
Coronary Artery Tracking with
Rule-based Gap Closing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Andreas Grünauer
Matrikelnummer 0305179

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Math. Dr.techn. Katja Bühler und Dr.techn. Sebastian Zambal

Wien, 04.07.2011
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at



ii



Erklärung zur Verfassung der
Arbeit

Andreas Grünauer

Rapfstrasse 16

2020 Hollabrunn, ÖSTERREICH
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Abstract

Coronary artery diseases are among the leading causes of death in the in-
dustrial countries. The high death rate leads to an increased demand of
diagnosis and treatment of these diseases. Additional to the conventional
coronary angiography, the CT angiography is mainly used in the exten-
ded diagnostics of coronary artery diseases. This modality allows a detailed
assessment of the coronary vessels and potentially present stenoses. For sup-
porting the radiologist during the evaluation of the coronary arteries by the
help of computer-aided diagnostic methods, robust and efficient procedures
for the tracking of coronary arteries are needed.

The approach presented in this thesis unifies the strong points of existing
methods delivering high accuracy with the strong points of methods achie-
ving high overlap. Therefore the approach presented in this thesis aims at
highly accurate results in combination with high overlap of the investigated
coronary artery vessel tree. The approach is divided into three phases: 1)
calculation of seed points, 2) tracking of vessel segments, and 3) constructi-
on of the coronary artery trees.

Phase 1 & 2 are executed in an automatic manner. First potential seed
points for the tracking of vessel segments are identified. During the second
phase, vessel segments located at these seed points are tracked by use of
a cylindrical shape model. By use of rule-based anatomical heuristics, the
third and final phase combines vessel segments to form complete coronary
artery trees. This phase requires minimal user interaction, as the location
of the root of the left and right coronary artery tree needs to be specified.

Beside the detailed description of the algorithm, the integration into a pro-
fessional radiology workstation is demonstrated. The results obtained by the
evaluation on 24 CTA datasets show a high overlap (OV) of 89.5% in com-
bination with very precise accuracy (AI) of 0.24 mm in comparison to an
expert-annotated reference segmentation.
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Kurzfassung

Die koronare Arterienkrankheit gehört zu den häufigsten Todesursachen in
den Industrieländern. Die hohe Sterblichkeitsrate führt zu einer erhöhten
Nachfrage nach Diagnose und Behandlung dieser Krankheiten. In der erwei-
terten Diagnose von Erkrankungen der Koronararterien kommt zusätzlich
zu der konventionellen Koronarangiographie die CT-Angiographie vermehrt
zum Einsatz. Diese Modalität ermöglicht eine detaillierte Beurteilung der
Herzkranzgefäße sowie eventuell vorhandener Stenosen. Um den Radiologen
bei der Analyse von Koronararterien mittels computerunterstützter Diagno-
stik zu unterstützen, sind robuste und effiziente Verfahren zur Erfassung des
Koronararterienverlaufs gefragt.

Der vorgestellte Ansatz vereint die Stärken von Methoden, die hohe Ge-
nauigkeit erreichen mit Stärken von Methoden, die einen hohen Grad an
Gefäßüberlappung erzielen. Der vorliegende Ansatz zielt somit auf hochge-
naue Ergebnisse in Kombination mit einem hohen Überlappungsgrad der
untersuchten koronaren Gefäßbäume und ist in drei Phasen unterteilt: 1)
Berechnung von Initialisierungspunkten, 2) Erfassung von Gefäßsegmenten
und 3) Zusammenführung der Gefäßsegmente zu koronaren Gefäßbäumen.

In Phase 1 werden Initialisierungspunkte innerhalb von Blutgefäßen berech-
net, die in Phase 2 als Ausgangspunkte für die Erfassung von Gefäßsegmenten
mittels zylindrischer Formmodelle dienen, wobei beide Phasen vollautoma-
tisch ablaufen. Durch den Einsatz einer regelbasierten, anatomischen Heu-
ristik werden in Phase 3 die erfassten Gefäßabschnitte zu vollständigen koro-
naren Gefäßbäumen zusammengesetzt. Diese Phase erfordert eine minimale
Benutzerinteraktion, um jeweils die Wurzel des linken und rechten korona-
ren Gefäßbaums zu lokalisieren.

Neben der detaillierten Beschreibung des Algorithmus wird auch dessen In-
tegration in eine professionelle radiologische Arbeitsumgebung demonstriert.
Die durch die Auswertung von 24 CTA Testdatensätzen erhaltenen Resul-
tate bestätigen einen hohen Überlappungsgrad (OV) von durchschnittlich
89.5% bei einer sehr hohen Genauigkeit (AI) von durschnittlich 0.24 mm im
Vergleich zu einer von Experten annotierten Referenzsegmentierung.
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Chapter 1

Introduction

Coronary artery diseases are among the most prominent causes of pre-

mature death in the industrial countries [4, 21]. The high death rate

leads to an increased demand of diagnosis and treatment of these dis-

eases. Additional to the conventional coronary angiography, the CT

angiography is mainly used in the extended diagnostics of coronary

artery diseases. This modality allows a detailed assessment of the

coronary vessels and potentially present stenoses. For supporting the

radiologist during the evaluation of the coronary arteries by the help

of computer-aided diagnostic methods, robust and efficient procedures

for the tracking of coronary arteries are needed.

1.1 Medical Background

For a better understanding of the importance and diagnostic aspects of

the coronary artery diseases, the following chapter provides an overview

of the anatomy, physiology and pathology of the coronary arteries.

Additionally an overview on diagnosis and visualization techniques is

given.

1.1.1 Anatomy and physiology of the coronary arteries

The two main coronary arteries (CA) are the left coronary artery (LCA)

and the right coronary artery (RCA). They branch off from the aorta

just before it leads into the left ventricle. A schematic illustration of

the heart and the coronary arteries is shown in figure 1.1.

The coronary arteries supply the heart muscle with fresh, oxy-
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Figure 1.1: Schematic illustration of the heart and the coronary arteries.
Copyright˜ c©2̃010 RelayHealth and/or its affiliates. All rights reserved.

genated blood. The RCA supplies the right part of the heart. The

LCA supplies the left part of the heart and usually splits up into the

left anterior descending (LAD) and the left circumflex (LCX) arteries.

The normal diameter of coronary arteries at the ostium is about 5 mm.

The clinical relevant part of a coronary artery vessel is the part from

the ostium up to the location where the diameter drops below 1.5 mm.

1.1.2 Pathologies (coronary artery disease)

As mentioned previously, the coronary artery disease is the leading

cause of morbidity and mortality in the industrial world. The underly-

ing process of the coronary artery disease is atherosclerosis, which is a
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systemic disease of the arterial vessel wall [4]. The vessel wall thickens

due to the successive accumulation of lipids and other materials like

i.e. macrophages and calcium. These lesions (plaques) develop silently

over years and may lead to clinical problems if the accumulation ex-

ceeds a certain degree. The narrowing of the vessel lumen (stenosis)

leads to a decrease of blood flow, which causes an under-supply of the

affected myocardium with oxygenated blood. If the under-supply of

the muscle is permanent, more and more muscle cells die (necrosis).

Consequences are myocardial infarctions, cardiac insufficiency and ar-

rhythmias (irregular heart beats).

1.1.3 Imaging procedures

Gold standard in the field of the diagnostics of the coronary artery dis-

ease is the conventional coronary angiography (CCA). Iodinated con-

trast agent is applied by insertion of a catheter to the vascular system.

Vessels filled with contrast agent are made visible using a fluoroscope.

Advantages of this method are long-term well-documented evidence of

coronary diagnostics and a very high spatial and temporal resolution

compared to other imaging options [17].

Modern multidetector row computed tomography (MDCT) with up

to 64 slices revealed new applications for computed tomography in the

field of cardiologic imaging. One of these applications is Computed

Tomography Angiography (CTA) which is considered as a non-invasive

alternative to CCA. An advantage of the CTA is that - other than

the conventional coronary angiography - the results show not only the

vessel lumen, but also the vessel wall and spots of calcification.

1.1.4 Diagnosis

Given the suspicion of coronary artery disease, the basic diagnostics like

anamnesis, clinical study, laboratory tests, resting and exercise elec-

trocardiography and echocardiography help to assess the presence of

a treatment-requiring coronary artery disease. If the basis diagnostics

delivers normal results, extracardiac causes are further investigated.

In the case that the patient belongs to a certain at-risk group and

the basis diagnostics led to suspect or ambiguous results, an exercise

echocardiography is carried out. If this investigation shows pathological
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results, a coronary angiography is necessary.

Pathologic results of exercise echocardiogram or with different forms

of Angina pectoris (typical, instable or at low exercise) indicate a high

probability of a present coronary artery disease. In this case the coro-

nary angiography is needed for the determination of the therapy strate-

gies.

1.1.5 Questions to the image

Due to the mentioned indications of coronary CTA, the radiologists

have following questions on the image retrieved by coronary CTA [10].

• Detection of significant coronary artery stenoses

• Detection and characterization of both calcified and non-calcified

plaque

1.2 Visualization techniques

Appropriate software can support the radiologist to answer the stated

questions on coronary CTA data sets. The following visualization tech-

niques exist [10]:

• Volume Rendering (for the detection of coronary artery anomalies

and cardiac surgery planning)

• Maximum intensity projection (MIP)

• Multiplanar reformation (MPR)

• Curved planar reformation (CPR)

Figure 1.2 shows a CTA dataset in volume rendering. Figure 1.3

shows the same dataset using MIP.

One way to visualize small tubular structures like the coronary ar-

teries is the technique of Curved Planar Reformation (CPR) [11]. The

principle of this technique is shown in figure 1.4(a). Given the image

data and the pathway of the vessel centerline (red colored), CPR gen-

erates a longitudinal profile of the vessel. The resulting image shows

information about the vessel lumen, wall thickness and surrounding

tissue along a curved plane. Figure 1.4(b) shows a CPR of the right
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Figure 1.2: CTA dataset in DVR. The red arrows mark vessels of the left
coronary artery tree.

coronary artery that demonstrates high-grade stenoses of the proxi-

mal segment (arrow) and nonsignificant stenoses of the mid and distal

segments (arrowheads).

A prerequisite of the CPR is the pathway of the central lumen

line (centerline) of the observed vessel. These centerlines can be cre-

ated manually or by the use of centerline extraction algorithms (vessel

tracking) and serve as the basis for visualization techniques for the

coronary artery disease like the approach of Termeer et al. [26]. The

computer-aided extraction of vessel centerlines potentially saves the

amount of physician time required for each study. The gained increase

in efficiency can help to deal with the rising demand of coronary artery

disease diagnostic.
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(a)

(b)

(c)

Figure 1.3: CTA dataset in MIP: (a) axial view, (b) sagittal view, (c) coronal
view.
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(a)

(b)

Figure 1.4: (a) Principle of the CPR visualization technique. Figure from
[11]., (b) CPR of the RCA demonstrates high-grade stenoses of the proximal
segment (arrow) and nonsignificant stenoses of the mid and distal segments
(arrowheads). Figure from [23].



8 CHAPTER 1. INTRODUCTION

1.3 Problem statement

The problem is to extract the centerlines and according radii of the

vessel lumen of coronary arteries on CTA datasets. This is a challenging

task because of

• Modality inherent noise [9]

• Motion artifacts of the beating heart.

• High variations of vascular anatomy

• Low spatial resolution in proportion to coronary artery diameter

• Areas of calcification with high contrast in respect to the vessel

lumen can lead to wrong centerlines

1.4 Requirements

The result of a centerline extraction algorithm should capture the coro-

nary arteries well (high overlap). A resulting centerline should also

match as close as possible with the ”real” centerline of the investi-

gated vessel (high accuracy). For the use as an efficiency-raising tool,

a centerline extraction algorithm should also require as minimal user

interaction as possible.

1.5 Goal of the thesis

The goal of the thesis is to combine the strengths of existing methods

delivering high accuracy with methods achieving high overlap. There-

fore the approach presented in this thesis aims to achieve highly ac-

curate results by on the same time obtaining a high overlap of the

investigated coronary artery vessel tree.
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Related Work

Tracking of coronary arteries is a special case of vessel extraction. A

wide range of different vessel segmentation and/or centerline extraction

approaches have been published. The papers of Kirbas et al. [13] and

Lesage et al. [15] give a broad review on the classification of existing

works, each proposing different classification schemes.

The survey of Kirbas et al. [13] follows a rather linear discrimination

of different vessel extraction techniques, which are divided into six main

categories:

• Pattern recognition techniques

• Model-based approaches

• Tracking-based approaches

• Artificial intelligence-based approaches

• Neural network-based approaches

• Miscellaneous tube-like object detection approaches

Lesage et al. [15] discuss existing extraction approaches according

to three aspects:

• Appearance & geometric models

• Image features

• Extraction schemes
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The following chapter will give an overview of related work in the

field of vessel extraction and then presents approaches which explicitly

handle the treatment of disconnected vessel segments.

2.1 Vessel structure extraction

2.1.1 Pattern recognition techniques

According to Kirbas et al. [13], the category of pattern recognition

techniques in the field of vessel extraction deals with the automatic

detection of vessel structures and vessel features.

Multi-scale approach

The analysis of second-order derivatives or the Hessian matrix of the

image is a common technique in the field of vessel filtering and track-

ing. Frangi et al. proposed a multiscale vessel enhancement filtering

based on the analysis of the Hessian’s eigenvectors. Multiscale-based

approaches have been presented by Tek et. al. [25], Yang. et al. [27],

Krissian et al. [14] and Metz et al [18].

Region growing

Beginning from an initial seed point, approaches based on region grow-

ing successively recruit voxels to a region according to certain prede-

fined criteria like value similarty and spatial proximity. Examples for

region growing approaches are the methods of Eiho et al. [7] and Bock

et al. [3]. Also the already mentioned approach of Metz et al. [18] uses

region growing techniques.

Ridge-based

Ridge-based approaches interpret grayscale images as elevation maps,

where intensity ridges represent approximations for the skeleton of

tubular structures [1].

The method of Bauer et al. [2] uses a height ridge traversal proce-

dure on the result of a Gradient Vector Field (GVF) transformation.

Section 3.2 contains a detailed description of this method.

The ridge-based algorithm of Szymczak [24] extracts persistent max-

ima of the intensity out of 2D axis-aligned slices of the volume data.
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These maxima are supposed to concentrate along 1D intensity ridges.

The algorithm creates a forest of vessel sub-trees by connecting nearby

persistent maxima. The resulting forest contains numerous spurious

features and fails to connect segments in low contrast areas. Therefore

simple geometric heuristics are used to trim short branches, fill gaps in

areas of low contrast and remove spurious branches.

Mathematical morphology schemes

Mathematical morphology denotes the processing of geometrical struc-

tures founded on the set theory. Morphological operations like Dilation

and Erosion apply structuring elements to the image data. Dilation

expands the objects of the image, whereas erosion reduces them. Ap-

proaches based on Mathematical morphology are presented by Bouraoui

et al. [5], Luengo-Oroz et al. [16] and Castro et al. [6].

2.1.2 Model-based approaches

Model-based approaches apply explicit vessel models to extract the

vascular structures. These vessel models embed prior knowledge about

the target structure.

Zambal et al. [28] use cylindrical shape and appearance models.

First a heart-model is fitted to identify the region of the coronary artery

ostia to reduce computational complexity and to avoid tracking of ves-

sels in non-cardiac areas. Local symmetry feature extraction returns

potential seed points of the roots of the coronary artery trees. A curved

cylindrical shape model is successively matched along vessel structures

especially designed for matching strongly bended structures. The basic

assumption of the model alignment is that assuming a perfect match

of the model, the histogram of the gray values inside the vessel should

’concentrate’ in the high area, whereas the mean of the gray values of

the exterior samples reside in the lower part of the spectrum. Section

3.1 provides a detailed description of this approach.

The interactive method of Friman et al. [8] uses a model based mul-

tiple hypothesis tracking methodology in combination with a standard

minimal path search to fill gaps of vessels. This approach achieved the
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best results in the interactive category of the MICCAI 2008 workshop,

but it is also expensive in terms of the computation time. During

tracking, the algorithm iteratively places model segments in front of

each other to form a chain of segments representing the vessel trees.

This tracking algorithm is based on a 3D vessel template. The ves-

sel template represents an idealized model of a vessel segment and is

parametrized by position, radius and orientation. Iteratively, a set of

possible vessel continuations is generated based on the current vessel

segment. The possible vessel segments are compared based on a score

function that measures the fitting quality of a segment on the basis of

the underlying image data. The authors propose a multiple hypothesis

tracking framework to evaluate several hypothetical vessel trajectories.

For each investigated vessel segment a search tree (depth=4) is built

by the recursive evaluation of possible vessel continuations. Addition-

ally a minimal path algorithm is used to bridge gaps in areas of low

contrast.

2.2 Merging of discontinuities in vessel structures

Although the connection of gaps is a well-known problem in 2D edge

detection, far fewer results are published in the corresponding 3D prob-

lem. The general idea is to infer the linkage of unconnected parts of

the vessel tree from their distance and orientation to each other.

The method of Risser et al. [19, 20] is based on the formalism of

tensor voting. It uses vectorial information of the vessel graph to reason

about the connection of gaps.

The approach of Kaufhold et al. [12] utilizes both, the geometric

properties of the investigated vessel graph and the underlying gray scale

information. Assuming that each connection originates from an end

point of the vessel graph, a mask within a bounding box around every

end point is generated by relaxation of a gray value threshold, until at

least one other point of the vessel graph is reached. The mask is reduced

by using a paired path length distance transformation. This way the

minimal amount of voxels is kept while still linking the investigated

end point with the other point. It additionally avoids backtracking to
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the centerline of the investigated end point.

The methods of Bauer et al. [2] and Szymczak et al. [24] make

use of continuous cost functions between connection candidates. If a

connection pair yields a cost value below a given threshold, a connection

is created.

The approach of Szymczak [24] considers only the geometrical prop-

erties of the investigated leaf vertices of the vessel forest. Two basic

assumptions are made: (1) The gaps between leaf vertices tend to be

small; (2) The outward pointing tangent vectors of the observed leaf

vertex should point in a direction close to the other potential connection

vertex and vice versa. The cost function therefore reflects these prop-

erties with a distance term and a term expressing the angle between

the tangent vectors. The tangent vector of a leaf vertex is estimated

by considering the positions of start and end point of a path with pre-

scribed length starting from the leaf vertex. The algorithm further

rejects edges that would cause loops in the graph.

The approach of Bauer et al. [2] combines geometrical information

(distance and angle between tangent vectors of connection candidates)

with the gray value similarity at the positions of the connection candi-

dates. This method is described in section 3.2.

2.3 Conclusion

As already mentioned in section 1.5, this thesis aims at the generation

of a new tracking algorithm for coronary centerlines that delivers results

of high accuracy and overlap.

The Rotterdam Coronary Artery Algorithm Evaluation Framework,

presented during the MICCAI 2008 conference, enables the quantita-

tive comparison of different centerline extraction methods of coronary

arteries. This framework was also the basis of assessment for the work-

shop ”3D Segmentation in the Clinic: A Grand Challenge II”, that was

held during the MICCAI 2008 conference.

The approach of Zambal et. al [28] won the first prize in the fully

and semi-automatic category of the mentioned MICCAI 2008 work-
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shop, achieving the highest accuracy in both categories. Nevertheless

this approach is vulnerable to the early termination of vessels in areas

of low local contrast. This reduces the overlap of the investigated vessel

trees.

The method of Bauer et al. [2] convinced with the highest degree

of overlap in the automatic methods category. The weak point is that

the method’s results show a significantly lower accuracy level than the

method of Zambal et al.

The method presented in this thesis combines the strengths of both

methods. The accurate tracking method for vessel segments proposed

by Zambal et al. is combined with a “bottom-up” approach for the

reconstruction of the coronary artery trees similar to the approach of

Bauer et al. By connecting the highly accurate vessel segments across

regions of low local contrast a highly accurate method with higher

overlap should be achieved.



Chapter 3

The starting points: The
methods of Zambal and
Bauer

3.1 Tracking method of Zambal et al.

This section presents the basic ideas of the coronary artery tracking

method of Zambal et al. [28]. The algorithm can be divided into two

major parts: The first part deals with the identification of the two

coronary artery origins (ostia), whereas the second part uses these ori-

gins as the starting points for the extraction of the vessel tree by the

iterative fitting of cylindrical shape patterns. In the following, all in-

troduced parameters are denoted with a capitol P with the name of

the parameter in the subscript.

3.1.1 Detection of coronary artery seeds

3D model of the heart

The first step for the detection of coronary artery seeds is a rough

localization of the origin of the left and right coronary artery tree.

The approach uses a 3D model of the heart, based on 2245 manually

placed landmark points of a CTA dataset. Additionally the model

contains two landmark points L and R representing the origins of the

coronary artery trees. After the model has been fitted to the dataset,

the positions of these points give a first estimator for the location of

the ostia.
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(a) (b)

Figure 3.1: (a) Calculation of the symmetry feature along a scan line. (b)
Four landmark points (A1 and A2 inside aorta and L and R inside LCA and
RCA respectively) define the search regions for the coronary artery origins.
Maxima of local symmetry feature (shown as crosses) represent potential
origins of the coronary arteries. Figures from [28].

Local symmetry

Due to anatomical variations, points L and R will probably not be

located on the real coronary artery ostia. Therefore potential coro-

nary artery seeds are searched within a region of radius rinit around

the points L and R, where rinit is defined as 2.5 times the distance be-

tween the landmark points A0 and A1 defined in the 3D model of the

heart. A local symmetry feature value is calculated for each voxel of the

CTA dataset inside this two regions. This symmetry feature computa-

tion is based on the assumption that the cross-section of a vessel can

be approximated as a circle and therefore contains a lot of symmetry

in terms that 3D image gradients along the surface of the vessel pro-

file ideally point towards the center point of the corresponding vessel

profile.

Figure 3.1(a) shows the basic idea. First an empty symmetry feature

volume is initialized and 3D image gradients are precomputed. For

every voxel within the region of interest, the algorithm traverses a scan

line along the direction of the related gradient vector v1 for a length of

10 mm, which is the expected maximal diameter of coronary arteries.

Let P1 be the position of the investigated voxel. At every position

P2 along the scan line a second gradient vector v2 is considered. The

squared length of the difference between vectors v1 and v2 is added to

the voxel of the feature volume at position C, which is located in the
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middle between P1 and P2. Finally, after executing the procedure for

every voxel, a fixed number of local maxima of the feature volume are

used as potential seed points for the vessel tracking algorithm.

Seed evaluation

The next step evaluates all potential coronary artery seeds and chooses

the best two seeds as starting points for the vessel tracking procedure

presented in the next section. Each seed is tracked for three iterations

and the average vesselness, defined by vesselness function v as described

below in section 3.1.2, is calculated. The seed point that exhibits the

maximum vesselness is the initial position for the tracking procedure.

Figure 3.1(b) illustrates this approach. For selection of the second

coronary artery seed, vector a from A1 (a landmark point inside the

aorta) to the previous selected seed point is calculated. The next best

potential seed point with vector b from A1 to the currently investigated

seed point and with an angle greater than 50◦ between a and b is chosen

as the second coronary artery seed.

3.1.2 Vessel tracking

The approach of Zambal et al. [28] is build on the successive matching of

cylindrical sample patterns of simple symmetric shape, in the following

referred to as shape model.

Generation of texture samples

Applied on the investigated CTA dataset, the generation of texture

samples for a given shape model is determined by position p, orien-

tation represented by the normalized vector d and radius r, and is in

the following referred to as shape configuration s(p,d, r). The texture

samples of the shape model within the CTA dataset are generated by

translation and scaling of two concentric circles along the orientation

vector d. The bended shape of the shape model is shown in figure

3.2(a) (in cross section) and figure 3.2(b) (in 3D). The pure translation

of the inner and outer circle with constant radii would lead to a per-

fect cylindrical shape that would not fit coronary arteries well enough,

as they often show strong curvatures. Figure 3.3 illustrates the differ-

ence between the straight cylindrical shape models (top) and curved
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(a) (b)

(c) (d)

Figure 3.2: Sample pattern one in cross section (a) and 3D (b). Refinement
sample pattern two in cross section (c) and 3D (d). Figures from [28].

cylindrical shape models (bottom).

For a given shape configuration s(p,d, r), textures are sampled from

volume data by positioning and scaling of two concentric (inner and

outer) circles at equal distances along the model axis defined by orien-

tation vector d. The maximal distance between center points of circles

and the position p is equal to radius r. Each circle carries a fixed

number of samples, whereby samples on the outer circle represent the

background texture and samples on the inner circle represent inner

texture of the shape model. For retrieving the previously mentioned

bended shape of the shape models, the radii of the circles are scaled by

the scaling functions s1,in and s1,ext for generating the inner and outer

texture samples for the sample pattern one and the scaling functions

s2,in and s2,ext for generating the inner and outer texture samples for

the sample pattern two. Hereby, x is defined as the distance between

the center point of the circles and point p.
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Figure 3.3: Cross section showing the different shapes on a bended struc-
ture: straight cylindrical shape model (top), curved cylindrical shape model
(bottom). Figure from [28].

The sample textures are generated by using two sample patterns

with different level of detail. The first texture pattern is based on

quadratic scaling functions

s1,in(x) = 0.75− x2 ∗ 0.2 (3.1)

and

s1,ext(x) = 1.25 + x2 ∗ 0.2 (3.2)

and exhibits larger margins between inner and outer texture sam-

ples, but less bending. This pattern is used for the rough estimation

of the shape configuration, that represents the observed vessel in the

dataset. The second texture pattern uses circle-shaped scaling func-

tions

s2,in(x) = −0.05 + sin(arccos(x)) (3.3)

and

s2,ext(x) = 2.05− sin(arccos(x)) (3.4)

and shows a much smaller margin and a stronger bending, and serves

for the further refinement of the roughly estimated shape configuration.

For both patterns, additional texture samples (belonging to the class

of inner texture samples) are generated along the central axis of the

shape model. Figures 3.2(a), 3.2(b), 3.2(c) and 3.2(a) show the positon

of inner and outer texture samples in gray and black, respectively.
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Figure 3.4: Gray value histograms generated from sampled texture of a given
shape model. Figure from [28].

Evaluation of texture samples (vesselness)

Given the generated texture samples of a given shape configuration, we

now need a way to measure the fitting quality of the shape configuration

applied on the observed CTA dataset. This fitting quality is reflected

by the vesselness function v(p,d, r).

The idea is based on the assumption that both gray value his-

tograms Hin and Hext for the inner and outer texture samples are

perfectly separable by a certain gray value threshold t, if the given

shape configuration matches perfectly the underlying vessel segment.

The left part of figure 3.4 shows the case of an ideal match where the

inner and outer histograms are perfectly separable by a certain thresh-

old t, indicated as the dashed vertical line, whereas the right part of

figure 3.4 visualizes a sub-optimal case where the separation of the

histograms is not clear. For the discrimination between these cases of

different fitting quality, we use two fractions fin and fext for each class

of the sample textures. Fraction fin is defined as the number of values

of histogram Hin greater than threshold t divided by the total num-

ber of values in Hin. Analog, fraction fext is the number of values of

the outer histogram Hext smaller than threshold t divided by the total

number of values in Hext. This means that a high fraction value close

to 1 indicates a high purity of expected texture values in the class.

Given a shape configuration s(p,d, r) and a chosen gray value thresh-

old t, we can calculate the average value of both fractions fin and fext.

The maximization of this average value of both fractions for all possi-

ble values of gray value threshold t yields to the value of the vesselness

function v(p,d, r) for the given configuration.
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Figure 3.5: Scheme for generating position and directions of shape config-
urations. Note that close to the direction of the basis shape configuration,
the number of generated shape configurations is higher than in the outer
regions. Figure from [28].

Tracking of vessels

The presented tracking algorithm works by the iterative extension of

the vessel tree with new vessel segments in a depth-first manner. In

each iteration, the algorithm generates a set of shape candidates based

on the best matching shape configuration of the previous iteration.

The iteration of the tracking algorithm starts with the generation

of shape configurations by varying the parameters of the given basis

shape configuration si. We therefore generate a set of direction vectors

di,j with angles α relative to di with a step size of 18◦, where α is

limited to ±90◦. For each direction di,j, radii rk are generated between

a range of 0.5 · ri and 1.5 · ri and a scaling increment of 1.1, based on

the radius ri.

Motivated by the assumption that the successive shape configura-

tion is likely to be located along the direction di of the ancestor, more

shape configurations are generated in this area. This generation scheme

of shape configurations is visualized in figure 3.5. The position pi,j,k,l

of a shape configuration is defined as

pi,j,k,l = pi +

A︷ ︸︸ ︷
1

2
(di + di,j) ·

B︷ ︸︸ ︷
(
1

2
+ l · rk), (3.5)

where term A represents the step direction, weighted by the step

size represented by term B, where index l ranges from 1 to nsteps
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nsteps =


6 |α < 5◦

3 |α < 30◦

2 |α < 60◦

1 |α < 90◦

(3.6)

which represents the number of generated shape configurations de-

pendent on the angle α between the direction vectors di and di,j.

Based on the set of all generated shape configurations, the one

with the highest vesselness v is selected. This shape configuration

s(pi,j,k,l,di,j, ri,j,k) is the base for a further refinement step, in which

a second set of shape configurations is generated. This time the tex-

ture samples are generated based on sample pattern two. Again the

shape configuration with the highest vesselness is selected as the suc-

cessive shape configuration si+1 of the given shape configuration si.

The iterative tracking algorithm proceeds with the new basis shape

configuration si = si+1, until two adjacent shape configurations fulfill

the termination criterion, as defined later in this section.

Branching

Within each iteration of the tracking algorithm, the second best shape

configuration, denoted as s′s,j, with a direction vector d′s,j differing more

than 30◦ to the direction vector di,j of the best shape configuration is

considered as a possible branch of the tracked vessel. After the ter-

mination of the tracking of a vessel, each shape configuration s′s,j of a

potential branch is tracked for five iterations and the tracking algorithm

is continued with the best evaluating vessel branch. The algorithm pro-

ceeds until all branches are terminated, using the additional restriction

that branching is limited to a maximal depth of two.

Noise estimation

The vessel tracking algorithm uses a noise-adaptive criterion for the

vessel termination. For this reason the level of noise present in the

CTA volume is estimated by computing the mean absolute gray value

difference δ̄g within a sample of 100.000 neighboring voxel pairs. The

distance between a pair of voxels is chosen to be three voxel diameters.
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To keep out lung tissue, voxels with gray values below -500 Houndsfield

units (HU) are rejected.

Termination criterion

Other than the vesselness function v, which is used to select the shape

configuration that optimally matches the underlying CTA dataset, the

termination criterion determines if a vessel is still significantly distin-

guishable from the background or not. The termination is based on

the assumption that a gray value difference δg of neighboring samples

below the mean gray value difference δ̄g is most likely to originate from

noise. Accordingly, a gray value difference greater than δ̄g indicates a

meaningful boundary between object and background.

Each inner texture sample of a shape configuration is associated

with its radially neighboring outer texture sample. For each pair the

differences of the corresponding gray values is calculated. Now we can

compute the fraction fracbelow, which is the ratio of sample pairs below

the mean gray value difference δ̄g with respect to the total number of

pairs.

The identified optimal shape configuration is only accepted, if fracbelow
of the shape configuration and its two ancestors is below a maximal

fraction Pfbelow of 0.65. Otherwise the investigated optimal candidate

is rejected and the tracking of the current vessel terminates. It is also

terminated if the optimal candidate intersects with one of its ancestors

(loop), or if the mean gray value of exterior samples drops below -500

HU. This prevents the tracking of vessels outside of the myocardial

region, where the normal background gray value is significantly lower

than within the myocardium.

Interpolation of centerline

After the tracking procedure has finished, the vessel centerline is only

defined at discrete positions. To obtain a continuous centerline, Zambal

et al. are successively fitting cubic Bézier curves between two adjacent

segment positions to interpolate the vessel centerline. Figure 3.6 shows

an example. Center positions P0 and P1 and normalized tangent vec-

tors t0 and t1 are known, but for the definition of a cubic Bézier curve

two additional control points P2 and P3 are needed. The calculation
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Figure 3.6: Interpolation of the centerline between two adjacent segment
positions by a Bézier curve. Points P0 and P1 and corresponding normalized
tangent vectors t0 and t1 are known. Two additional control points P2 and

P3 can be calculated using the assumption ||
−−−→
P0P2|| = ||

−−−→
P2P3|| = ||

−−−→
P3P1||.

Figure from [28].

of this control points P2 and P3 is based on the following assumption

of equal distances: ||
−−−→
P0P2|| = ||

−−−→
P2P3|| = ||

−−−→
P3P1||. Let’s denote the

vector between P0 and P1 as vector v. Then a unit vector u and a

scaling factor s must exist, so that

s · t0 + s · u + s · t1 = v (3.7)

This equation and the additional constraint that u is a unit vector

leads to a system of four equations. Zambal et al. remark that this

system of equations is unsolvable for some possible spatial configura-

tions, but they ensure that a solution is defined for all possible spatial

configurations generated by their proposed vessel tracking algorithm.

3.2 Tree connection method of Bauer et al.

The approach of Bauer et al. [2] performs the reconstruction of com-

plete vascular trees out of individual centerlines. The algorithm starts

with the extraction of unconnected centerlines by applying a Gradient

Vector Field (GVF) based tube detection. The normalization of the

GVF leads to a high independence from the image contrast. Based on

their assumption that blood vessels represent ridges in the Gaussian

scale space, the corresponding centerlines are extracted by the use of a

ridge traversal procedure.
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After the extraction of the so far unconnected centerlines, the algo-

rithm identifies potential connections between end points of centerlines

and points of other centerlines by considering distance, angle and gray

value difference. This way a minimum spanning forest is calculated

containing the coronary artery trees. The method searches in the out-

ward pointing tangent directions (trajectories) at end points of the

centerlines for potential continuations. Based on the position of the in-

vestigated end point xS and its tangent direction tS, connection costs

to other points xE of centerlines are evaluated. The connection cost

function c(xS, tS,xE) can be interpreted as a coned region with opening

angle ρ:

c(xS, tS,xE) = ||xS − xE||/exp(−∠(−−−→xSxE, tS)/(2ρ2)) (3.8)

Points xS and xE with costs c ≤ cmax are connected, whereas poten-

tial connections with a gray value difference greater than the maximal

gray value difference dmax are rejected. Within the MICCAI 2008 work-

shop this approach achieved the highest overlap measure (OV) in the

category of automatic methods.

3.3 Discussion (critic) of existing approaches

Due to various reasons mentioned in section 1.3, coronary CTA data

usually shows high variations in contrast along the vessels paths. Pos-

sible reasons can be present stenoses, but also image artifacts caused

by motion of the beating heart during image acquisition and level of

modality inherent noise with respect to small coronary artery struc-

tures. Depending on the extent of low contrast between blood vessels

and the image background, the vessel tracking algorithm of Zambal et

al. [28] sometimes terminates too early, although the vessel reappears

with sufficient contrast in following parts. Another limitation of the

algorithm is the assumption of exactly two coronary artery branches

which can lead to wrong or incomplete results if anatomical variations

are present.

The method of Bauer et al. uses continuous cost functions for the

identification of connected vessel segments. The relation between the
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angle of tangent directions, connection candidates and their distance

is reflected by a single connection cost function.

The use of a single connection cost function has some disadvantages.

No information about the anatomic context at the connection area is

considered. For example a connection with a branch angle of more than

60 degrees may be normal for vessel tree locations near the ostium, but

not for more distal parts of the vessel tree. Another important point

is that expert knowledge (in this case of physicians and radiologists)

is often available in the form of rules. Consider statements like ”The

left coronary artery usually branches at a distance of about 5 cm from

the ostium.”. This kind of expert knowledge is hard to integrate into

a single cost function defined for the complete search volume. Another

critical point dealing with continuous cost functions is to find a bal-

anced coupling (weighting) of the input parameters (segment distance

and angle between tangent directions).



Chapter 4

The end point: The best of
two worlds

This chapter presents the new method for the detection of coronary

arteries which combines the advantages of the methods of Zambal et

al. [28] and Bauer et al. [2], as described and discussed in the previous

chapter. This method consists of three phases, which are described

in detail in the following. Figure 4.1 shows the gained results of each

phase. The concrete values of the introduced constants used for the

evaluation of the presented method are mentioned in section 5.

A
orta

(a)

A
orta

(b)

A
orta

(c)

Figure 4.1: The results of the three phases of the algorithm: (a) Seed points,
(b) extracted vessel segments, (c) constructed vessel tree.

4.1 Phase 1: Calculation of seed points

First we have to identify seed points in the region of the heart. These

seed points are the input for the later tracking phase.
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4.1.1 Calculation of the heart mask

We start with limiting the search space. This reduces not only the

computation time of the seed points, but also helps to avoid tracking

of vessel structures which are not belonging to the heart. Our simple

approach is a combination of edge detection and first-hit raycasting. It

is based on two basic assumptions:

• Assumption 1: The center of the dataset is located within the

heart.

• Assumption 2: The typical threshold Pmyo for discrimination be-

tween myocardium and lung tissue is about 500 Houndsfield units

(HU).

The idea is to follow radial scan lines around the center position of

the dataset. (see figure 4.2). Along each scan line we try to find the

first location with a gray value below Pmyo. If such a location can be

identified, this position is likely to be part of the transition between

myocardium and lung tissue.

Figure 4.2: Calculation of points at the transition between myocardial and
lung tissue by using radial scan lines originating from the center point of
the volume.

Sometimes a significant transition between myocardium and lung

tissue can not be found. This happens generally if the myocardium is
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close to bone (i.e. vertebrae of the spine), so the gray value of all pro-

cessed positions never drops below Pmyo. To reduce the impact of these

outliers, we interpolate the missing intersection point based on posi-

tions of successfully retrieved intersection points in the neighborhood.

To prevent the accidental exclusion of coronary arteries running along

the myocarium, each calculated intersection point is shifted along the

outward pointing direction of the corresponding scan line by a defined

constant Pheart. From the resulting points the heart mask is calcu-

lated by using Delaunay tetrahedrization. Please note that this ray

casting approach also works in cases where the center of the dataset is

located inside a heart chamber. The heart chamber is filled with blood

containing contrast agent and the corresponding voxels inside the heart

chamber are therefore likely to exhibit even higher gray values than the

voxels of the surrounding myocardial tissue. Therefore the ray casting

will not stop at the interface between heart chamber and myocardium,

because both the gray values of chamber voxels and myocardium voxels

are above the threshold Pmyo.

4.1.2 Calculation of seed points

Before we can start the tracking of a vessel, we need an initial point

(seed point) located inside the vessel. For this purpose we use the fact

that vessels are structures of high local symmetry.

The following approach for the calculation of seed points is based

on the method of Zambal et al. [28] for the detection of candidates for

the coronary artery tree roots (see section 3.1.1). The method has been

modified and improved in terms of generality, robustness and number of

false positive results. This is due to the fact that the seed point search

is extended to the complete heart region and not only the areas around

the roots of the coronary artery trees. Similar to Zambal’s approach we

try to find vessel seed points, but we additionally extract information

about the orientation and radius of the corresponding vessel segments.

The detection of vessel profiles is based on the following assump-

tions:

• Cross sections of vessel structures have the shape of (perfect)

circles.
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• Points within the vessel lumen show higher gray values than

points outside of the vessel.

• Points on the circle represent the transition between vessel lu-

men and the background tissue and therefore exhibit a significant

gradient.

• The gradient at a surface point corresponds to the surface normal

and points towards the inside of the vessel.

• The identified surface point and the corresponding surface normal

define a line, that approximately crosses the vessel profile through

the center of the vessel lumen and intersects the vessel surface in

a second point, but opposite to the identified surface point.

• The line segment between this two points represents the diameter

of the vessel profile.

Based on the above assumptions, the algorithm consists of the fol-

lowing two steps:

1. Detect vessel profiles by circle matching, using a ray casting ap-

proach.

2. Verify the found vessel profiles by inspecting the corresponding

texture values.

For every voxel at position p of the volume we calculate the corre-

sponding gradient. According to the above assumptions, the gradient

corresponds to the surface normal pointing towards the center of the

vessel. If the gradient of position p is above a fixed threshold Pgradient,

we assume that p resides on a significant transition between foreground

(vessel lumen) and background.

If the gradient of p is below Pgradient, we skip p and proceed with

position p of the next voxel in the dataset. Otherwise p is regarded as

the surface point of a vessel in the dataset and the next calculation step

is to identify the intersection point p′ between the opposite side of the

vessel profile and the line g defined by position p and the corresponding

gradient vector.

Point p′ is calculated by using a simple ray casting method (see

figure 4.3(a)). First we calculate the average gray value tgray at the
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positions of both neighboring voxels of p along the line g. Starting at

p, we trace the line g up to a maximum length defined by the maximum

vessel diameter of 10 mm in the direction of the corresponding gradient.

The searched intersection point p′ is now defined as the first voxel

position along the scan line that exhibits a gray value below tgray. If

no such position is found, the algorithm skips processing of the current

position p and proceeds with the investigation of the next voxel in

the dataset. Please note that this technique not only identifies true

positive interfaces between the vessel lumen and the background, but

also identifies interfaces between calcifications and the vessel lumen,

which results in wrong vessel profiles. For reducing the the number of

outliers, we only accept intersection points p′ with a minimal distance

of 1.5 mm, which corresponds to the clinical relevant minimal diameter

of the coronary arteries, as described in section 1.1.1. This way, vessel

profiles matched at spots of calcifications are suppressed to a certain

extend.

Once p′ is identified, the radius of the estimated vessel profile is

defined as

rc =
1

2
|
−→
pp′| (4.1)

and the center point of the estimated vessel profile pc is defined

pc =
1

2
(p + p′) (4.2)

.

Once we have estimated the center point pc and radius rc of the

vessel profile, we still need to estimate its orientation vector dc. Orig-

inating at center point pc, we generate a set of radial scan lines per-

pendicular to the vector
−→
pp′, as visualized in figure 4.3(b).

By processing each scan line using the same ray casting approach

and tgray as in the previous step, we generate a set of points that

intersect with the potential vessel surface. Figure 4.3(b) visualizes

these points as small dots. If no intersection point is retrieved, the

algorithm again skips the processing of position p. Otherwise we select

the intersection point with minimal distance to the center point pc and

denote it as intersection point p′′. If the fraction of the distance
−→
pp′

and the estimated radius rc differs not more than a certain fraction

Pradius, so that
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Figure 4.3: Ray casting procedure for estimation of diameter (a) and orien-
tation (b) at the investigated voxel at position p.

max

(−−→
pp′′

rc
,
rc
−−→
pp′′

)
≤ Pradius, (4.3)

we calculate the circle orientation dc as the cross product between−→
pp′ and

−−→
pp′′. The estimated vessel profile that passes through the

investigated voxel at position p is finally determined by center point

pc, orientation vector dc and radius rc. Next we need to evaluate if

the estimated vessel profile fits to the texture values of the underlying

dataset.

The evaluation of the vessel profile is based on the basic idea that

voxels outside the vessel profile should also have a lower gray value than

threshold tgray. Therefore we sample gray values on a circle with the

same center point pc and orientation dc like the estimated vessel profile,

but slightly bigger with a radius rc multiplied with factor PfactorOut. If

at least a fraction of PfractionOut of the sampled gray values are below

threshold tgray, we add the calculated vessel profile to the set of initial

vessel seeds for the vessel tracking procedure. Algorithm 1 shows the

pseudo code for the estimation of vessel profiles for a given volumetric

dataset.

4.2 Phase 2: Vessel segment tracking

The vessel tracking of the presented approach is based on the method

of Zambal et al. [28], as described in section 3.1. Zambal’s method
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Algorithm 1 Pseudo code of the estimation of vessel profiles for a given
volumetric dataset.
Input: volumetric dataset
Output: Set Sseeds of estimated vessel profiles
1: for each position p in volumetric dataset do
2: if gradient(p) ≥ Pgradient then
3: Define scan line g(x) at p along gradient(pc)
4: Calculate mean gray value tgray of p’s neighbors along g(x)
5: if ∃p′ along g(x) with gray value < tgray then

6: pc = 1
2 ·
−→
pp′

7: rc = 1
2 · |
−→
pp′|

8: Generate set T of points along radial scan lines g′(x) at pc per-

pendicular to
−→
pp′, with gray value < tgray

9: if T 6= {} then
10: p′′ = t ∈ T with minimal distance to pc

11: dc =
−→
pp′ ×

−−→
pp′′

12: if
−−→
pp′′ ≈ rc and the fraction of gray values along sampled

circle defined by position pc, orientation vector dc and radius
r = PfactorOut · rc is above fraction PfractionOut then

13: Sseed = Sseed ∪ s(pc,dc, rc)
14: end if
15: end if
16: end if
17: end if
18: end for
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tracks the complete left and right coronary artery trees beginning from

the estimated ostia down to the distal branches. In contrast to this

top-down approach, the new method first tracks a set of vessels with-

out bifurcations. The tracking of each vessel is started at promising

locations in the whole heart region, represented by the set of vessel

profiles calculated in the previous phase of the algorithm. This new

tracking algorithm (see Algorithm 2) and the essential adaptations of

the method of Zambal et al. are described in the following.

Each of the estimated vessel profiles defined by position pc, orienta-

tion vector dc and radius rc represents a potential initial shape configu-

ration, in the following referred to as seed configuration sseed(pc,dc, rc).

In order to start the tracking of vessels at the most promising seed con-

figurations, the seed configurations are processed in descending order

of their vesselness function v(pc,dc, rc) applied on the underlying CTA

dataset, by usage of sample pattern one as described in section 3.1.2.

Each seed configuration serves now as the initial shape configuration

for the vessel tracking algorithm of Zambal et al. In contrast to Zam-

bal’s method, we track the vessel in both directions +dc (forward) and

−dc (backward) of the seed configuration sseed, which results in two

subsequences of successive shape configurations, which are extended

alternately within an iteration of the tracking algorithm.

The tracking for each of the two directions stops when the termi-

nation criterion is fulfilled (see below). By inverting the backward

sequence and attaching the forward sequence, we obtain the final se-

quence of shape configurations that matches a part of a vessel in the

given CTA dataset. This sequence of nodes is in the following denoted

as vessel segment. The algorithm only starts tracking of seed configu-

rations, that are not located within already tracked vessel segments.

The termination criterion follows the method of Zambal et al. as

described in section 3.1.2, but the following adaptations have been

made. The tracking stops at the current shape configuration, if it is lo-

cated inside an already tracked vessel segment. Furthermore Zambal’s

method considers the sample pairs of the current shape configuration

and its two ancestors. During development we observed that in regions

of low contrast (mostly at distal parts of the CAs) this averaging allows

the tracking of coronary artery vessel segments into venous vessel seg-

ments and vice versa. Therefore we adapted the termination criterion
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Algorithm 2 Pseudo code of the vessel tracking algorithm.

Input: volumetric dataset
Input: Set Sseeds of estimated vessel profiles
Output: Set V of tracked vessel segments
1: V = {}
2: Order all elements of Sseeds in descending order of their vesselness func-

tion v evaluated on volumetric dataset.
3: for each seed configuration sseed(pc,dc, rc) ∈ Sseeds do
4: if sseed is not located inside already tracked vessel segment in V then
5: Initialize shape configurations sf (pc,dc, rc) and sb(pc,−dc, rc) and

empty lists F and B, respectively for for- and backward tracking.
6: while sf or sb not terminated do
7: if sf not terminated then
8: Generate next best shape configuration sf+1 based on sf as

described in chapter 3.1.2.
9: if sf+1 is not located inside already tracked vessel segment of

V and is not fulfilling the termination criterion then
10: F.add(sf+1)
11: sf = sf+1

12: else
13: terminate(sf )
14: end if
15: end if
16: if sb not terminated then
17: Generate next best shape configuration sb+1 based on sb as

described in chapter 3.1.2.
18: if sb+1 is not located inside already tracked vessel segment of

V and is not fulfilling the termination criterion then
19: B.add(sb+1)
20: sb = sb+1

21: else
22: terminate(sb)
23: end if
24: end if
25: end while
26: Vessel segment Vc = concat(reverse(B), sseed, F )
27: V = V ∪ Vc
28: end if
29: end for
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to consider only the current shape configuration without considering

the ancestors. Furthermore the maximally allowed fraction of sample

pairs below the mean gray value difference Pfbelow has been reduced to

0.60 instead of 0.65. In contrast to the approach of Zambal et al. (see

section 3.1.2), the new approach uses a linear interpolation of the cen-

terline between neighboring shape models. The results of Zambal et al.

show that direction vectors of successive shape models sometimes show

a certain degree of freedom, which means that they do not perfectly

enough align with the tangential direction of the real vessel. In these

cases the cubic interpolation of the centerline between successive shape

models leads to wavelike displacements of the interpolated centerline

and therefore decreases the accuracy of the centerline. Therefore the

centerline between the positions of two adjacent shape models is inter-

polated by straight line segments.

4.3 Phase 3: Topological tree growing

The result of the tracking phase is a set of unconnected and unbranched

vessel segments. The goal of this final phase is to identify segments

close to the ostia of the investigated vessel trees and then iteratively

extend these initial trees with additonal segments, until the coronary

artery trees are reconstructed.

Each vessel segment represents an undirected graph without loops,

where each node corresponds to a shape configuration of the iterative

tracking algorithm described in the previous section. No we can define

a node path as the shortest path between a node and another node

within same vessel segment of a given size, where each node has exactly

the same number of node paths as its number of adjacent nodes.

4.3.1 Connection rules

Instead of a single cost function proposed by Bauer et al., we use a

rule-based approach. Each of these rules represents knowledge about

a certain kind of connection. The rules consider not only the relative

orientation of investigated vessel segments to each other, but also ad-

ditional context information like the path distance to the user-defined

root node at the investigated node of the vessel tree.
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We define a set of so called connection rules. A rule determines,

whether one or more nodes of unconnected vessel segments (target

nodes) are potential continuations of the investigated node of the vessel

tree (source node). A connection rule is defined by its type and by the

following set of parameters:

Search radius rsearch: The radius around the source node within which

possible target node candidates are collected.

Node path size pathtangent: The number of elements of the consid-

ered node path used for the tangent estimation.

Maximal average angle of node path αmax: Maximal average an-

gle between successive edges of the investigated node path.

Maximal branch angle βmax: The maximally allowed angle between

the tangent of a node and the tangent of a connection candidate

Maximal radii ratio ratioradii: The maximal ratio of radii of a node

and its connection candidate

Maximal path distance from root droot: The maximal path distance

from the source node to its corresponding root node.

Source node and target node of a connection can either be end nodes

or inner nodes of vessel structures. Therefore we define three different

connection cases between source nodes and target nodes:

1. I-Connection: End node of current tree connected to end node of

unconnected segment

2. T-Connection: End node of current tree connected to inner node

of unconnected segment

3. Y-Connection: Inner node of current tree connected to end node

of unconnected segment

For each of these connection types connection rules are defined: I-

Connection rules, T-Connection rules and Y-Connection rules. These

rules are described in detail in the following subsections. The principle

of all three rule types is the same: Given a source node a connection

rule decides if suitable target nodes can be connected according to the
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parameters of the rule. We only search for target nodes, if the path

distance between the investigated source node and its corresponding

root node is below the defined rule parameter droot.

The presented tree growing method allows the definition of rules

with the same type but different parameters. The rule type together

with its parameter configuration is in the following referred to as rule

instance. The set of rule instances that are used in the presented

approach are described in section 5.1 and summarized in table 5.2.

4.3.2 I-Connection rule

An I-Connection rule can only be applied on end nodes of the current

vessel tree. The rule determines, if the investigated source node should

be connected to a nearby end node of an unconnected vessel segment.

Figure 4.4 shows a potential I-Connection.

tolerance distance

estimated tangents

branch angle

node path for 
tangent estimation

Figure 4.4: I-Connection rule: Estimation of tangential directions (dot-
dashed lines) and measuring of the branching angle (gray) between the tan-
gents at a potential connection.

The processing of the investigated source node is only proceeded, if

the outward pointing tangent at the source node can be estimated by

the method described in section 4.3.5. Otherwise the processing of the

investigated source node is cancelled.

Next we consider end nodes of unprocessed vessel segments (target

nodes) within search radius rsearch around the position of the source

node. The procedure only accepts target nodes situated at the outward

pointing side of the plane, which is defined by the estimated tangent
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and the position of the source node. For each found end node we

estimate the outward pointing tangential direction in the same way as

for the source node (see section 4.3.5). Again we ignore target nodes

for which the tangent estimation delivers no result.

Now we determine if the tangent of the source node points towards

the target node and vice versa. We therefore calculate the distance

between the position of the investigated target node and the tangent

of the source node. If the distance is greater than the vessel radius at

the source node multiplied by a tolerance factor of 1.5, we reject the

target node candidate. Otherwise we calculate the distance between

the position of the source node and the tangent of the target node. If

the distance is greater than the radius of the target node multiplied by

a tolerance factor of 1.5, we also reject the investigated target node.

Among all target nodes that fulfill the above constraints, we have to

identify the most appropriate node. For each target node we calculate

the angle between its tangent and the tangent of the source node. The

target node with the minimal tangent angle less or equal the maximal

branch angle βmax is selected and a connection between source and

target node is created. The pseudo code for the application of an I-

Connection rule is shown in Algorithm 3.

4.3.3 T-Connection rule

This rule addresses connections between end nodes of the current vessel

trees and inner nodes of unprocessed vessel segments. This way we

handle bifurcations where the vessel segment of one branch is tracked

into the other branch. An example for a possible T-Connection is

shown in figure 4.5

Analog to the I-Connection rule, the tangent at the investigated

source node is estimated (see section 4.3.5). Again we skip the investi-

gation of the current source node if the estimation method returns no

result.

Next we try to find the target node with the minimal tolerance dis-

tance to the tangent. Target nodes are all inner nodes of unconnected

vessel segments within the defined maximal search radius rsearch around

the position of the source node. Again we accept only target nodes that

are situated at the outward pointing side of the plane defined by the

estimated tangential direction and position of the source node.
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Algorithm 3 Pseudo code for the target node identification of the I-
Connection rule.
Input: Source node nsource with position ps, direction ds and radius rs
Output: Set Ntarget of identified target nodes for nsource
1: Ntarget = {}
2: if (rootdist(nsource) ≤ droot) ∧ (tangent ts of nsource using path size
pathtangent can be estimated) then

3: Generate sub-set of potential target nodes Ncandidates in set of nodes
Nall of all tracked vessel segments

Ncandidates = {ni ∈ Nall :



ns not connected to ni ∧
ni is end node of its segment ∧
|−−→pspi| ≤ rsearch ∧
pi on pos. side of plane(ps, ts) ∧
max

(
rs
ri
, rirs

)
≤ ratioradius ∧

distance(ts,pi) ≤ 1.5 · ri ∧
tangent ti can be estimated ∧
distance(ti,ps) ≤ 1.5 · rs ∧
∠(ts, ti) ≤ βmax


}

4: if Ncandidates 6= {} then
5: nj = ni ∈ Ncandidates with minimal ∠(ts, ti)
6: Ntarget = {nj}
7: end if
8: end if
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root of vessel tree

Figure 4.5: T-Connection rule: Estimation of the tangent (dot dashed line)
at a possible T-Connection.

Now we check if the radii of source and target node are similar

enough to be classified as nodes from the same vessel. The algorithm

only accepts target nodes if the fraction of the radii of source node

rsource and the investigated target node rtarget differ not more than the

maximal radii fraction ratioradii

max

(
rsource
rtarget

,
rtarget
rsource

)
≤ ratioradii (4.4)

defined as rule parameter. If this condition is fulfilled, we calculate

the distance between the position of the investigated target node and

the tangent of the source node. We proceed only if the normal distance

is less than the radius of the target radius multiplied with a tolerance

factor of 1.5. Among all considered target nodes, we finally choose the

one with the minimal distance to the tangent of the source node.

Again we have to verify if the potential connections between the

source node and the found target nodes comply with the branch angle

criterion defined by the maximal branch angle βmax. According to the

fact that we only consider inner nodes of unconnected vessel segments,
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both sub-segments between the target node and the end nodes of the

vessel segment have to be considered.

Figure 4.6: Branch angles β1 and β2 between tangent of source node and
both sub segments of a possible T-Connection.

The estimation of the tangents of these branching segments differs

from the estimation of tangents for the end nodes of segments. For

each of these sub segments we consider a node path of size defined by

rule parameter pathtangent, starting at the target node. We measure

the angle between the tangent of the branch segment and the tangent

of the source node. If both angles β1 and β2 of both sub segments (as

shown in figure 4.6) are less or equal the maximal branch angle βmax
the target node is finally connected to the source code. Algorithm 4

shows the pseudo code for the application of a T-Connection rule.

4.3.4 Y-Connection rule

This kind of rule is applied on inner nodes of the current vessel trees to

identify connections to end nodes of unprocessed vessel segments. We

search for Y-Connections by using the same logic as for T-Connections,

but the other way around. This time we consider all end nodes around

the source node within search radius rsearch as possible target nodes.

Again we process only target nodes for which a tangent according to the
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Algorithm 4 Pseudo code for the target node identification of the T-
Connection rule.
Input: Source node nsource with position ps, direction ds and radius rs
Output: Set Ntarget of identified target nodes for nsource
1: Ntarget = {}
2: if (rootdist(nsource) ≤ droot) ∧ (tangent ts of nsource using path size
pathtangent can be estimated) then

3: Generate sub-set of potential target nodes Ncandidates in set of nodes
Nall of all tracked vessel segments

Ncandidates = {ni ∈ Nall :



ns not connected to ni ∧
|−−→pspi| ≤ rsearch ∧
pi on pos. side of plane(ps, ts) ∧
max

(
rs
ri
, rirs

)
≤ ratioradius ∧

distance(ts,pi) ≤ 1.5 · ri


}

4: if Ncandidates 6= {} then
5: nj = ni ∈ Ncandidates with minimal distance(ts,pi)
6: Calculate tangents t1 and t2 for both node paths of nj
7: if (∠(ts, t1) ≤ βmax) ∧ (∠(ts, t2) ≤ βmax) then
8: Ntarget = {nj}
9: end if

10: end if
11: end if
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method described in section 4.3.5 can be calculated. We only accept

target nodes if the source node is the node with the minimal distance

to the tangent of the investigated target node and the distance is less

or equal the radius of the source node multiplied by a tolerance factor

of 1.5. Figure 4.7 shows the application of this rule on a potential

Y-Connection.

tolerance distance

β

node path for tangent estimation root of vessel tree

Figure 4.7: Y-Connection rule: Estimation of the tangent (dot dashed line)
at a possible Y-Connection.

For each of the potential target nodes we have to evaluate if the

angle between the tangents of source and target node is less or equal the

maximal branch angle βmax. Therefore we use the same calculation of

tangents like the already described T-Rule. For retrieving the tangent

of the source node we consider a node path of size 4 starting at the

source node. Due to the fact that the source node is part of a vessel

tree, several possible paths may exist. Therefore we choose the most

straightest path according to the straightness evaluation described in

section 4.3.5. The tangent of the source node is represented by the

vector pointing from the last node of the node path to the second node

of the path. For the tangent of the target node we consider a node path

of the same length starting at the target node. This time the tangent

is calculated as the vector pointing from the position of the target node

to the position of the last node on the node path. If the branch angle

between the tangents of the source node and the potential target node

are less or equal βmax, source and target node are connected. The

pseudo code for the application of an Y-Connection rule is shown in
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Algorithm 5.

Algorithm 5 Pseudo code for the target node identification of the Y-
Connection rule.
Input: Source node nsource with position ps, direction ds and radius rs
Output: Set Ntarget of identified target nodes for nsource
1: Ntarget = {}
2: if rootdist(nsource) ≤ droot then
3: Generate set of potential nodes

Ncandidates = {ni ∈ Nall :

{
ni is end node of its segment ∧
|−−→pspi| ≤ rsearch

}
}

4: for each ni ∈ Ncandidates do
5: Apply T-rule with ni as input source node with same rule paramters

as this Y-rule and retrieve the resulting set Ntrule

6: if Ntrule 6= {} then
7: if nsource ∈ Ntrule then
8: Ntarget = Ntarget ∪ {ni}
9: end if

10: end if
11: end for
12: end if

4.3.5 Tangent estimation

Starting at the end node of the investigated segment we consider a node

path of size pathtangent. Because of the fact that this simple heuristic

approximates the course of bended structures by lines, it should be only

applied to vessel segments that show a sufficient degree of straightness.

Figure 4.8 compares two node paths that show a different degree of

straightness.

straight enough: not straight enough:

Figure 4.8: Comparison of node paths with different degrees of straightness.

Before we can search for potential continuations of end nodes of

vessel segments we first need to estimate the tangent at the investigated



46 CHAPTER 4. THE END POINT: THE BEST OF TWO WORLDS

angles between edges of inner nodes

node path for tangent estimation

Figure 4.9: Calculation of angles between egdes of inner nodes of the consid-
ered node path. Only if the mean of this angles is below αmax (maximal avg.
angle of node path), the node path is straight enough for the estimation of
the tangent.

end node. Starting from this node, we consider a node path of size

pathtangent. The tangent of the end node is then defined by the position

of the end node and by the vector between the position of the last node

of the path and the position of the end node.

Because of this linear type of interpolation we first have to check if

the investigated node path is straight enough for a reasonable direction

estimation. Therefore we calculate the average angle between consec-

utive edges of all inner nodes of the node path, as shown in figure 4.9.

The tangent is only calculated, if the average angle is less or equal the

maximal average angle of node path αmax, defined as rule parameter.

Otherwise the tangent estimation procedure and the connection rule

algorithms skip the corresponding node path, as described in the rule

sections above. Furthermore, if the node path traverses a node with

more than two adjacent nodes, we choose the node with the minimal

angle between two consecutive edges.

4.3.6 Tree growing main algorithm

In the previous section, the concept of connection rules has been pre-

sented. In the following we investigate the main algorithm of the tree

growing method (see Algorithm 6).

The basic idea is the definition of a set of vessel segments that rep-

resent the initial vessel trees. Additionally we define a set of connection

rules for the evaluation of possible connections. With each iteration,

the algorithm extends the tree with an applicable vessel segment, until
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Algorithm 6 The main routine of the tree growing algorithm.

Input: Set of root nodes, ordered set of rule instances
Output: Grown vessel tree per root node. Vessel segments at the given

root nodes represent the initial vessel trees
1: for each rulei do
2: for each each node of the current vessel trees nsource (Order by root

distance traversal) do
3: Retrieve set Ntarget of target nodes by applying rulei on nsource
4: if Ntarget 6= {} then
5: for each ntarget ∈ Ntarget do
6: Connect nsource with ntarget
7: end for
8: Restart iteration at line number 1
9: end if

10: end for
11: end for

no further unconnected vessel segment can be connected.

For the identification of the initial vessel trees, the algorithm re-

quires the user-defined locations of the roots of the observed vessel tree

structure. In the domain of coronary artery tracking, the user defines

for each of the LCA and RCA tree one point right next to the os-

tium inside the artery. For each of these root positions, the algorithm

determines the vessel segment containing the node with the minimal

distance. Each identified vessel segment represents the initial coronary

artery tree at the user-defined position, and the identified node rep-

resents the root node of this vessel tree. After this initialization, the

algorithm extends the vessel tree in each iteration with an additional

vessel segment, if one of the specified rules is applicable.

The node traversal of the current coronary artery trees within the

application of a connection rule instance is done in a Breadth-first

manner. We first visit all root nodes of the current trees. After that

the next traversed node is the node with the minimal node path length

between the node and its root node. Instead of traversing (and hence

extending) each tree serially, we traverse all trees in a simultaneous

way. This helps to avoid the connection of unprocessed vessel segments

during the extension of one tree, which would actually fit better to

another vessel tree.

During one iteration, we stepwise apply the defined rule instances
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on the vessel tree, starting with the first defined rule in the set. The

nodes of the vessel trees are visited in the described traversal-order.

On each visited node, the current rule is applied. If this rule finds

one (I-Connection rule & T-Connection rule) or several (Y-Connection

rule) target nodes, the source node is connected with each found target

node and the iteration starts from the root node with the application

of the first rule on the extended vessel trees. If the application of the

current rule returns no connection after processing each node of the

current vessel trees, the algorithm proceeds with the next rule in the

set. If no rule identifies a new connection in the current iteration, the

tree growing algorithm terminates.

4.3.7 Sub-tree search algorithm

The presented main algorithm is designed to construct vessel trees

starting at the vessel segments next to the user-defined roots of the

observed vessel tree structures. The set of defined connection rule in-

stances provide different heuristics for the overcoming of gaps up to a

certain degree. In most of the cases this mechanism is meant to over-

come local areas of low contrast for the identification and linkage of

vessel segments of the observed vessel tree.

Sometimes these areas of low contrast show a much wider dimension

than the defined connection rules can cover. If these wide distance

gaps would be addressed with additional rules that allow gaps over

long distances (by defining a high maximal search radius rsearch), the

algorithm would end up in connecting a high number of false-positive

vessel structures (i.e. veins), that are not part of the artery tree.

During the development we recognized that - in some cases - coro-

nary arteries near the ostium are not recognized by the vessel tracking

algorithm in areas of very low contrast. In the more distal parts the

contrast increases and the coronary artery is properly tracked by the

tracking algorithm. The reconstruction of this distal part of the ob-

served coronary artery sub-tree can be achieved with the presented

vessel tree construction method. Please note that the following strat-

egy represents a heuristic approach. Due to the fact that we search for

additional tree structures of a minimal length, the approach presented

in the following does not necessarily identify only coronary artery trees,

but also any other elongated tree structures. Nevertheless, depending
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on the clinical application of the presented tracking algorithm, these

false-positive coronary artery trees may be acceptable, if at the same

time true-positive sub-trees of the coronary arteries after severe occlu-

sions and image artefacts can be identified. If such additional heuristics

are used, the user should be able to easily distinguish these addition-

ally found trees from the coronary artery trees that have been tracked

based on the ostia positions, as described in the previous sections.

The basic idea of this approach is to construct vessel trees for every

so far unconnected vessel segment around the user-defined root points.

Then we choose the end node of the biggest calculated vessel tree as the

root of an additional coronary artery sub-tree. For the identification of

possible additional coronary artery sub-trees the algorithm considers

end nodes within a search radius of 20 mm around the user-defined root

locations of the left and right coronary artery trees. Only end nodes of

vessel segments longer than 5 mm are accepted. We consider each found

end node as the potential root node of a coronary artery sub tree and

apply the tree growing algorithm as described in section 4.3.6. After

the measurement of the total path length of the constructed vessel tree

at the investigated end node, all found connections are reverted and

the next end node is processed.

All end nodes with a calculated tree length below a fixed minimum

tree length of 60 mm are ignored. If no end node is remaining, the

sub-tree search algorithm terminates. Otherwise the end node with

the maximum calculated tree length is selected. Because all of the

evaluated vessel trees have been created only temporally, the vessel

tree of this end node is reconstructed using the mentioned tree growing

algorithm and is finally added to the so far calculated vessel trees at

the user-defined root points.
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Chapter 5

Implementation

The following chapter describes the assigned parameters and rule in-

stances used in the implementation of the presented method in chapter

4, for which the algorithm produces the results that are discussed in

chapter 6.

5.1 Parameters and connection rules

Our method as presented in chapter 4 has been implemented in the

programming language Java. The assigned values for the introduced

method parameters are summarized in table 5.1.

During analysis of the training data and the development of the

algorithm we empirically defined six different connection rules for the

reconstruction of the coronary artery trees. The parameters of these

rules are shown in table 5.2. The main algorithm of the tree growing

method (see section 4.3.6, Algorithm 6) applies the rule in the order in

which they are defined. So the order of the rule instances represents

the confidence of the results of different rules. For example I-Rules

examine if the tangent directions of two nearby end nodes are pointing

well enough towards each other. By contrast, a T-Rule considers only

if the tangent directions of an end node points well enough towards an

inner node of a nearby vessel segment. Therefore the I-Rule is meant

to be applied first on the nodes of the current vessel trees, before the

T-Rule is applied. Similarly, Y-Rules with less search radius rsearch are

applied before Y-Rules with more tolerant search radii rsearch. In the

following the different instances of connection rules are described.
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Parameter Value Comment
Pmyo 524 HU Discrimination between myocardium and lung tissue
Pheart 2 mm Shift calculated intersection points during heart masking

along scan lines to avoid exclusion of vessel on heart surface
Pgradient 772 Minimal threshold of gray value gradient that represents a

significant transition between foreground and background
of a vessel profile

Pradius 1.2 Maximal fraction between radius r and length of vector
−−→
pp′′ for vessel profile estimation

PfactorOut 1.1 Scaling of rc to define outer sample circle for vessel profile
evaluation

PfractionOut 0.9 Minimum fraction of sampled gray values below threshold
tgray that is needed for the acceptance of an estimated
vessel profile

Pfbelow 0.6 Maximal fraction of gray value differences of corresponding
pairs of inner and outer texture samples below mean gray
value difference δ̄g

Table 5.1: Summary of the chosen parameter values used in the implemen-
tation of the presented method described in chapter 4

No. Name rsearch pathtangent αmax βmax ratioradii droot
1 I-Rule 10 mm 5 12◦ 25◦ - -
2 I-Rule-StrongBend 2 mm 2 12◦ 60◦ - -
3 T-Rule 5 mm 5 22◦ 110◦ 2.0 100 mm
4 Y-Rule-SmallDist 2 mm 5 22◦ 120◦ 2.5 50 mm
5 Y-Rule-MediumDist 5 mm 5 22◦ 80◦ 2.5 -
6 Y-Rule-LargeDist 10 mm 5 22◦ 35◦ 2.5 -

Table 5.2: Table shows the order of the defined connection rules and the
corresponding parameters for the vessel tree growing.
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5.1.1 I-Rule

The purpose of this I-Rule instance is to find continuations of vessels

across regions of low local contrast. The maximal search radius rsearch is

fixed to 10 mm and the maximal angle between the tangent directions

at the investigated end nodes must not exceed the maximal branch

angle βmax = 25◦.

5.1.2 I-Rule-StrongBend

Other than the previous defined I-Rule, this I-Rule instance addresses

the connection of vessel segments that show strong bending. Therefore

the length of the investigated node paths for the tangent direction

estimation is reduced (pathtangent = 2) and the maximal branch angle

has been raised (βmax = 60◦).

5.1.3 T-Rule

This connection finder instance aims for the connection of end nodes

of the vessel tree with an unprocessed vessel segment representing two

branches. This constellation sometimes appears at bifurcations near

the root of coronary artery trees. During the vessel tracking phase a

vessel segment of a branch may be tracked before the parent vessel seg-

ment at the proximal part of the bifurcation is tracked. If the tracking

method evaluates cylinder candidates at the location of the bifurcation

it may happen that the best evaluating cylinder models are pointing

towards the other branch segment and not towards the segment con-

nected to the vessel root. We observed that most of the T-Connections

are present in areas near the vessel tree roots, hence only end nodes

with a maximal root distance droot = 100 mm are considered.

5.1.4 Y-Rule-SmallDist

The purpose of this instance is to connect branches of bifurcations

near the vessel tree roots accepting wider branch angles. We only

consider end nodes having a path distance from the root less or equal

to droot = 50 mm. Due to the observation that bifurcations at the very

proximal regions of the artery tree (especially at the LCA) show wider

branch angles than bifurcations in the distal parts we allow a more
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tolerant maximal branch angle βmax = 120◦. Only connections within

search radius rsearch are permitted.

5.1.5 Y-Rule-MediumDist

This Y-Rule instance aims for the connection of branches which show

a maximal branch angle βmax = 80◦ and do not exceed the maximal

distance of rsearch = 5 mm.

5.1.6 Y-Rule-LargeDist

This Y-Rule instance tries to identify Y-Connections in areas of low

contrast. The limited maximal branch angle βmax = 35◦ allows a larger

maximal distance rsearch = 10 mm.

5.2 Hardware and performance

This section gives an overview of the performance. The tests have been

carried out on a workstation with an Intel Core 2 Duo Processor (2.4

GHz) and 2 GB RAM. The calculation of the seed points (phase 1)

takes about 10 seconds. The duration of the following tracking of

the vessel segments (phase 2) varies between 8-10 minutes. The tree

growing algorithm for the reconstruction of the coronary vessel trees

(phase 3) takes less than 1-2 seconds.



Chapter 6

Results

This chapter presents the results obtained by the implementation pro-

posed in the previous chapter. The chapter is organized as follows:

• Introduction of the evaluation framework (section 6.1)

• Results of the overlap and accuracy measures obtained by the

presented method using the evaluation framework (section 6.2)

• Comparison of the results of the new approach with the results

of the approach of Zambal et al. (section 6.3)

• Results on other medical data (section 6.4)

6.1 Evaluation Framework

Within the MICCAI 2008 conference Schaap et al. presented the ”Rot-

terdam Coronary Artery Algorithm Evaluation Framework” [22]. The

purpose of this framework is to provide an objective (and quantitative)

comparison of different algorithms for the extraction of coronary arter-

ies. The following overview of the evaluation framework closely follows

the paper of Schaap et al. [22].

6.1.1 Training and test datasets

The framework involves 32 randomly selected CTA datasets. These

datasets were acquired either with 64-slice or dual-source scanners and

show a wide variety of image quality and degree of disease. In each

dataset the centerlines of four coronary arteries were annotated by
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three trained observers. Afterwards the average centerline was com-

puted by use of a mean shift algorithm for open curves. In the next

step a consensus centerline was created: Each observer compared his

centerline with the averaged centerline of all observers and corrected

errors if present. The corrected centerlines were used to create the

reference standard of the framework.

The first 8 datasets may be used for the training, whereas the re-

maining 24 datasets are only used for the performance evaluation of

the algorithms. All 32 datasets are published on the website of the

evaluation framework, but only the reference standard centerlines of

the 8 training datasets are provided. Once the tracking algorithm has

been finalized, the teams can submit the calculated centerlines of the

24 test datasets via the website of the evaluation framework, where the

evaluation results of the 24 test datasets are finally published.

6.1.2 Evaluation measures

The framework defines several measures for the evaluation of extracted

coronary artery centerlines. The provided evaluation measures allow

the discrimination between the extraction capability and the extraction

accuracy of the considered extraction method.

Correspondences between centerlines

The evaluation measures are based on the point-to-point correspon-

dences between the extracted centerline and the reference centerline.

First the centerlines are equidistantly sampled using a sample distance

of 0.03 mm. The extracted centerline is clipped by a disc positioned

at the first point of the reference centerline, having a disc radius of

twice the annotated radius and an orientation along the tangential di-

rection at the beginning of the reference centerline. The reason for this

clipping is, that the beginning of a coronary artery is defined at the

ostium. Therefore no point before the first intersection of the extracted

centerline with this disc is considered during the evaluation.

Definition of true positive, false positive and false negative points

The evaluation is done by classification of points on the centerlines

as true positive, false positive and false negative points. This is based
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on the point-to-point correspondences between the extracted centerline

and the reference centerline.

A point on the reference centerline is marked as true positive TPRov

if the distance to at least one of the corresponding points on the ex-

tracted centerline is below the annotated radius, and false negative

FNov otherwise.

Analogous, a point on the extracted centerline is marked as true

positive TPMov if the distance to at least one of the corresponding

points on the reference centerline is below the annotated radius, and

false positive FPov otherwise. The cardinality of a set of points is de-

noted with ||.||, e.g., the number of true positive points on the reference

centerline is denoted as ||TPRov ||.

Overlap measures

The evaluation framework considers three different overlap measures.

Overlap OV reflects the ability to track the complete vessel.

OV =
||TPMov ||+ ||TPRov ||

||TPMov ||+ ||TPRov ||+ ||FNov ||+ ||FPov ||
(6.1)

Overlap until first error (OF) measures how much of a vessel has

been tracked until the occurrence of the first error. It is the ratio

of the number of true positive points on the reference centerline

before the first error (TPRov) and the total number of reference

points (TPRof + FNof).

OF =
||TPRof ||

||TPRof ||+ ||FNof ||
(6.2)

Overlap with the clinically relevant part of the vessel (OT) reflects

the ability of a method to track the clinical relevant part of a

coronary artery. The last point of the reference centerline with a

diameter larger or equal than 1.5 mm is determined. Only points

on the reference centerline between this point and the beginning

of the reference centerline are considered for the labelling of true

positive (TPRot, TPMot), false negative (FNot) and false positive

(FPot) points.
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OT =
||TPMof ||+ ||TPRof ||

||TPMof ||+ ||TPRof ||+ ||FNof ||+ ||FPof ||
(6.3)

Accuracy measure

Due to the reason that the evaluation should discriminate between

tracking capability and tracking accuracy, the accuracy is only calcu-

lated within sections where the tracking succeeded.

Accuracy inside vessel (AI) is the average distance between cor-

responding points of the extracted centerline and the reference

centerline, where the distance is less or equal the annotated ra-

dius of the point on the reference centerline. This measure reflects

the accuracy of the centerline extraction, given that the extracted

centerline lies within the vessel.

6.1.3 Scoring & ranking of the algorithms

Each of the evaluation measurements is associated with the observer

performances by a relative score: 100 points if the evaluated result is

perfect, 50 points if the quality of the results is similar to the perfor-

mance of the observers and 0 points if the extraction completely fails.

A detailed overview on the scoring method of the framework and the

calculation of the observer performance is given by Schaap et al. [22].

The achieved rank of a method on a particular vessel is obtained by

the comparison of the scores of all participating methods of the evalu-

ation framework, ranging from 1 (best) to the number of participating

methods (worst). The tracking capability is calculated as the average

of all 288 (3 overlap measures × 24 test datasets × 4 vessels) related

ranks. Analogously the rank of the 96 (24 test datasets × 4 vessels)

accuracy measures is obtained. The overall rank of a method is the

average of the overlap and accuracy rank.

6.1.4 Algorithm categories

The evaluated algorithms are divided into three different categories

according to their degree of user-interaction:

• Automatic extraction
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• Extraction with minimal user interaction

• Interactive extraction

Category 1: automatic extraction

Methods within this category extract the coronary artery centerlines

without any user-interaction. For the evaluation of the centerlines,

two points of each reference centerline are given to select the right

centerline.

• Point A: A point on the reference centerline at the distal part

of the vessel. This point unambiguous defines the vessel to be

tracked.

• Point B: A point on the reference centerline, situated about 3 cm

distal to the beginning of the coronary artery vessel.

Point A should be used for the selection of the extracted centerline.

If the result of the extraction methods does not contain a vessel near

point A, point B should be used. These points are only given for the

selection of the appropriate extracted centerline and must not be used

during the centerline extraction algorithm.

Category 2: extraction with minimal user-interaction

In this category one point per vessel out of the following list is allowed

to be used as input for the extraction algorithm.

• Point A or B: see Category 1.

• Point S: Start point of the centerline

• Point E: End point of the centerline

• Point U: any manually chosen point

In cases where the extraction algorithm produces a vessel tree from

the initial point, points A and B may be used for the selection of the

appropriate centerline (see category 1).
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Category 3: interactive extraction

All methods that require more than one initially defined point belong

to this category. They can use a series of manually chosen points,

some or all points defined in category 2, or a point and a user-defined

threshold.

6.2 Results

The method described in chapter 4 has been evaluated with the 24 test

datasets (datasets no. 8-31) of the evaluation framework. The sum-

mary of the results are shown in table 6.1. A more detailed overview

on the evaluated measures per vessel for each test datasets is shown in

table 6.4 (datasets no. 8-19) and in table 6.5 (datasets no. 20-31).

Measure % / mm score rank
min. max. avg. min. max. avg. min. max. avg.

OV 0.2% 100.0% 89.5% 0.1 100.0 53.6 1 16 8.10
OF 2.9% 100.0% 70.1% 1.7 100.0 51.7 1 16 6.90
OT 0.3% 100.0% 91.1% 0.1 100.0 64.4 1 16 6.21
AI 0.11 mm 0.78 mm 0.24 mm 7.2 76.8 47.5 1 16 2.43

Total 1 16 4.75

Table 6.1: Summary of the evaluation measures of the 24 test datasets.

6.2.1 Overlap results

The overlap results for the 24 test datasets of the evaluation framework

are shown in table 6.2. In the following we investigate the average

results of the three different overlap measures.

OV

The average overlap (OV) on the test dataset is 89.5%. Figure 6.1(a)

shows the OV measure per dataset, ordered by increasing OV measure.

83% of the datasets exhibit an OV measure of more than 80%.

OF

The average of the overlap until first error measure (OF) is 70.1 %.

Figure 6.1(b) shows the OF measure per dataset, ordered by increasing

OF measure.
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Figure 6.1: Evaluated overlap measures of all 24 test datasets, ordered by
increasing measures. (a) overlap (OV), (b) overlap until first error (OF), (c)
overlap with clinical relevant part of the vessel (OT)
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Dataset OV OF OT Avg.
nr. % score rank % score rank % score rank rank
8 78.1 42.1 8.75 48.5 34.5 9.25 79.5 42.3 9.25 9.08
9 95.3 60.2 7.25 91.3 63.7 6.50 96.2 73.2 6.75 6.85
10 84.6 57.6 7.75 74.7 50.9 4.50 89.8 57.9 7.50 6.60
11 91.2 46.6 8.25 31.2 30.0 6.75 91.4 46.7 8.00 7.67
12 90.7 46.8 7.25 44.6 36.3 11.25 94.2 60.2 7.00 8.50
13 91.5 46.4 10.75 50.3 26.0 10.25 95.1 47.9 10.25 10.40
14 99.0 73.4 3.75 83.2 82.0 4.25 99.2 87.2 2.25 3.40
15 73.9 44.6 11.25 75.7 62.9 8.00 74.9 62.5 8.25 9.15
16 94.6 58.0 7.75 92.4 69.7 3.75 100.0 100.0 1.00 4.17
17 87.0 44.8 9.25 37.8 19.8 10.25 87.3 44.5 9.75 9.75
18 93.5 53.3 8.50 90.7 71.3 3.75 94.1 72.6 5.00 5.77
19 96.0 74.6 6.50 93.4 85.9 4.00 96.2 86.6 3.75 4.75
20 94.4 55.6 7.50 90.0 55.8 4.50 94.4 47.6 7.50 6.47
21 96.3 50.9 8.50 96.9 79.0 5.00 98.2 63.7 6.00 6.50
22 98.7 60.2 6.50 98.0 61.6 6.50 99.2 87.1 3.00 5.35
23 98.1 54.4 7.25 70.9 60.7 7.25 98.2 74.3 4.75 6.42
24 93.0 53.5 8.25 75.7 72.2 5.25 96.8 85.9 3.00 5.50
25 78.3 39.5 9.50 59.3 42.6 4.75 80.5 52.8 7.00 7.08
26 53.8 28.2 8.50 12.3 8.6 11.00 54.7 28.7 8.50 9.35
27 82.2 43.2 9.00 31.5 18.6 11.50 82.7 42.4 8.75 9.75
28 89.4 56.4 9.75 76.4 54.0 7.50 90.8 59.2 8.75 8.68
29 96.6 71.4 5.25 75.4 50.8 5.25 97.8 86.4 2.25 4.25
30 95.1 57.5 8.50 85.8 45.0 7.75 97.4 61.9 6.50 7.58
31 95.9 68.2 9.00 95.9 58.1 6.75 98.7 74.6 4.25 6.65

Avg. 89.5 53.6 8.10 70.1 51.7 6.90 91.1 64.4 6.21 7.07

Table 6.2: Average overlap measures of the 24 test datasets.

OT

The average overlap with the clinically relevant part of the vessel (OT)

is 91.1 %. Figure 6.1(c) shows the OT measure per dataset, ordered

by increasing OT measure. 88% of the datasets show an OT measure

of more than 80%.

6.2.2 Accuracy results

The accuracy inside vessel (AI) results for the 24 test datasets of the

evaluation framework are shown in table 6.3. Figure 6.2 shows the

results ordered by increasing accuracy. The average AI measure is

0.24 mm, which is significantly below the image voxel size (0.4 mm).

Dataset 26 - as the only outlier - exhibits an AI measure above the

image voxel size.
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Dataset AI Avg.
nr. mm score rank rank
8 0.24 50.7 4.00 4.00
9 0.16 50.6 1.75 1.75
10 0.26 45.4 1.50 1.50
11 0.31 45.6 3.00 3.00
12 0.24 46.1 2.50 2.50
13 0.21 50.2 1.75 1.75
14 0.28 48.8 2.50 2.50
15 0.32 41.9 5.50 5.50
16 0.20 47.4 1.50 1.50
17 0.32 47.2 4.00 4.00
18 0.19 48.9 2.50 2.50
19 0.23 50.9 2.25 2.25
20 0.34 47.2 2.00 2.00
21 0.16 46.8 2.25 2.25
22 0.19 49.4 1.25 1.25
23 0.22 46.9 2.25 2.25
24 0.14 49.2 1.50 1.50
25 0.30 43.9 2.25 2.25
26 0.49 54.9 4.00 4.00
27 0.35 41.7 3.25 3.25
28 0.15 48.6 1.25 1.25
29 0.19 46.0 1.75 1.75
30 0.18 45.9 1.50 1.50
31 0.15 45.0 2.25 2.25

Avg. 0.24 47.5 2.43 2.43

Table 6.3: Accuracy inside vessel (AI) measures of the 24 test datasets.
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Figure 6.2: Accuracy inside vessel (AI) measures of all 24 test datasets.
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6.3 Comparison to base approach

The measured average overlap OV is 89.5%, which represents an in-

crease of 4.8% compared to the approach of Zambal et al. (with 84.7%

OV). The accuracy inside vessel AI is 0.24 mm, signifying a small

further improvement of 0.04 mm in comparison with the approach of

Zambal et al. (0.28 mm AI). The comparison of the evaluated measures

between the presented method and the approach of Zambal et al. is

shown in figures 6.3(a) (OV) and 6.3(b) (AI).

Zambal et al. report a calculation time of 4 to 8 minutes per data

set, measured on a PC with Pentium 4 CPU with 3.2GHz and 2GB

of RAM. As described in section 5.2, our presented method performs

the tracking of the coronary artery trees in less than 10 minutes per

dataset on a Intel Core 2 Duo Processor (2.4 GHz) and 2 GB RAM.

The evaluation on different CPU generations inhibits a direct compar-

ison between the computation time, but we can at least state that the

computational complexity of the new approaches seems similar to the

approach of Zambal et al.

In the following sections the strong and weak points of the proposed

method are presented. Section 6.3.1 addresses the most significant im-

provements compared to the approach of Zambal et al. The limitations

of the proposed method are divided into issues of the tracking method

(see section 6.3.2) and issues of the rule based connection approach (see

section 6.3.3).

6.3.1 Improvements

The most prominent increase of the overlap measure OV has been

achieved on dataset 26. This dataset shows a high presence of stenoses.

The presented method achieved an average overlap of 53.8%, which rep-

resents almost an increase of a factor two compared to the results of

the method of Zambal et al. (30.1% OV). Figure 6.4 shows the results

of the three phases of the presented approach on dataset 26. Thanks

to the successful application of the Y-Rule-LargeDist (see section 5.1),

the RCA is tracked through a stenotic region of low contrast, which is

marked by the blue arrow in figure 6.4(c). Other than the presented

approach, the extraction method of Zambal et al. has not tracked these

distal parts of the coronary artery. Figure 6.5 visualizes the compar-
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Figure 6.3: The comparison of the evaluated measures between the presented
method and the approach of Zambal et al. of the 24 test datasets: (a) overlap
(OV), (b) Accuracy inside vessel (AI).
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ison of the extracted centerlines between the presented approach and

the method of Zambal et al.

In dataset 11 the complete branch of vessel number 3 has been

tracked due to the successful application of the Y-Rule-MediumDist

(see section 5.1). This branch has been missed by the approach of

Zambal et al. (marked with blue arrows in figure 6.6(c) and 6.6(e)).

The overlap measure OV for vessel 3 improved from 16.1% (Zambal et

al.) to 93.1%. Hence the average overlap OV of dataset 11 has been

increased from 71.9% (Zambal et al.) to 91.2%.

In dataset 14 the branch of vessel 3 has been tracked almost com-

pletely (OV 99.7%), whereas the method of Zambal et al. has tracked

the other branch of the affected bifurcation leading to a lower overlap

(OV 51.5%).

The average overlap OV of dataset 22 improved from 77.9% (Zam-

bal et al.) to 98.7%. Similar to the previous example the improvement

is based on the fact that two vessels have been tracked almost com-

pletely, whereas the tracking approach of Zambal et al. missed these

two branches.

In dataset 23 the new approach enables the tracking of both branches

at the bifurcation of reference vessel 2, whereas the approach of Zambal

et al. tracked the branch which does not belong to the annotated ref-

erence vessel. This way the overlap OV of vessel 2 has been improved

from 32.9% (Zambal et al.) to 98.7%. Hence the average overlap OV

of dataset 23 increased from 82.2% (Zambal et al.) to 98.1%.

The improvements show that the novel ”bottom-up” approach seems

to improve tracking performance at bifurcations, where the old tracking

method seems to have problems with the matching of shape models at

the regions of branches. The weak matching at this areas may be due

to the fact that the tracked vessel looses its tube-like appearance right

at the position of a bifurcation. Assuming that phase one of the pre-

sented algorithm identifies seed points in all branches of a bifurcation,

the branches will be tracked by the tracking algorithm. Further assum-

ing that distance and orientation of the branch segments is within the

constraints of one of the defined connection rules, all branches of the

bifurcation will be found.
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(a) (b)

(c)

Figure 6.4: Results of the three phases of the algorithm on dataset 26: (a)
calculated seed points, (b) extracted vessel segments, (c) constructed CA
tree; The RCA is tracked through a stenotic region of low contrast (blue
arrow) due to the successful application of the Y-Rule-LargeDist.
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Figure 6.5: Comparison of the extracted centerlines by the method of Zam-
bal et al. (gray) and the approach presented in this thesis (black) on dataset
26. The figure shows only the centerlines used for the evaluation.

6.3.2 Tracking issues

Some degradations of the results of the new approach are caused by the

premature termination of vessel segments during the tracking phase

of the algorithm. Affected locations are distal parts of the coronary

arteries where the contrast between vessel and background gets lower.

This premature termination has strong impacts on the decreased OV

measures of datasets 20 and 25. Figures 6.6(d) (dataset 11) and 6.7(a)

(dataset 20) show examples for the premature termination of two vessel

segments in comparison with the extracted centerlines of Zambal et al.

Before the termination of tracking, the tracked vessel segments

sometimes bend away from the real path of the vessel. Figures 6.7(b)

& 6.7(c) show two examples of this kind of premature termination,

occurring in dataset 27.

The observed examples of premature termination seem to be a con-

sequence of the greedy manner of the tracking method: Once the track-

ing algorithm has chosen the candidate with the minimal cost value and

the termination criterion is not fulfilled, the segment gets extended with
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(a) (b)

(c)

(d) (e)

Figure 6.6: Dataset 11: (a) results of vessel tracking, (b) constructed coro-
nary artery trees, (c) comparison of extracted centerlines between presented
approach (black) and the approach of Zambal et al. (gray), (d) red ar-
row: premature termination of vessel segment, (e) blue arrow: successfully
tracked branch that is missed by the approach of Zambal et al.
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the chosen candidate. Areas of low local contrast or of high gray value

(spots of calcifications) sometimes lead to a next candidate with min-

imal costs, but which does not properly lie on the real vessel. The

outward pointing direction of the wrongly chosen candidate therefore

does not point towards the continuing part of the observed vessel. In

the next tracking step, non of the generated shape models will reside

on the observed vessel and the tracking will stop because the measured

texture will not conform to the expected values of the shape model. Due

to additional bifurcation handling, the tracking algorithm of Zambal

et al. indirectly overcomes cases of wrongly chosen optimal candidates

by searching for possible branches at all positions of the tracked vessel

segment.

A solution for both cases of premature tracking termination may be

the in-depth evaluation of potential vessel paths, similar to the multi-

ple hypothesis tracking proposed by Friman et al. [8]. The recursive

evaluation of candidates up to a certain level may rise the robustness

of the tracking method.

6.3.3 Rule issues

The other cases of degradations are based on the rule-based manner of

the tree growing algorithm. Each rule accepts connections that meet

the defined constraints like i.e. the maximal connection distance. If

one of these properties of a connection exceeds the defined boundaries

of the rule, the connection is not accepted.

The decreased overlap (OV) measure of Dataset 15 at vessel 2 is

based on the failed application of Y-Rule-SmallDist (see section 5.1)

just 2 cm after the ostium at the first bifurcation. The calculated

tangent direction angle of 82.5◦ is greater than the defined maximal

branch angle βmax = 80◦. Therefore almost the whole coronary artery

is not connected to the coronary artery tree, which leads to the worst

OV measure (0.2%) of all 108 vessels in the test dataset.

A similar problem occurs in dataset 25 at vessel 2. Here the T-Rule

(see section 5.1) fails because one branch of the potential connection

shows a branch angle of β = 120◦. This angle is greater than the

maximal branch angle βmax = 110◦ defined by the rule and therefore

the connection is rejected.

In Dataset 20 at vessel 2 the application of the defined I-Rule (see
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section 5.1) fails. This connection between two end nodes of vessel

segments has been rejected because both distances between each of the

estimated tangent directions and the corresponding end node of the

other segment are exceeding the defined tolerance distance (see section

4.3.2). The red arrow in figure 6.7(a) indicates the location of this

failed connection.

This examples reveal the disadvantages of hard boundaries of the

rule-based approach. Medical data in general, but especially vascular

systems, show high variation, even in non-pathological cases. Some

cases like the mentioned failed Y-Rule near the ostia in dataset 15 may

be addressed by an additional Y-Rule with higher maximal branch

angle βmax and a limited maximal path distance from the root droot to

apply this rule only at nodes near the ostium.

The analysis of the degradations show that especially the rules

meant for the connection of very close vessel segments (especially bi-

furcations) often reject connections due the violation of the maximal

branch angle. This issue may be avoided by the use of short-distance

rules with more tolerant maximal branch angles.

6.4 Results on other medical data

Beside the evaluation of the presented approach within the ”Rotterdam

Coronary Artery Algorithm Evaluation Framework” [22] (see section

6.1), the presented algorithm has also been applied to other heart CTA

datasets and the results are validated by visual inspection. Figure

6.8 shows the seed points, the tracked vessel segments and the finally

obtained vessel tree. The calculated seed points as shown in figure

6.8(a) concentrate well along the coronary arteries. Especially the left

coronary artery vessel tree (see figure 6.8(c)) seems to be almost com-

pletely tracked. In contrast, the tracked vessels of the right coronary

artery tree seem to be terminated too soon, although the real coronary

arteries in the underlying dataset seem to continue at this positions.

This is possibly caused by the same tracking issues pointed out in sec-

tion 6.3.2, although this can not clearly answered because no expert

annotated reference centerline is available for this dataset.
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(a)

(b) (c)

Figure 6.7: Premature termination of the vessel tracking due to the greedy
manner of the tracking method: (a) dataset 20, (b-c) dataset 27.



6.4. RESULTS ON OTHER MEDICAL DATA 73

(a)

(b)

(c)

Figure 6.8: Results on CTA dataset which is not part of the evaluation
framework: (a) Seed points, (b) tracked vessel segments, (c) constructed
CA trees.
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D V OV OF OT AI Avg.
% score rank % score rank % score rank mm score rank rank

8 0 91.8 46.5 4 80.7 41.3 8 97.5 48.8 6 0.18 48.8 1 3.5
8 1 87.3 44.5 9 3.3 1.7 16 87.3 43.7 9 0.18 45.9 4 7.7
8 2 47.4 32.3 14 35.1 49.4 9 47.4 31.8 14 0.43 51.7 10 11.2
8 3 85.7 45.1 8 75.0 45.4 4 85.7 45.0 8 0.18 56.5 1 3.8
9 0 97.0 55.5 8 94.2 48.5 6 97.0 51.6 8 0.12 52.8 1 4.2
9 1 88.0 44.5 12 78.4 41.5 11 88.0 44.1 12 0.18 49.5 2 6.8
9 2 99.0 91.1 6 98.0 84.6 5 99.7 97.2 6 0.22 44.5 2 3.8
9 3 97.2 49.8 3 94.6 80.2 4 100.0 100.0 1 0.13 55.9 2 2.3
10 0 100.0 100.0 1 100.0 100.0 1 100.0 100.0 1 0.18 45.0 2 1.5
10 1 93.4 46.7 7 41.3 20.7 6 93.4 46.7 7 0.24 43.8 1 3.8
10 2 92.1 57.0 7 85.1 46.7 4 92.3 48.3 7 0.27 50.2 2 4.0
10 3 53.1 26.6 16 72.4 36.2 7 73.4 36.7 15 0.34 42.8 1 6.8
11 0 98.8 49.4 9 6.6 3.3 12 99.7 49.9 8 0.33 39.5 5 7.3
11 1 77.5 40.8 13 12.7 50.3 4 77.5 40.8 13 0.38 46.8 4 7.0
11 2 95.4 48.5 9 86.7 45.5 10 95.4 48.3 9 0.21 48.6 1 5.2
11 3 93.1 47.9 2 19.0 20.7 1 93.1 47.9 2 0.30 47.3 2 1.8
12 0 99.6 49.9 3 100.0 100.0 1 100.0 100.0 1 0.17 42.0 3 2.3
12 1 92.8 49.0 7 6.2 4.3 16 92.8 47.6 7 0.26 45.1 3 6.5
12 2 77.8 41.7 12 63.9 36.6 12 91.6 47.2 12 0.17 54.8 1 6.5
12 3 92.7 46.6 7 8.4 4.2 16 92.3 46.1 8 0.35 42.5 3 6.7
13 0 93.9 46.9 13 19.5 9.7 14 94.8 47.4 13 0.25 47.2 3 8.2
13 1 86.3 43.5 10 92.8 47.1 7 99.8 50.0 6 0.17 50.3 2 4.8
13 2 88.0 45.6 10 78.5 42.0 8 88.0 44.9 10 0.20 52.0 1 5.2
13 3 97.9 49.7 10 10.3 5.2 12 97.9 49.5 12 0.21 51.2 1 6.2
14 0 96.8 48.9 5 33.0 28.1 14 96.8 48.9 6 0.25 52.7 3 5.7
14 1 99.3 49.7 4 100.0 100.0 1 100.0 100.0 1 0.32 43.2 2 2.0
14 2 100.0 100.0 1 100.0 100.0 1 100.0 100.0 1 0.21 55.0 3 2.0
14 3 99.7 94.9 5 100.0 100.0 1 100.0 100.0 1 0.33 44.3 2 2.2
15 0 97.2 48.7 7 100.0 100.0 1 100.0 100.0 1 0.20 54.1 3 3.0
15 1 98.8 79.6 11 100.0 100.0 1 100.0 100.0 1 0.13 54.0 2 3.2
15 2 0.2 0.1 16 3.9 2.2 16 0.3 0.1 16 0.78 7.2 16 16.0
15 3 99.4 49.8 11 98.9 49.5 14 99.4 49.7 15 0.17 52.3 1 7.2
16 0 96.9 49.0 6 94.0 48.1 4 100.0 100.0 1 0.15 53.0 2 2.8
16 1 99.2 66.5 5 98.4 92.1 6 100.0 100.0 1 0.24 45.5 2 3.0
16 2 95.1 72.6 11 100.0 100.0 1 100.0 100.0 1 0.13 48.6 1 2.7
16 3 87.0 43.8 9 77.2 38.6 4 100.0 100.0 1 0.27 42.5 1 2.8
17 0 91.1 46.9 8 40.2 22.5 11 92.4 47.5 7 0.28 51.0 3 5.8
17 1 85.2 44.7 8 19.6 10.1 5 85.2 43.3 9 0.33 46.5 2 4.7
17 2 86.3 43.9 14 76.5 39.3 12 86.3 43.9 14 0.24 47.9 2 7.7
17 3 85.2 43.6 7 14.8 7.4 13 85.2 43.4 9 0.43 43.4 9 9.3
18 0 79.7 40.3 16 81.5 41.6 12 79.7 40.3 16 0.15 52.6 2 8.3
18 1 99.7 72.7 6 100.0 100.0 1 100.0 100.0 1 0.19 46.5 5 3.8
18 2 96.7 50.7 2 81.4 43.5 1 96.7 50.0 2 0.25 44.0 2 1.8
18 3 97.7 49.8 10 100.0 100.0 1 100.0 100.0 1 0.16 52.6 1 2.5
19 0 99.7 64.6 6 100.0 100.0 1 100.0 100.0 1 0.20 53.8 2 2.3
19 1 99.5 86.2 7 100.0 100.0 1 100.0 100.0 1 0.23 52.8 1 2.0
19 2 100.0 100.0 1 100.0 100.0 1 100.0 100.0 1 0.26 47.9 4 2.5
19 3 84.8 47.4 12 73.7 43.5 13 84.8 46.2 12 0.23 49.0 2 7.2

Table 6.4: Detailed results for each of the four vessels of the evaluation
measures of the test datasets 8-19.
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D V OV OF OT AI Avg.
% score rank % score rank % score rank mm score rank rank

20 0 99.8 80.7 4 99.8 49.9 5 99.8 49.9 4 0.21 53.0 2 3.2
20 1 98.2 49.2 5 96.4 48.2 3 98.4 49.2 5 0.36 48.5 2 3.2
20 2 84.9 42.7 15 73.9 37.3 7 84.9 42.6 15 0.26 45.6 1 6.7
20 3 94.7 49.8 6 89.9 88.0 3 94.7 48.5 6 0.51 41.7 3 4.0
21 0 95.9 49.4 10 100.0 100.0 1 100.0 100.0 1 0.12 47.4 2 3.0
21 1 93.5 47.2 12 94.1 69.2 11 96.9 48.7 11 0.16 50.1 2 6.7
21 2 99.3 57.8 5 100.0 100.0 1 99.3 57.4 5 0.15 46.8 1 2.3
21 3 96.6 49.3 7 93.4 46.7 7 96.6 48.6 7 0.23 43.0 4 5.5
22 0 99.4 49.7 8 98.9 49.4 8 100.0 100.0 1 0.16 48.4 1 3.3
22 1 96.7 49.1 8 93.7 46.9 9 96.7 48.4 9 0.20 49.7 1 4.8
22 2 99.8 92.3 5 99.6 49.9 8 100.0 100.0 1 0.23 47.3 2 3.3
22 3 98.7 49.6 5 100.0 100.0 1 100.0 100.0 1 0.18 52.2 1 1.7
23 0 99.8 49.9 4 100.0 100.0 1 100.0 100.0 1 0.21 42.4 1 1.5
23 1 99.8 49.9 8 100.0 100.0 1 100.0 100.0 1 0.22 47.2 3 3.2
23 2 98.7 69.6 7 35.5 18.1 15 98.7 49.8 7 0.24 46.3 4 6.8
23 3 94.3 48.0 10 48.1 24.8 12 94.3 47.5 10 0.21 51.8 1 5.8
24 0 98.3 66.0 8 100.0 100.0 1 100.0 100.0 1 0.12 48.5 1 2.2
24 1 84.5 43.6 11 7.0 3.5 11 87.2 43.6 9 0.16 46.0 2 6.2
24 2 98.6 57.3 5 97.2 95.3 5 100.0 100.0 1 0.17 46.5 1 2.3
24 3 90.5 47.2 9 98.5 89.9 4 100.0 100.0 1 0.13 55.7 2 3.3
25 0 96.7 48.6 6 29.7 16.5 7 99.0 49.7 8 0.24 46.2 2 4.5
25 1 26.7 13.5 15 22.6 11.3 9 26.7 13.4 15 0.52 36.5 3 8.0
25 2 98.1 49.8 8 100.0 100.0 1 100.0 100.0 1 0.18 53.0 3 3.2
25 3 91.8 46.1 9 84.9 42.6 2 96.2 48.1 4 0.27 40.0 1 3.0
26 0 78.7 42.8 8 10.2 12.2 13 82.2 45.0 8 0.41 50.2 8 8.8
26 1 25.8 13.5 10 2.9 2.1 9 25.8 13.5 10 0.43 76.8 1 5.3
26 2 31.1 15.9 11 20.6 10.7 9 31.1 15.9 11 0.61 43.6 3 6.7
26 3 79.8 40.6 5 15.6 9.6 13 79.8 40.5 5 0.50 49.1 4 5.8
27 0 89.6 44.8 9 6.2 3.1 15 91.5 45.8 8 0.35 44.6 5 7.8
27 1 60.5 34.1 12 11.9 16.4 13 60.5 34.1 12 0.41 45.1 2 7.2
27 2 93.2 49.4 5 88.0 44.2 6 93.2 46.8 5 0.25 42.5 1 3.2
27 3 85.4 44.5 10 19.7 10.7 12 85.4 42.9 10 0.40 34.5 5 7.8
28 0 91.9 46.0 14 55.1 27.5 15 91.9 46.0 15 0.12 47.8 2 8.3
28 1 87.0 45.4 9 77.1 45.4 6 89.6 46.4 9 0.13 48.2 1 4.5
28 2 79.4 44.4 10 73.6 43.2 8 81.6 44.3 10 0.19 44.2 1 5.2
28 3 99.4 90.0 6 100.0 100.0 1 100.0 100.0 1 0.15 54.2 1 1.8
29 0 95.3 47.9 8 90.9 45.7 5 100.0 100.0 1 0.13 47.8 2 3.3
29 1 91.2 45.7 6 11.2 7.8 10 91.2 45.7 6 0.21 46.2 3 5.2
29 2 100.0 100.0 1 100.0 100.0 1 100.0 100.0 1 0.21 44.3 1 1.0
29 3 99.8 92.0 6 99.7 49.9 5 100.0 100.0 1 0.20 45.7 1 2.5
30 0 94.4 47.6 9 89.7 44.9 9 100.0 100.0 1 0.13 49.3 1 3.7
30 1 95.9 78.4 7 76.9 38.7 7 95.9 48.1 7 0.17 45.9 3 5.0
30 2 94.7 48.8 11 95.6 48.5 8 96.1 49.4 11 0.21 43.8 1 5.5
30 3 95.4 55.0 7 81.0 47.8 7 97.7 50.0 7 0.21 44.7 1 4.0
31 0 89.3 44.8 15 94.2 47.1 6 100.0 100.0 1 0.11 49.4 2 4.7
31 1 96.1 48.8 5 92.5 47.4 4 96.1 48.7 6 0.15 46.0 1 3.0
31 2 99.5 96.0 7 99.0 88.6 8 100.0 100.0 1 0.15 46.5 2 3.7
31 3 98.9 83.3 9 97.8 49.3 9 98.9 49.6 9 0.19 38.0 4 6.5

Table 6.5: Detailed results for each of the four vessels of the evaluation
measures of the test datasets 20-31.
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Chapter 7

Integration in medical
software

One part of this thesis represents the integration of the presented ves-

sel tracking algorithm into a professional radiology workstation, which

is a RIS/PACS solution of Agfa Healthcare. The general goal of such

a plug-in is the extraction, visualization and analysis of the coronary

artery tree for the diagnosis of coronary artery diseases by the radiolo-

gist. The plug-in prototype developed as part of this work provides the

semi-automatic extraction and visualization of coronary artery trees by

using the approach presented in this thesis. Furthermore it provides

the functionality to track vessel segments starting at manually placed

seed points. Section 7.1 gives information about the main GUI sections

of the vessel tracking plug-in, whereas section 7.2 outlines the workflow

of the plug-in.

7.1 Graphical user interface

The graphical user interface of the plug-in is divided into three viewing

sections:

• Three views for multiplanar reconstruction

• 3D for volume rendering

• 3D view for vessel mesh rendering

In the following each of the three GUI sections (see screen shot in

figure 7.1) is briefly described. Note that all views are linked. One



78 CHAPTER 7. INTEGRATION IN MEDICAL SOFTWARE

benefit of this feature is that, once a vessel segment gets selected in

any view, all other views simultaneously highlight this vessel, if it is

visible in the respective view. For example, the user can mark a vessel

in one of the MPR views and immediately inspect its location in the

3D volume rendering.

MPR Views

3D volume rendering

3D vessel surface mesh

Figure 7.1: The graphical user interface of the vessel tracking plug-in inte-
grated into a professional radiology workstation.

7.1.1 3D vessel surface mesh rendering

This view visualizes the extracted vessel tree, rendered as a 3D vessel

surface mesh. The input for the calculation are the extracted center-

lines of the vessel extraction algorithm described in chapter 4.

The 3D mesh is calculated in the following way. Each node of the

extracted vessel segments represents a circle in the CTA dataset and

is parametrized by position, direction and radius. First each circle is
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approximated by a fixed number of sample points along the circle line.

In a second step, the sample points of subsequent circles are connected

using triangulation and are finally rendered.

The user is able to visually inspect the generated surface mesh of the

extracted vessel tree, but in its current form the view is not meant for

supporting medical investigation of the observed coronary artery tree.

Further enrichment of the 3D vessel surface with additional information

- for example colored triangles representing the calcium score of the

underlying CTA dataset - may give the user a good overview on the

pathological locations in the dataset.

7.1.2 MPR views

The MPR view visualizes cross section views along arbitrarily defined

planes of the volume. Additionally the view outlines the cross sections

of the vessel surface mesh, which is already generated as part of the

previously described vessel surface mesh rendering (see section 7.1.1).

7.1.3 3D volume rendering

Beside the common visualization techniques based on transfer functions

(see figure 7.2(a)), two additional visualization modes are provided.

This visualization is again based on the extracted vessel centerlines.

Furthermore the heart mask, obtained during the vessel tracking (see

section 4.1.1), is used to remove most parts of the tissue that do not

belong to the heart region.

The user can switch between these two visualization modes. The

first mode highlights those voxels of the CTA dataset with blue color,

which are part of extracted coronary arteries (see figure 7.2(b)).

The second mode renders voxels of the CTA dataset situated inside

the 3D surface mesh opaquely, whereas the remaining voxels located in-

side the heart mask are rendered semi-transparently (see figure 7.2(c)).

This way the user can observe the segmented vessel trees without losing

information about the surrounding myocardial tissue.
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(a) (b)

(c)

Figure 7.2: Different modes of the 3D renderer: (a) Without segmentation
of heart & vessels, (b) Mode 1: rendering heart tissue and highlighted vessels
(blue-colored), (c) Mode 2: rendering heart tissue transparently and vessels
opaquely.
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7.2 Workflow

The application of the vessel tracking plug-in on a specific patient series

consists of two phases, described in the following sections.

7.2.1 (Semi-)automatic tracking

When the user activates the plug-in, the tracking algorithm gets applied

on the loaded dataset. Although the presented algorithm requires min-

imal user interaction by defining the root points of the coronary trees

in phase 3 (see section 4.3), the major parts of the calculation (phase

1 & 2) can be precalculated automatically without any interaction. If

available, the precalculated vessel segments are loaded and the algo-

rithm proceeds with phase 3. Once the user has marked the root points

of the desired vessel trees, the coronary arteries originating from the

given points are computed and the user can investigate the results in

the provided views of the plug-in. In the case that the results of phase

1 & 2 are already available, the computation time for the calculation

of the coronary artery trees takes typically less than 1-2 seconds.

7.2.2 Single-click vessel tracking

Additionally to the coronary artery trees extracted by the presented

algorithm, the plug-in also provides the functionality for the tracking

of vessels at manually placed seed points. This way so far undetected

parts of the CA trees can be detected. The user marks a desired lo-

cation for additional vessel tracking. The vessel extraction algorithm

is the same as before, with the difference that now only the manually

selected seed point is processed.
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Chapter 8

Conclusion and Future Work

In this thesis a new approach for the extraction of coronary artery

centerlines was discussed.

The main focus on this thesis lies in an approach delivering highly

accurate results in combination with a high overlap of the investigated

vessel tree. The novel method is divided into three phases:

• Calculation of seed points

• Vessel tracking

• Topological tree growing

Every phase operates on the output of the previous phase, so the

substitution and adaptation of each phase is easily possible. A detailed

description of all three phases was given in this thesis.

It was shown that the novel approach reaches a high overlap in

combination with a very high accuracy. The achieved results were

evaluated by a quantitative evaluation framework. Improvements but

also degradations of the novel method in comparison with the base

approach were discussed in detail. It has been pointed out that the

balancing of the rules applied during tree growing is a critical task.

Additionally the integration of the developed algorithm into clinical

software was demonstrated.

Further improvements of particular phases of the presented algo-

rithm may be covered in future work. Potential improvements are:

• In-depth evaluation of potential vessel paths in the tracking phase:

This may increase the robustness of the tracking method against

premature termination.
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• Calibration of the connection rules in tree growing: Further exper-

iments in varying the number and parametrization of connection

rules may help to construct the complete vessel trees.

• Automatic root point selection: Detection of additional anatomi-

cal structures, especially the aorta, can help to identify the root

points of the coronary artery trees fully automatically.
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