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Abstract— The extraction and representation of information 
from volume data are important research avenues in 
computer-based visualization. The interpretation of three- or 
multi-dimensional data from various scanning devices is 
important to medical imaging, diagnosis and treatment, 
reliability and sustainability analyses in various industrial 
branches, and, in more general terms, information 
visualization. In this paper, we present several approaches for 
the classification and representation of relevant information 
from volume data sets. The techniques are based on the 
gradient vector, a property directly derived from the original 
volume data. We show how this property can be computed and 
subsequently used for classification through gradient-based 
one- and multi-dimensional transfer functions, as well as for 
the enhancement of surface features. The described techniques 
are illustrated through images generated using our volume 
rendering framework, from Computed Tomography (CT) and 
Magnetic Resonance Imaging (MRI) data sets. The resulting 
images show how gradient-based techniques are suited for 
improved volume classification and the better extraction of 
meaningful information.  

I. INTRODUCTION 

 
olume visualization is a sub-domain of computer 
graphics which  deals with the exploration, sampling, 

classification and representation of volume data. Such data 
most commonly originates from scanning devices based on 
Computed Tomography (CT), Magnetic Resonance 
Imaging (MRI), ultrasound etc. When an object is scanned, 
the result is a volume data set which contains information 
on the physical properties of the media inside a rectangular 
region of space around the object. The data is most often 
arranged in a regular grid of constituents referred to as 
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voxels [1]. These are the three-dimensional (3D) 
equivalents of pixels from two-dimensional (2D) images. 
However, they do not contain optical information (color and 
opacity), but rather have an associated scalar value which 
quantifies the reaction of the corresponding medium to the 
scanning device. This scalar value is referred to as density 
or intensity, depending on the type of device used. For 
example, in the case of medical CT images, the scalar 
values constitute an accurate mapping of the densities of 
various tissues [2]. Bone, for instance, has values from a 
higher range than muscle or blood vessels. This difference 
in associated scalar values is a powerful criterion for the 
classification of volume data sets, as it allows for the 
separation of various types of materials based on their 
differing densities. However, as we will explain later in the 
paper, density alone is sometimes not sufficient for proper 
classification, and thus other voxel properties have to be 
obtained and factored into the classification method.  
Throughout the visualization process, volume data sets are 
subjected to various computational stages which are part of 
the volume rendering pipeline [3, 4]. Rendering is the 
process through which images are produced from abstract 
data or geometry. In the case of volume rendering, this 
pipeline involves loading the data into memory, 
reconstruction of the volume from the data set, sampling, 
classification, and various other techniques and 
enhancements. The result is an image which is produced by 
projecting the 3D data onto the 2D viewing plane [5]. The 
classification stage is arguably among the most important 
ones, since it is here that the information of interest is 
isolated from the rest [6]. In this paper we focus on the type 
of classification which makes use of the gradient vector to 
discriminate among voxels. In the following sections we 
explain what the gradient vector is, how it can be computed, 
and how it can be used for the purposes of volume 
visualization.  
Section II of the paper briefly describes the volume 
rendering process used in our framework. Section III 
presents several approaches used to compute the gradient 
vector and illustrates their advantages and shortcomings. 
Section IV presents techniques for gradient-based 
classification, applied to CT and MRI medical data sets. 
The final section concludes the paper and details future 
extensions of the described methods.  
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II. VOLUME RECONSTRUCTION, SAMPLING AND RENDERING  

 
This section succinctly explains the methods used by our 

framework for processing and representing the volume data. 
For readers not directly associated with volume graphics or 
computer graphics in general, we feel that these 
explanations are necessary in order to make other sections 
easier to follow.  

The initially discrete volume data is stored in video 
memory as a 3D texture [7]. This allows the reconstruction 
of the continuous volume via hardware-implemented 
trilinear interpolation [8]. The volume is now continuous 
and described by a function V: R3�R, which maps scalar 
values to each position (x, y, z). After reconstruction, scalar 
values are retrievable via texture look-ups from any such 
position within the volume. The distribution of the scalar 
values depends on the physical properties of the materials 
of the scanned object. Denser materials such as bone or 
metal have different scalar values from lighter ones such as 
soft tissues, plastic or various fluids. 

The scalar values are the basis for retrieving information 
from the data. The aim is to extract the desired information 
from the volume while hiding unwanted data, and to 
generate an image which illustrates this information.   

The rendering approach used by our framework is called 
Direct Volume Rendering (DVR) [9, 10]. Essentially, it 
involves sampling and displaying the volume without 
employing additional geometry or triangle-based surfaces to 
extract the desired information. As the name suggests, DVR 
methods work directly on the data points. The algorithm 
used for sampling and projecting the data is called ray 
casting [7, 11]. The concept behind this approach is 
illustrated in Fig. 1. 

 
 

 
 
 
Fig. 1.  Sampling of a volume data set through ray casting. A single ray is 
illustrated, which is emitted from the viewing plane into the box-shaped 
volume. Inside the volume, the white dots are positions sampled along the 
ray 

 
Ray casting is a popular algorithm with multiple 

implementations in volume visualization [12, 13, 14]. The 
main steps for basic ray casting are as follows: 

 

- for each pixel, emit a ray from the viewing plane 
through the volume 

- sample the volume along the rays (as illustrated in 
Fig.1) 

- assign opacity and color to each sampled point using 
some classification method 

- combine the colors and opacities of the points along 
each ray (the result is the color of the pixel from 
which the ray was originally emitted) 

 
The colors of the resulting pixels are combinations of 

the colors of the sampled points along each respective ray, 
weighted by the opacities of each point. Less transparent 
points contribute more color to their corresponding pixel 
than more transparent ones. Through classification, the 
distribution of color and transparency is controlled 
throughout the volume. Regions which contain uninteresting 
data are typically set to be completely transparent, while 
useful information is semi-transparent or opaque, and 
highlighted by a proper combination of color and opacity.  
Some of the more frequently used methods for classification 
are collectively referred to as transfer functions. A transfer 
function maps color and opacity to sampled points in the 
volume depending on the properties of voxels. The most 
straightforward of such properties is the scalar value itself, 
which leads to a category of classification methods called 
data-based transfer functions. Such functions assign color 
and opacity based on the scalar value. These optical 
properties are typically RGBA values; RGB is the Red-
Green-Blue color space, while A is called alpha value and 
controls opacity. Therefore, transfer functions are Tf : R � 
R4, where Tf (V) = RGBA. These are 1D functions which 
assign an RGBA quadruplet to each value of the volume 
function V described earlier. Through careful specification 
of transfer functions, certain regions in the volume can be 
emphasized, while others are hidden. Throughout the paper, 
we define the shape of these functions through user-
interactive tools [15, 16, 17], which allows great flexibility 
for the fine-tuning of the rendered images. In certain cases 
however, taking only the scalar value into account is not 
enough, and other voxel properties are needed for a more 
refined classification. In the following section, we describe 
such a property and explain its usefulness for the purpose of 
visualization. 

III. THE GRADIENT VECTOR 

 
Considering the function V mentioned in Section II, 

the gradient vector (or gradient, for short), is its first 
derivative. Since V is a three dimensional function, the 
gradient ∇ V is a three-component vector containing the 
partial derivatives of V in directions, x, y, and z. 

The most useful property of the gradient is that its 
orientation locally indicates the largest degree of change 

Viewing plane 
Volume 

Viewer origin 
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in scalar values, which can indicate a significant surface 
inside the volume [18]. For instance, the gradient at the 
interface between bone and muscle tissue is oriented 
perpendicularly to this interface, and this orientation can 
be used to identify the surface of the bone. One important 
application of gradient vectors is the implementation of a 
local illumination model. Lighting adds a significant 
degree of realism and quality to a rendered image, and it 
is featured in nearly every figure in this paper. Local 
illumination relies on the normal vector, which indicates 
the local orientation of a surface. The normal vector from 
triangle- and quad- based graphics can be substituted by 
the gradient, since, as mentioned, it is perpendicular to 
significant identifiable surfaces in the volume [19].  

There exists a variety of techniques for the numerical 
estimation of the gradient from discrete data. There are 
basically two main directions when computing the 
gradient: pre-computation and dynamic computation.  

The idea when pre-computing gradients is to calculate 
them in a pre-processing step, before any actual 
rendering takes place. The result is a three- or four- 
component volume which stores for each voxel the 
corresponding gradient as three components and, if 
desired, its magnitude as the fourth component. In the 
paper, we use the central differences approach for 
gradient estimation. This means that, for a specific voxel, 
the gradient is computed based on the differences 
between neighboring voxels in various arrangements. 
The simplest such arrangement is to use pairs of 
neighbors from each main axis, located in either 
direction, for a total of six neighboring voxels. Assuming 
the discrete volume is stored as a 3D array with 
components Vd[i, j, k], where i, j, k are indexes used for 
traversing the array in its three respective dimensions, the 
gradient is computed as shown in (1).  
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An extension of this method involves using all 27 

values from within a 3x3x3 cell around a voxel, i.e., all 
Vd[i+ix,j+jy,k+kz], where ix,  jy, kz = {-1, 0, 1}. This 
results in a more precisely estimated gradient and a 
smoother look of the rendered images [20]. 

Unlike the pre-computational approach, dynamic 
gradient estimation is incorporated into the volume 
rendering pipeline and thus is performed in real-time. 
The gradients are not pre-stored in memory, but rather 
are calculated when needed during the rendering process.  
 Similarly to the first method from Subsection III, six 
neighbors are initially used, two for each axis. The 
difference is that the gradient estimator often operates on 
the continuous, reconstructed volume. Thus, neighboring 
voxels are not restricted to an indexed matrix, but may be 

chosen by sampling at an arbitrary distance d from the 
center voxel (2). d is set to a value which is small 
compared to the size of the volume. 
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  The method can be further improved by considering 

a multitude of neighbors around the center voxel. We 
refer to this approach as spherically-computed gradient. 
Specifically, we take samples located on the surface of a 
sphere centered on the voxel in question. The difference 
is then computed between each sample on one 
hemisphere and its diametrically opposed correspondent 
on the complementary hemisphere. Summing up these 
differences produces the desired gradient. The positions 
of the samples are calculated using spherical coordinates. 
Considering a voxel located at position vPos = (x, y, z) 
with the associated scalar value V(vPos), the gradient 
vector is obtained as depicted in (3), assuming n samples 
are taken at distance r from the voxel.  
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The effects of the use of gradients as computed using the 

aforementioned approaches are shown in Fig. 2. We 
implemented local illumination using the Phong model [21], 
where the gradient is used in place of the normal. Using 
more than six neighbors results in smoother images 
regardless of whether the computation is carried out in a 
pre-processing step or dynamically. The advantages and 
drawbacks of both approaches stem from the often-
occurring trade-off between memory and computational 
power requirements. Pre-computed gradients require as 
much as four times more memory than the volume data set. 
For and for large data this may well exceed the available 
video memory. However, once the gradients are stored, they 
are obtainable via a single texture fetch, with barely any 
impact on performance. Dynamic gradients, on the other 
hand, require barely any memory. Since they are computed 
on-the-fly and require multiple texture fetches, the impact 
on performance can be substantial. The spherically-
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computed gradients have a particularly negative influence 
on the time required for rendering, but produce better 
quality images. A good trade-off is the pre-computed 27 
value method, which is sufficient for high-quality images, 
provided enough memory is available.  

 

 
Fig. 2.  Illumination of a volume data set using: pre-computed gradient 
using 6 neighbors (a); precomputed gradient using 27 values (b); 
dynamically computed gradient using 6 neighbors (c); dynamic 
spherically-computed gradient (d). 

IV. GRADIENT-BASED CLASSIFICATION 

 
For the purposes of volume classification, the most 

significant application of gradients is the identification and 
highlighting or elimination of surfaces. The orientation of 
the gradient indicates the orientation of the surface, while 
its magnitude indicates the difference between the materials 
on either side of the surface. We use the gradient magnitude 
as an additional voxel property (aside from the scalar value) 
and incorporate it into the classification process. The first 
classification method involves 1D gradient-based transfer 
functions. Similarly to data-based transfer functions, this 
class of functions assigns RGBA values to sampled voxels, 
and is described by (4). 
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Fig. 3 presents the result of using gradients for 
classification. Fig.3(a) shows a volume rendered with a 1D 
data-based transfer function. A 1D gradient-based function 
is used In Fig.3(b). Various surfaces are clearly identified 
and rendered semi-transparently, while color is used to 
separate certain features such as the sinus cavity and the 
metencephalon. The voxels corresponding to the structures 
indentified in bright green in Fig 3(b) could not be similarly 
highlighted using a data-based function (Fig. 3(a)) because 
they share scalar values with neighboring structures which 
occlude them. Surface information, however, allows for 
their separation.  

 

 
 
Fig. 3.  Classification using: a 1D data-based transfer function (a); a 1D 
gradient-based transfer function (b). 

 
The identification and highlighting of surfaces is further 

explored using combinations of data- and gradient-based 
classification. One approach is to use what we refer to as 
thresholded transfer functions. These are assigned a 
threshold scalar value to separate data- and gradient-based 
classification. With thresholded transfer functions, gradient-
based classification is applied to voxels whose scalar value 
is below the threshold, while scalar values are used when 
they are above this threshold.  

 

 
 
 

Fig. 4.  Surface identification and highlighting using: a 1D data-based 
transfer function (a); a thresholded transfer function (b) 

(a) (b) 

(c) (d) 

(a) (b) 

(a) (b) 
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A result is shown in Fig. 4. The objective is to highlight 

the outer surface (the skin tissue), while still keeping bone 
structures visible. In Fig. 4(a), this was attempted using a 
traditional 1D data-based function. While the outer, 
transparent surface was correctly identified, it could only be 
highlighted to a certain extent, before started occluding 
other structures. Fig. 4(b) shows the same attempt, only this 
time a thresholded transfer function was used. Bone tissue 
was still represented from scalar values, but skin was 
identified using gradient information. The result is that the 
skin surface can be better highlighted, while still keeping 
the bone underneath visible. 

The flexibility of the classification is further extended 
into the realm of 2D transfer functions [22]. For an arbitrary 
voxel, an RGBA quadruplet is generated considering both 
its properties, the scalar value and the gradient magnitude 
(5).  
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Two dimensional transfer functions have two 

independently-generated components: one is data-based 
(Tfd) and the other one is gradient-based (Tfg). The 2D 
function is formed from combinations of these two 
components, thereby incorporating both voxel properties 
into the classification process (6).  

 

fggfddf TwTwT +=2          (6) 

 
Through a careful specification of the two components, 

as well as a fine-tuning of the wd and wg weights, this form 
of classification proves more flexible than its one-
dimensional counterpart.  

 

 
Fig. 5.  Visualization of brain tissue from a CT dataset using a 2D transfer 
function; the layer of skin from (a) is partially removed (b) and completely 
removed (c).  
 

 

Fig. 5 shows the application of a 2D transfer function for 
a CT dataset. The aim is to show soft brain tissue 
underneath similarly dense skin.  These two tissues are 
inseparable based on scalar values only. The brain and skin 
are separately identified in Fig. 5(a). Through the 
manipulation of the aforementioned weights, the opacities 
associated with certain gradient values can be lowered.  

This is reflected in Fig. 5(b), where it can be seen how 
the outer surface starts to lose visibility and “peel away”. 
The brain beneath it is still visible and largely unaffected.  
The limit of the technique is shown in Fig. 5(c). The outer 
surface is completely removed, but some surface 
information is also lost from the brain region. 

We also tried this technique on MRI scans. MRI data is 
often more problematic than CT, because the scalar values 
for distinctive materials overlap more frequently and the 
noise content is substantially higher. However, soft tissue 
such as brain matter or blood is better identified in MRI 
images. Unlike the previous CT dataset, the brain can be 
identified using a 1D data-based transfer function (Fig. 
6(a)). 

 
 
 

Fig. 6.  Visualization of brain tissue from an MRI data set using: a 1D 
transfer function (a); a curvature-modulated 2D transfer function (b).  
 

As previously, we attempted to remove the outer skin 
layer, but, due to the noise content and the distribution of 
scalar values throughout the dataset, the 2D transfer 
function described by (6) proved insufficient. We therefore 
have to further refine the classification. The transfer 
function from (6) is expanded by adding curvature 
information [23, 24, 25], since the ridges and valleys from 
the surface of the brain are generally more curved than the 
outer layer of skin. First, local curvature is estimated as 
shown in (7). For any vector vect we use the notation vectn 
to denote that vect is normalized. 
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The curvature is estimated to be the magnitude of the 
vector whose components are the dot products of the 
normalized gradients from each respective axis. Once the 
curvature is obtained, the transfer function from (6) is 
modulated accordingly (8). An additional coefficient wk is 
also introduced for fine tuning the modulation. 

 
( )fggfddkkf TwTwkwT +=2         (8) 

 
The result can be seen in Fig. 6(b), where the outer layer 

of skin has been removed almost completely.  

V. CONCLUSIONS 

 
The paper presented methods for the estimation of the 

gradient from volume data, and various applications 
involving classification via transfer functions based 
partially or completely on the gradient. The rendered 
images show that incorporating this voxel property into the 
classification process allows for more classification 
possibilities. 1D and 2D transfer functions were used for the 
identification of structures and the highlighting and removal 
of surfaces, from both CT and MRI data. When 2D 
functions proved insufficient, curvature information was 
added in order to refine the classification process. Future 
work in this direction involves the expansion of the 
classification possibilities within our rendering framework. 
We intend to incorporate additional voxel properties, such 
as occlusion or distance, into the classification pipeline, to 
allow for even greater flexibility. The aim is to enable the 
extraction of individual structures within volumes without 
having to rely on segmentation or costly non-interactive 
methods.   
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