visualized to provide feedback. The user should have

the ability to see how and in which areas specific sketches will influence the simulation.

By manipulating the spline, the region where the forces have an effect on the fluid can

be modified.

Like every node which wants to benefit from the sketch-based system, the Spline To

Force Node has to fetch the control points provided by the Spline Node. The evaluation

of the spline, including the calculation of the additional control points for the Bézier

curves, is executed using the same functions as the Spline Node.

The main task of the Spline To Force Node is to create a force field around the spline.

This field creates forces that influence the fluid simulation in the vicinity in order to

realize the user’s intent. The node provides the ability to introduce forces which act in

two different ways. On the one hand, there are natural forces and on the other hand,

pseudo forces. The first type creates forces which are simply added to the currently

acting forces. This means the fluid is accelerated by a specific magnitude in the direc-

tion desired by the user. With this method, natural forces like wind or additional inflow

can be simulated. The second method is a combination of using acceleration forces and

additional forces to provide the ability to control the fluid directly. To achieve this, the

additional forces act as counterparts to existing forces to cancel them out. With the help

of these so-called control forces the user has the ability to modify the flow explicitly.

The forces created by the Spline To Force Node influence the fluid only within a spe-

cific distance to the spline. The user can determine this range of influence by changing

parameters within the settings object of the node.

The Spline To Force Node computes two different outputs. The first is used by sim-

ulation nodes in order to introduce the forces into the simulation system to influence the

current behavior of the fluid. The second output is responsible for providing information

which can be used by view nodes to visualize the forces created by the Spline To Force

Node. For a generic realization of this task, the concept of data domains and fields is

introduced. The basic idea is to split the information of the force fields into two different

parts. The first part contains only the spatial field information and is represented by a

77



Figure 4.5: Arrangement without (left) and with (right) overlapping boxes. Overlap-

ping ensures the correct application of forces.

data domain, whereas the second part stores the actual information of the forces within

a vector field. The advantage of this approach is the ability to use multiple vector or

scalar fields representing forces or other important values with the same data domain.

In order to establish additional forces within the current PhysX-based simulation sys-

tem, so-called force fields have to be set up [18]. These objects are internally represented

by simple geometric primitives. Forces act on elements which are inside the primitive.

This requirement leads to an approach which is similar to the creation of the barriers.

The Spline To Force Node creates boxes to represent force fields and arranges them

along the spline. To realize this, the node evaluates the spline at specified intervals and

checks if a new box can be created. Whether it can depends on the distance to the previ-

ous box. Unlike the boxes for the barriers, the boxes for force fields can overlap, which

is actually desired. Overlapping the force fields ensures that the whole area around the

spline is covered and that no gaps where the forces might not be applied exist (see Figure

4.5). In contrast to the barrier creation, only one orientation is available. The boxes are

positioned along the spline so that their local x axis is aligned to the drawing direction

of the spline. The region of influence can be modified by changing the size of the boxes

since they represent force fields and forces are only applied on objects which are inside.

78



As with the barriers, the position and orientation of the boxes are stored in transforma-

tion matrices which then are transferred to the simulation node for further use. The first

matrix in the vector is used as a helper to transmit additional information. It stores the

dimensions of the boxes and the magnitude of the force which should be applied.

In order to realize the desired feature a new method has to be implemented in the sim-

ulation node. It should fetch the matrices and establish the PhysX force fields. The

actual force which is applied within a field is determined by kernel functions. These

functions mainly consist of four parts. The first is a constant force which is directly

and additively applied to the existing one. In contrast, the second and the third part are

position- and velocity-dependent, respectively. The last part is used to introduce noise

if desired. For our purpose, only the velocity-dependent component is used. The basic

idea is that the user specifies a desired velocity which should be achieved in the region

of influence. The system then applies forces which are necessary to reach it. In order

to realize this, the kernel function provides the ability to define a target velocity and a

velocity multiplier. The target velocity is a vector which points towards the x axis of

the force field, since this is the drawing direction of the spline. During the simulation,

for every object, the difference between the current and the target velocity is calculated.

Then the multiplier is used to calculate forces which should decrease the deviation. The

multiplier is a vector which is multiplied with the difference between the target and the

current velocity in order to determine how strong the forces have to be added to the

objects.

The vector chosen for the multiplier determines the type of force which is applied in

the region of influence. If the user wants to simulate natural forces, only the x com-

ponent of the vector has to be set to a desired value, which can be interpreted as an

acceleration force. This leads to the result that the value of this component is simply

added to the existing force. To realize pseudo forces, and to enable the direct manip-

ulation of the fluid, additional control forces have to be added. These forces decrease

the velocity of the objects in all directions which are not the main direction of the target

velocity. This means that, while the previously mentioned acceleration force increases

the velocity in the x direction, the control forces decrease the velocities in the y and z

direction.

79



The force field established by the Spline To Force Node enables the interactive ma-

nipulation of the fluid. But the generated forces should not effect other objects in the

scene, like the barriers or the terrain geometry. PhysX provides a mechanism where the

magnitude of the force can be scaled according to the type of object which is inside the

force field. Using it properly, allows the field to act only on the particles of the fluid.

Feedback Visualization

Since force fields are invisible, the user has no visual feedback about the region of influ-

ence and other important properties. The aim of the system is to allow for experimenting

and testing different solutions by modifying the velocity of the fluid. The sketch-based

interface provides a fast way to do this but without appropriate feedback the user can

not preview and analyze the decisions made. To solve this problem, the Spline To Force

Node provides a data domain and a field in order to enable the visualization of the force

field which is transmitted to the simulation node. The data domain can be every spatial

structure, for example a set of particles or, like in the case of force fields, a grid. To

create the field which contains the actual information, the area around the spline has to

be sampled. After calculating the positions for the force field boxes, the Spline To Force

Node creates the Grid Domain. The origin and dimensions are chosen in a way that all

boxes are covered by the grid. To sample the area around the spline, the node iterates

through all grid cells and checks if the current position is inside one of the previously

calculated boxes. If it is not, the corresponding value in the vector field is set to zero.

Otherwise the Spline To Force Node calculates a vector which points in the direction of

the x axis of the box and has the length of the desired magnitude. If the grid cell position

is within a region where boxes overlap, the average of the boxes’ x axes is calculated

to determine the force direction. To avoid skipping a box, the sample rate has to be

small enough. This rate can be determined by choosing a specific voxel size during the

definition of the Grid Domain. After finishing, both the data domain and the field are

sent to the view node in order to be visualized.

The task of the view node is to visualize the vector field which is defined as a com-

bination of the data domain and the field containing the actual forces. In order to realize

80



this, methods of flow visualization can be used. An overview is provided by Weiskopf

and Erlebacher [95]. For our purpose, we use a point-based direct visualization where

visual representations for points are created. We choose to map the information to

glyphs shaped like arrows and render them in the 3D view in order to visualize the char-

acteristics of the force field. A so-called arrow plot is easy to understand and a clear and

simple, but effective, way to present vector fields.

To implement the feedback visualization of the force fields the view node was altered

to be able to cope with the data domain and vector field structure. The 3D view node

consists of multiple components called renderables. Each renderable is responsible for

the rendering of a specific type of object. For example, the clone renderer is able to

render multiple copies of the same triangle mesh which is used for the barriers. The

geometry renderer is the standard component and is responsible for rendering triangle

meshes in a quick and efficient way. We use it to visualize the spline itself. Another

important renderable is the particle point sprite renderer which ensures that the fluid is

rendered as a smooth surface.

In order to visualize the force field, a new renderable called glyph renderer was im-

plemented. It renders glyphs in desired intervals in order to create an arrow plot. Since

the user can choose to connect multiple data domains and fields to the view node, the

first task of the renderable is to fetch all the inputs and store them for further use. Then

the glyph renderer iterates through the inputs and samples the corresponding fields to

obtain the information needed to visualize the glyphs. For most data domains, Visdom

provides an appropriate sampler which implements the sampling algorithm needed. The

user can define the sampling rate and thus the density of the rendered arrow plot through

the settings object of the glyph renderer. The most important values for our purpose are

the direction and the magnitude of the force. The direction is mapped onto the ori-

entation of the arrow whereas the magnitude can be mapped onto multiple properties

of the glyph. The first option is to visualize the magnitude as the length of the arrow

(see Figure 4.6). The user can define a minimum and a maximum length to determine

the representation of the points with the smallest and the largest magnitude. Another

mapping onto a geometrical property implemented by the glyph renderer is the map-

ping onto the thickness of the arrows (see Figure 4.7). In this case, a minimum and

81



Figure 4.6: Magnitude visualization: The left side shows the default visualization of

the force field. The right side shows an arrow plot where the magnitude of the force is

visualized as the length of the arrows.

Figure 4.7: Magnitude visualization: default (left) and as thickness (right)

maximum value can also be defined by the user. The last mapping option is the visual-

ization of magnitudes using the color of the glyphs (see Figure 4.8). This method uses

a function to determine the color used for a specific magnitude. The user can employ

the Transfer Function Node which is already implemented in Visdom. This component

provides a transfer function which can be modified in an interactive component within

the semantic view (see Figure 4.9). Every input set can have its own Transfer Function

Node connected. No matter which option is used, if a point has a magnitude of zero,

no arrow is rendered in order to keep the visualization clear. Figure 4.10 shows the

combination of all visualization types.

82



Figure 4.8: Magnitude visualization: default (left) and as color (right). Red and orange

arrows indicate high magnitude whereas yellow and green arrows show regions with

lower magnitude.

The glyph renderer is also able to cope with a set of particles as a data domain. This

allows an arrow plot which shows flow properties of the fluid to be rendered (see Figure

4.11). To sample the particles a grid is used, where the origin and the dimensions are

chosen in such a way that all particles are inside. During the sampling process, the par-

ticle sampler calculates a so-called kernel sum. This value indicates how dense the fluid

at the sampling point is. If this value is under a specific threshold, no arrow is drawn.

Chapter Summary

The presented functionality of the Spline To Barrier Node allows the user to manipulate

the fluid representing the flood indirectly by establishing barriers. Combined with the

Spline Node, a sketch-based interface supports this task. Multiple arrangements can be

set up and analyzed due to the interactive feedback visualization and simulation. The

user can modify the barriers using the spline until a desired result is achieved. This in-

tuitive and fast workflow supports the user in emergency situations where human lives

are at stake.

The Spline To Force Node enables the user to manipulate the fluid directly by influ-

encing the velocity using force fields. The used sketch-based interaction scheme allows

for fast and intuitive control which increases the productivity of the workflow. The user

is able to test the previously arranged barriers under different flood conditions. With the

83



Figure 4.9: Magnitude as color visualization with two different transfer functions

support of the glyph renderer, interactive visual feedback is available which simplifies

the creation of the desired force fields.

84



Figure 4.10: Magnitude visualization as length, thickness and color

Figure 4.11: Flow visualization using an interactive arrow plot

85





CHAPTER 5
Case Study

Visdom is intended to support decision makers during the flood management process.

Due to changing conditions of the water ecosystem, land use, and population, flood-risk

management is a dynamic cyclic process [25]. This cycle consists of three main steps

which are of equal importance (see Figure 5.1). Measures are classified in preparedness,

response and recovery.

The main goal of the first step is to reduce the vulnerability of people and property to

natural hazards. Prevention measures try to avoid damage due to appropriate land-use

planning. In case where this is not possible, technical measures have to be established

in order to avert or minimize damage. They include protective structures such as levees,

embankments or protection walls. Preparation measures instead should help to over-

come the disaster. Important tasks are the development of flood-action plans as well

as the training of rescue units and action forces. Flood-action plans define measures to

mitigate damage during a flooding event.

The second step of the flood-risk management-cycle is the response to the actual disas-

ter. It aims to limit the duration and the extent of damage caused by the flood. Besides

alerting and rescuing victims, measures to prevent further damage are included. These

can be the establishment of sandbag barriers or the evacuation of people from insecure

areas. Barriers have to be constructed by the on-site action force in cases where the ex-

87



Figure 5.1: The flood risk management cycle [25]

isting flood-protection system fails. Furthermore, this step is responsible for provisional

repairs of vital infrastructure such as electricity-supply facilities.

The last step is the recovery phase. Reconstruction of damaged buildings and infras-

tructure, and the analysis of the disaster are the main issues.

The sketch-based interface implemented within Visdom can be utilized to support sev-

eral measures of the flood-risk management-cycle. During the preparedness phase, it

can be used to design the protective structures such as protection walls. The user can

sketch ideas of wall arrangements and test them under different circumstances in an

efficient and intuitive manner. Furthermore, the sketch-based system supports the de-

velopment of flood-action plans. After a complete protection system is established, the

temporal coordination of all measures can be developed and tested. Additionally, the

sketch-based system can be used to train the action force team.

88



Figure 5.2: Overview of the scenario. Several Buildings and a nearby river.

The phase which benefits most from an intuitive user interface is the response. In emer-

gency situations, fast decision-making is essential. When action forces arrive on site,

quick acting is needed to minimize the damage in the vicinity. Weak points have to be

found and eliminated by establishing sandbag barriers immediately.

The following case study demonstrates a typical workflow during flooding scenarios. It

shows how the sketch-based interface supports the user to increase productivity.

The scenario setup consists of several buildings and a nearby river (see Figure 5.2).

There exists a building with higher priority such as a hospital.

We assume that severe weather conditions have lead to a raise of the water line. After

loading geological and hydrological data, the on-site action-force team-leader can sim-

ulate the scenario. Without any flood protection measures the village is flooded (see

Figure 5.3).

In order to protect the neighborhood mobile protection walls are established. According

89



Figure 5.3: The neighborhood is flooded when the water line raises due to the lack of

protection structures.

Figure 5.4: Mobile protection wall sketched into the 3D scene. The height of the wall

components can be determined using the control points.

90



Figure 5.5: Overview of the scenario including a protection wall

Figure 5.6: The simulation shows that the wall protects the neighborhood sufficiently.

91



Figure 5.7: The system allows to create breaches to simulate different situations.

to developed flood-action plans, the team leader sketches the walls into the 3D scene

see Figure 5.4). Figure 5.5 shows the scenario with the sketched protection wall. The

interaction leads to a branch in the world-lines view. Simulating the new scene shows

that the buildings are save due to the protection wall (see Figure 5.6).

In order to carry out catastrophe planning, the action-force team-leader investigates

wall-breach scenarios. The system provides the ability to create breaches at any po-

sition (see Figure 5.7). The introduction of the breach results in the flooding of the

neighborhood (see Figure 5.8). The target of the on-site action force is to establish

a stable barrier arrangement which protects the important buildings. The protection

should hold even if the impact of the flood waves increases.

Relying on previous knowledge and experience, the action-force team-leader tries dif-

ferent barrier arrangements by sketching them into the 3D view (see Figure 5.9). The

sketch-based interface allows for a quick investigation of multiple alternatives. The

user explores the options until a stable solution is found which protects the high priority

92



Figure 5.8: Three screenshots of three different time-steps during the simulation of

the breach scenario. Due to the destroyed mobile wall component the neighborhood

is flooded. Red indicates highly flooded buildings. Orange and yellow buildings are

submerged partly whereas green buildings are currently secure.

93



Figure 5.9: Sandbag barriers can be directly sketched into the 3D scene using the

sketch-based interface.

building sufficiently (see Figure 5.10).

Due to the time-critical situation, the action-force team-leader cannot simulate for a long

time in order to test if the solution remains stable. Using the presented sketch-based in-

teraction system, the user can add forces to check the performance of the barrier under

severe conditions (see Figure 5.11). The ability to control the water-flow by sketching

forces allows for proving whether the found solution remains stable even if the pressure

of the river increases. Figures 5.12 and 5.13 show that the barrier holds for both forces

tested.

Using the flow-visualization functionality of the presented system provides further in-

formation about the internal behavior of the water. This knowledge can be used to

support the solution-development process.

This case study demonstrates the fast and intuitive characteristics of the sketch-based

94



Figure 5.10: Simulating the scenario with the barrier shows that the arrangement pro-

tects the hospital sufficiently.

95



Figure 5.11: Several forces can be sketched into the 3D view in order to test the barrier

under different circumstances.

interface. It allows for a productive and efficient work-flow in time-critical situations.

The action force can respond quickly to unexpected or anticipated events. They are able

to test different solutions in order to find appropriate countermeasures to avoid further

damage.

96



Figure 5.12: Simulating additional forces shows that the barrier holds.

Figure 5.13: Further forces can be sketched to confirm the stability of the arrangement.

97





CHAPTER 6
Conclusion

The contribution of this thesis is the integration of a sketch-based interaction interface

into Visdom which allows for interactive fluid simulation steering. Floods are everlast-

ing and unpredictable hazards with tremendous consequences. In emergency situations,

a fast decision-making process is essential in order to protect people living in the vicin-

ity and their property. Visdom is an integrated simulation and visualization application

which in combination with the introduced sketch-based interface, forms a feasible sys-

tem for this task. It also supports the creation of flood-risk plans and strategies as

ordered by the European Union and the training of emergency-task forces.

To integrate the interface into a data-flow based system the concept of Modular In-

teractors is introduced which enables arbitrary node interaction through view modules.

Every component of the sketch-based interaction system was implemented in a generic

way to ensure reusability. Interactors can be used in combination with any new or ex-

isting node if inter-module interaction is needed.

For the purpose of implementing the sketch-based interface, the Spline Node was de-

signed which uses the modular interactors concept to communicate with the 3D view

node. It encapsulates the functionality of creating a spline using points which are cap-

tured from the user input. Furthermore, the ability to modify the spline by means of

control points is provided. To increase the usability, the concept of view-dependent ma-

99



nipulation was introduced, which constrains the degrees of freedom depending on how

the user looks onto the spline. Due to the generic realization of the implementation, the

functionality can be used for any other task where a spline is needed.

In order to interpret the sketch to enable the manipulation of the simulation, two ad-

ditional nodes were introduced. The Spline To Barrier Node is responsible for creating

barriers according to the sketched spline. Arbitrary geometry can be used to represent

the components of the barriers. This new node provides the ability to sketch sandbag

arrangements or mobile protection walls directly into the 3D view. This leads to an in-

crease of productivity in comparison to the alternative way of positioning sandbags one

by one.

The spline can also be interpreted as a command to manipulate the fluid directly. The

Spline To Force Node allows the user to influence the simulation by adding forces. The

user can choose between applying a natural force like wind or a pseudo force to control

the fluid explicitly. The spatial information of the generated force field is separated from

the actual information about the force. This is the precondition for a generic use of the

data domain with an arbitrary vector field containing the necessary values for simulation

or visualization.

In every aspect of the presented techniques, a feedback visualization is provided. The

user obtains feedback on the commands triggered and on how they will affect the sim-

ulation. The user’s sketch is visualized by a tubular geometry which can be modified

via control points. Barrier arrangements can be previewed as transparent objects and

adjusted if necessary. To provide visual feedback for the direct fluid manipulation, the

force field is visualized. A new render component was introduced to allow for the vi-

sualization of glyphs. The Glyph Renderer gets a data domain of any type and a vector

field as input parameters and generates an arrow plot in order to visualize the force field

influencing the simulation or the flow of the fluid.

The intuitive sketch-based interface in combination with the interactive feedback visu-

alization supports a fast and productive work-flow. It allows for short interaction cycles

and simplifies the modification of simulation states and the analysis of the effects. All

100



this features are supportive during experimenting tasks. Thus, testing alternative flood

scenarios can be done in a more efficient way.

The next step would be to use sketching in order to cope with uncertainty. The user

should be able to define several simulation runs at once to perform a comprehensive pa-

rameter study. The sketch-based interface can be used to ease the setup and the control

of these studies. By sketching the start and end values of an input parameter, a range

of simulation runs can be launched via interpolation. The system has to provide a suf-

ficient feedback visualization in order to support the user during the establishment of

the parameter studies. Another task for future work would be visualizing robustness of

sketched protection walls or barriers. This feedback would support the user during the

analysis of flood scenarios.

101





Bibliography

[1] Visdom - An integrated visualization System. http://www.visdom.at,

(last visited on 30 October 2011), 2011.

[2] T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. Particle-Based

Fluid Simulation on GPU. ACM Workshop on General-Purpose Computing on

Graphics Processors and SIGGRAPH 2004 Poster Session, 2004.

[3] C. F. Andersen and American Society of Civil Engineers. Hurricane Katrina Ex-

ternal Review Panel. The New Orleans hurricane protection system: what went

wrong and why : a report. ASCE, 2007.

[4] R. Baldoni, M. Contenti, and A. Virgillito. The evolution of publish/subscribe

communication systems. In Future directions in distributed computing, pages

137–141. Springer-Verlag, Berlin, Heidelberg, 2003.

[5] R. Beatson and L. Greengard. A short course on fast multipole methods. In

Wavelets, Multilevel Methods and Elliptic PDEs, pages 1–37. Oxford University

Press, 1997.

[6] L. Begnudelli, B. F. Sanders, and S. F. Bradford. Adaptive Godunov-Based

Model for Flood Simulation. Journal of Hydraulic Engineering, 134(6), 2008.

[7] G. Blöschl, C. Reszler, and J. Komma. A spatially distributed flash flood fore-

casting model. Environ. Model. Softw., 23:464–478, April 2008.

[8] R. Bridson. Fluid Simulation for Computer Graphics. CRC Press, September

2008.

103



[9] K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay. GRAS-

PARC: a problem solving environment integrating computation and visualization.

In Proceedings of the 4th conference on Visualization ’93, VIS ’93, pages 102–

109, Washington, DC, USA, 1993. IEEE Computer Society.

[10] J. M. Brooke, P. V. Coveney, J. Harting, S. Jha, S. M. Pickles, R. L. Pinning, and

A. R. Porter. Computational Steering in RealityGrid. In Proceedings of the UK

e-Science All Hands Meeting, pages 885–888, 2003.

[11] G. W. Brunner and V. R. Bonner. HEC River Analysis System. Technical Paper

TP-147, US Army Corps of Engineers, Institute for Water Resources, Hydrologic

Engineering Center (HEC), 609 Second Street, Davis, CA 95616-4687, August

1994.

[12] S. R. Buss. 3D Computer Graphics: A Mathematical Introduction with OpenGL.

Cambridge University Press, New York, NY, USA, 2003.

[13] G. Cameron. Modular visualization environments: past, present, and future. SIG-

GRAPH Comput. Graph., 29:3–4, May 1995.

[14] P. Chatelain, M. Bergdorf, and P. Koumoutsakos. Large Scale, Multiresolution

Flow Simulations Using Remeshed Particle Methods. In M. Griebel and M. A.

Schweitzer, editors, Meshfree Methods for Partial Differential Equations IV, vol-

ume 65 of Lecture Notes in Computational Science and Engineering, pages 35–

46. Springer Berlin Heidelberg, 2008.

[15] M. H. Chaudhry, M. Elkholy, and C. Riahi-Nezhad. Investigations on Levee

Breach Closure Procedures. Technical report, University of South Carolina, De-

partment of Civil and Environmental Engineering, November 2010.

[16] J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling

with few strokes. In Proceedings of the 21st spring conference on Computer

graphics, SCCG ’05, pages 137–145, New York, NY, USA, 2005. ACM.

[17] NVidia Corporation. CUDA: Parallel computing architecture. http://www.

nvidia.com/object/cuda_home_new.html, (last visited on 30 Octo-

ber 2011), 2011.

104



[18] NVidia Corporation. Physx: Physics simulation toolkit. http://www.

nvidia.de/object/physx_new_de.html, (last visited on 30 October

2011), 2011.

[19] R. A. Dalrymple and A. Herault. Levee breaching with GPU-SPHysics code. In

Proceedings of the 4th SPHERIC International Workshop, pages 352–355, 2009.

[20] K. Das, P. Diaz-Gutierrez, and M. Gopi. Sketching Free-form Surfaces Using

Network of Curves. In Proceedings of the Eurographics Workshop on Sketch-

Based Interfaces and Modeling, pages 127–134, Dublin, Ireland, 2005. Euro-

graphics Association.

[21] J. Davis, M. Agrawala, E. Chuang, Z. Popović, and D. Salesin. A sketching

interface for articulated figure animation. In Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, SCA ’03, pages 320–

328, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[22] J. F. Dhondia and G. S. Stelling. Application of one dimensional - two dimen-

sional integrated hydraulic model for flood simulation and damage assessment.

In Hydroinformatics 2002: Proceedings of the Fifth International Conference on

Hydroinformatics. IWA, July 2002.

[23] H. Doleisch. Visual Analysis of Complex Simulation Data using Multiple Het-

erogenous Views. PhD thesis, Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna,

Austria, October 2004.

[24] EU. Directive 2007/60/EC of the European Parliament and of the Council of 23

October 2007 on the assessment and management of flood risks. Official Journal

of the European Union L288/27, 2007.

[25] United Nations Economic Commission For Europe. Transboundary Flood Risk

Management: Experiences from the UNECE Region. United Nations Publica-

tions, 2009.

[26] T. Fleisch, F. Rechel, P. Santos, and A. Stork. Constraint Stroke-Based Overs-

ketching for 3D Curves. In Proceedings of the Eurographics Workshop on Sketch-

105



Based Interfaces and Modeling, pages 161–165, Grenoble, France, 2004. Euro-

graphics Association.

[27] Centre for Research on the Epidemiology of Disasters (CRED). 2010

disasters in numbers. http://cred.be/sites/default/files/

PressConference2010.pdf, (last visited on 30 October 2011), 2011.

[28] J. N. Ghazali and A. Kamsin. A real time simulation of flood hazard. In Com-

puter Graphics, Imaging and Visualisation, 2008. CGIV ’08. Fifth International

Conference on, pages 393 –397, aug. 2008.

[29] M. Gouda, K. Karner, and R. Tatschl. Dam Flooding Simulation Using Advanced

CFD Methods. In WCCM V, Fifth World Congress on Computational Mechanics,

July 2002.

[30] U. Grünwald. Vielzahl von Hochwasser im Jahr 2010 an Oder, Neiße, Spree und

Schwarzer Elster - eine Herausforderung nicht nur für die wasserwirtschaftliche

Praxis. In Hydrologie & Wasserwirtschaft - von der Theorie zur Praxis, num-

ber 30.11, pages 21–28. Fachgemeinschaft Hydrologische Wissenschaften in der

DWA, March 2011.

[31] R. B. Haber and D. A. McNabb. Visualization idioms: A conceptual model for

scientific visualization systems. Visualization in Scientific Computing, pages 74–

93, 1990.

[32] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydrodynamics

on GPUs. In Proceedings of Computer Graphics International, pages 63–70,

2007.

[33] M. Hassan and N. A. Dodgson. Reverse subdivision. In N. A. Dodgson, M. S.

Floater, M. A. Sabin, G. Farin, H. C. Hege, D. Hoffman, C. R. Johnson, and

K. Polthier, editors, Advances in Multiresolution for Geometric Modelling, Math-

ematics and Visualization, pages 271–283. Springer Berlin Heidelberg, 2005.

[34] A. Herault, G. Bilotta, R. A. Dalrymple, E. Rustico, and C. Del Ne-

gro. GPUSPH (Version 1.0) [Software]. http://www.ce.jhu.edu/

dalrymple/GPUSPH, (last visited on 30 Octoer 2011),2010.

106



[35] R. C. Hoetzlein. FLUIDS v.2 - A Fast, Open Source, Fluid Simulator. http:

//www.rchoetzlein.com/eng/graphics/fluids.htm, (last visited

on 30 October 2011), 2011.

[36] T. Igarashi. Freeform user interfaces for graphical computing. In Proceedings of

the 3rd international conference on Smart graphics, SG’03, pages 39–48, Berlin,

Heidelberg, 2003. Springer-Verlag.

[37] T. Igarashi, R. Kadobayashi, K. Mase, and H. Tanaka. Path drawing for 3d walk-

through. In Proceedings of the 11th annual ACM symposium on User interface

software and technology, UIST ’98, pages 173–174, New York, NY, USA, 1998.

ACM.

[38] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive beautifica-

tion: a technique for rapid geometric design. In Proceedings of the 10th annual

ACM symposium on User interface software and technology, UIST ’97, pages

105–114, New York, NY, USA, 1997. ACM.

[39] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: a sketching interface for 3D

freeform design. In SIGGRAPH ’99: Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, pages 409–416, New York,

NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[40] Advanced Visual Systems Inc. Avs - advanced visual systems. http://www.

avs.com/, (last visited on 30 October 2011), 2011.

[41] Autodesk Inc. Maya: 3D Modeling Application. http://usa.autodesk.

com/maya/, (last visited on 30 October 2011), 2011.

[42] Autodesk Inc. Mudbox: 3D Sculpting and Painting Application. http://usa.

autodesk.com/maya/, (last visited on 30 October 2011), 2011.

[43] Adobe Systems Incorporated. Flex: An open source framework for developing

web applications. http://www.adobe.com/de/products/flex/, (last

visited on 30 October 2011), 2011.

107



[44] IPCC. 2007: Summary for Policymakers. In Climate Change 2007: Impacts,

Adaptation and Vulnerability. Contribution of Working Group II to the Fourth

Assessment Report of the Intergovernmental Panel on Climate Change, pages

7–22. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E.

Hanson, Eds., Cambridge University Press, UK, 2007.

[45] S. F. Judice, B. B. S. Coutinho, and G. A. Giraldi. Lattice methods for fluid

animation in games. Comput. Entertain., 7:56:1–56:29, January 2010.

[46] J. Kehrer, P. Filzmoser, and H. Hauser. Brushing Moments in Interactive Visual

Analysis. Computer Graphics Forum, 29(3):813–822, June 2010.

[47] P. Kipfer and R. Westermann. Realistic and interactive simulation of rivers. In

Proceedings of Graphics Interface 2006, GI ’06, pages 41–48, Toronto, Ont.,

Canada, 2006. Canadian Information Processing Society.

[48] R. D. Knabb, J. R. Rhome, and D. P. Brown. Tropical Cyclone Report: Hurricane

Katrina: 23-30 August 2005. National Hurricane Center, August 2006.

[49] H. Koenig. Modern computational methods. London: Taylor & Francis, 1998.

[50] O. Kreylos, A. M. Tesdall, B. Hamann, J. K. Hunter, and K. I. Joy. Interactive vi-

sualization and steering of CFD simulations. In Proceedings of the symposium on

Data Visualisation 2002, VISSYM ’02, pages 25–34, Aire-la-Ville, Switzerland,

Switzerland, 2002. Eurographics Association.

[51] R. Lamb, A. Crossley, and S. Waller. Flood Risk Management: Research and

Practice, chapter 12. Fast 2D floodplain modeling using computer game technol-

ogy. CRC Press, 2009.

[52] J. A. Landay. Silk: sketching interfaces like krazy. In Conference companion on

Human factors in computing systems: common ground, CHI ’96, pages 398–399,

New York, NY, USA, 1996. ACM.

[53] Q. Liang, A. G. L. Borthwick, and G. Stelling. Simulation of dam- and dyke-

break hydrodynamics on dynamically adaptive quadtree grids. International

Journal for Numerical Methods in Fluids, 46:127–162, September 2004.

108



[54] S. MacLean, D. Tausky, G. Labahn, E. Lank, and M. Marzouk. Is the ipad useful

for sketch input?: a comparison with the tablet pc. In Proceedings of the Eighth

Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM ’11,

pages 7–14, New York, NY, USA, 2011. ACM.

[55] R. Marshall, J. Kempf, S. Dyer, and C. C. Yen. Visualization methods and sim-

ulation steering for a 3d turbulence model of lake erie. SIGGRAPH Comput.

Graph., 24:89–97, February 1990.

[56] K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser. Interactive Visual Steer-

ing - Rapid Visual Prototyping of a Common Rail Injection System. Visualiza-

tion and Computer Graphics, IEEE Transactions on, 14(6):1699 –1706, nov.-dec.

2008.

[57] P. Michalik, D. H. Kim, and B. D. Bruderlin. Sketch- and constraint-based design

of B-spline surfaces. In Proceedings of the seventh ACM symposium on Solid

modeling and applications, SMA ’02, pages 297–304, New York, NY, USA,

2002. ACM.

[58] E. Mignot, A. Paquier, and S. Haider. Modeling floods in a dense urban area using

2d shallow water equations. Journal of Hydrology, 327(1-2):186–199, 2006.

[59] M. Miller, C. D. Hansen, S. G. Parker, and C. R. Johnson. Simulation steering

with scirun in a distributed environment. In High Performance Distributed Com-

puting, 1998. Proceedings. The Seventh International Symposium on, pages 364

–365, jul 1998.

[60] A. Modi, N. Sezer-Uzol, L. N. Long, and P. E. Plassmann. Scalable Compu-

tational Steering System for Visualization of Large-Scale CFD Simulations. In

32nd AIAA Fluid Dynamics Conference and Exhibit, pages 24–27, 2002.

[61] J. J. Monaghan and R. A. Gingold. Smoothed particle hydrodynamics - The-

ory and application to non-spherical stars. Royal Astronomical Society, Monthly

Notices, 181:375–389, Nov 1977.

[62] J. D. Mulder, J. van Wijk, and R. Van Liere. A survey of computational steering

environments. Future Generation Computer Systems, 13, 1998.

109



[63] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simulation for inter-

active applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation, SCA ’03, pages 154–159, Aire-la-Ville,

Switzerland, Switzerland, 2003. Eurographics Association.

[64] Numerical Algorithms Group (NAG). IRIS Explorer: A visual programming

environment to develop, prototype and build visualization applications. http:

//www.nag.co.uk/welcome_iec.asp, (last visited on 30 October 2011),

2011.

[65] United States Navy. Army national guard ch-47 chinook helicopter drops 15,000-

pound bags of sand. http://www.navy.mil/view_single.asp?id=

27953, (last visited on 31 October 2011), 2011.

[66] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: designing freeform

surfaces with 3d curves. ACM Trans. Graph., 26:41–49, July 2007.

[67] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A sketch-based interface for

detail-preserving mesh editing. ACM Trans. Graph., 24:1142–1147, July 2005.

[68] MSNBC.com news service. Efforts to revive New Orleans

get back in gear. http://www.msnbc.msn.com/id/

9438536/ns/us_news-katrina_the_long_road_back/t/

efforts-revive-new-orleans-get-back-gear/, (last visited

on 31 October 2011), 2011.

[69] J.J. Nicolas, K.E. Gubbins, W.B. Streett, and D.J. Tildesley. Equation of state for

the Lennard-Jones fluid. Molecular Physics, 37(5):1429–1454, 1979.

[70] L. Nyland, M. Harris, and J. Prins. GPU Gems 3, chapter Chapter 31. Fast N-

Body Simulation with CUDA. Addison-Wesley, 2008.

[71] L. Olsen, F. F. Samavati, M. C. Sousa, and J. Jorge. Sketch-based mesh augmen-

tation. In Proceedings of the Eurographics Workshop on Sketch-Based Interfaces

and Modeling, pages 43–52, Dublin, Ireland, 2005. Eurographics Association.

[72] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based modeling:

A survey. Computers & Graphics, 33(1):85–103, February 2009.

110



[73] S. G. Parker and C. R. Johnson. SCIRun: A Scientific Programming Environ-

ment for Computational Steering. In Supercomputing, 1995. Proceedings of the

IEEE/ACM SC95 Conference, page 52, 1995.

[74] L. Piegl. Interactive Data Interpolation by Rational Bezier Curves. IEEE Comput.

Graph. Appl., 7:45–58, April 1987.

[75] A. Pihuit, M. P. Cani, and O. Palombi. Sketch-based modeling of vascular sys-

tems: a first step towards interactive teaching of anatomy. In Proceedings of

the Seventh Sketch-Based Interfaces and Modeling Symposium, SBIM ’10, pages

151–158, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Associa-

tion.

[76] Pittsburgh Post-Gazette. Bush returns to gulf. http://www.msnbc.msn.

com/id/9438536/ns/us_news-katrina_the_long_road_back/

t/efforts-revive-new-orleans-get-back-gear/, (last visited

on 31 October 2011), 2011.

[77] D. A. Randall. The Shallow Water Equations. Selected papers, Department of

Atmospheric Science, July 2006.

[78] H. Ribičić. Comparative Rendering of Simulation Scenarios. Master’s thesis,

University of Zagreb, Faculty of Electrical Engineering and Computing, Septem-

ber 2010.

[79] A. M. A. Sattar, A. A. Kassem, and M. H. Chaudhry. Case study: 17th street canal

breach closure procedures. Journal of Hydraulic Engineering, 134(11):1547–

1558, 2008.

[80] B. Schindler, J. Waser, R. Fuchs, and R. Peikert. Multiverse data-flow control.

Technical Report 720, ETH Zürich, Computational Science, February 2011.

[81] D. Schroeder, D. Coffey, and D. Keefe. Drawing with the flow: a sketch-based

interface for illustrative visualization of 2d vector fields. In Proceedings of the

Seventh Sketch-Based Interfaces and Modeling Symposium, SBIM ’10, pages 49–

56, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association.

111



[82] H. J. Shin and T. Igarashi. Magic canvas: interactive design of a 3-d scene proto-

type from freehand sketches. In Proceedings of Graphics Interface 2007, GI ’07,

pages 63–70, New York, NY, USA, 2007. ACM.

[83] L. Song, J. Zhou, Q. Zou, J. Guo, and Y. Liu. Two-Dimensional Dam-Break

Flood Simulation on Unstructured Meshes. In Parallel and Distributed Comput-

ing, Applications and Technologies (PDCAT), 2010 International Conference on,

pages 465–469, dec. 2010.

[84] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Ox-

ford University Press: Oxford, 2001.

[85] G. Taubin. Curve and surface smoothing without shrinkage. In Computer Vision,

1995. Proceedings., Fifth International Conference on, pages 852 –857, jun 1995.

[86] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics, A

practical Introduction, 2. ed. Springer, 1999.

[87] M. Tritthart and D. Gutknecht. 3-D computation of flood processes in sharp river

bends. In Proceedings of the ICE - Water Management, volume 160, pages 233–

247, December 2007.

[88] E. Üstündag and M. S. Celebi. A B-Spline Curve Fitting Approach by Imple-

menting the Parameter Correction Terms. In International Conference on Com-

putational Science and Engineering, Istanbul, Turkey, June 27-30 2005.

[89] A. van Dam. Post-wimp user interfaces. Commun. ACM, 40:63–67, February

1997.

[90] R. van Liere, J. D. Mulder, and J. J. Van Wijk. Computational Steering. In Fu-

ture Generation Computer Systems, volume 12, pages 441–450, Elsevier North

Holland, 1997.

[91] J. Vetter and K. Schwan. High performance computational steering of physical

simulations. In Parallel Processing Symposium, 1997. Proceedings., 11th Inter-

national, pages 128 –132, apr 1997.

112



[92] J. Waser, R. Fuchs, H. Ribičić, and G. Blöschl. Visuelle Aktionsplanung im

Hochwassermanagement. In Forum für Hydrologie und Wasserbewirtschaftung,

volume 30, pages 280–286. 2011.

[93] J. Waser, R. Fuchs, H. Ribičić, B. Schindler, G. Blöschl, and E. Gröller. World

Lines. IEEE Transactions on visualization and Computer Graphics, VOL. 16,

NO. 6, November/December 2010:1458–1467, November 2010.

[94] J. Waser, H. Ribičić, R. Fuchs, C. Hirsch, B. Schindler, G. Blöschl, and E. Gröller.

Nodes on Ropes: A Comprehensive Data and Control Flow for Steering Ensem-

ble Simulations. IEEE Transactions on Visualization and Computer Graphics,

17(12):1872–1881, December 2011.

[95] D. Weiskopf and G. Erlebacher. Overview of flow visualization. In C. D. Hansen

and C. R. Johnson, editors, The Handbook of Visualization, pages 261–278. El-

sevier, Amsterdam, 2005.

[96] J. F. Wendt, editor. Computational Fluid Dynamics - An Introduction. Springer,

third edition, 2009.

[97] W. Wenli, Z. Pei, and G. Sheng. Numerical Simulation of 2D Flood Waves

Using Shallow Water Equations. In Power and Energy Engineering Conference

(APPEEC), 2010 Asia-Pacific, pages 1–3, March 2010.

[98] E. Wiese, J. H. Israel, A. Meyer, and S. Bongartz. Investigating the learnability

of immersive free-hand sketching. In Proceedings of the Seventh Sketch-Based

Interfaces and Modeling Symposium, SBIM ’10, pages 135–142, Aire-la-Ville,

Switzerland, Switzerland, 2010. Eurographics Association.

[99] H. Wright, K. Brodlie, and M. Brown. The dataflow visualization pipeline as

a problem solving environment. In Proceedings of the Eurographics workshop

on Virtual environments and scientific visualization ’96, pages 267–276, London,

UK, 1996. Springer.

[100] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. SKETCH: An Interface for

Sketching 3D Scenes. In SIGGRAPH ’96: Proceedings of the 23rd annual con-

113



ference on Computer graphics and interactive techniques, pages 163–170, New

York, NY, USA, 1996. ACM.

[101] X. Zhao, X. Zhang, T. Chi, H. Chen, and Y. Miao. Design and implementation

of a web-based flood simulation and decision support system. In Proceedings of

the 6th Conference on WSEAS International Conference on Applied Computer

Science - Volume 6, pages 59–64, Stevens Point, Wisconsin, USA, 2007. World

Scientific and Engineering Academy and Society (WSEAS).

114


