

d

Abstract— The extraction and representation of information
from volume data are important research avenues in
computer-based visualization. The interpretation of three- or
multi-dimensional data from various scanning devices is
important to medical imaging, diagnosis and treatment,
reliability and sustainability analyses in various industrial
branches, and, in more general terms, information
visualization. In this paper, we present several approaches for
the classification and representation of relevant information
from volume data sets. The techniques are based on the
gradient vector, a property directly derived from the original
volume data. We show how this property can be computed and
subsequently used for classification through gradient-based
one- and multi-dimensional transfer functions, as well as for
the enhancement of surface features. The described techniques
are illustrated through images generated using our volume
rendering framework, from Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) data sets. The resulting
images show how gradient-based techniques are suited for
improved volume classification and the better extraction of
meaningful information.

I. INTRODUCTION

olume visualization is a sub-domain of computer
graphics which deals with the exploration, sampling,

classification and representation of volume data. Such data
most commonly originates from scanning devices based on
Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), ultrasound etc. When an object is scanned,
the result is a volume data set which contains information
on the physical properties of the media inside a rectangular
region of space around the object. The data is most often
arranged in a regular grid of constituents referred to as

Manuscript submitted on 18.06.2011 This work was supported in part
by the "BRAIN - An Investment in Intelligence" doctoral Scholarship
Program, within the Technical University of Iasi, Romania. This paper
was supported by the CNCSIS project IDEI 342/2008, Nonlinear
evolution equations - theoretical aspects and applications to life and
environmental sciences.

Marius Gavrilescu is a PhD student from the Technical University of
Iasi, Romania, currently working at the Vienna University of Technology,
Austria (e-mail: mariusgv at cg.tuwien.ac.at, mariusgav42 at yahoo.com).

Vasile Manta is professor at the Technical University of Iasi, Romania,
Faculty of Automatic Engineering and Computer Control (e-mail: vmanta
at cs.tuiasi.ro).

Eduard Gröller is associate professor at the Vienna University of
Technology, Austria and adjunct professor of computer science at the
University of Bergen, Norway (e-mail: groeller at cg.tuwien.ac.at).

voxels [1]. These are the three-dimensional (3D)
equivalents of pixels from two-dimensional (2D) images.
However, they do not contain optical information (color and
opacity), but rather have an associated scalar value which
quantifies the reaction of the corresponding medium to the
scanning device. This scalar value is referred to as density
or intensity, depending on the type of device used. For
example, in the case of medical CT images, the scalar
values constitute an accurate mapping of the densities of
various tissues [2]. Bone, for instance, has values from a
higher range than muscle or blood vessels. This difference
in associated scalar values is a powerful criterion for the
classification of volume data sets, as it allows for the
separation of various types of materials based on their
differing densities. However, as we will explain later in the
paper, density alone is sometimes not sufficient for proper
classification, and thus other voxel properties have to be
obtained and factored into the classification method.
Throughout the visualization process, volume data sets are
subjected to various computational stages which are part of
the volume rendering pipeline [3, 4]. Rendering is the
process through which images are produced from abstract
data or geometry. In the case of volume rendering, this
pipeline involves loading the data into memory,
reconstruction of the volume from the data set, sampling,
classification, and various other techniques and
enhancements. The result is an image which is produced by
projecting the 3D data onto the 2D viewing plane [5]. The
classification stage is arguably among the most important
ones, since it is here that the information of interest is
isolated from the rest [6]. In this paper we focus on the type
of classification which makes use of the gradient vector to
discriminate among voxels. In the following sections we
explain what the gradient vector is, how it can be computed,
and how it can be used for the purposes of volume
visualization.
Section II of the paper briefly describes the volume
rendering process used in our framework. Section III
presents several approaches used to compute the gradient
vector and illustrates their advantages and shortcomings.
Section IV presents techniques for gradient-based
classification, applied to CT and MRI medical data sets.
The final section concludes the paper and details future
extensions of the described methods.

Gradient-based Classification and Representation of Features from
Volume Data

Marius Gavrilescu, Vasile Manta, Eduard Gröller

V

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

243

II. VOLUME RECONSTRUCTION, SAMPLING AND RENDERING

This section succinctly explains the methods used by our

framework for processing and representing the volume data.
For readers not directly associated with volume graphics or
computer graphics in general, we feel that these
explanations are necessary in order to make other sections
easier to follow.

The initially discrete volume data is stored in video
memory as a 3D texture [7]. This allows the reconstruction
of the continuous volume via hardware-implemented
trilinear interpolation [8]. The volume is now continuous
and described by a function V: R3�R, which maps scalar
values to each position (x, y, z). After reconstruction, scalar
values are retrievable via texture look-ups from any such
position within the volume. The distribution of the scalar
values depends on the physical properties of the materials
of the scanned object. Denser materials such as bone or
metal have different scalar values from lighter ones such as
soft tissues, plastic or various fluids.

The scalar values are the basis for retrieving information
from the data. The aim is to extract the desired information
from the volume while hiding unwanted data, and to
generate an image which illustrates this information.

The rendering approach used by our framework is called
Direct Volume Rendering (DVR) [9, 10]. Essentially, it
involves sampling and displaying the volume without
employing additional geometry or triangle-based surfaces to
extract the desired information. As the name suggests, DVR
methods work directly on the data points. The algorithm
used for sampling and projecting the data is called ray
casting [7, 11]. The concept behind this approach is
illustrated in Fig. 1.

Fig. 1. Sampling of a volume data set through ray casting. A single ray is
illustrated, which is emitted from the viewing plane into the box-shaped
volume. Inside the volume, the white dots are positions sampled along the
ray

Ray casting is a popular algorithm with multiple

implementations in volume visualization [12, 13, 14]. The
main steps for basic ray casting are as follows:

- for each pixel, emit a ray from the viewing plane
through the volume

- sample the volume along the rays (as illustrated in
Fig.1)

- assign opacity and color to each sampled point using
some classification method

- combine the colors and opacities of the points along
each ray (the result is the color of the pixel from
which the ray was originally emitted)

The colors of the resulting pixels are combinations of

the colors of the sampled points along each respective ray,
weighted by the opacities of each point. Less transparent
points contribute more color to their corresponding pixel
than more transparent ones. Through classification, the
distribution of color and transparency is controlled
throughout the volume. Regions which contain uninteresting
data are typically set to be completely transparent, while
useful information is semi-transparent or opaque, and
highlighted by a proper combination of color and opacity.
Some of the more frequently used methods for classification
are collectively referred to as transfer functions. A transfer
function maps color and opacity to sampled points in the
volume depending on the properties of voxels. The most
straightforward of such properties is the scalar value itself,
which leads to a category of classification methods called
data-based transfer functions. Such functions assign color
and opacity based on the scalar value. These optical
properties are typically RGBA values; RGB is the Red-
Green-Blue color space, while A is called alpha value and
controls opacity. Therefore, transfer functions are Tf : R �
R4, where Tf (V) = RGBA. These are 1D functions which
assign an RGBA quadruplet to each value of the volume
function V described earlier. Through careful specification
of transfer functions, certain regions in the volume can be
emphasized, while others are hidden. Throughout the paper,
we define the shape of these functions through user-
interactive tools [15, 16, 17], which allows great flexibility
for the fine-tuning of the rendered images. In certain cases
however, taking only the scalar value into account is not
enough, and other voxel properties are needed for a more
refined classification. In the following section, we describe
such a property and explain its usefulness for the purpose of
visualization.

III. THE GRADIENT VECTOR

Considering the function V mentioned in Section II,

the gradient vector (or gradient, for short), is its first
derivative. Since V is a three dimensional function, the
gradient ∇ V is a three-component vector containing the
partial derivatives of V in directions, x, y, and z.

The most useful property of the gradient is that its
orientation locally indicates the largest degree of change

Viewing plane
Volume

Viewer origin

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

244

in scalar values, which can indicate a significant surface
inside the volume [18]. For instance, the gradient at the
interface between bone and muscle tissue is oriented
perpendicularly to this interface, and this orientation can
be used to identify the surface of the bone. One important
application of gradient vectors is the implementation of a
local illumination model. Lighting adds a significant
degree of realism and quality to a rendered image, and it
is featured in nearly every figure in this paper. Local
illumination relies on the normal vector, which indicates
the local orientation of a surface. The normal vector from
triangle- and quad- based graphics can be substituted by
the gradient, since, as mentioned, it is perpendicular to
significant identifiable surfaces in the volume [19].

There exists a variety of techniques for the numerical
estimation of the gradient from discrete data. There are
basically two main directions when computing the
gradient: pre-computation and dynamic computation.

The idea when pre-computing gradients is to calculate
them in a pre-processing step, before any actual
rendering takes place. The result is a three- or four-
component volume which stores for each voxel the
corresponding gradient as three components and, if
desired, its magnitude as the fourth component. In the
paper, we use the central differences approach for
gradient estimation. This means that, for a specific voxel,
the gradient is computed based on the differences
between neighboring voxels in various arrangements.
The simplest such arrangement is to use pairs of
neighbors from each main axis, located in either
direction, for a total of six neighboring voxels. Assuming
the discrete volume is stored as a 3D array with
components Vd[i, j, k], where i, j, k are indexes used for
traversing the array in its three respective dimensions, the
gradient is computed as shown in (1).

[] []
[] []
[] []�

�
�

�

�

�
�
�

�

�

−−+

−−+

−−+

=∇

1,,1,,

,1,,1,

,,1,,1

5.0

kjiVkjiV

kjiVkjiV

kjiVkjiV

V

dd

dd

dd

 (1)

An extension of this method involves using all 27

values from within a 3x3x3 cell around a voxel, i.e., all
Vd[i+ix,j+jy,k+kz], where ix, jy, kz = {-1, 0, 1}. This
results in a more precisely estimated gradient and a
smoother look of the rendered images [20].

Unlike the pre-computational approach, dynamic
gradient estimation is incorporated into the volume
rendering pipeline and thus is performed in real-time.
The gradients are not pre-stored in memory, but rather
are calculated when needed during the rendering process.
 Similarly to the first method from Subsection III, six
neighbors are initially used, two for each axis. The
difference is that the gradient estimator often operates on
the continuous, reconstructed volume. Thus, neighboring
voxels are not restricted to an indexed matrix, but may be

chosen by sampling at an arbitrary distance d from the
center voxel (2). d is set to a value which is small
compared to the size of the volume.

() ()
() ()
() ()�

�
�

�

�

�
�
�

�

�

−−+

−−+

−−+

=∇

dzyxVdzyxV

zdyxVzdyxV

zydxVzydxV

d
V

,,,,

,,,,

,,,,

2

1
 (2)

 The method can be further improved by considering

a multitude of neighbors around the center voxel. We
refer to this approach as spherically-computed gradient.
Specifically, we take samples located on the surface of a
sphere centered on the voxel in question. The difference
is then computed between each sample on one
hemisphere and its diametrically opposed correspondent
on the complementary hemisphere. Summing up these
differences produces the desired gradient. The positions
of the samples are calculated using spherical coordinates.
Considering a voxel located at position vPos = (x, y, z)
with the associated scalar value V(vPos), the gradient
vector is obtained as depicted in (3), assuming n samples
are taken at distance r from the voxel.

()

()

()

() ()()()�
−

=

⋅⋅−−⋅+=∇

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

�
�
�

�
�
�
�

�

�
�
�

�
�
�
�

�

=

12/

0

/22cos

/22sin
2

/2
sin

/22sin
2

/2
cos

n

i

posposrvPosVposrvPosVV

ni

ni
ni

ni
ni

pos

π

π
π

π
π

 (3)

The effects of the use of gradients as computed using the

aforementioned approaches are shown in Fig. 2. We
implemented local illumination using the Phong model [21],
where the gradient is used in place of the normal. Using
more than six neighbors results in smoother images
regardless of whether the computation is carried out in a
pre-processing step or dynamically. The advantages and
drawbacks of both approaches stem from the often-
occurring trade-off between memory and computational
power requirements. Pre-computed gradients require as
much as four times more memory than the volume data set.
For and for large data this may well exceed the available
video memory. However, once the gradients are stored, they
are obtainable via a single texture fetch, with barely any
impact on performance. Dynamic gradients, on the other
hand, require barely any memory. Since they are computed
on-the-fly and require multiple texture fetches, the impact
on performance can be substantial. The spherically-

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

245

computed gradients have a particularly negative influence
on the time required for rendering, but produce better
quality images. A good trade-off is the pre-computed 27
value method, which is sufficient for high-quality images,
provided enough memory is available.

Fig. 2. Illumination of a volume data set using: pre-computed gradient
using 6 neighbors (a); precomputed gradient using 27 values (b);
dynamically computed gradient using 6 neighbors (c); dynamic
spherically-computed gradient (d).

IV. GRADIENT-BASED CLASSIFICATION

For the purposes of volume classification, the most

significant application of gradients is the identification and
highlighting or elimination of surfaces. The orientation of
the gradient indicates the orientation of the surface, while
its magnitude indicates the difference between the materials
on either side of the surface. We use the gradient magnitude
as an additional voxel property (aside from the scalar value)
and incorporate it into the classification process. The first
classification method involves 1D gradient-based transfer
functions. Similarly to data-based transfer functions, this
class of functions assigns RGBA values to sampled voxels,
and is described by (4).

() RGBAVT

RRT

f

f

=∇

→ ,: 4

 (4)

Fig. 3 presents the result of using gradients for
classification. Fig.3(a) shows a volume rendered with a 1D
data-based transfer function. A 1D gradient-based function
is used In Fig.3(b). Various surfaces are clearly identified
and rendered semi-transparently, while color is used to
separate certain features such as the sinus cavity and the
metencephalon. The voxels corresponding to the structures
indentified in bright green in Fig 3(b) could not be similarly
highlighted using a data-based function (Fig. 3(a)) because
they share scalar values with neighboring structures which
occlude them. Surface information, however, allows for
their separation.

Fig. 3. Classification using: a 1D data-based transfer function (a); a 1D
gradient-based transfer function (b).

The identification and highlighting of surfaces is further

explored using combinations of data- and gradient-based
classification. One approach is to use what we refer to as
thresholded transfer functions. These are assigned a
threshold scalar value to separate data- and gradient-based
classification. With thresholded transfer functions, gradient-
based classification is applied to voxels whose scalar value
is below the threshold, while scalar values are used when
they are above this threshold.

Fig. 4. Surface identification and highlighting using: a 1D data-based
transfer function (a); a thresholded transfer function (b)

(a) (b)

(c) (d)

(a) (b)

(a) (b)

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

246

A result is shown in Fig. 4. The objective is to highlight

the outer surface (the skin tissue), while still keeping bone
structures visible. In Fig. 4(a), this was attempted using a
traditional 1D data-based function. While the outer,
transparent surface was correctly identified, it could only be
highlighted to a certain extent, before started occluding
other structures. Fig. 4(b) shows the same attempt, only this
time a thresholded transfer function was used. Bone tissue
was still represented from scalar values, but skin was
identified using gradient information. The result is that the
skin surface can be better highlighted, while still keeping
the bone underneath visible.

The flexibility of the classification is further extended
into the realm of 2D transfer functions [22]. For an arbitrary
voxel, an RGBA quadruplet is generated considering both
its properties, the scalar value and the gradient magnitude
(5).

() RGBAVVT

RRT

f

f

=∇

→

,

,:

2

42
2

 (5)

Two dimensional transfer functions have two

independently-generated components: one is data-based
(Tfd) and the other one is gradient-based (Tfg). The 2D
function is formed from combinations of these two
components, thereby incorporating both voxel properties
into the classification process (6).

fggfddf TwTwT +=2 (6)

Through a careful specification of the two components,

as well as a fine-tuning of the wd and wg weights, this form
of classification proves more flexible than its one-
dimensional counterpart.

Fig. 5. Visualization of brain tissue from a CT dataset using a 2D transfer
function; the layer of skin from (a) is partially removed (b) and completely
removed (c).

Fig. 5 shows the application of a 2D transfer function for
a CT dataset. The aim is to show soft brain tissue
underneath similarly dense skin. These two tissues are
inseparable based on scalar values only. The brain and skin
are separately identified in Fig. 5(a). Through the
manipulation of the aforementioned weights, the opacities
associated with certain gradient values can be lowered.

This is reflected in Fig. 5(b), where it can be seen how
the outer surface starts to lose visibility and “peel away”.
The brain beneath it is still visible and largely unaffected.
The limit of the technique is shown in Fig. 5(c). The outer
surface is completely removed, but some surface
information is also lost from the brain region.

We also tried this technique on MRI scans. MRI data is
often more problematic than CT, because the scalar values
for distinctive materials overlap more frequently and the
noise content is substantially higher. However, soft tissue
such as brain matter or blood is better identified in MRI
images. Unlike the previous CT dataset, the brain can be
identified using a 1D data-based transfer function (Fig.
6(a)).

Fig. 6. Visualization of brain tissue from an MRI data set using: a 1D
transfer function (a); a curvature-modulated 2D transfer function (b).

As previously, we attempted to remove the outer skin
layer, but, due to the noise content and the distribution of
scalar values throughout the dataset, the 2D transfer
function described by (6) proved insufficient. We therefore
have to further refine the classification. The transfer
function from (6) is expanded by adding curvature
information [23, 24, 25], since the ridges and valleys from
the surface of the brain are generally more curved than the
outer layer of skin. First, local curvature is estimated as
shown in (7). For any vector vect we use the notation vectn
to denote that vect is normalized.

()
() ()
() ()
() () �

�
�

�

�

�
�
�

�

�

−∇⋅+∇

−∇⋅+∇

−∇⋅+∇

=

nn

nn

nn

dzyxVdzyxV

zdyxVzdyxV

zydxVzydxV

zyxk

,,,,

,,,,

,,,,

,, (7)

(a) (b) (c)

(a) (b)

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

247

The curvature is estimated to be the magnitude of the
vector whose components are the dot products of the
normalized gradients from each respective axis. Once the
curvature is obtained, the transfer function from (6) is
modulated accordingly (8). An additional coefficient wk is
also introduced for fine tuning the modulation.

()fggfddkkf TwTwkwT +=2 (8)

The result can be seen in Fig. 6(b), where the outer layer

of skin has been removed almost completely.

V. CONCLUSIONS

The paper presented methods for the estimation of the

gradient from volume data, and various applications
involving classification via transfer functions based
partially or completely on the gradient. The rendered
images show that incorporating this voxel property into the
classification process allows for more classification
possibilities. 1D and 2D transfer functions were used for the
identification of structures and the highlighting and removal
of surfaces, from both CT and MRI data. When 2D
functions proved insufficient, curvature information was
added in order to refine the classification process. Future
work in this direction involves the expansion of the
classification possibilities within our rendering framework.
We intend to incorporate additional voxel properties, such
as occlusion or distance, into the classification pipeline, to
allow for even greater flexibility. The aim is to enable the
extraction of individual structures within volumes without
having to rely on segmentation or costly non-interactive
methods.

ACKNOWLEDGMENT

 Marius Gavrilescu thanks the members of the Vis-Group
at the Institute of Computer Graphics and Algorithms of the
Vienna University of Technology for their valuable support
and help with research.

REFERENCES

[1] M. Chen, A. Kaufman, R. Yagel, Volume Graphics. Springer, 2000.
[2] J. Hsieh, Computed Tomography – Principles, Design, Artifacts and

Recent Advances. Bellingham, WA: The International Society for
Optical Engineering, 2003.

[3] T. Peterka, R. Ross, Y. Hongfeng, K-.L. Ma, W. Kendall, H. Jian,
“Assessing improvements to the parallel volume rendering pipeline
at large scale”, in Proc. Ultrascale Visualization 2008 Workshop,
Austin TX, 2008.

[4] J.E. Vollrath , D. Weiskopf , T. Ertl, “A generic software
framework for the gpu volume rendring pipeline”, in Proc. Vision,
Modelling and Visualization, Erlangen, Germany, 2005, pp. 391-
398.

[5] Chen M., Kaufman A., Yagel R., Volume Graphics. Springer, 2000.

[6] E.B. Lum, J. Shearer, K-.L Ma, “Interactive multi-scale exploration
for volume classification”, Vis. Comput., vol. 22, no. 9, pp. 622-
630, 2006.

[7] M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf, and K.
Engel, Real-time Volume Graphics. A K Peters, 2006.

[8] H. Nguyen, GPU Gems 3, Addison-Wesley Professional, 2007.
[9] G.M. Nicoletti, “Advances in direct volume rendering for visualizing

large 3D data sets from scientific and medical applications”, in
Proc. 5th Biannual World Automation Congress, vol. 13, 2002, pp.
245-250.

[10] V. Solteszova, D. Patel, S. Bruckner, I. Viola, “A Multidirectional
Occlusion Shading Model for Direct Volume Rendering”, Comput.
Gr. Forum, vol. 29, no. 3, 2010, pp. 883-891.

[11] L. Marsalek, A. Hauber, P. Slusallek, “High-speed volume ray
casting with CUDA”, in Proc. IEEE Symposium on Interactive Ray
Tracing, Los Angeles, 2008, pp. 185-190.

[12] M. Weiler, M. Kraus, M. Merz, T. Ertl, "Hardware-based ray casting
for tetrahedral meshes," in Proc. IEEE Visualization 2003, Seattle,
WA, 2003, pp. 333-340.

[13] H. Ray, H. Pfister, D. Silver, T.A. Cook, “Ray casting architectures
for volume visualization”, IEEE Trans. Vis. Comput. Gr., vol. 5, no.
3, 1999, pp. 210-219.

[14] F. Rossler, R.P. Botchen, T. Ertl, “Dynamic shader generation for
GPU-based multi-volume ray casting”, Comput. Gr. App., vol. 28,
no. 5, 2008, pp. 66-74.

[15] S. Bruckner, E. Gröller, “VolumeShop: An interactive system for
direct volume illustration”, in Proc. IEEE Visualization 2005,
Minneapolis, MN, 2005, pp. 671-678.

[16] J. Meyer-Spradow, T. Ropinski, J. Mensmann, K. Hinrichs,
“Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based
Volume Visualizations”, IEEE Comput Gr. App., vol. 29, no. 6,
2009, pp. 6-13.

[17] M. Gavrilescu, M.M. Malik, E. Gröller, Custom interface elements
for improved parameter control in volume rendering, in Proc. ICSTC
2010, Sinaia, Romania, pp. 219- 224.

[18] M. Levoy, “Display of surfaces from volume data”, IEEE Comput.
Gr. App., vol. 8, no. 3, 1988, pp. 29-37.

[19] C. Rezk-Salama, M. Hadwiger, T. Ropinski, P. Ljung, ”Advanced
illumination techniques for GPU volume raycasting”, SIGGRAPH
Course Notes, 2009.

[20] L. Neumann, B. Csebfalvi, A. König, Eduard Gröller, “Gradient
estimation in volume data using 4D linear regression”, Comput. Gr.
Forum, vol 19, no 3, 2000, pp. 351-358.

[21] T. Whitted, “An improved illumination model for shaded display”,
Communications of the ACM, vol. 23, no. 6, 1980, pp. 343-349.

[22] J. Kniss, G. Kindlmann, C. Hansen, “Multidimensional transfer
functions for interactive volume rendering”, IEEE Trans. Vis.
Comput. Gr., vol. 8, no. 3, 2002, pp. 270-285.

[23] J. Hladuvka, A.H. König, E. Gröller, “Curvature-based transfer
functions for direct volume rendering”, in Proc. Spring Conference
on Computer Graphics 2000, vol. 16, 2000, pp 58-65.

[24] G. Kindlmann, R. Whitaker, T. Tasdizen, T. Möller, “Curvature-
based transfer functions for direct volume rendering: methods and
applications”, in Proc. IEEE Visualization 2003, Washington DC,
2003, pp. 67-76.

[25] S. Bruckner, E. Gröller, “Style transfer functions for illustrative
volume rendering ”, Comput. Gr. Forum, vol. 26, no. 3, 2007, pp.
715-724.

2011 15th International Conference on System Theory, Control, and Computing (ICSTCC)

248

