
Towards GPU Speech Coding

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Axel Goldmann
Matrikelnummer 9607701

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung:

Wien, 29.04.2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Towards GPU Speech Coding

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics

by

Axel Goldmann
Registration Number 9607701

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance:

Vienna, 29.04.2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Axel Goldmann
Testarellogasse 24, 1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i





Acknowledgements

Thanks to the responsible persons at PDTS Ges.m.b.H Vienna for their supervision during the
work, and Univ.Prof. Dr.-Ing. Norbert Görtz for providing some diagrams.

iii





Danksagung

Gedankt sei für ihre Unterstützung bei der Ausführung dieser Arbeit den Verantwortlichen bei
der PDTS Ges.m.b.H in Wien, sowie für die Bereitstellung von Diagrammen Univ.Prof. Dr.-Ing.
Norbert Görtz.

v





Abstract

Speech transmission is the central service in many telecommunication infrastructures. The en-
coding of many channels according to modern standards requires a fair amount of processing
capacity. With the recent GPU product lines, powerful platforms have become available as sup-
plement to desktop CPUs. This thesis tries to leverage these developments and examines the
possibilities of general purpose GPU employment in the context of speech coding. The speech
codec used in the TETRA mobile radio system is implemented using the CUDA programming
model. The main question is, how many channels can be encoded in real time on current GPUs.
Results show that through careful implementation and with some effort, a substial number of
channels can be processed. It seems however that modern multicore CPUs are much better
qualified for the task. The presented optimizations are far from complete and further research
directions are suggested.
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Kurzfassung

Sprachübertragung zählt zu den zentralen Diensten in vielen Telekommunikationsinfrastruktu-
ren. Die Codierung vieler Kanäle gemäs̈ modernen Standards beansprucht einen nicht unerhebli-
chen Rechenaufwand. Jüngste Grafikkartenmodelle bieten eine leistungstarke Unterstützung zu
herkömmlichen Prozessoren. Diese Arbeit versucht, jene Entwicklungen auszunützen und un-
tersucht die Möglichkeiten der Grafikkartenanwendung im Kontext von Sprachkodierung. Dafür
wird der Codec aus dem TETRA Standard mittels der CUDA Programmierschnittstelle imple-
mentiert. Die entscheidende Frage dabei ist, wieviele Kanäle auf gängigen Karten in Echtzeit
berechnet werden können. Die Ergebnisse zeigen, das̈ durch sorgfältige Schritte und einigen
Aufwand eine erhebliche Zahl an Kanälen von Grafikkarten übernommen werden können. Mo-
derne Mehrkernprozessoren scheinen dennoch besser für die Anforderungen geeignet zu sein.
Die hier beschriebenen Optimierungen sind bei weitem nicht erschöpfend und weiteren Unter-
suchungen ist Potential beizumessen.
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CHAPTER 1
Introduction

1.1 Motivation

As demands for computing power continue to increase in many fields, the shift towards parallel
architectures on the commodity market is proceeding. GPUs evolved from specialized circuitry
to fully programmable accelerators of non-graphics applications. With the recent transition from
pipeline based to universal programmable designs, their adoption has become mainstream. Fig-
ure 1.1 shows the trends in floating point performance of GPUs and CPUs to make clear why
general purpose GPU usage (GPGPU) became increasingly popular in recent times. For some,
acceleration by GPU is even seen as a revival of vector computing, [35].
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Figure 1.1: Recent trends of GPU and CPU FLOPS, traced and modified from [40].

Until recently, the performance challenges for desktop CPUs were met mainly by increasing
clock frequencies [27]. A number of design related restrictions, however, have brought an end
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to this condition. These so called walls stopped the further pursuit of the previously successful
practice of raising single-thread performance [15, 52].

• Clock frequencies cannot be increased anymore without unjustifiable raise of chip heat,
power dissipation and leak voltage.

• Exploitation of instruction level parallelism has reached its limits.

• Bus width between CPU and memory cannot further be extended.

At around 2005, commodity CPUs stopped to gain their periodical performance bonus by
clock frequency increases. Until that point, innovations in alternative specialized architectures
would quickly be negated by this effect. Since then, CPUs became multi-core. Furthermore,
CPU and GPU architectures show signs of convergence, which justifies the revision of estab-
lished algorithms under the aspect of parallel processing.

The motivation behind this thesis is trying to exploit these commodity market trends for
telecommunication applications. Modern speech encoding algorithms (such as G.729 used in
IP-telephony), require a fair amount of processing capacity. In many networks providing speech
services the need to encode or decode many speech channels in a single hub exists. Tradition-
ally, DSP processors on expensive specialized hardware are deployed for this purpose. In this
work it should be investigated whether it is possible to substitute specialized infrastructure with
commodity hardware, and if there is any benefit from it. The economic idea behind this is to gain
from the strong market forces, driven mainly by the computer game industry. Thus, powerful
hardware is available at low cost.

GPGPU has already been applied for countless applications, however the field of audio sig-
nal processing is left relatively unaffected. And even if current technology might be immature
for DSP purposes, this work should be seen as an evaluation allowing to better estimate the
potential of further developments in the future.

Speech coding includes many subproblems which are interesting to study under the aspect
of parallel processing.

1.2 Problem Statement

The context of this thesis is a private mobile radio infrastructure. It is compliant with the contro-
versial ETSI specification EN 300 392, defining the widely employed Terrestrial Trunked Radio
System (TETRA). Targeted at public service institutions, such as police, fire departments or am-
bulance, the system is designed to provide reliable speech transmission for its subscribers. As
a modern standard, its speech transmission method is digital for reasons of bandwidth economy
and uses the according TETRA voice codec specified in [22]. The search for an economic unit
capable of processing large numbers of speech channels led to the idea to run the TETRA codec
on a current streaming platform (GPU). The central question therefore is:

how many channels of the TETRA speech codec can be encoded in realtime on current
standard graphic cards?
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As a restriction, only cards of the Nvidia family should be considered, and the implementation
be carried out using Nvidia’s CUDA programming model.

1.3 Contributions

To the best of the author’s knowledge this is the first attempt of running a speech codec on a
streaming platform. An assessment is given of how many channels a modern GPU may process
in realtime. Many GPGPU applications count fully on problem-inherent data parallelism. In
this work instead, ways are discussed of how parallelism can be drawn from the simultaneous
processing of independent speech channels. The main effort lies in the analysis of the encoding
algorithm regarding its mapping to the parallel platform for a single channel. Based on the
results of the single-channel implementation is a projection of channel capacity for GPUs in
multi-channel operation. Limited input data and complex processing makes speech coding an
extremely compute-bound1 application.

Certain operations necessary for encoding, in particular the handling of short-tap filters and
convolution, are discussed for GPU implementation. Thereby, the potential of algebraically
transforming problems for better adaptability to the parallel platform is pointed out.

1.4 Thesis Structure

The document is structured as follows. In Chapter 2, a theoretical background for a better un-
derstanding of the subject of speech coding is given. After a short introduction to speech coding
a detailed illustration of the employed encoding procedure follows. Without this knowledge,
the given task in this thesis would not have been feasible. How the streaming platform can
be exploited in the implementation requires the knowledge of its architecture, properties, and
restrictions as well as the according programming model, which are all given in Chapter 3.
Chapter 4 is dedicated to related work and tries to identify existing research activities that, under
different aspects, share similar aims with this thesis. Next, Chapter 5 is the description of own
contributions and results from implementation efforts and problem analysis. The conclusion in
Chapter 7 finally has the purpose to assess the results and discuss future prospects.

1See [30] for an explanation of the term in the GPGPU context.
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CHAPTER 2
Speech Coding

In the following, the theoretical background for this thesis is given. The chapter starts with
an introduction to speech coding and properties of digital speech signals. Then all concepts
required for the understanding of a modern speech coder are introduced step by step until the
final structure is revealed. A description of the specific features of the coder treated in this work
closes the chapter.

2.1 Speech Coding Motivation

Speech transmission remains an important component in telecommunication services. About
40 years ago, transformation from the analog into the digital representation of speech signals
began. Digitalization introduces a number of convenient effects for signal handling. Besides in-
finite waveform regeneration, the application of error correction codes, security measures such
as encryption, as well as the integration into related systems were all enabled by that transi-
tion. Traditionally, analog telephone networks transmitted speech signals restricted to the 300
to 3400 Hz band. For digital systems this speech bandwidth was retained. Signal discretization
is achieved with a sampling rate of 8 kHz which ideally allows for maximum frequency com-
ponents of 4 kHz according to the Sampling Theorem, and in practice is limited to 3.4kHz due
to filter margins. Speech signals in this frequency range are called narrow-band speech signals
and yield sufficient audibility for telephone conversations. Other standards with higher sampling
resolution exist but will not be treated in the following. Therefore, 8 kHz will be the assumed
sampling rate during all considerations [24], [18].

In its raw unprocessed form, a digital speech signal is in so-called PCM (Pulse Code Modu-
lation) format. That means subsequent signed values represent the analog amplitude as measured
during A/D conversion. Thereby, a resolution of 16 bit per sample is required to adequately rep-
resent the original waveform for an acceptable listening experience. With 16 bit samples taken
at a rate of 8 kHz, the resulting accumulating data totals 128 kilobyte per second and thus PCM
makes digital transmission far inferior in terms of bandwidth efficiency compared to its analog
predecessor. Therefore, methods of data reduction (or compression) are so important.
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First and foremost, this is achieved through quantization, which reduces the number of bits
representing a sample. A quantization is defined by the partitioning of the whole amplitude
range into a number of intervals. After discretization, the obtained amplitude values are then
classified according to the chosen range partition. Each sample is represented by its interval.
The simplest variant is with equally sized intervals. In practice, the layout is optimized accord-
ing to application. For speech signals, the interval layout is adjusted to the amplitude density
distribution in speech, seen in Figure 2.1, [24], [18].
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Figure 2.1: Amplitude density distribution of average speech, courtesy of [18].

The average occurrence of amplitudes in speech approximately matches the Laplace distri-
bution which falls off in logarithmic manner around its mean (zero in the case of speech). As
an example, the approach of Logarithmic PCM leverages this property: The amplitude intervals
are laid out in a way so that samples with rather high magnitudes are assigned relatively less res-
olution than those of smaller amplitudes. Wider intervals cover more sample values, and hence
yield larger errors. On the other hand, values near zero are represented by smaller intervals and
after quantization, remain distinguishable to a greater extent. That means, errors are diverted
to less common amplitudes. With 8-bit words for the encoding of the quantization levels, the
effects of the introduced errors are negligible to the listener. As a measure for quantization
performance serves the signal to noise ratio (SNR)

SNR =
σ2S
σ2N

That is the relation of signal and error (or noise) powers1.
Although the amount of data to transmit is reduced greatly with an 8-bit quantization, the

resulting rate of 64 kb/s is still too high for many applications involving bandwidth-limited
channels such as satellite and mobile communication systems.

1Speech signals have zero-mean value. Therefore, variance σ2 is identical to power [18].
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Today, even standards with a bit rate of only 16 kb/s are referred to as high bit-rate encoding
schemes. Table 2.1 [11], gives an overview of bit-rate classifications for speech codecs.

Category bit-rate [kbps]
high >15
medium 5 to 15
low 2 to 5
very low <2

Table 2.1: Classification of bit-rates for speech coding standards [11].

For comparison, the TETRA codec is classed as low bit-rate and produces about 4.5 kb/s
[22]. In the past, great efforts were taken devising methods that allow for such a great reduction
of transmission data volumes. Early approaches such as the logarithmic PCM method described
above try to reproduce the original time domain waveform as closely as needed in a per-sample
manner without considering relations among neighboring samples, let alone properties of whole
sequences. These so-called waveform-coding methods, due to their universal treatment of signal
samples are not restricted to a certain type of application, but perform poorly in the case of
narrow-band speech [11, 24].

More complex encoding methods try to express the essence of the signal by means of an ade-
quate model and are called parametric coders. Instead of transmitting the quantized samples, the
encoder analyses a whole section of the signal at once, taking into account an underlying model
of description. The analyzed signal sections are called frames. Certain model parameters are
thereby extracted to efficiently describe the essential characteristics of the current speech frame.
The obtained parameters are then sent to the decoder, which in turn uses them for synthesis of
the speech according to the same model. The parameters cause much less data traffic and it is
such parametric techniques that enable codecs with low bit-rates as given in the table above.
Although resulting in a loss of quality compared to waveform-coding, the gain of reduced data
rates outbalances this disadvantage. Certainly, advantages come with a number of difficulties.
For example, the parameters are much more sensitive to transmission errors due to their high
significance in the model. Furthermore, the complexity of the underlying models prevents mea-
surement of output quality by terms of SNR and evaluation must be carried out empirically in
auditory trials, making development and tests much more expensive [32].

The TETRA codec, which is the actual target of the efforts in this thesis, is an example of
a highly advanced form of parametric analysis technique. Before revealing the functionality in
detail, the explanation of the basic model of speech production and related signal properties are
required.

2.2 Speech Signal Properties

In the human body, speech is produced by causing resonance of the vocal tract, a series of
cavities located in throat and head. Basically, air is pressed from the lungs against the vocal
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cords, which in turn release pulses into subsequent resonance chambers. To a certain extent,
these cavities’ form and expansion are defined by the attached musculature and thereby allow the
speaker to shape the tone. In the oral cavity, the arrangement of tongue and teeth articulates the
final sound [11, 24, 32]. One evident property of speech signals is that two distinct modes occur
during their production, namely that of voiced and unvoiced sounds. With vocal cords vibrating,
air flow from the lungs is periodically interrupted and the vocal tract therefore excited with a
series of pulses resulting in voiced sounds at a certain key tone. Unvoiced sounds in contrast are
generated with vocal cords letting pass the air unhindered and are of noisy character [11], [18].

Speech recordings taken from dedicated databases were analyzed to reveal their signal char-
acteristics [18]. The average power-density spectrum (PDS) of narrow-band speech is shown in
Figure 2.2.
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Figure 2.2: Power density spectrum of average narrow-band speech, courtesy of [18].

Its envelope shows low-pass characteristics. This deviation from whiteness implies the pres-
ence of correlations between samples. For a digital speech signal s[n], the time-domain equiva-
lent of the PDS, the autocorrelation function (ACF), is given by

ϕss (λ) = E {s [n+ λ] s [n]}

If constricted to a certain signal section (or frame) of N samples, it is written as2

Rss(i) =
1

N − i

N−1−i∑
n=0

s [n+ i] s[n]

The ACF expresses the occurrence of repeating patterns dependent on a time-lag i or λ
respectively. In the average speech signal, the ACF converges to the mean (zero) for lag values

2For the details of the relation of PDS and ACF see [11].
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higher than 20. That means, relations between samples range up to 2.5 ms * 20 = 50 ms in
average speech.

Figures 2.3 and 2.4 show the time domain signal, the magnitude spectrum, and the ACF for
unvoiced and voiced speech frames with a length of 30 ms, corresponding to 240 samples.
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Figure 2.3: Time signal, magnitude frequency spectrum and ACF of a voiced speech frame,
courtesy of [18].

In the time-domain plot of the voiced frame the periodicity is clearly visible. The 5.4 ms
period corresponds to the 185 Hz key tone indicated by the first local maximum in the associated
frequency spectrum plot. The periodicity is responsible for the pitch of voice. It ranges from 50
to 400 Hz dependent on age and gender of the speaker. In contrast, the unvoiced frame shows
much less dynamic and also lacks periodicity.

Both displayed frequency spectra are defined by a given configuration of the vocal tract.
Thereby, the resonance frequencies of the vocal tract appear as regions of local maxima. The
key frequencies at which these maxima occur are called formants and are characteristic for each
phoneme. In Figure 2.3 for example, two formants show up at 1000 Hz and 2700 Hz. The
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Figure 2.4: Time signal, magnitude frequency spectrum and ACF of an unvoiced speech frame,
courtesy of [18].

spectral envelope and with it the formant positions do not change in a discrete manner during
speech but have smooth transitions. It was found, however, that for periods of 20 to 30 ms,
speech signal sections can be treated as stationary. That means that its properties regarding the
power density spectrum can be assumed to be constant for a certain period [18]. Therefore,
when analyzing the signal it is possible to concentrate on one frame at a time and describe its
properties without worrying about the continuous transition between formant positions. These
are suited for extraction as model parameters for transmission. Likewise, on the other side of the
line, the decoder would receive the parameters and use them for synthesis so that PCM speech
data is reproduced frame by frame.
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2.3 Speech Production Model

In order to obtain a basis for parametric coding, the natural process of speech production, called
phonation, can be expressed by a simple model. Since the human ear is largely insensitive to
phase information, it is sufficient for the model to reproduce the frequency characteristics of a
given reference speech frame as efficiently as possible. As can be seen in the diagram in Figure
2.5, the central component thereby is a digital filter. It is driven by white noise moderated by a
gain value. As analogies to the natural process, the noise source corresponds to the lungs and
the filter to the vocal tract: for the filter, the spectrally constant noise serves as the target through
which the frequency response of the filter gets expressed according to whichever formants should
be produced, [11]. In other words, an approximation of the frequency spectrum of the frame is
generated by attenuation of some components through the filter.

white

noise
filter

gain

speech

coefficients

Figure 2.5: Basic speech production model.

The change of sound in speech is reflected by time-varying filter coefficients and gain val-
ues, again, held constant for the duration of a single frame. The next sections explain how the
presented model can be utilized in an encoder/decoder arrangement to derive the parametric
representation of a given frame.

2.4 Linear Predictive Coding

As already mentioned, correlation among the amplitude samples of a speech signal s[n] exists.
This observation suggests that an estimation ŝ[n] can be derived from N preceding samples
s[n − 1], s[n − 2], ... for the upcoming s[n] [4]. An equation implementing this idea is called
predictor [18]. Interpreting the signal as an autoregressive process [11] leads to one possible
predictor form, that of a linear combination. Its application is called linear predictive coding
(LPC).

ŝ[n] =

N∑
i=1

ais[n− i]

The above difference equation can be interpreted as a digital filter with infinite impulse
response (IIR) of order N and coefficients ai , which presents the connection to the base model.
In the base model, the gain-moderated noise input to the synthesis filter can be related to the
produced speech signal by a system function in z-domain, [24]. With S(z) as the speech and
X(z) the noise input, the system function is given by

11



H (z) =
S(z)

X(z)

.
According to the model, the purpose of the filter is the approximate reproduction of the

frequency spectrum of the desired speech frame. Therefore, the nominator polynomial can be
omitted if the denominator order is chosen high enough leading to the all-pole approximation

H (z) = G
1

A (z)

whereby

A (z) = 1−
N∑
i=1

aiz
−1

with satisfying spectral shaping potential for high enough N , and gain G. Its transformation
into time domain yields

s [n] = Gx [n] +
N∑
i=1

ais[n− i]

corresponding to the model with the addition of noise to the pulse response of the filter.
The similarity to the linear predictor is evident. The objective of the encoder now is to estimate
the unknown coefficients ai pretending that they had produced the speech in a complementary
synthesis filter, as in the model. Thereby, it is clear that the random term Gx[n] that originally
drives the imaginary synthesis must be thought of as channel noise or some other form of error
at the predictor.

The way to the wanted coefficients is via the error of prediction given by

d̂[t] = s[n]− ŝ[n] = s[n]−
N∑
i=1

ais[n− i]

d̂[n] is also called the LPC-residual signal. Because speech inherently has a zero mean
value, its variance, the mean square error (thus identical to the signal power), is given by

V ar
(
d̂[n]

)
= E

{(
d̂[n]− 0

)2}
= E

{
d̂2[n]

}
= E


(
s[n]−

N∑
i=1

ais[n− i]

)2


It serves as measure for the estimation performance and must be minimized. Minimization
is by setting to zero its partial derivate with respect to ai. After switching the positions of
summation and mean operators and substitution with the ACF as defined earlier, a linear system
of N equations is obtained:
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N∑
i=1

aiφn(i− j) = φn(j), j = 1, . . . , N

Consequently the encoder must solve the system to obtain his (the estimated) coefficients ai.
In [34] it is shown how this system can be solved with the popular Levinson-Durbin algorithm,
which is also applied in the TETRA standard.

At this stage of complexity, the decoder as the synthesizer, is identical to the arrangement in
the base model and receives gain and filter coefficients from the encoder. The encoder inverts
the operations in the production model. An example for the frequency responses for analysis
and synthesis filter can be seen in Figure 2.6.

Figure 2.6: Magnitude plots of example analysis and synthesis filters, taken from [11]

The time-domain interpretation of the prediction is that the autocorrelation signal model
exploits repetitions of amplitude patterns in its self. Thus it is sufficient to transmit only the
changes of the signal in respect to its immediate past. To express the performance of the analysis,
the prediction gain PG is defined as the ratio of the variance of residuals and the variance of the
input signal, [18, 24].

PG =
σ2S
σ2R

Within the bandwidth of 4 kHz, the number of formants for most vocal sounds is four be-
cause less significant higher patterns are cut off by the relatively low but sufficient sampling
frequency. For their representation through the spectral envelope, at least four conjugated poles
are required in the synthesis filter function. It was found that PG saturates with the number of
coefficients. Its increase for more than ten coefficients is marginal and in practice ten is the
number chosen [24].

2.5 Short-term and Long-term LPC

In the setup described so far, one problem emerges when considering periodicity in voiced
speech, as introduced earlier. Upon analysis in the prediction filter, ten coefficients only affect
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ten past signal samples and thus, can only capture relations in this short range. That is sufficient
for the short-term autocorrelation patterns as they appear in both voiced and unvoiced speech
portions, as can be seen in figures 2.3 and 2.4 with ACFs depicted. In voiced portions however,
strong correlations occur in a range above 43 samples. This number of samples corresponds to
the pitch period of the speaker’s voice. In order to reflect these relatively long-term correlations,
the filter order would need to be expanded to up to 160 coefficients3. A number of problems and
inefficiencies are the consequence to the adaption of such high filter orders, [18]:

• For unvoiced frames, calculating and transmitting so many coefficients to express corre-
lations that do not exist is a waste of processing power and channel bandwidth.

• For both voiced and unvoiced frames a number of intermediate range coefficients are
wasted for mid-range relations that do not occur nor contribute to the quality of the end
result.

• Another cause for inefficiency is the dynamic nature of the voice pitch itself, which is 20 to
160 samples. Since the high number of coefficients is required for the longest pitch periods
only, more common higher pitch renders parts of the spent encoding process ineffective.

Thus, the filter order shall remain as low as possible so that maximization of the prediction
gain and low data volumes are combined. A solution can be illustrated by extending the base
model. Obeying the restriction to only ten filter coefficients, there is no way to produce the kind
of periodicity found in voice. So attention is directed towards the part of the filter excitation.
For unvoiced frames, the model is already sufficient and in this case excitation shall remain
unaltered. For voiced sequences however, the source now is switched to an additional function,
as depicted in Figure 2.7. In order to insert voice pitch into the system, the filter is excited by an
impulse train. It can be imagined as a series of peak amplitudes at certain intervals. The period
between pulses is then adjusted to correspond to the desired pitch frequency of the speaker’s
voice, [11].

impulse train

filter

gainvoiced/ 
unvoiced

speech

coefficients

white

noise

Figure 2.7: Modified speech production model.

Generally, the aim in analysis is to whiten the residuals as far as possible, because that means
perfect extraction of spectral characteristics. When compared to the input speech signal, LPC

3Pitch of 50 Hz.
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residuals have their spectral envelope removed for the most part. See Figure 2.8 for an example
of LPC residuals.
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Figure 2.8: Typical LPC and LTP magnitude spectra and residual signals, after short-term
(above) and long-term (below) analysis filtering.

Now after the above modification to the model, the LPC-residuals produced by the unmodi-
fied prediction filter have changed too. One can see that the periodicity inserted by the impulse
train remained untouched by the low order filter. Since the predictor is expected to as closely
as possible reverse the procedure in the production model (note: maximize prediction gain),
the solution is to add in series a second prediction stage called the long-term predictor (or LTP
stage4), shown in Figure 2.9. It is entirely dedicated to the retrieval of the pitch information.

Again, the prediction works complementary to the production model. The approach is the
same as in the short-term LPC variant [18]:

d[n] =
I∑

i=−I
b̌id̂[n− L− i]

The only difference here is the influence of the desired pitch period L and that the subject
of prediction is the LPC residual signal d[n] instead of the original speech input s[n]. L can be
interpreted as the lag that causes the estimation to be based on a fixed small number of samples
[L − I, L + I] in the signal past. L must be set so that bi can capture the peak caused by the
impulse train. With fixed L, the solution is the same as for the short-term predictor, that is, the
minimization of power for the related error signal

4Although being low-order LPC itself.
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ř[n] = d[n]− ď[n]

Minimization is analogous as in LPC by setting its derivate to zero which leads to a system
of equations. The desired pitch period L must be found by solving the system for all possible L
in a certain range. The one that results in ř[n] with the least power, is selected. The approach
with I = 0 is called one-tap predictor and is widely used for its simplicity, i.e. no system of
equations has to be solved. It is then sufficient to maximize(∑N−1

n=0 d [n]− d[n− L]
)2

∑N−1
n=0 d

2[n− L]

by calculating powers in an appropriate range for L.
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Figure 2.9: LPC and LTP filter cascade

The pitch frequency has less stationary character than the formant characteristics expressed
in the LPC coefficients and therefore must be evaluated more than once per frame. To reflect
this, the frame is subdivided into a number of sub-frames, usually four. Long-term analysis is
then conducted for all sub-frames.

Simple LPC Encoder Structure

An overview of how the modified speech production model is applied in an encoder is now given.
A possible encoder based on the discrimination of voiced and unvoiced speech is shown in Figure
2.10. It extracts several parameters, amongst them voicing information, on which synthesis in
the decoder is based on. Methods for the classification of a frame being of voiced/unvoiced
nature should not be treated here, but obviously high power is representative for voiced frames,
and high zero crossing rates suggest unvoiced character [8].

The encoder setup is the following. The input signal is partitioned into equally sized frames
in which it is assumed to be stationary [18].

1. For each whole frame in formant analysis, LPC coefficients are found that express the
spectral characteristic in a short range.

2. Next, the LPC residual signal is generated by analysis filtering through A(z). In the case
of voiced frames and hence long-term components, the voice pitch could not be extracted
in this step and remains in the residual signal, as in 2.8.
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Figure 2.10: Simple coder structure based on the modified speech production model.

3. The frame is then examined whether of voiced or unvoiced nature. The information is
used in subsequent steps.

4. If the current frame was classified as voiced, LPC residuals in turn are fed to a second
dedicated LPC stage for pitch extraction. This step is, too, carried out on sub-frame basis.

5. Gain calculation is based on LPC residuals and voicing information. This step is carried
out on sub-frame basis.

LPC coefficients, voicing information, gain and pitch are sent to the decoder which proceeds
as in the production model synthesizing the speech reproduction.

The pure LPC method with its discrimination of voiced and unvoiced frames enables low
bit-rate coders (the so-called vocoders). The simple model however is the cause for poor quality
and the introduction of unnatural sounding artifacts in synthesized speech. The model fails in
the following respects [11]: In practice, there are frames that cannot entirely be classified as
either voiced or unvoiced. In the employed model, such transitional frames are not accounted
for, resulting in audible distortions. Also environmental background noise during a conversation
may lead to wrong classification of frames causing unintelligible output. The limitation is that
of the use of either white noise or a pure impulse train which is too coarse an abstraction for
real speech. While noise leads to reasonable results for unvoiced sounds, voiced ones require
a much richer excitation spectrum than an impulse train can offer. Above all, the LPC method
is expected to recreate the formants of speech and therefore expects noise as input. If excita-
tion is only by a series of pulses with narrow spectral characteristics, the filter lacks important
frequency components. As mentioned, the LPC method does not intend in any way to preserve
the time-domain waveform of the signal. The only means of sound representation is through
the approximation of its magnitude spectrum per frame. Phase information from the original
signal is indeed insignificant for unvoiced sounds but greatly enhances naturalness of voiced
components. Today, the discussed encoder design is seen as inadequate for most applications.

To understand the TETRA codec, further developments in coder design must be studied and
will be introduced in the following sections.
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A closed-loop approach

Obviously, the main disadvantage and cause for poor synthesis in the simple LPC vocoder is the
switched excitation source in the decoder. Successive codec designs therefore follow the idea of
discarding the discrimination between voiced and unvoiced frames and instead let the encoder
itself provide the suited excitation signal directly by transmission.

Even a vague approximate representation of the signal through pitch, gain and LPC coeffi-
cients allows its exact reproduction if the residuals are transmitted unaltered to the decoder. In
other words, the LPC residuals present the ideal excitation signal for the decoder with any set
of determined coefficients. This is due to the reciprocal nature of analysis and synthesis filters
(refer to Figure 2.6 with inverted system functions). However, parameters as well as residuals
cannot be transmitted as they are which would render all intentions for data volume reduction
pointless. The crucial instrument to enable the transmission of the results therefore is that of
careful quantization. The concept has already been introduced at the beginning of this chap-
ter. For now, without suggesting further details it is sufficient to think of quantization effects
as additive white noise to its target signal, thereby representing the quantization error. Details
on quantization techniques are treated in the next section. The coder arrangement with abstract
quantization and transmission of residuals is depicted in Figure 2.11.
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Figure 2.11: Coder structure with quantization of parameters and residual signal

In the structure, the voicing part is gone. Instead, all parameters are transmitted to the
decoder in quantized form. The main difference is the transmission of the LTP residual signal5.
In the diagram, gain calculation is omitted. Gain can be thought of as being included in the
residual signal.

Essentially, the whole procedure is aimed at bringing the residuals into a form that is suited
for quantization and allows its efficient transmission together with LPC and pitch information.
The final residual signal is thus the result of a two-stage process that minimizes its variance
(power). The reduction in variance means less dynamic, i.e. a smaller amplitude range. With
the same number of bits, quantization intervals can be laid out much tighter resulting in higher
SNR in residual representation.

Notice, that no matter how precise the prediction is, the final result at the decoder output
is independent from PG. Ignoring effects of possible error introducing representations of co-

5Due to the employment of quantization to the residuals, LPC-based encoders often are classified as hybrid
encoder types, incorporating both parametric elements as well as waveform approximating ones.
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efficients and gain, it is only dependent on the residual quantization error disrupting the ideal
excitation signal. In a system as it is depicted in Figure 2.11, the purpose of analysis therefore
is merely that of variance reduction. Apparently, this is because the synthesis in the decoder is
based on different data than the analysis in the encoder. That is because analysis filters have
non-quantized input and the effects of quantization on the final decoder output are neglected in
the encoder.

Speech quality however can be enhanced by eliminating this shortcoming and making the
overall SNR dependent on PG. How the effects of quantization can be incorporated into the
prediction decision will be discussed in the next section. The idea of considering the quan-
tization error during the encoding process is central to the final coder design. Its structure is
best understood through details on the applied quantization methods to which the next section is
dedicated.

2.6 Vector Quantization

According to Figure 2.11, quantization is the elemental tool for data volume reduction and is
integral to the here studied coder design. Scalar quantization methods as applied to isolated
samples were already mentioned at the beginning of this chapter and are generalized in the
following.

Basically, vector quantization (VQ) is the substitution q(x) = yI of an input vector x =
[x1, x2, ..., xN ]T with a sufficiently similar one yI from a set of available vectors Y of the same
dimension N . The set of available vectors Y = y1, ..., yM that are considered for substitution is
called the codebook of size log2M bits. Selection of yI is by minimization of a given distance
function d(x, y) between the input vector and each vector of the codebook. A common distance
function is the squared Euclidian distance [11]

d (x, y) =‖ x− y‖2 =
N∑
i=1

(xi − yi)2.

Wherever Y is known, the input vector x can then be represented by the index I to its
codebook vector minimizing d(x, y). In the context of an encoder/decoder arrangement, this
means a great reduction of data to be transferred to the decoder. In practice, and as will be seen
in the final coder design, VQ is applied to almost all resulting model parameters produced by
the encoder. For example, in the variant from Figure 2.11, LPC coefficients (ten elements) and
residuals (sub-frame width) might be vector quantized, pitch and gain on the other hand, being
scalars, can be transmitted directly. Note that the above distance function is well applicable for
signal samples, but inappropriate for targets such as the LPC coefficients whose quantization
will be treated in a later section.

The essential parameters for the application of VQ are the number of bits log2M for code
vector enumeration and the code vector dimension N . As an example, the quantization of the
residual signal should be considered [18]. Assuming four sub-frames with a width of N = 40
and a sub-frame time of 5 ms and choosing a codebook size of 2M = 220, accumulating trans-
mission data is already relatively low at 4 kb/s. However, one problem thereby is the required
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memory amount for codebook storage. With 16-bit samples, each of the codebook vectors yj
the input speech frame is compared against requires 2N = 80 bytes, totaling at 80 · 220 bytes,
which is well above 80 MB. Another issue with this form of codebook is the complexity arising
when searching it for the best match. Both, memory and computational requirements exceed
the capacities in typical applications by magnitudes. Thus, means for the reduction of codebook
sizes are necessary.
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Figure 2.12: Vector Quantization, as in [18].

The advantage of VQ with a high number of elements per vector is that it can exploit linear
as well as nonlinear dependencies between vector components that are otherwise hard to express.
As logarithmic quantization tries to assign larger errors to less common amplitude values (see
beginning of the chapter), so does VQ accept the larger errors for rare sequence patterns of am-
plitude values. It outperforms scalar quantization because there, bits are wasted to the relatively
precise representation in an insignificant scope. This holds even for uncorrelated signals [18].

Split VQ

One way to increase VQ efficiency is by splitting the input vector into more than one part of not
necessarily equal length [24]. Consequently, each sub-vector is then quantized by use of a sep-
arate codebook. The advantage thereby is that different parts of the vector can be assigned with
different grades of quantization precision, i.e. codebook sizes in bits, according to requirements.
Actually, the result is that of having a number of independent parameters each with its own VQ
stage.

Gain-Shape VQ

An essential approach for the reduction of complexity is gain shape VQ (GSVQ) [18, 24]. It is
especially interesting because of its influence in the final coder structure that will be described
in Section 2.8. The discussion of the LPC coder in Figure 2.11 revealed that the potential of
quantization is significantly affected by the variance of the input signal. As observed in the
context of scalar quantization, the situation is the same with VQ. The idea behind gain shape VQ
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is to exploit the fact that various input vectors might share the same or similar sequence of values
(shape) although at different power levels (variance, here: gain). The codebook is therefore split
into two separate parts, one for shapes and one for gain levels. In order to eliminate the influence
of variance, the input vector x is normalized and compared against normalized target vectors
from the dedicated shape codebook. The gain of x which is given by

σx =

√√√√ 1

N

N∑
i=1

x2i

is quantized as a scalar by means of the gain codebook. The output of the quantization then is
the indices to the best shape approximation combined with the optimal gain level. The testing of
each gain level in combination with each shape entry can be quite complex for large codebooks.
As a consequence in practice, both parameters are determined in two distinct steps.

1. In the first step, the non-quantized gain is used to determine the best shape vector.

2. In the second step, the best shape vector selected in step 1 is used to search for the optimal
entry in the gain codebook.
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Figure 2.13: Gain-Shape Vector Quantization as in [18].

Compared to the regular VQ approach codebook size is reduced greatly. For illustration,
GSVQ should be applied to the previous example with the 20-bit codebook and a vector dimen-
sion of N = 40. Let the 20 bits arbitrarily be divided into 12 bit for the shape codebook and
an 8-bit gain quantization. Again, with 2 bytes for each of the 40 vector elements, the required
storage space for both codebooks totals at 2 · 40 · 212 + 28 which is about 328 kB.
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2.7 Analysis by Synthesis

Both coder variants discussed so far are open-loop designs, that means parameters are deter-
mined once, then quantized and sent to the decoder. For low bit-rate systems, it is essential
to optimize synthesis quality. Modern designs therefore adopt the far more potent closed-loop
approach. In Figure 2.14, the general concept is depicted.

target 

signal

error

signal

system 

model

minimize 

error

synthesized 

signal

parameters

Figure 2.14: Closed loop

According to the given model, the input signal is to be reproduced already in the encoder.
Since an analytical determination of the optimal parameters might not be feasible, model pa-
rameters are applied in a trial and error fashion. The synthesized signal is then compared to the
original for each combination of model parameters. The resulting difference is an expression of
how close the chosen parameters match. The fact that synthesis takes place in the encoder gives
the method of analysis-by-synthesis (AbS) its name. It was first applied in an LPC speech coder
in [5].

The drawback of the previously described coder design is that the prediction gain has no
influence on the quality of the decoder output. By introducing the AbS principle to LPC, this
disadvantage is eliminated. For an analytical step-by-step derivation of the structure see [18].
For quick illustration, the closed-loop LPC design is best derived from the previous variant (the
one in Figure 2.11) by replacing the abstract quantization block with a VQ stage. The motivation
for VQ has already been given in the previous section.

Notice that VQ as depicted in Figure 2.12 is in itself a closed-loop system with the codebook
corresponding to a reduced system model and the index to its parameters. When replacing
the quantization stage in Figure 2.11 with that from Figure 2.12 in the open-loop coder, the
excitation signal resulting from analysis filtering is then the input to the closed-loop VQ. In order
to apply the principle entirely on encoder level, the structure must be just slightly rearranged.
This is by setting the speech signal as the reference signal of the closed-loop. The result is shown
in Figure 2.15.

Now, the source of the excitation signal is no longer the residuals from LPC analysis. In-
stead, in a search loop all possible codebook vectors are fed to a subsequent synthesis stage. It
consists of the pitch and LPC synthesis filters and basically can be thought of as an embedded
decoder. The difference between the synthesized speech and the original serves as the error
measure. As in VQ, the excitation sequence (of sub-frame length) leading to the least error is
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Figure 2.15: AbS LPC coder

selected and its index sent to the actual decoder. Essentially, the former calculation and quan-
tization of residuals is substituted with the generation of a signal with the same purpose. Note
that this illustration does not consider steps such as determination of pitch and LPC coefficients
that are required to drive the synthesis part.

Filter memory handling

Before the full encoder structure is given, a detail about synthesis filter memory management
during the codebook search should be pointed out. Note that recursive digital filters, besides
their current coefficients also retain a state from the previous output calculation. In a tenth-
order filter, these memories or states consist of the last ten output values. When switching
on a filter, i.e. feeding a step function, the first ten+1 output values are called its transient
response. After having calculated ten+1 values the filter has reached its steady state. After
the input is switched off the remaining ten+1 output values are called decay response. The
transient response is based on a zero-filter state since no previous calculations took place. In
the above arrangement, at time k, filter memories are the result of the excitation of the tested
code-book entry at time k-1. If not explicitly managed, the resulting memory from each search
step influences the next calculation and the results are distorted. Therefore, after each codebook
vector, the filter memories must be reset to the state they were in when the search began. In
practice, there is a more efficient solution: due to the linearity of the system, the decay response
of the filter cascade can easily be found and subtracted from the input signal just once before the
search commences. During the search the filter cascade is initialized with zero-states for each
codebook vector, thus ensuring proper search results and less handling of filter memories [18].
Figure 2.16 illustrates this additional step.

2.8 Code Excited Linear Prediction

The first system combining AbS and VQ was proposed in 1985 [48] and called Code Excited
Linear Prediction (CELP). Its name suggests what has been described in the last section: the
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Figure 2.16: AbS LPC coder with decay response subtraction

generation of the synthesis filter’s excitation signal from codebook entries. Many of today’s
medium and low bit-rate speech codecs are based on this design.

Perceptual Weighting

Because the synthesized speech signal produced in the AbS search loop barely resembles the
original time-domain waveform, the mean square error measure performs less than adequate. To
counter this effect, in the CELP coder, a property of the human auditory system, the masking
effect, is exploited to further enhance synthesis quality. The presence of a single tone in the
frequency spectrum tends to cancel the audibility of other tones in its spectral vicinity, if they
are of sufficiently low magnitude. The higher the magnitude of a tone, the higher the degree and
range of its suppressive effect. Each tone therefore is accompanied by a masking curve as seen
in Figure 2.17. Considering the spectral envelope of a voice frame, this implies that regions of
high power (formants) have a higher potential of canceling out weak components than regions
of low power do. Thereby, the resulting masking curve resembles an attenuated version of the
actual envelope, [18, 24].

The application of masking in speech coding is called perceptual weighting. During the AbS
search loop, the error signal power is used to determine the best codebook vector. The idea now
is to de-emphasize errors in more tolerant frequency regions, i.e. those of the formants. Since
the LPC coefficients already express those, the error weighting can be achieved by a weighting
filter given by

W (z) =
A(z)

A(z/γ)

with γ usually in [0.8, 0.9].
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Figure 2.17: Example of signal spectrum and according masking curve, traced from [11]

For the same reasons as with the subtraction of the decay response in filter memory handling,
it is more efficient to apply W(z) to the speech signal in the first place. Thereby, W (z) is
integrated into the synthesis filter so that 1

A(z)
A(z)
A(z/γ) is reduced to 1

A(z/γ) .
The eventual CELP structure follows the one in Figure 2.16 with the addition of conceptual

weighting and other changes. The main difference is that in the CELP coder the pitch prediction
is integrated into the closed-loop thereby eliminating 1

B(z) from the synthesis cascade. The
excitation signal source thus becomes more complex than a single codebook which makes the
AbS loop more complex.

Encoding Procedure

The whole procedure is described in the following [18]. There are two phases:

• whole frame processing

• sub-frame processing

The first phase includes the LPC analysis based on the whole frame in the same way as
explained in the simple coder designs. The obtained coefficients are used for all subsequent
applications of A(z) until the next frame. They are quantized (see Section 2.9 for details) and
ready for transmission to the decoder. After this, non-quantized and quantized LPC coefficients
are available. Finally, the original speech signal is weighted through W (z).

The first step in sub-frame processing is the subtraction of the impulse response of
1/(A(z/γ)) from the weighted speech signal, as discussed above. The result serves as the
reference signal for the subsequent AbS search loop that should find the optimal excitation sig-
nal.
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Figure 2.18: An example of the spectral envelope of speech and the weighting filter frequency
response, traced from [3]

The excitation signal is generated from two different codebooks, the stochastic and the adap-
tive one, see 2.20. The stochastic codebook is called that way because it is defined in a training
procedure beforehand, as described in the section about VQ. In a GSVQ manner, both codebook
contributions are moderated with a gain value each. To form the candidate excitation signal, both
results are added together in a certain proportion determined by the gain mix. The procedure is
as follows:

• calculate adaptive codebook contribution, obtaining pitch

• calculate stochastic codebook contribution and gains, obtaining index

• quantize gains for each contribution, obtaining gains-index

The adaptive codebook is not a codebook in the sense of VQ but rather a sequential first in-
first out (FIFO) sample buffer in which the samples of previously chosen excitation signals (on
sub-frame level) are stored. It is called adaptive because it is modified over session time. More
precisely, after each sub-frame processing the resulting excitation is inserted into the buffer. In
the decoder this adaptive codebook can easily be maintained because exactly the same excitation
signal is reproduced from the received parameters. The pitch is determined by finding a vector
bl of sub-frame length somewhere in the buffer where l, the lag, denotes the buffer offset from
its beginning.

bl is found in a full search for the whole range6 of l which is l = 20, ..., 147. For each value
of l, bl is fed to the synthesis filter 1/(A(z/γ)) and the output is subtracted from the reference

6Again corresponding to the voice pitch range.
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Figure 2.19: Adaptive codebook as depicted in [18]

signal. Thereby bl is tested as excitation signal and the l leading to the error signal with the
lowest power is selected as pitch L. As an implementation of GSVQ, an optimal gain value β is
determined that further scales the shape of bL to the reference signal.

One note about the purpose and effect of adaptive codebook for voice components: The
target excitation signal’s waveform is approximated by an adequate section taken from past
excitations. This yields good results especially for voice-dominated frames, because pitch is
introduced into the signal by involving the previous excitation signal’s peaks .

The contribution bL from the adaptive codebook is just the basis for the desired excitation
and must still be refined. In the next step, the deviation from the reference signal is further
reduced by adding to bL an appropriately scaled vector αci, α being the applied gain, from
the stochastic codebook. αcI , is also called the innovative contribution because without it the
excitation signal would be entirely based on content from its own past.

Both gain values β and α used so far were optimal for the shapes bL and cI they scale.
They too are to be quantized according to the concept of GSVQ. Dependencies between β and α
can be exploited through the employment of a trained gain codebook containing 2-dimensional
vectors each with one component for β and one for α. Figure 2.20 depicts the entire excitation
source.
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stochastic codebook

α

β

L
b

I
c

Figure 2.20: CELP codebooks and gain mix.

The processing of the sub-frame is then completed and the parameters that define the optimal
excitation are found: the pitch L, the innovative codebook index I , and the gains-codebook
index IG. For the remaining sub-frames, the synthesis filter memory must be updated. This
is accomplished by filtering the final excitation signal as the decoder would derive it from the
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received parameters. As the last step, the adaptive codebook is updated by feeding the selected
excitation signal into the FIFO buffer shifting its content to the rear by the sub-frame width.

Algebraic codebooks

For the desired speech quality, the size of the stochastic codebook is crucial. With the common
sub-frame width of 40, a codebook size of between 12 to 40 bits is required to achieve satisfy-
ing results. Searching and storing up to 240 vectors however is impracticable [18]. Therefore
alternative codebook structures that allow for more efficient processing were introduced. One
such structure is that of algebraic codebooks in algebraic CELP (ACELP). What makes a code-
book algebraic is that it is not stored in memory but instead, relies on a set of rules allowing
the generation of its vectors directly from their associated code representation [7]. The idea is
to use sparsely occupied impulse sequences of sub-frame length as codebook vectors, much like
impulse trains mentioned in Section 2.5. Such a vector consists of only a small number (usually
four) of signed non-zero pulses of unit magnitude. Each of the pulses can be set at predefined
positions evenly distributed over the entire vector.

For example with a sub-frame width of 40, the first pulse can be set at position 0, 5, ..., 30, 35
the second pulse at 2, 7, ..., 32, 37 and so on. Thus in this example, each pulse requires only three
bit plus the sign bit for its encoding.

The advantage of this approach is that the codebook needs not to be stored, but also that it can
be searched most efficiently. The search can be conducted so that it is not required to calculate
the contribution of each entire pulse combination. The difference between two combinations
that vary only in the position of a single pulse can be expressed (as will be seen in Section 5.5).
This is exploited by iteratively testing all possibilities by changing only the fourth pulse for a
given combination.

2.9 Specific characteristics of the TETRA codec

The structure of a CELP coder has been discussed in this chapter so far. Still, some details not
necessary for the understanding of the encoding procedure or specific to the TETRA specifi-
cation were omitted. Those relevant for the actual implementation should be revealed in the
following. This inludes the way how LPC coefficients are used, the method of finding the proper
pitch period, as well as the ACELP implementation.

Quantization and interpolation of LPC coefficients

For synthesis, the decoder relies on the LPC coefficients which the encoder continuously pro-
vides together with information on the excitation signal. In their unprocessed form, as they are
determined in the Levinson-Durbin algorithm, the coefficients require too much bandwidth for
efficient transmission. In the TETRA coder without further data reduction, the ten coefficients
ai (each a 16 bit word) would cause 160 bit to be relayed each frame of 30 milliseconds (8
kb/s) [18]. Needless to say, the required quantization results in deviation from the original co-
efficients and lowers PG. The problem with the LPC coefficients is that the effect of introduced
quantization errors cannot easily be measured nor predicted. As a solution to this, alternative
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LPC representations that behave more robustly concerning quantization are used. The TETRA
specification employs the common Line Spectral Pairs (LSP) transformation, also referred to as
Line Spectral Frequencies (LSF) in the literature [23].

Thereby, the predictor expression

A (z) = 1−
N∑
i=1

aiz
−1

is arbitrarily decomposed into two polynomials Q1 and Q2,

Q1 (z) = A (z) + z−(N+1)A
(
z−1
)

Q2 (z) = A (z)− z−(N+1)A
(
z−1
)

of increased order so that

A (z) =
1

2
(Q1 (z) +Q2 (z))

All 2(N + 1) roots of Q1 and Q2 lie on the unit circle in alternating order [51]. Each
polynomial has always one known root at 0 and π respectively, which can thus be ignored.
Since the remaining roots are conjugate complex it is sufficient to consider those in the upper
half of the unit circle7. The actualN = 10 line spectral frequencies, ωi, are the angular positions
ω1, ω3, ..., ω9 of the polynomial roots of Q1 and ω2, ω4, ..., ω10 of Q2 respectively, all between
0 and π. The advantage of LSF is that quantization errors have only local effects and that due
to their spectral representation can easily be interpolated (see below). Moreover, speech sample
analysis has revealed statistical relations among neighboring LSF values, which suggests the
employment of VQ. In the TETRA coder, split VQ is applied to the ten frequencies which are
split into three groups sized 3, 3 and 4 respectively. The first group is quantized with 8 and the
other groups with 9 bits each [22]. Thus, per-frame data dedicated to LPC only accounts for 26
bits. Additionally, the error assignment in the according VQ codebook training provides [18]:

• lesser sensitivity to higher frequencies in the human ear

• emphasis on significant formant positions

Each whole-frame, LSF values are derived from LPC coefficients. For sub-frame processing,
LSFs are interpolated so that in each sub-frame a linear mix of the newly calculated LSFs and
those from the previous whole-frame are used. The 4th sub-frame relies entirely on the recent
values.

7 [11] dedicates a whole chapter to LSF
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Pitch prediction with fractional delays

As already said, the aim of pitch prediction in a CELP coder is to find the lag and gain for
the adaptive contribution. In the implementation with the adaptive codebook, this vector, bL,
corresponds to a section taken from a buffer of previous excitation samples. To find the lag L,
portions of the excitation buffer must be compared to the desired target signal (see below). In
voiced frames however the actual pitch period often is not an integer multiple of the inherent
sampling period. That significantly reduces the effectiveness of the method.

For the desired quality, sub-sample precision of L is required. Higher order LTP filters (with
I > 0 as given in Section 2.5) have an interpolating effect and provide a higher resolution for
L. The disadvantage however is that more (2I + 1) coefficients from long-term LPC must be
encoded for transmission, and that the solution becomes more complex. The solution here is to
introduce fractional delays. That means up-sampling the signals instead of increasing the predic-
tor order. Then, sub-sample precision in combination with the advantages of a single coefficient
is given. The interpolation increases the number of samples and thereby the search complexity.
Therefore, fractional search cannot be applied on the whole range of L, [18, 24]. In the TETRA
coder, fractional delays with a resolution of 1

3 are used. For the first subframe, fractional search
is conducted for L1 in the range8

[
19− 1

3 , 84 + 2
3

]
. For the other three subframes, only the

vicinity around L1, that is
[
L1 − 5− 2

3 , L1 + 4 + 2
3

]
, is interpolated for the search [22].

In order to further reduce the complexity caused by the fractional lag search, an open-loop
preliminary search stage is introduced. It provides L′ and L′min and L′max delimiting the closed-
loop search for L1. This stage operates on the whole-frame level and works essentially in the
same way as the single tap predictor described in the introduction to pitch filtering (Section
2.5). The difference here is that the calculation is based on the weighted speech signal (instead
of the LPC residual). Also the normalized correlation that is to be maximized is expressed
differently [22]:

Ck =
120∑
j=0

sw (2j) sw(2j − k)

Algebraic Codebook Implementation

The ACELP implementation in the TETRA codec follows the approach in [7], depicted in Figure
2.21. Thereby, the innovative codebook is arranged as a general framework consisting of two
parts. On the one hand, the set of algebraically available sparse code vectors Ak and, on the
other, an arbitrarily chosen matrix F that further enhances the selected vector9 Ak and produces
the actual innovative code vector Ck.

The decoupling of codebook and shaping matrix bears several advantages:

• The search procedure benefits from the simplicity of Ak and is not concerned with the
final shape of the output vector containing unnecessary components.

8Perceptually, lower pitch frequencies are less sensitive to prediction errors.
9The actual structure of Ak is given in Section 5.5.
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Figure 2.21: Framework for innovation codebook, based on [7].

• Desired speech specific properties of the codebook can be independently expressed in F
and won’t interfere with the search.

The matrix enhances the excitation vectors in the frequency domain concentrating energies
in the significant frequency bands, namely those of the formants [29]. It is a function of the LPC
model A(z) and lag L. F is calculated each subframe during the stage of algebraic codebook
contribution.
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CHAPTER 3
GPU Properties

This chapter treats GPU properties such as architecture and programming model and assumes
the knowledge of the old pipeline model as used in computer graphics.

Three main characteristics of applications that can successfully be mapped to GPUs are [44]:

• High proportion of computational activity. GPUs originate from a fixed pipeline model
and are not designed to handle programs that strongly rely on conditional evaluations.

• Exploitation of data-parallelism. Many non-graphics related problems can be separated
into independent work packages, just as vertices and fragments. Examples are voxels in
fluid dynamics, or cells of matrices in matrix multiplications.

• Throughput over Latency. GPUs are built for high overall throughput rather than short
response times. In real-time graphics, time constraints are based on the video frame rate.
The focus therefore lies on bringing a whole result (an image) within the given time rather
than optimizing the performance of individual operations. Many compute-intensive tasks
share this characteristic.

When hardware was still not programmable, non-graphics problems were tried to be mapped
to depth buffer and color blending operations since those were the only configurable portions
on the fixed pipeline [45]. GPGPU methods progressed with the introduction of the shader
units [58]. In this stage during the evolution of the GPU, additional programmability was not
added with general purpose computing in mind, but to allow for new custom visual effects [1].
The graphics APIs (Direct3D, OpenGL) still had to be learned in order to benefit from the
underlying power, to many an unattractive complication [58].

In less than a decade, GPUs evolved from hardwired to highly programmable devices. Stages
in the fixed functionality pipeline became gradually customizable. The vertex processing and
the fragment processing stage became generic modules, shaders. Over the years, vertex and
fragment shader units gradually assimilated since programming requirements raised and gener-
ality of hardware increased [33]. Eventually, they were unified resulting in the Shader Model
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4.0, [44]. The GT200 family of NVIDIA devices used in this work feature this unified shader
model.

In [16], a taxonomy of computer architectures is proposed which is still used frequently
today. One architecture type is that of single instruction multiple data (SIMD). It is often men-
tioned in the context of parallel computing. As opposed to classical CPU architecture (single
instruction single data), it denotes an architecture’s capability of manipulating multiple operands
(a vector) of the same operation in parallel.

3.1 Architectural Overview

Although unified and not resembling the order of classical pipeline stages, the architecture fea-
tures specialized units dedicated to graphics tasks on different levels (see discussion on GPU
unification). The main building blocks in an NVIDIA GT200 device are the streaming proces-
sor array (SPA) that does all the customized processing, the scalable memory system and the
network for interconnection of the latter. Communication with the host computer is via the host
interface. It provides memory access, receives commands and responds to the host. The modules
immediately below the host interface in the diagram (Figure 3.1) represent three different paths
and supply the SPA with work. The input assembler collects commands related to vertex or
geometry (DX10) processing and work is distributed to the SPA by the Vertex work distribution
unit accordingly. The unit designated with clip/setup/raster/culling implements all functionality
that used to be applied between the vertex and fragment stages in the graphics pipeline (viewport
transformations, clipping, rasterization and z culling). After pixel data is setup, the pixel work
distribution unit assigns the SPA with the execution of the pixel shader program. Distribution
of pixel work is dependent on the pixel location (see ROPs). The compute work distribution
assigns general purpose compute kernels, not necessarily related to graphics, to the processor
array.

Figure 3.1: GT200 Architecture, based on [33, 40].
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3.2 Streaming Multiprocessors

The central structure of GT200 devices is the SPA, a number of identical packages containing
the actual processing units. These so called Texture/Processor Clusters (TPC) introduce a fur-
ther level in the hierarchy of modules in the architecture. The TPC concept not only provides
a means for better distribution of resources but also a unit by which the complexity of GPU
designs for different performance classes gets scaled by the manufacturer. High end devices
for example contain up to 15 TPC while low end cards may contain only one. The hierarchy
of the device is illustrated in Figure 3.2. One TPC contains a geometry controller, an SMC
(Streaming Multiprocessor Controller), two SM (Streaming Multiprocessor) and a texture unit.
The geometry controller handles DX10 specific geometry shader operations and should not be
treated in detail here. SMs are multiprocessors executing shader and compute kernel programs.
Each holds, beside an instruction and constant memory cache, eight streaming processor (SP)
cores and two special function units (SFU). The SPs act like integer and single precision float
ALUs in the SM.

Figure 3.2: Streaming multiprocessors in TPC.

On the lowest level, the SM operates in SIMD fashion, concurrently executing one instruc-
tion on up to eight different operands. There are however a number of differences and extensions
to the classical SIMD concept. Shader programs and compute kernels are interpreted as single
threaded programs each calculating the result to a small arithmetic job that has been extracted
from an overall problem by the programmer. Therefore, since shaders were introduced, GPUs
sometimes are classified as SPMD (Single Program, Multiple Data) [44].

Unlike classical SIMD architectures, GPUs do not expose vector width and thread handling
on the software level [40]. The SPs use scalar instructions manipulating single operands at a time
just as a program on a regular desktop CPU [33]. In the case of shader programs, the isolated
job is the calculation of vertex attributes or the final color of a pixel. A host program would
instantiate a large number of these threads to maximize exploitation of data parallelism. The
GT200 architecture with its SMs is designed to relieve host software from the hereby emerging
thread handling requirements. For this paradigm – hardware multithreading – the manufacturer
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coined the term SIMT (Single Instruction, Multiple Thread) as extension to the old taxonomy.
The SM is capable of tracking many threads without overhead due to context switching. To
support balance shifting between vertex and fragment processing loads as described, SMs are
designed to handle threads of all different types (vertex, fragment, compute) at the same time.

Warp Processing

A thread group that is launched on an SP is divided into, managed, and executed in arrays of 32
threads. One such array is called warp or CTA (Concurrent Thread Array). SMs handle up to 24
such groups concurrently. Upon arrival of work at the SPA, warps are formed of threads of the
same program by the SMC and delegated to the SMs. They remain as such until all the threads
they contain have finished execution.

The atomic unit of execution is one instruction for a whole warp. Each thread is mapped
to an SP. The eight SPs carry out one instruction per cycle, thus take four cycles to complete
one instruction for a warp of 32 threads. The scheduling of warps is managed by the SM. Each
thread’s state, that is register content and program counter are tracked separately. That implicates
that not all threads in a group always share the same progress in their program. They might have
branched to different paths if the code contains data dependent conditions. The SM can only
process threads of a warp in parallel if they share the same execution path. On the other hand,
the execution of a warp containing threads with differing program counters must be serialized
since all eight SPs can only be issued the same instruction at a time. These threads on different
paths are called branch divergent [40]. Full efficiency is therefore only given for coherent warps,
and if only one thread separates, processing time is doubled.

Therefore, not all threads are always ready for execution and some must be omitted from
execution. Besides postponement due to branch divergence, a thread (or a whole warp) may also
be blocked waiting for a memory operation to finish. Different warps are executed serially re-
gardless of the state of their threads. Based on warp readiness and instruction type, the scheduler
tries to overlap arithmetic operations and memory transactions to maximize throughput. The ap-
plication can assist this behavior with a high arithmetic intensity and keeping SMs well loaded
with threads. Arithmetic intensity here means the overall proportion of arithmetic operations
compared to memory transactions in a program [40]. Also incorporated in the scheduler is a
fairness mechanism so that no thread is postponed for too long.

Other Multiprocessor Facilities

Besides the SPs and the scheduling logic, SPs feature other facilities. The two SFUs are shared
among all eight SPs. They carry out computation of transcendental functions and attribute in-
terpolation (see pipeline description above) and therefore require more than one cycle. SFU
operation is separated from the SPs in order not to block them. The scheduler considers this
latency when arranging warps [33]. The texture unit serves as a third more specialized processor
under the SMC in the SM. It processes groups of four threads of all types at a time. Like the
SFUs, execution is out-of-order with the other units. The main reason for this unit is to facilitate
texture lookups. A typical texture instruction takes texture coordinates and generates texture
addresses with four address generators, then returns filtered samples. Due to the high locality
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of texture fetches, the unit enjoys a private texture cache. Note that for the 2:1 ratio of SMs
to texture units in the TPC, there is no other reason than the consideration of load behavior in
typical applications [33].

3.3 Device Memory System

The memory system is divided into multiple areas [40, 44]:

• Beginning on the lowest level of the hierarchy, each SM holds a large set (16384 or 32768)
of 32 bit registers for immediate usage during warp execution. They are occupied by
threads as their private zero-latency memory. Although shared by the threads running on
a SM, communication through registers is not possible.

• The SM uses local memory as a thread-private area to store temporary variables, register
content in case of register shortage, and call stack frames. As can be seen in the block
diagrams 4, there is no physical representation of local memory on the SM level. It is
mapped to the device level DRAM area and is not cached.

• Besides registers, another SM-resident area is shared memory. It provides a low-latency
(4 to 6 cycles) way for communication among the threads of an MP. It can also be used
to reduce register pressure without the need to fall back to spilling to local memory at
high costs. To facilitate handling inter-thread communication, light-weight barrier syn-
chronization instructions with SM-wide effect exist.

• Global memory is in device DRAM and serves all kinds of purposes. All access to DRAM
implies high latencies of 400 to 600 cycles. Global memory is uncached, so latencies are
high. The host application typically allocates buffers for general purpose compute kernels
in global memory. Threads on an SM can use it for infrequent communication if shared
memory is reserved for more time critical use. Thread groups running on different SMs
should not try to share data via global memory, as the sequence of their execution is not
defined.

• Constant memory behaves as global memory except that it can only be written from the
host and read from the device where it is cached on SM level for low-latency access.

• Texture memory for GPGPU applications has the same access restrictions as constant
memory. It is optimized for locally near access patterns and cached on SM and global
level.

Table 3.1 summarizes the different types of device memories together with their properties.
Registers, local and shared memory content is lost after a kernel finishes.
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Memory Location Cache Access Scope

Register SM - r/w Thread
Local DRAM No r/w Thread
Shared SM No r/w SM
Global DRAM Yes r/w All
Constant DRAM Yes r All
Texture DRAM Yes r All

Table 3.1: Device memory properties.

Memory access rules

Due to the relatively long access latencies to global memory, most applications would first load
operand data to shared memory, compute the results and write them back to global memory.
Therefore, global memory access is critical for performance. It can be carried out simultaneously
for a whole block of up to 128 bytes if rules for coalesced access are met1 [42]: If all addresses
accessed by the threads in a half-warp (that is 16 consecutive threads) lie in a 128B-aligned
segment, then a single memory transaction will be issued. If the addresses are spread over a
number of such segments, then the according number of memory transactions is required, which
results in performance decrease. This mechanism enforces a certain degree of memory locality
for problems that should be solved by a group of threads.

Once loaded to shared memory, operands can be accessed about 100 times faster as com-
pared to when global memory resident. Shared memory is laid out into 16 equally sized parti-
tions called banks [42]. Addresses that lie in mutually distinct banks can be accessed simultane-
ously. Banks are arranged so that 16 successive 32-bit words all are located in different banks.
Accesses to memory locations in the same bank are called bank conflicts and result in serialized
transactions.

3.4 The CUDA Programming Model

After a detailed discussion of the underlying hardware, an overview of how it is exposed through
the programming model is given.

Overview

To better be able to leverage GPGPU operation, programmers needed an interface abstracting
graphics related concepts and bypassing the graphics drivers. Languages like Cg, HLSL, or
GLSL are used to write pure shader programs. They are all similar to C but were designed
with a focus on graphics pipeline concepts and therefore are largely unattractive to common
programmers. Yet before the arrival of commercially available solutions, research projects with
the aim to hide graphics peculiarities for GPGPU existed [58]. With the Brook and Sh projects,
the streaming programming model was first adapted to GPU hardware with general purpose in
mind.

1The given rule applies to devices of compute capability 1.2 and higher.
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NVIDIA CUDA is a C extensions and provides essential abstractions that ease development:

• kernel concept in SPMD fashion

• hiding of massive parallelism

• device memory management

Kernels

Kernels are just like entry points for the host application and must be called with a special syntax.
Besides kernels themselves, other device functions can be defined. They can be called just like
ordinary C functions. The necessary stack is managed by the SM in local memory. Calls from
within kernels of device functions to other functions are allowed, but because of limited device
resources, cannot be recursive.

The thread concept already appeared in Section 3.2 in its hardware context. There, threads
are grouped into warps for SIMD execution. On the software level, a different thread hierar-
chy exists and the warp mechanism is abstracted, but its familiarity is recommended as will be
explained below.

Threads of the same kernel are combined into blocks and blocks in turn are part of a grid
(see upper half of Figure 3.3). Thus, each single thread is assigned a block in a grid and can be
identified by the index of its block in the grid and its own thread index in the block. Prior to
launching a kernel, input and result buffers must be declared in global device memory, and input
data transferred to the device. Upon kernel invocation, the dimensions of the grid and its blocks
must be specified, giving the total number of threads to be dispatched. Blocks are then insep-
arably mapped to SMs where they run until finished. The order of block execution is thereby
undefined. Figure 3.3 depicts how a grid of blocks is processed on devices of different processor
count. The independence among blocks allows transparent scaling as more SMs accept several
blocks which then are handled out-of-order. When assigned to an SM, blocks are split up into
warps internally, as discussed earlier.

In the function scope of a kernel, the information about the overall grid and block structure
and the thread’s location in it is exposed by intrinsic variables. In Listing 3.1, a simple example
of a matrix addition is given [40]. Each thread calculates one cell in the result cell. It accesses
the operands from the two matrices to be added, based on its own index and its block’s index
in the overall grid. Note the syntax for kernel invocation taking the grid and block dimensions,
called the execution configuration. Blocks can be laid out in height, width and depth, whereas
grids are limited to two dimensions.

The arrangement of threads into blocks is an important way of problem subdivision. Blocks
should be created with the exploitation of shared memory in mind. Shared memory can only be
used for communication between threads of the same block, regardless whether running on the
same SM or not.

A simple example for the use of shared memory is reduction (see Figure 3.4), the parallel
accumulation of an array of values. Single thread complexity is O(n), whereas with parallel
computation it can be improved to O(logn). For an array of size N = 2n with adequate n,
a thread block of size N/2 is set up and computes the result in log N − 1 steps. In the first
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Figure 3.3: Block execution, as in [40].

step, each thread accumulates disjoint pairs of values and saves the result to a shared array of
size N/2 (one element for each thread), at the position indicated by its own thread index. In the
following steps, the threads read and accumulate intermediate results created by other threads
from the shared array and update it at their own position. In the end, the first thread sets the
overall result [17]. At each step, the number of threads required to do work, is halved, leaving
the others idle.

Figure 3.4: Parallel reduction, as depicted in [10].

Note that in this example, problem subdivision with the use of blocks is not illustrated. A
comprehensive example of how to subdivide a matrix-matrix multiplication under the meaning-
ful utilization of blocks is given in [40]. To ensure data consistency in the shared array among
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/ / Ke rne l d e f i n i t i o n
_ _ g l o b a l _ _ void MatAdd ( f l o a t A[N] [N] , f l o a t B[N] [N] , f l o a t C[N] [N] )
{

i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
i n t j = b l o c k I d x . y ∗ blockDim . y + t h r e a d I d x . y ;
i f ( i < N && j < N)

C[ i ] [ j ] = A[ i ] [ j ] + B[ i ] [ j ] ;
}

i n t main ( )
{

. . .
/ / Ke rn e l i n v o c a t i o n
dim3 dimBlock ( 1 6 , 16) ;
dim3 dimGrid ( (N + dimBlock . x − 1) / dimBlock . x , (N + dimBlock . y − 1) /

dimBlock . y ) ;
MatAdd<<<dimGrid , dimBlock >>>(A, B , C) ;

}

Listing 3.1: Use of indices in kernel definition.

threads and between steps, barrier synchronization must be applied after each step. It is not
ensured that all threads progress evenly in the kernel program. That way, a fast thread one step
ahead might read the shared array position of a slower thread, resulting in a read-before-write
situation. With synchronization however, each thread is blocked at the barrier instruction until
all other threads in the block hit it too.

Performance

Not only must a grid of blocks match the problem, it should also be chosen in a way so that as
little as possible device resources lie idle. In the current programming model, only one general
purpose compute kernel can run on the device at a time. The occupancy metric is defined as the
ratio of actually active warps to the number of possible active warps on the device.

Occupancy is dependent on several parameters (values for low end cards in brackets): the
number of available registers per SM (8 kB), shared memory available per SM (16 kB), max-
imum number of blocks per SM (8), maximum number of threads per block (512), maximum
number of active threads per SM (768).

When a grid is distributed to the available SMs, the amount of SM resources claimed by
each thread (registers, shared memory) together with block size determine how many blocks are
assigned per SM. Occupancy is related to performance through the following effects:

• Multiple blocks per SM hide thread inactivity caused by barrier synchronization. While
one block is engaged in synchronization and ends up with a small number of active
threads, another block might be ready to keep the hardware busy.
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• A high number of threads per block give many warps the scheduler may choose from
while others are inactivated waiting for memory transactions or other costly instructions.

After all, choosing the execution parameters for a kernel means balancing occupancy for
latency hiding and overall resource utilization [42].

There are more examples of how knowledge of device details can be integrated for better
performance.

Warp-level synchronization is an effect that makes barrier synchronization superfluous
among threads of the same warp. Warps are atoms of execution on the SM and its threads will
never be rearranged, provided that they follow the same program branch. This can be exploited
in some situations [42].

3.5 Discussion

CUDA does not expose a steep learning curve but demands considerable tuning and knowledge
of the underlying hardware if near optimal performance and good device occupancy are ex-
pected. Several extensions to and modifications of the model, both hardware and software, have
been proposed.

One advantage over other programming models is that explicit data packing before vector
instruction execution is not required, i.e. operands need not to be lined up in contiguous memory
locations. Although, ordered access increases performance as described in the previous section,
applications not too dependent on memory transactions still benefit from the ability to access
any memory location, a great gain in simplicity [9]. Difficulties may arise from the way how
data structures must be mapped to the provided grid and block schema. This is easy for matrices
and volume cubes (fluid dynamics). There are however applications that, even if exposing a high
degree of data-parallelism, are difficult to adapt to (e.g. graph traversal algorithms).

Data access patterns must be organized according to the user’s algorithm to benefit from the
available memory hierarchy, especially from shared memory. A number of enhancements could
promote the use of shared memory, which is currently restricted in some ways. No producer-
consumer relationships among thread blocks are possible because of the transient nature of
shared memory. Such a relationship can only exist between kernels that relay data in global
memory. These patterns would be facilitated if shared memory content were to be preserved
between kernel calls. Also, the ability to spawn kernels from already running kernels has been
proposed for this purpose [9].

Currently, the parallel computing landscape is quickly evolving. On the GPU sector numer-
ous different architectures are evolving side by side. The common challenge for the next years
is to increase the bandwidth between CPU and GPU. Several signs suggest a unification of CPU
and GPU in the long run. Although canceled in late 2009, Intel’s Larrabee architecture, for ex-
ample, intended to combine strong features of today’s multi-core CPUs and current many-core
GPUs, i.e. the coherent cache hierarchy, x86 instruction compatibility and wide SIMD proper-
ties. Also, AMD already began the single die integration of GPU and CPU with devices from its
Fusion series CPUs for mobile applications [44, 55]. NVIDIA’s release of the successor archi-
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tecture to the GT200 series2, called Fermi, is the next step in scale. Structurally equal, it brought
a number of enhancements in hardware, such as scaled up features like warp width and number
of SPs per SM, EMI capability, and a revised version of the CUDA programming model.

2Used for this thesis.
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CHAPTER 4
Related Work

This chapter tries to give an overview of existing research that can be related to the subject of
this thesis. References treating GPU technology and the matter of speech coding have already
been given in the according sections. Although no publications about GPU speech coding exist,
many treat associated subproblems. Some discuss the potential of general purpose GPUs, others
present novel implementations of speech coding algorithms, also under the aspect of paralleliza-
tion.

While in recent times, GPU potential was often praised, there are also critical voices indi-
cating its overestimation. In [31], GPU and CPU are compared regarding their architectures. It
is shown that if CPU programs were written with the same attention regarding optimization ac-
cording to their architecture as GPU code usually is, then the performance differences between
the two may turn out much lower than many publications claim it to be.

Signal processing via GPGPU is covered well. Most of the GPGPU applications for signal
processing are in the context of computer vision and video encoding due to inherent data par-
allelism. Also not audio related, [54] demonstrates the usefulness of GPGPU in DSP using the
example of a 2D convolution operation. Further, advantages of commodity market developments
are pointed out.

Audio-related GPGPU applications on the other hand are rare. In [53] for example, the audio
signal is not processed directly, but the GPU is rather employed for audio rendering based on
room acoustics models. As part of the discussion of further applications in audio, the authors
identify the GPU’s inefficiencies when confronted with short tap filters (as occur in speech en-
coding), but praise performance gains of 60,000 taps parallel FIR implementations. The parallel
encoding of multiple speech channels, which is the intention of this thesis, is mentioned as a
potentially feasible application of GPGPU in the conclusion of the article.

[12] presents a real-time GPU implementation of the convolution operation for large input
vectors. Programming is via a graphics API.

Several publications exist that deal with the optimization of speech encoding algorithms
similar to that used in the TETRA environment. All of these efforts however are targeted towards
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DSP platforms. The optimization of a DSP implementation of the G.729 (CS-ACELP) codec is
treated in [6].

The only article directly related to the TETRA speech codec is [14]. It too describes an
optimized DSP implementation. It advertises the benefits of hand-coded assembler in contrast
to relying on compiler support.

One early article directly addressing the mapping of CELP algorithms on parallel platforms
(old vector machines) is [50]. Included is a data flow diagram and it is pointed out which portions
of the algorithm demand most of the processing. Unfortunately, actual hints on how parallelism
in CELP could be exploited are not given.

A more recent work treating CELP-style algorithms and parallel processing is [25]. It
presents a chip design that integrates a vector accelerator unit into a scalar RISC architecture
and measures the performance by an implementation of the G.729 CS-ACELP codec. In its
introduction it brings forward as a motivation that there is a demand in VoIP networks for gate-
ways that encode and consolidate many speech channels. The authors come to the conclusion
that their approach of parallel acceleration with an SIMD width of 16 is useful. Parallelism is
drawn from loops with fixed-point arithmetic without cross-iteration dependencies (filters, ...).
However, details about where exactly in the encoding procedure the vector operations cause an
increase in performance, is not revealed. Another attempt to accelerate G.729 is given in [36].
It aims at hardware/software partitioning of the procedure and presents results from a MATLAB
simulation. Acceleration is mainly by exploitation of task parallelism, i.e. the simultaneous
processing of independent stages.

Besides publications explicitly treating parallel aspects of speech codecs, there are also those
dealing with related subproblems.

In [37], FIR and IIR filter operations are implemented with the use of the AltiVec low SIMD-
width extension for general purpose CPUs. It is shown that IIR operations provide almost no
parallelism and thus can hardly be accelerated. Further, it is pointed out that theoretical perfor-
mance gain due to SIMD width is hard to reach because of the necessary data reorganization
overhead, and the upper bound for common DSP algorithms is estimated to only 1.6 to 11.66.
A similar approach is [28] on using the Intel SSE SIMD extension. [26] presents a method that
allows the decomposition of IIR filters into multiple lower order IIR filters. Carried out in the
context of a VLSI design study, the thesis on which [49] is based treats the problems of common
speech coding operations regarding parallelism. The inefficiency with parallel implementations
of recursive filters is pointed out and the parallel calculation of products in multiply-accumulate
patterns is identified as the only way for acceleration.

While the above studies on filters are hardly applicable to the GPU, [56] introduces a well
suited parallelization approach for FIR filter operations and served as the basis for some consid-
erations in this work.

ACELP codebook searches resemble tree searches and are responsible for a considerable part
of the algorithm’s complexity. While [2] and [21] treat tree searches in general, [29] introduces
the method as recommended for the TETRA coder by ETSI. Parallelization of tree searches is
treated in [57] utilizing SIMD, in [47] on streaming platforms, and in [19] in the context of
multi-processor environments.
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CHAPTER 5
Implementation

The aim of the implementation efforts is to determine how many channels can be processed
by a modern GPU (results for GeForce 8400 GS). In Chapter 2, the basis for an understanding
of the encoding algorithm was provided. The adaption to the target platform now requires the
analysis of its procedural structure, the actual data flow, and a detailed breakdown into individual
building blocks. In this work all these considerations as well as the implementation itself are
based on the reference implementation associated with the ETSI specification document [22].
The reference code is written in ANSI-C and highly structured1. All signals involved in the
algorithm are represented in various 16-bit fixed point formats. The code served as a starting
point for all own implementation experiments and greatly facilitated output verification.

5.1 Encoding Procedure

The following diagram (Figure 5.1) shows the structure of the sequential reference implementa-
tion and shows all functional blocks together with signal routing. Most of the blocks correspond
to single functions in the ETSI C-code.

First of all, the raw speech signal is preprocessed. That includes offset compensation (DC
portion removal) and division by 2 to avoid saturation during synthesis filtering.

(1) Next is the LPC analysis for the whole frame. As the basis for the LPC equation system,
the ACF must be calculated. For spectral smoothing, the resulting autocorrelation signal is
multiplied with a lag window. The LPC coefficients are obtained from the Levinson-Durbin
algorithm that solves the system.

(2) For an efficient transmission of LPC coefficients, they are transformed to LSP representa-
tion which offers easier quantization and interpolation. During frame processing both quantized
and unquantized sets of coefficients are needed. In LSP interpolation, the current LSP values and
those which were determined in the previous frame are used to calculate a set of unquantized and

1There are functions for each arithmetic operation, obviously to facilitate adaption to DSP hardware. This makes
the code very hard to read and understand.
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Figure 5.1: Complete data flow diagram of the TETRA encoder, according to reference imple-
mentation.
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quantized LSP for the use in each subframe. The quantized LSP are now ready for transmission,
and the current LSP values must be saved for the interpolation during the next frame. Since the
decoder relies entirely on the LSP representation which it receives, the encoder must, too, base
all the filtering on LSP to preserve consistency. This is part of the AbS principle. Therefore, it
is necessary to once again retransform all the LSP to LPC in order to obtain the (time domain)
coefficients for frame processing.

(3) In the last step of whole-frame processing, a weighted speech signal is formed by succes-
sively applying the analysis and synthesis filters to the speech signal using spectrally expanded
coefficients. This is to be done in four (number of subframes) successive steps because the four
sets of unquantized LPCs that resulted from LSP retransformation must be used as available.
Thereby, each of the synthesis filter passes relies on the filter state of the previous step. The
resulting signal is the basis of the preliminary open loop pitch analysis stage. The lag estimation
and its range bounds are used in the closed loop pitch search of the first subframe.

(4) Thereafter, subframe processing commences. According to the CELP procedure, this
involves the search for the adaptive and the innovative contribution that make up the excitation
signal for the decoder. First, the LPC residual signal is calculated by analysis filtering with
quantized coefficients. The result is the ideal excitation signal and therefore must serve as the
basis for target signals in subsequent stages.

(5) The essential step in finding the adaptive contribution is the fractional pitch search. It
calculates the normalized correlation and searches it for a maximum in the vicinity (L′min and
L′max) around the lag estimation L′ provided by the open loop pitch search. Other required
signals for this step are: the impulse response h1[n] of the synthesis filter, the excitation signal
ex[n], which is a copy of the LPC residuals, and the target speech signal x1[n] to compare
against (the synthesis filtered LPC residuals). In each subframe the resulting lag parameters
replace those estimated in the previous subframe (or those from the open loop pitch search, in
the case of the first subframe).

In the next step the resulting parameters, the integer lag L and its chosen fraction frL ∈{
−1

3 , 0,+
1
3

}
, are applied to the excitation signal ex[n] which now corresponds to the unit gain

vector from the adaptive codebook. It is yet to be scaled to approximate the target speech signal
x1[n]. Therefore, once again synthesis is simulated to produce the GSVQ shape vector y1[n].
Now, the required pitch gain β that scales y1[n] to best match x1[n] can be calculated. The
last step in this part is to actually apply the scale factor β to y1[n] which produces the optimal
speech resembling signal (note: anonymous in the diagram) that can be generated by means of
the adaptive codebook alone. If subtracted from the target x1[n] a differential speech signal,
x2[n], is obtained. It expresses what the adaptive codebook still failed to contribute and what
the innovative contribution is meant to compensate.

(6) As a basis to the algebraic codebook search, the pitch affected impulse response f [n] is
calculated as stated in Section 2.9. This is then synthesis filtered producing the signal h2[n] from
which the autocorrelation matrix R is derived. Additionally, a version of the target signal x2[n]
backward filtered with h2[n] is needed for the search. The results of the search are the speech
signal y2[n] and the excitation signal c[n], the selected vector from the algebraic codebook. The
difference signal x2[n] resulting from the adaptive contribution is then again used as target vector
in the calculation of the gain α that scales y2[n]. The results from this stage are the code vector
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c[n] and the gain α.
(7) In the end, the results of both contributions ex[n] with β and c[n] with α are used for

gain quantization. The final excitation signal is mixed from ex[n] and c[n] with quantized gains
α̃ and β̃. In order to base the filtering in the next frame on the proper filter state, the difference
signal res[n] − ex[n] is once more filtered and the resulting states saved. With the saved filter
state, filtering in the next subframe can be continued as if there were no frame partitions.

5.2 Leveraging GPU Properties

To get a feeling of how the GPU copes with the load imposed by the above procedure, the
reference code was modified so that it can be run on the GPU as a single thread without making
use of parallel processing. Thereby, the whole encoder was launched as a single CUDA kernel
to keep host/device memory transactions low. On the test system, an NVIDIA GeForce 8400
GS2 was compared to an Intel Core2 Duo E84003 CPU. The results were fairly disappointing
and proved the platform’s poor adequacy concerning sequential processing. A three-second
speech sample took the GPU 5.1 seconds. For comparison, it took a standard desktop CPU
0.14 s for the same task. This is a factor of roughly 36 against the GPU. Above all, the GPU’s
performance isn’t even real-time compliant. Arguably, these results encourage questioning the
eventual purpose of the whole endeavor.

However, it is normal that a given reference code must be modified to match whatever plat-
form it should be adapted to. [13] and [6] are examples of similar efforts. Both give hints on
optimizing similar reference C code for speech codecs like the G.729 ACELP, targeting DSP
platforms. As a first step the reasons for the poor measured performance should be identified.

As stated in Chapter 3, the GPU is developed for processing video data which, unlike audio
data, inherently exhibits a high degree of parallelism. That means that for GPUs sequential
throughput (fast processing of small data sets) is not the primary issue, and extra efforts are
required to achieve it. The GPU unfolds its strength when confronted with large data sets that
may be processed at moderate rates.

The actual technical reasons for the poor sequential performance are:

• Without any further measures, all signals reside in global device memory. As stated in
Chapter 3, global memory latency is high (400 to 800 cycles [42]), and complex calcula-
tions with frequent access to certain buffers therefore stall completely.

• Unlike common CPUs, the GPU does not feature automatically managed caches. It is the
responsibility of the programmer to properly use shared memory in the same role. For
efficient loading of shared memory, a number of threads are needed to ensure coalesced
access, as explained in Chapter 3.

• Even if assuming a well managed shared memory allocation, complicated access patterns
to shared memory still cause bank conflicts and the serialization of access operations. In
complex calculations as in this speech coder, the effect cannot always be avoided.

2567 MHz core, 1400 MHz shader, 400 MHz memory
33.0 GHz
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• Poor instruction mapping. For example, multiply-accumulate instructions exist on the
GPU but could not be found in compiled assembler output files.

The first step is to leverage the properties of the GPU to enable real-time operation and
reach lowest possible latencies. Only then one can consider evaluating the number of channels
the GPU can manage in parallel. This requires analysis of how parallelism can be created from
the given procedure.

5.3 Exploiting Parallelism

As described in Chapter 3, warps in a thread group may be postponed because waiting for a
memory transaction or the result from an arithmetic operation. Since the execution of instruc-
tions for warps is serialized, this leads to latencies. The internal thread scheduling unit takes care
of a balanced instruction flow and will select waiting warps with ready instructions for execu-
tion while others are postponed. Thus, the loss caused by inevitable latencies can be reduced by
providing enough instructions (preferably data independent). This mechanism is called latency
hiding and is the key for an efficient parallel implementation. Exploiting the power of the GPU
means providing enough work for the threads on the multiprocessors.

The measure for how effectively the multiprocessor can be kept busy is called occupancy
[40]. It is defined as the ratio of the number of active warps to the maximum number of active
warps (24 warps for devices with compute capability 1.1, 32 warps for devices with compute
capability 1.3).

For an implementation of the coder, the aim is to find an assignment of work to CUDA
threads that combines high occupancy with real-time compliance. A single speech channel
produces data at 480 bytes each 30 ms. Real-time requirements demand that processing must be
finished in less than 30 ms.

With such little input data, reasonable occupancy values cannot be reached. Above all, the
next speech frame does not even exist at the time the current frame is processed. Moreover, as
has been shown in the description of the encoder procedure, processing of frames is a highly
sequential task. Calculation of LPC coefficients, codebook contributions, and subframes (inter-
linked through filter states) are all interdependent in that each produces parameters for successive
stages.

Data and progress independence however is given among different speech channels. All this
suggests drawing the required occupancy from the simultaneous processing of more than one
channel on a single MP.

Since use of shared memory must be maximized and communication over slow global mem-
ory be minimized, it is certain that a channel is assigned to a single MP.

Therefore, occupancy can be gained in two ways:

1. Many threads cooperate during frame processing for one channel.

2. Multiple channels are processed on a single MP simultaneously, thus interleaving instruc-
tions from both channels.
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Both ways can be combined. That means that a certain number of threads cooperates in
the processing of one channel, still leaving MP resources because of low occupancy. To better
utilize the MP, another thread group processes a second channel, on the same MP.

The work loads which thread groups are assigned to are the distinct stages from the encoding
algorithm (e.g. LPC solution, synthesis filtering, codebook searches), sometimes called func-
tional units in the following. As will be seen, the degree of possible thread cooperation (thread
group size) varies from unit to unit.

While mapping more than one channel onto an MP does certainly extend the overall latency,
it does so to a far less degree compared to the serial processing of frames, as depicted in Figure
5.2. For a runtime of T for a single channel, the overall runtime for n channels on one MP is
expected to be far less than nT due to latency hiding (without overloading the device). That way,
for a device with N multiprocessors, the real-time processing of Nn channels can be ensured.
The highest number of multiprocessors in current single-die devices (NVIDIA’s GT200 family)
is 30.

ch 1

ch 1

ch 2

30 ms

a)

b)

Figure 5.2: Single (a) and multiple (b) channel processing per MP within the frame time.

Note that in this work, only data parallelism is considered. In the CUDA version used here,
just a single thread can be launched on the GPU. The device is then blocked until all threads
finished execution [40]. For the processing of functional units, that means that all thread groups
must process the same stage for their channel, and different groups cannot be assigned diverse
work loads. Therefore, task parallelism cannot be exploited and is not treated.

The introduction of parallelism in the coder is possible on different levels (from fine to
coarse):

1. Parallel processing of single functional units. Sufficiently data parallel operations can be
executed by a number of threads, e.g. the amplification of a signal by a certain factor with
each thread processing a single sample.

2. Exploitation of data parallel structures within the encoding procedure. Parallel processing
of multiple functional units of the same type without dependencies, in the form of different
CUDA blocks on the same MP. Example: multiple independent filter passes in parallel.

3. Depending on the outcome of levels 1 and 2, the number of channels that can be processed
per multiprocessor can be determined. It is possible that a single MP has enough resources
(required registers per thread, shared memory) to process multiple channels at the same
time, i.e. assign its threads to different input streams and still maintain reasonable latencies
(through latency hiding).
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4. The result of level 3 leads to the final number of channels that can be handled on device-
level. This is application-inherent data parallelism.

Before the above points can be answered, it must be determined which functional blocks in
the algorithm are worth the effort for parallel implementation or optimization. Obviously, those
blocks that take the most runtime are considered good candidates for analysis.

5.4 Unit Ranking

In order to identify the most runtime intensive units, a complexity ranking was arranged. There-
fore, a single-thread GPU implementation with each functional unit as a separate CUDA kernel
was implemented and profiled with a 3s speech sample (101 frames). Figure 5.3 shows the first
ten functional blocks ordered according to their runtime proportion for all 101 frames.
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Figure 5.3: The ten most processing intensive functions and their average runtime proportion
per frame.

One note on the results of the ranking. The runtime distribution among units is relatively
even. That means that several units require modifications to achieve a significant performance
gain. The ten units included in the ranking account for over 90 percent of the overall frame
processing time.
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5.5 Selected Units

The aim of the parallel implementation is to reduce the overall runtime of frame encoding as
much as possible. Since single-thread performance on the GPU is poor (see above), ways of
efficient parallel processing must be found for each stage.

Thereby, the method is mainly that of exploiting independent iterations in loops, i.e. parallel
processing of unrolled loops. In cases where this is impossible, due to dependent iterations,
significant gain may be achieved by extraction and parallel preparation of intermediate results
from calculations that otherwise must be left sequential.

For example, a minimum among the results of distance functions has to be searched. The
original loop would iterate through a set of elements, calculate the distance function, and update
the minimum value if the current distance is smaller than the previously found minimum. In
parallel processing, the intermediate results, the distances, can be calculated in advance, stored
(which requires some amount of additional memory) and searched for the minimum afterwards.
Dependent on the specific case, this may reduce overall runtime greatly. Depending on the
number of distances, the search for the minimum can be done sequentially (for small sets), or by
parallel reduction (for large sets), as has been introduced in Chapter 3.

This section treats in detail those units that were implemented for the streaming platform.
Although all of the ranked units were analyzed for parallelization, only a handful were imple-
mented: Analysis filter, synthesis filter, backward filter, algebraic codebook search, gain quanti-
zation, the calculation of the autocorrelation matrix which is employed in the codebook search,
and the split VQ of LSPs after conversion from LPC coefficients.

All units share the same way of loading input data into shared memory. Coalesced access to
global memory always requires a certain number of threads. [ref from nvidia]

Things to consider in each unit implementation:

• kernel handling in overall arrangement:

• memory access patterns

• shared memory employment, loading

• warp divergence, synchronization

Three among the four most expensive units, namely synthesis-, analysis- and backward-filter
(that make up for about 60% of the runtime) are all of similar form and should be discussed first.

Analysis Filter

The analysis filter A(z) is of all-zero form4 and therefore can be implemented as FIR filter

y [n] =

10∑
i=1

aix [n− i]

4The transfer function’s denominator polynomial is 1, so there are no poles.
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with n = 0, ..., 59 (subframe length) where x must be accessible 10 samples into its past (so
70 samples for x) . Since there are only ten coefficients, the number of iterations needed for one
output sample is already low. The work is therefore best assigned to 60 threads, with thread n
calculating the result in y[n]. For the tests, x[n], ai as well as y[n] were stored in shared memory.
According to shared memory recommendations in [40] the simultaneous access to ai causes
bank conflicts resulting in the serialization of instructions and some performance loss. Further
optimizations addressing memory access were omitted since the results from parallelization were
already satisfactory:

Function name: Residu
Runtime of unmodified kernel (1 thread): 446µs (9.18% runtime)

Runtime parallel (60 threads): 11µs

Synthesis Filter

The synthesis filter 1
A(z) is of all-pole form5 and therefore must be implemented as IIR filter. Its

calculation is sequential by nature because each iteration depends on the results of the previous:

y [n] =
10∑
i=1

aiy [n− i]

The GPU does not cope well with this form. Measurements have shown that one filter pass
takes about 200µs which is the main cause for high latency in frame processing (see ranking). If
this iterative form is retained, parallelism can only be exploited on a very small scale: each iter-
ation, a vector consisting of the 10 previous results is multiplied with the vector of coefficients.
This vector multiplication can be carried out simultaneously by ten threads. Since reduction
doesn’t pay off with 10 elements, a single thread must then be used to sum up the products.
This preparation of products in the loop reduces the filter runtime to 72µs with only 10 involved
threads. The findings on whether and how filter operations can be further accelerated on the
given platform are discussed in the following.

NOTE: [ACustomVLSIArchitectureFor] treats this issue

Recursive filters and parallel processing

Only a few articles dealing with the parallelization of recursive filters can be found. In [26] for
example, the decomposition of IIR structures into multiple IIR structures of lower order is in-
troduced. The aim is to promote parallel processing in low-latency DSP applications. However,
the described transformation is not suitable in the context of this work since it introduces errors
and seems to be rather suited for IIR filters of much higher order than 10.

An exact approach targeted at short SIMD platforms such as Intel SSE is presented in [28].
To eliminate data dependencies that prevent parallel processing, algebraic transformations of
the algorithm, as proposed in [46], are applied. The described technique with fused filter taps
is suited for filters with an order of multiples of the platform’s SIMD width (four in the case of

5The nominator polynomial is 1 so there are no roots.
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Intel’s SSE). For the speech coder with a filter order of 10 and an atomic vector width of 32 on
the GPU (CUDA warp size) little gain can be expected.

Apart from these approaches, the synthesis filter can be transformed on a much higher level.
According to common knowledge, an IIR filter with truncated impulse response can be exactly
represented by a non-recursive FIR form by interpreting the IIR impulse response h[n] as the
transfer function of the equivalent FIR filter. The filter operation is then the convolution of the
input signal with h[n]:

y [n] =
n∑
i=0

x [i]h [n− i]

with n = 0, ..., 59. Since in its IIR form not more than 60 elements (subframe width) are
calculated, this means that the impulse response is effectively truncated to length 60, justifying
the substitution with the FIR form. In the case of the speech coder this condition is met. Both
input signal and transfer function have 60 elements.

Scalar convolution as defined here is not well suited for parallel processing. On the GPU, if
threads are assigned as seen in the implementation of A(z), work distribution is unbalanced: the
first thread calculates only a single product, but the last thread sums up 60 products. That means
that compared with the untruncated convolution of A(z), the critical path remains unchanged.
For an efficient parallelization an even distribution of work must be found.

In [56], a general decomposition algorithm for discrete computational problems is proposed.
For demonstration in the article, an efficient parallel convolution method is introduced. What
makes this method interesting is that it succeeds in subdividing the convolution into a number of
smaller operations of equal complexity. The novelty therein seems to have lain in the disjunction
of subproblems, which makes the method well suited for parallel processing.

The procedure comprises three steps: decomposition, solution of subproblems and recon-
struction. Based on integer modular arithmetic, the involved signals x[n] and h[n] (here both of
dimension N = 60) are decomposed into their residue classes under a chosen modulo p ≥ 1
which is an integer factor of N . Let, for example, p = 5 so that x[n] and h[n] decompose into
N/p = 12 sequences xi[k] and hj [k] of length p given by

xi[k] = x[kp+ i]

hj [k] = h[kp+ j]

with 0 ≤ i, j ≤ 11 and 0 ≤ k ≤ 4 resulting from the chosen p.
Thereafter, (N/p)2 = 144 subproblems yi,j for all combinations of input sequences xi[k]

and hj [k] can be specified as convolutions of much shorter length p, in the form

yi,j [k] =

p∑
l=0

xj [l]hi [k − l]

The calculation of these intermediate results yi,j [k] requires much less iterations and, equally
important, can be solved independently, in parallel.
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Reconstruction is by summing up elements from yi,j which yields the exact result of the
original convolution operation

y[n] =
∑

yi,j [k]

where the index constraint

i+ j + k
N

p
= n

applies with k ∈ (0, ..., p − 1). This constraint is not given explicitly in [56] but is con-
sistent, more succinct, and involves n directly. To better illustrate the implications of the given
constraint, the table in Figure 5.4 shows how the intermediate results yi,j contribute to the over-
all y[n]. For 0 ≤ n < N/p there are n+ 1 summands whereas for N/p ≤ n < N there are N/p
elements that contribute to y[n].
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Figure 5.4: Some contributions of yi,j [k] for p = 5 and N = 60. Each column n holds
elements that accumulate to y[n]. Columns for n ≥ 12 are displayed incomplete to preserve the
expressiveness of the table. Layout inspired by [56].

Thread assignment in the GPU implementation is obvious: (N/p)2 threads share the cal-
culation of yi,j as given above. Thereby, an explicit decomposition phase to build xi and hj
is omitted and the required operands are accessed directly from local memory resident input
sequences, according to the rule. No efforts were undertaken to avoid shared memory bank con-
flicts. Yet, care has been taken to ensure a proper storage layout for yi,j , enabling uncomplicated
access during the reconstruction phase. Storage is laid out as suggested in the table in Figure
5.4 so that elements to accumulate are located with a constant stride of N apart from each other.
For the accumulation, N threads are assigned so that each thread accumulates to one element
y[n] of the final result. The accumulation can be left unbalanced since at most N/p summands
occur. With this thread assignment, there are two distinct phases employing a different number
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of threads: calculation of yi,j , and reconstruction to y[n]. While suboptimal, no efficient way
has been found to employ all N/p2 threads during reconstruction.

Considering parallel execution, theoretical computational complexity decreases by p2 for
the first part [56] and is of O(N) for reconstruction. Experiments have shown that p = 5
works best for the used target platform and the subframe length of 60. Lower p means more
subconvolutions, leading to longer runtime for reconstruction. Higher p means longer operands
for subconvolutions.

Function name: Syn_Filt
Runtime of unmodified kernel (1 thread): 480µs (38.96% runtime)

Runtime with product extraction (10 threads): 72µs
Parallel decomposition algorithm (144 threads): 15µs

Application in the coder and implications

Needless to say, the required IIR by FIR substitution cannot be applied without any modifi-
cations to the coder. In the original design (see diagram in Figure 5.1), the required impulse
response h[n] representing 1

A(z) for the current subframe must be found anyway (signal h1[n] in
the diagram). The necessary parameters for the calculation of h1[n] are already known before
subframe processing commences: the unit pulse and the spectrally expanded, unquantized, and
interpolated LPC coefficients, aj,i in the diagram. h1[n] can therefore be calculated in advance
by IIR filtering of four passes in parallel (4) for each subframe. The same holds for the (aug-
mented) impulse response f [n] needed for the determination of the innovative contribution. This
can be done by decomposed FIR filtering since impulse responses are already available. Each
subframe, 1

A(z) occurs seven times. The only place in subframe processing where decomposed
FIR filtering cannot be applied is synthesis filtering of the LPC residuals. This is because at this
point, the impulse response is first determined under the use of the previously left filter memory.
For an estimation of costs for the required filter passes see Chapter 6.

Backward Filtering

Backward filtering is convolution of an input signal with a reversed transfer function h, again,
with both signals of the same length. Instead of explicitly reversing h before filtering, the access
to the signal buffer is adapted to yield the desired result:

y [n] =
60−1∑
i=n

x [i]h[i− n]

This operation is well suited for the application of the decomposed convolution algorithm
given before. No additional preparations are required since the impulse response is available
anyway. The algorithm must merely be modified to ensure inverted access to h for the backward
filtering effect.

Function name: Back_Fil
Runtime of unmodified kernel (1 thread): 1309µs (13.41% runtime)

Parallel decomposition algorithm (144 threads): 24µs

58



Algebraic Codebook Search

The codebook search is the most complex and critical stage in the coder because it minimizes
the mean squared error between the input speech and the synthesized speech. A sparse code
vector from the set Ak has to be found that when further shaped by the lag-afflicted impulse
response f provides an adequate contributive excitation signal. To tell the adequacy of a given
vector, the autocorrelation matrix R and the backward filtered target vector d[n] are used: the
optimal vector Ak is the one that maximizes the term

ρ2k
εk

which is the quotient of the squared crosscorrelation between code- and target vector

ρ =
√

2d [m0]− d [m1] + d [m2]− d[m3]

and the cumulative energy
ε = 2R [m0,m0]

+R [m1,m1]− 2
√

2R [m0,m1]

+R [m2,m2] + 2
√

2R [m0,m2]− 2R [m1,m2]

+R [m3,m3] + 2
√

2R [m0,m3] +R [m1,m3] + 2R [m2,m3]

with mi being the particular pulse position of pulse i from the range given in the table. The
code vector is not explicitly given but appears as indices into d[n] and R.

The algebraic code vectors consist of 2 to 4 pulses of alternating sign with the first pulse
amplitude of

√
2, the others of unit amplitude. Pulse positions are as given in Table 5.1 below

Codebook parameters Pulse Positions bit allocation
Amplitude: +1.4142 0, 2, ..., 56, 58 5

Amplitude: −1 2, 10, 18, 26, 34, 42, 50, 58 3

Amplitude: +1 4, 12, 20, 28, 36, 44, 52, (60) 3

Amplitude: −1 6, 14, 22, 30, 38, 46, 54, (62) 3

global sign flag 1

shift flag 1

Table 5.1: ACELP pulse positions of the code vectors used in the TETRA codec, as in [22].

In the sequential implementation as advocated in [22], the search is conducted in four nested
loops with each loop traversing all positions of one specific pulse. This is a depth-first search
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of a tree with 30 · 8 · 8 · 8 = 15360 nodes corresponding to all combinations of possible pulse
positions. For performance reasons, the search is kept non-exhaustive. The method that causes
unpromising pulse combinations to be skipped is called focused search [29]. Two threshold
values that must be exceeded by abs(ρ) exist. Pulse positions m2 and m3 will only be tested if
the preceding two pulses cause high enough abs(ρ). Otherwise the next combination of m0 and
m1 is tested. This leads to variable search times per subframe. To control the maximum number
of nodes searched, an additional counter is decremented for each search involving pulses 2 or 3.
The focused search procedure is presented in the listing below.

c o u n t e r = 350
f o r a l l 30 p o s s i b l e p o s i t i o n s o f p u l s e 0 :

add p u l s e 0 c o n t r i b u t i o n t o c o r r e l a t i o n and en e rg y
f o r a l l 8 p o s s i b l e p o s i t i o n s o f p u l s e 1 :

add p u l s e 1 c o n t r i b u t i o n t o c o r r e l a t i o n and en e rg y
i f c o r r e l a t i o n > t h r e s h o l d # 1 :

f o r a l l 8 p o s s i b l e p o s i t i o n s o f p u l s e 2 :
c o u n t e r := c o u n t e r − 3
i f c o u n t e r <= 0 f i n i s h
add p u l s e 2 c o n t r i b u t i o n t o c o r r e l a t i o n and en e rg y
i f c o r r e l a t i o n <= t h r e s h o l d # 2 :

f o r a l l 8 p o s s i b l e p o s i t i o n s o f p u l s e 3 :
c o u n t e r := Coun te r − 4
i f c o u n t e r <= 0 : end s e a r c h
add p u l s e 3 c o n t r i b u t i o n t o c o r r e l a t i o n and en e rg y
save p u l s e p o s i t i o n i f q u o t i e n t i s new maximum

Listing 5.1: Focused codebook search.

In the absence of appropriate information, it can be assumed that on average each threshold
is passed in 50% of cases, i.e. ((((30 · 8)/2) · 8)/2) · 8 = 3840 leaf nodes present adequate
pulse combinations, of which only the first 350/((4+3)/2) = 100 are actually inspected. Since
the codebook search accounts for a fair proportion of runtime in the coder, ways for parallel
processing are of particular interest. The problem of parallel tree searches has been extensively
treated, mainly in the context of game-playing AI [2], [21]. While it was found that SIMD
architectures can successfully be employed for tree searches [57], [47] is the only article directly
dealing with tree searches on streaming platforms. Although much smaller in scale as most
of the problems treated in the literature, the parallelization of the algebraic codebook search
involves the same related issues as discussed in [19]. It deals with the principal implications of
parallel search, however in the context of multi-processor environments.

A naive parallel solution to the search was implemented. It partially neglects the tree struc-
ture and views each code vector as an equal element, without considering shared pulse positions
among combinations. The procedure is as follows:

1. 240 threads are assigned the 240 combinations of pulse 0 (30 positions) and pulse 1 (8 po-
sitions). Each thread calculates in parallel the parameters ρ and ε according to its assigned
pulse positions.
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2. If the correlation from the combination passes the first threshold, then the according thread
approaches the remaining subtree, i.e. additional 64 combinations of pulse 2 (8 positions)
and 3 (8 positions). Otherwise the thread terminates. Each continuing thread sequentially
searches the remaining pulse combinations on the basis of its own combination of pulse
0 and 1, and keeps track of the local maximum as occurs in the subtree6. For the 240
remaining subtrees (of which just a portion is searched), the maxima are stored in shared
memory together with essential parameters identifying the resulting vector (the path of the
node in the tree).

3. Now, the highest of the 240 maxima is searched by a single thread. The parameters (i.e.
pulse positions) stored with the same index as the maximum allow the reconstruction of
the actual codebook vector.

The parallelization of this unit bears some potential, however, the search space seems to be
relatively small in comparison to the SIMD width of the GPU.

Function name: D4i60_16
Runtime of unmodified kernel (1 thread): 3540µs (11.24% runtime)

Parallel naive search (240 threads): 270µs

Gain Quantization

After the establishment of the adaptive and innovative contributions, the associated gains β and
α are quantized as a tuple using predictive VQ [20]. The procedure is as follows [22]: The actual
energy of each contribution is predicted as a linear combination of energies from past subframes.
To reach a better quantization performance, not the energies are quantized directly but the errors
resulting from their predictions (they have smaller variance). Quantization is by means of a 6-bit
codebook with codeword length 2 for the tuple (α, β). The actual quantized energies are then
simply defined as the predictions with quantized errors added. The quantized gains as they result
in the decoder are a function of quantized gains and contribution energies, [22].

The processing intensive parts here are the calculation of energies and – to a lesser degree
– the codebook search. The procedure requires the energies of the impulse response of 1/A(z),
which can be found by one of the parallel solutions given above. Furthermore, impulse responses
of the adaptive contribution and the innovative contribution are needed. The energy of a signal
x[i] is given by

59∑
i=0

x[i]2.

60 elements for an SIMD width of 32 are too little to justify accumulation by reduction.
Again, the only efficient measure in this situation is to calculate the squares x[i]2 in advance and
leave the accumulation sequential.

Additionally, energies of adaptive and innovative contributions do not depend on each other
and can be calculated in parallel.

6Subtree here means set of pulse combinations.
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The final codebook search of only 64 tuples is ill-suited for parallel processing. Similar to
the above problem of aggregation, the best here is to calculate distances in parallel and then
search the minimum sequentially.

The overall parallelization gain of this unit is low.

Function name: Ener_Qua
Runtime of unmodified kernel (1 thread): 1116µs (6.37% runtime)

Runtime (60 threads): 207µs
Runtime with parallel distances(60 threads): 180µs

Autocorrelation Matrix

The algebraic codebook search makes use of the autocorrelation matrix derived from the impulse
response f [n] of A(z/γ) with applied lag in the form f [n] + f [n − L]. Due to the layout of
possible pulses on even positions only, it is sufficient to calculate the matrix on 32 positions,
resulting in a symmetric 32x32 matrix [22]. Each cell in the matrix represents the sum of the
autocorrelation for one even and its successive odd element in f :

ri,j =
31−i∑
k=0

(f [2j] f [2(i+ j + k)] + f [2j + 1] f [2 (i+ j + k) + 1]) .

A naive approach to a parallel implementation is to assign each thread with the calculation
of one of the matrix’ 32 diagonals. That means summing up the products along the diagonal
and store each temporary sum accordingly. This corresponds to the progress of index j in the
above equation. This assignment however is inefficient due to its load imbalance: thread 0
must calculate 32 cells, while thread 31 calculates only a single cell. Summation for one cell
is inherently sequential and cannot efficiently be parallelized, especially not with vector sizes
smaller or equal the SIMD width.
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Figure 5.5: Illustrative matrix of size 4, numbers indicating thread assignment. (a) Preparation
of products, balanced. (b) Stepwise summation of products in diagonals, unbalanced.
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The only means, as in the enhanced version of the recursive IIR filter (see Section 5.5), is
to prepare the products occurring in the autocorrelation. Each thread would then calculate only
one cell in the matrix without other dependencies than to elements in f [i], and therefore can be
balanced (diagram (a) in Figure 5.5). Summation of diagonals must be left unbalanced because
the sum in each cell is dependent on its predecessor in the diagonal. Diagram (b) in Figure 5.5
illustrates the imbalanced division of work among the threads. On the small scale of only 32, no
gain can be expected that would justify a balancing mechanism. Moreover, 32 elements are too
little for the application of parallel reduction.

A possible cell distribution for a number of threads that equals the matrix dimension in
multiple passes is: For i ≤ j, cells ri,j are processed in pass p:

• threads t = p, ..., N − 1 calculate cell r(t,p)

• threads t = 0, ..., p− 1 calculate cell r(N−p+t,N−p)

Function name: Cal_Rr2
Runtime unmodified kernel (1 thread): 1170µs (3.59% runtime)

Runtime unbalanced parallel (60 threads): 47µs
Runtime with product preparation (60 threads): unimplemented

Split VQ of LSP

Section 2.9 already introduced LPC to LSP conversion and explained its significance in the
encoding process. The LSPs are not quantized directly. To ease implementation, quantization is
carried out in cosine domain, that means that ωi are transformed to qi = cos(2ωi/8000) [22].

The bit assignment for split VQ is as follows:

Codebook 1 (256 vectors): q1, q2, q3

Codebook 2 (512 vectors): q4, q5, q6

Codebook 3 (512 vectors): q7, q8, q9, q10

As in previous situations, exploitation of data parallelism means to calculate the vector dis-
tances in parallel, and in a following stage conduct the search for the index to the minimum
distance. For a search of 512 elements and SIMD width of 32, employing parallel reduction will
hardly pay off. Also, after the parallel calculation of distances, a threefold parallel search for
minima won’t speed up the procedure significantly, and in addition to that would require more
shared memory space.

If more than one channel should be processed per multiprocessor, not all 512 threads can be
assigned. As can be seen from the results, increasing the number of threads yields unsatisfactory
gains. The potential for parallel processing in this unit is mediocre.

Function name: Clsp_334
Runtime of unmodified kernel (1 thread): 1322µs (3.31% runtime)

Runtime parallel (128 threads): 313µs (no reduction)
Runtime parallel (256 threads): 303µs (no reduction)
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CHAPTER 6
Overall Results

This section summarizes the results from optimization efforts for the the modules given in Sec-
tion 5.5. As discussed in Section 5.3, simultaneous processing of more than one channel per MP
is promising. All implemented optimizations however are single-channel variants. Due to the
effort involved, the multi-channel variants and an integration to an executable encoder package
had to be skipped in this thesis. Moreover, the use of the decomposition algorithm for recursive
filter substitution would require substantial modifications to the coder and the test environment.

As described in Section 5.5, several functional units have been studied for parallelization.
For evaluation purposes, the most promising units have been implemented and performance was
measured for the encoding of a single speech channel on a single MP. Thereby, the number of
cooperating threads varies from unit to unit, but does not exceed the maximum number of active
threads per MP. It is even low enough allowing the possible simultaneous processing of more
than one channel per MP.

To tell how the single-channel optimizations influence the GPU performance for the encoder,
a projection of the overall runtime is provided.

Table 6.1 lists the results. The first column holds the runtime proportions from the single-
thread GPU test run of the complete encoding procedure, including those stages which were
not reviewed for optimization. The second column contains factors for speedup through paral-
lelization. This is the runtime of the single-thread measurement divided by that of the optimized
variant1 (in µs). This applies to all items except the synthesis filter (which is therefore italic in
the table).

For the synthesis filter, the structural modification required for the decomposition algorithm
is now assumed (see the description in Section 5.5). Two different implementations are needed:
The recursive one (slow) to find the impulse response for a given set of coefficients and filter
state, and the convolution variant (fast) that uses the impulse response for calculation. The final
speedup factor of 20 is composed in the following manner. The synthesis filter is invoked 32
times per frame. Thereof, 4 times on frame level and 28 times on sub-frame level, that is 7

1Note that here the results are not at all compared to CPU performance.
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Unit Runtime [%] Speedup Threads
Analysis filter 9.18 40 60
Synthesis filter 38.96 20 144

Backward filter 13.41 55.5 144
Codebook search 11.24 13.1 240
Gain quantization 6.37 6.25 60

Autocorrelation matrix 3.59 25 60
LSP VQ 3.31 4.34 128

others 13.94 1 1

Total 100 5.22 max. 240

Table 6.1: Module runtime proportions before optimizations and according gains.

passes per sub-frame. On frame level, 1 IIR pass is required to acquire the impulse response and
4 FIR passes for the actual operation. On sub-frame level, 1 IIR and 6 FIR passes are required,
all in all 4 IIR and 24 FIR passes. The projected speedup is then the average of 5 IIR and 28
FIR passes (33 passes), which is 20 according to the results in Section 5.5 with 72µs per IIR and
15µs per FIR pass, in contrast to the 480µs from the single-thread variant.

The third column in the table indicates the number of required threads as given in the ac-
cording implementation results. It is required to tell the maximum number of employed threads
per channel, and allows the determination of occupancy.

Besides the reviewed and implemented units, the item “others” subsumes all unreviewed
encoder parts for which no speedup is accounted for. These account for about additional 18
units of varying complexity. At the bottom of the table, the sum of runtime percentages, the
weighted average of speedup factors and the maximum number of deployed threads are given.
Figure 6.1 illustrates the shift in runtime distribution among the functional units before and after
optimizations.

As measured by the runtime tests with the three-second sample that took 5.1 seconds, the
projected runtime for the same input sequence is therefore 5.1

5.22 = 0.98. This corresponds to
about 1

3 of frame time for one channel. Accordingly, a single MP is capable of encoding three
channels in real-time considering the sequential approach with poor occupancy.

Thus, an optimization enabling real-time compliance succeeded, and a projection for a total
number of channels can be given.

At the time of writing, [43] holds the latest list of available NVIDIA devices. The largest
single-die device holds 30 multiprocessors, so with the above projection, 90 channels could be
encoded in real time. Devices with more multiprocessors exist but cannot be attributed to the
class of mainstream commodity products, and are therefore ignored for now. Test runs of im-
plemented functional units with a GT200 series card (GTX275) revealed that in comparison to
the low-end GeForce 8400 GS, there is no significant difference in performance of the multi-
processor units. Cards indeed differ regarding the number of multiprocessors on the die and
– according to reviews – graphics processing features. However, compute kernel operations in
multiprocessors take the same time. Both cards share the same clock frequency for the shaders.
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Figure 6.1: The most processing intensive functions and their average runtime proportion per
frame, together with projected runtime after optimizations.

Unit 8400 GS GTX 275
Multiprocessors 2 30
Cores on device 16 240

Active warps (per MP) 24 32
Registers (per MP) 8k 16k

Shared memory (per MP) 16kB 16kB
Core Clock (MHz) 567 633

Shader Clock (MHz) 1400 1404
Memory Clock (MHz) 400 1134
Device Memory (MB) 512 896
Memory Interface (bit) 448 448

Table 6.2: Comparison of cards used in tests, [38, 39, 43].

This suggests that performance in the speech coding task is dependent on the shader clock only,
which gives evidence on the compute-bound nature of the problem. See Table 6.2 for details on
the cards used in tests.

A further step is still the maximization of occupancy on the device. With the given optimiza-
tion, no more than 240 threads are required per channel, as outlined in Table 6.1. 240 threads
correspond to 8 warps of 32 threads each. The maximum number of active warps is 32 for

67



the device class with 30 multiprocessors. That means that with at most 8 warps assigned to a
channel, four channels must be processed simultaneously to reach an occupancy of 100%. If the
processing of four channels with increased good occupancy still fits into the 30ms time frame,
then the total channel capacity of the same device is extended to 120 channels.

An Intel Xeon quad-core CPU with hyper threading is also capable of encoding 120 channels
in real-time, as tests have shown. Although more efficient, the CPU could be combined with a
GPU in the accelerator role. The advantage is that such a system could be deployed as a single
unit without the use of specialized hardware.
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CHAPTER 7
Conclusion

This thesis ventures a first step towards the application of massively parallel computing plat-
forms for speech coding purposes. Experiments are based on the TETRA speech codec, which
is an example of the representative CELP method. It is shown that a CELP coder is a compute-
intensive procedure which inherently exhibits only limited data parallelism and a small problem
size in contrast to other GPGPU applications. Modern GPUs concentrate high computing power,
however unfold their strength only if provided with enough work. Single-thread capabilities on
the GPU have shown to be poor for several reasons such as high memory latencies and man-
ually managed cache. Since the encoding procedure must be optimized in several places to
reach real-time operation, some load can be gained from parallelization of the most complex
encoder stages. Thereby the focus lies mainly on filtering operations, for which satisfying par-
allel variants were introduced. The majority of code had to be left in single-thread operation,
and could further be accelerated with little effort. In the speech processing context, more of the
required volume for the GPU can be provided when considering the encoding of whole batches
of channels simultaneously. This is because the GPU holds a number of mutually independent
multi-processors to which the processing of channels is assigned. With the device class used in
this work, it was found that by employing the most powerful commodity product (manufacturer
NVIDIA), the GPU is capable of encoding at least 90 channels in real time. Compared to high-
end desktop CPUs, which are capable of encoding about 120 channels, this is disappointing.
However, in this stage of development, the GPU could be used as an accelerator relieving the
CPU from a good portion of its work. The benefit from this would be the possibility to deploy a
single compact unit capable of acting as a complete gateway in the TETRA network. Even multi-
GPU systems are available (e.g. NVIDIA Tesla) for high performance computing. For gateways
that are required to encode a high number of channels, they could be used as self-contained units
and still save processor load for other tasks.

Chances are high that the number of channels the GPU is able to encode can be increased by
further optimizing the available load per multiprocessor, thus exploiting the mechanism called
latency hiding to a higher degree. This would be achieved by the simultaneous processing of
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input data from different channels on a single MP, opposed to the sequential approach as has
been implemented so far.

Yet, many aspects of the subject remain unexplored. The reason for this is partly the te-
dious development process1 that makes quick experiments with new ideas almost impossible.
All modifications have to be thoroughly tested, which requires constant expansions to the test
environment.

At the time of writing the device family this work is based on is already succeeded by even
more powerful architectures. Due to lack of time, none of these devices could be tested for
encoding performance.

Currently the latest architectures show a trend towards bigger but fewer multiprocessors.
The list of device properties in the appendix of the latest CUDA programming guide [43] shows
this development in GPU architecture regarding SIMD-width and number of incorporated mul-
tiprocessors. Less MPs house more and more compute cores. While previous MPs had 8 cores,
those in recent designs contain as much as 48. As a result, the atomic logic vector width of 32
for previous devices has been extended to 64. From what has been learned during the encoder
parallelization, this already exceeds the SIMD vector width adequate for low bit-rate coders
such as the TETRA. The reason for this design decision by the manufacturer seems clear: why
should precious die area be wasted to redundant infrastructure (schedulers, memory connections
on MP-level) if problem-inherent data parallelism (for graphics and large computational tasks)
is high enough so that SIMD vector width can be further increased for better utilization.

On the other hand, new multiprocessor designs seem to focus on more versatile scheduling
and branch handling, which could turn out as an advantage for speech coding [41].

Next Steps

For the further development of a completly GPU-based TETRA encoder, a number of issues
should be considered. First, in order to be able to tell the real effect of latency hiding in multi-
channel mode, the runtime-intensive units must be implemented for the processing of not just
one channel at a time, but n. The result thereof will be the knowledge of how each algorithm
stage profits from the effect. Second, the operational prototype should be integrated into an
actual TETRA infrastructure for field tests, and as a proof of concept.

1See the reference code from [22].

70



Bibliography

[1] Tor Aamodt. Architecting graphics processors for non-graphics compute acceleration. In
2009 IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, Special Session on Computer Architecture, Computer Graphics Proceedings, Annual
Conference Series, pages 963–968. IEEE, IEEE, 2009.

[2] Selim G. Akl, David T. Barnard, and Ralph J. Doran. Design, analysis, and implementation
of a parallel tree search algorithm. In Pattern Analysis and Machine Intelligence, IEEE
Transactions on, pages 192 – 203, March 1982.

[3] B. Atal and J. Remde. A new model of lpc excitation for producing natural-sounding
speech at low bit rates. In Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP ’82., volume 7, pages 614 – 617, may 1982.

[4] B. S. Atal and S. L. Hanauer. Speech Analysis and Synthesis by Linear Prediction of the
Speech Wave. J. Acoust. Soc. Am., 50(2):637–655, August 1971.

[5] Bishnu S. Atal and J. R. Remde. A new model of lpc excitation for producing natural-
sounding speech at low bit rates. Proceedings of the 1982 International Conference on
Acoustics, Speech, and Signal Processing, 1(12):614–617, 5 1982.

[6] M.T. Awan, S. Masud, N. Khan, and F. Abdullah. Multilevel optimization of speech cod-
ing algorithms for modern dsp architectures. In Communications, Computers and signal
Processing, 2005. PACRim. 2005 IEEE Pacific Rim Conference on, pages 265 – 268, aug.
2005.

[7] H.Y. Su C. Laflamme, J.P. Adoul and S. Monssette. On reducing computational complexity
of codebook search in celp coder through the use of algebraic codes. In Proc. of IEEE Int.
Conf. on Acouctics, Speech, and Signal Processing, pages 937–940, April 1990.

[8] Jr. Campbell, Joseph P. and T. E. Tremain. Voiced/unvoiced classification of speech with
applications to the u.s. government lpc-10e algorithm. Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 67(12):473–6, 1986.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin
Skadron. A performance study of general-purpose applications on graphics processors
using cuda. J. Parallel Distrib. Comput., 68(10):1370–1380, 2008.

71



[10] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Accelerating
compute-intensive applications with gpus and fpgas. In Proceedings of the 2008 Sym-
posium on Application Specific Processors, pages 101–107, Washington, DC, USA, 2008.
IEEE Computer Society.

[11] Wai C. Chu. Speech Coding Algorithms: Foundation and Evolution of Standardized
Coders. John Wiley & Sons, Inc., New York, NY, USA, 1 edition, 2003.

[12] Brent Cowan and Bill Kapralos. Spatial sound for video games and virtual environments
utilizing real-time gpu-based convolution. In Proceedings of the 2008 Conference on Fu-
ture Play: Research, Play, Share, Future Play ’08, pages 166–172, New York, NY, USA,
2008. ACM.

[13] David H . Crawford and Emmanuel Roy. Implementing speech coding algorithms. Em-
bedded Systems Programming Magazine, pages 39 – 52, February 2002.

[14] Heetal Kiran Devendra. Real time implementation of tetra speech codec on tms320c54x,
2002.

[15] Jack Dongarra, Dennis Gannon, Geoffrey Fox, and Ken Kennedy. The impact of multicore
on computational science software. CTWatch Quarterly, 3(1), 02/2007 2007.

[16] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans. Comput.,
C-21:948+, 1972.

[17] Jens-Fabian Goetzmann. Massively parallel contact simulation on graphics hardware using
nvidia cuda. In Informatiktage, pages 251–254, 2008.

[18] N. Görtz. Aufwandsarme Qualitätsverbesserungen bei der gestörten Übertragung
codierter Sprachsignale. Shaker Verlag, Aachen, 1999.

[19] A. Grama and V. Kumar. A Survey of Parallel Search Algorithms for Discrete Optimization,
chapter 11. Addison Wesley, 2003.

[20] D. Haoui, A.; Messerschmitt. Predictive vector quantization. In Acoustics, Speech, and
Signal Processing, IEEE International Conference on ICASSP ’84, pages 420 – 423, Mar.
1984.

[21] Holger Hopp and Peter Sanders. Parallel game tree search on simd machines. In Proceed-
ings of the Second International Workshop on Parallel Algorithms for Irregularly Struc-
tured Problems, IRREGULAR ’95, pages 349–361, London, UK, 1995. Springer-Verlag.

[22] European Telecommunications Standards Institute. ETSI EN 300 395-2 v1.3.1 - Terres-
trial Trunked Radio (TETRA); Speech Codec for full-rate traffic channel; Part 2: TETRA
codec, January 2005.

[23] P. Kabal and R. P. Ramachandran. The computation of line spectral frequencies using
Chebyshev polynomials. IEEE Transactions on Acoustics Speech and Signal Processing,
34(6):1419–1426, 1986.

72



[24] A. M. Kondoz. Digital Speech: Coding for Low Bit Rate Communication Systems. John
Wiley & Sons, New York, NY, USA, 2 edition, 2004.

[25] K. Koutsomyti, S. R. Parr, V. A. Chouliaras, and J. Nunez. Applying data-parallel and
scalar optimizations for the efficient implementation of the g.729a and g.723.1 speech cod-
ing standards, 2005.

[26] A. Krukowski, I. Kale, , and G.D. Cain. Decomposition of iir transfer functions into
parallel arbitrary-order iir subfilters. In Proceedings of the IEEE Nordic Signal Processing
Symposium (NORSIG ’96), pages 175–178. IEEE, IEEE, September 1996.

[27] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra. The playstation 3 for
high-performance scientific computing. Computing in Science and Engineering, 10(3):84–
87, 2008.

[28] R. Kutil. Parallelization of iir filters using simd extensions. In Systems, Signals and Image
Processing, 2008. IWSSIP 2008. 15th International Conference on, pages 65 – 68, June
2008.

[29] C. Laflamme, J.-P. Adoul, R. Salami, S. Morissette, and P. Mabilleau. 16 kbps wideband
speech coding technique based on algebraic celp. Acoustics, Speech, and Signal Process-
ing, IEEE International Conference on, 0:13–16, 1991.

[30] Daren Lee, Ivo Dinov, Bin Dong, Boris Gutman, Igor Yanovsky, and Arthur W. Toga.
CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.
Computer Methods and Programs in Biomedicine, December 2010.

[31] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-
thony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Ham-
marlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100x gpu vs. cpu myth: an
evaluation of throughput computing on cpu and gpu. SIGARCH Comput. Archit. News,
38:451–460, June 2010.

[32] J.S. Lim and A.V. Oppenheim. Enhancement and bandwidth compression of noisy speech.
Proceedings of the IEEE, 67(12):1586–604, 1979.

[33] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39–55, 2008.

[34] J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE, 63(4):561–580,
1975.

[35] Satoshi Matsuoka, Takayuki Aoki, Toshio Endo, Akira Nukada, Toshihiro Kato, and
Atushi Hasegawa. Gpu accelerated computing - from hype to mainsstream, the rebirth
of vector computing. In Journal of Physics: Conference Series 180 (2009), 2009.

73



[36] A. Nassery, M.R. Ghajar, S. Najafzadeh, and B. Khajehnejad, M.A. andForouzandeh. Eval-
uation of hardware/software partitioning of conjugate-structure algebraic celp (cs-acelp)
algorithm using matlab. In Information and Communication Technology, 2007. ICICT ’07.
International Conference on, pages 287 – 290, March 2007.

[37] Huy Nguyen and Lizy Kurian John. Exploiting simd parallelism in dsp and multimedia al-
gorithms using the altivec technology. In Proceedings of the 13th international conference
on Supercomputing, ICS ’99, pages 11–20, New York, NY, USA, 1999. ACM.

[38] NVIDIA. Geforce 8400 gs specification. http://www.nvidia.com/object/
geforce_8400.html. Accessed: 16/04/2011.

[39] NVIDIA. Geforce gtx 275 specification. http://www.nvidia.com/object/
product_geforce_gtx_275_us.html. Accessed: 16/04/2011.

[40] NVIDIA. Cuda programming guide 2.3. http://developer.download.nvidia.
com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_
Guide_2.3.pdf, 2009.

[41] NVIDIA. Nvidia fermi whitepaper. http://www.nvidia.com/object/IO_
86776.html, 2009.

[42] NVIDIA. Cuda best practices guide 3.0. http://developer.download.
nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_
BestPracticesGuide.pdf, 2010.

[43] NVIDIA. Cuda programming guide 3.2. http://developer.download.nvidia.
com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_
Guide.pdf, 2010.

[44] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. Gpu
computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[45] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-pass
programmable shading. In SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 425–432, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[46] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis. Implementation of recursive digital
filters into vector simd dsp architectures. In Acoustics, Speech, and Signal Processing,
2004. Proceedings. (ICASSP ’04). IEEE International Conference on, pages V – 165–8
vol.5, May 2004.

[47] Kamil Rocki and Reiji Suda. Parallel minimax tree searching on gpu. In Proceedings of
the 8th international conference on Parallel processing and applied mathematics: Part I,
PPAM’09, pages 449–456, Berlin, Heidelberg, 2010. Springer-Verlag.

74

http://www.nvidia.com/object/geforce_8400.html
http://www.nvidia.com/object/geforce_8400.html
http://www.nvidia.com/object/product_geforce_gtx_275_us.html
http://www.nvidia.com/object/product_geforce_gtx_275_us.html
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
http://www.nvidia.com/object/IO_86776.html
http://www.nvidia.com/object/IO_86776.html
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf


[48] M. R. Schroeder and B. A. Atal. Code-excited linear prediction (CELP): High quality
speech at very low bit rates. In Proc. of IEEE Int. Conf. on Acouctics, Speech, and Signal
Processing, pages 937–940, March 1985.

[49] P. D. Schuler, R. H. S. Hardy, and V. Cuperman. A custom vlsi architecture for low-delay
speech coding. In Proceedings of the Acoustics, Speech, and Signal Processing, 1991.
ICASSP-91., 1991 International Conference, ICASSP ’91, pages 1161–1164, Washington,
DC, USA, 1991. IEEE Computer Society.

[50] M. SCHULTHEISS and A. LACROIX. Mapping celp algorithms onto parallel architec-
tures. Proc. Douzieme Colloque sur le Traitement du Signal et ses Applications (GRETSI),
1989.

[51] B. Soong, F.; Juang. Line spectrum pair (lsp) and speech data compression. In Acoustics,
Speech, and Signal Processing, IEEE International Conference on ICASSP ’84, pages 37
– 40, Mar. 1984.

[52] D. Tarjan and K. Skadron. Multithreading vs. streaming. In MSPC ’08: Proceedings of the
SIGPLAN Workshop on Memory Systems Performance and Correctness, March 2, 2008.
MSPC, 2008.

[53] Nicolas Tsingos. Using programmable graphics hardware for acoustics and audio render-
ing. In Audio Engineering Society Convention 127, 10 2009.

[54] Alexander S. van Amesfoort, Ana Lucia Varbanescu, Henk J. Sips, and Rob V. van Nieuw-
poort. Evaluating multi-core platforms for hpc data-intensive kernels. In Proceedings of
the 6th ACM conference on Computing frontiers, CF ’09, pages 207–216, New York, NY,
USA, 2009. ACM.

[55] Vasily Volkov and James Demmel. State of the art report on gpu. Technical report, Visu-
alization and Virtual Reality Research Group, School of Computing - University of Leeds,
2009.

[56] S.R. Wang and P. Siy. Parallel-decomposition algorithm for discrete computational prob-
lems and its application in developing an efficient discrete convolution algorithm. In Vision,
Image and Signal Processing, IEE Proceedings -, pages 40 – 46, Feb 1995.

[57] Dan Wu, Pan Chen, Kui Dai, Jinli Rao, and Xuecheng Zou. Implementation of paral-
lel game tree search on a simd system. In Information Engineering (ICIE), 2010 WASE
International Conference on, pages 62 – 66, Aug. 2010.

[58] Enhua Wu and Youquan Liu. Emerging technology about gpgpu. In IEEE Asia Pacific
Conference on Circuits and Systems, 2008. APCCAS 2008., pages 618–622. IEEE, 2008.

75


	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Structure

	Speech Coding
	Speech Coding Motivation
	Speech Signal Properties
	Speech Production Model
	Linear Predictive Coding
	Short-term and Long-term LPC
	Vector Quantization
	Analysis by Synthesis
	Code Excited Linear Prediction
	Specific characteristics of the TETRA codec

	GPU Properties
	Architectural Overview
	Streaming Multiprocessors
	Device Memory System
	The CUDA Programming Model
	Discussion

	Related Work
	Implementation
	Encoding Procedure
	Leveraging GPU Properties
	Exploiting Parallelism
	Unit Ranking
	Selected Units

	Overall Results
	Conclusion
	Bibliography

