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Abstract

In this work we present a CUDA-based parallelized implementation
of the reconstruction technique for 2D and 3D non-uniform point sets
developed by [1] and Vuçini et al. [10]. Cubic B-splines are used as
an approximation for the computationally expensive radial basis func-
tions. As B-splines only have local support, a regularization term is
added to handle larger gaps between sample points.
The main reconstruction task is the solving of a large but sparse lin-
ear system. The system’s size makes the use of iterative algorithms
necessary. Different solvers are implemented in order to find the best-
performing approach. GPU-based algorithms require a different kind
of strategy than traditional implementations. The possible degree of
parallelization becomes the defining factor for the efficient realization
of algorithms.
The use of B-splines also makes a multi-resolution approach possible.
The system can be solved at a coarser representation and its solution
acts as an initialization for the finer resolution. This further speeds up
the reconstruction.
A downside of using graphics cards for computation is the relative spar-
sity of available memory. Most GPUs are not capable of handling big
datasets directly. Therefore, the non-uniform representation is split
into a number of smaller blocks. Each block is then reconstructed sep-
arately and the intermediate results are joined together resulting in
the final solution.
The reconstruction results in terms of speed and quality are shown and
are pitted against other CPU-based implementations.
A CUDA based interactive ray-tracer is used to visualize the 3 dimen-
sional datasets and test the visual quality of the reconstruction.
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1 Introduction

Planar and volumetric datasets are increasingly often retrieved and stored in
a non-uniform representation to account for varying variance and detail, yet
minimizing storage space. Therefore, the visualization and general handling
of this data is increasingly important. But enhanced flexibility comes at a
cost. The processing of non-uniform data is not straightforward. Several
methods exist to visualize three dimensional datasets, including finite ele-
ment analysis, approximation through basis functions and particle systems.
All have their strengths and weaknesses, depending on the structure of the
datasets to process and the expected results.
Indirect methods are known, which involve a transformation as an inter-
mediate step, converting the data cloud into a uniform representation first.
That makes it possible to continue using the existing toolsets which are
already widely adopted. Several techniques exist for performing this oper-
ation. Most of them add a restriction on the maximum gap between the
sample points though. This restriction is not always practical. Having no
limit on the maximum distance between sample points, the reconstruction
problem becomes not uniquely defined and hence, ill posed.
A way to deal with this is to convert the interpolation problem into an ap-
proximation problem. This can be done by adding a regularization term R
to the equation. The weighting of R determines the smoothness of the re-
constructed solution. But the smoothing term has the downside of increased
errors at the input points, making the output function not follow the present
data points as closely.
The, mathematically speaking, optimum solution for the approximation
problem is obtained by using radial basis functions, in particular thin-plate
splines. When positioning RBFs at the data points, a linear system can
be set up and its solution represents the optimal weights necessary for each
RBF. Even though thin-plate splines are the optimum solution, their com-
putational cost rises drastically as the number of data points increases.
Thin-plate splines have global support, meaning that each basis function
is influenced by each data point across the whole dataset, leading to a huge
linear system, which’ size is dependent on the number of sample points.
Furthermore, this system’s matrix is dense, making the solving process com-
putationally expensive.
Fortunately there are alternatives to using RBFs. B-splines represent a good
approximation for RBFs but are non-zero on only a small range. The use
of B-splines instead of RBFs introduces multiple advantages. Having finite
support, the resulting linear system matrix is sparse, leading to a more effi-
cient calculation. With proper restructuring, the problem can be formulated
independently from the number of sample points, effectively making it de-
pendent on the reconstruction grid size only. The system is also appropriate
for a multi-resolution solving approach. Finally, no resampling step is re-
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quired after obtaining the weights. A simple filter operation is sufficient.
Even though this approach outperforms other methods in terms of speed, it
is still a big computational effort. GPUs offer a huge amount of processing
power compared to CPUs. While CPUs have large caches and parts respon-
sible for flow control, GPUs sacrifice these for more computing units. They
are made up of thousands of processing units resulting in a massive parallel
computation device.
The main reason for utilizing GPUs to do general purpose computation
tasks is the gain in processing speed. But not every problem is suited to be
solved with GPUs as not every algorithm and data structure can be paral-
lelized easily or at all. A big issue when implementing GPU-based code is
to occupy all or most of the GPU’s processing units throughout the compu-
tation. Only utilizing a few of them results in poor performance that can
then be easily matched or even outperformed by today’s CPUs. This paper
also addresses the difficulties and differences compared to traditional imple-
mentations that occur when developing for a massive parallel computation
device like the GPU.
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2 Related work

A number of different techniques have been developed in order to deal with
non-uniform spatial data. A common method for visualizing non-uniform
point data works by polyhedralizing the data first and rendering the new
structures. This approach was used in quite a number of different works [6]
[7] [11].
Another technique is to approximate the given set with the help of basis
functions. The kind of basis function used plays a major role for both the
resulting quality and reconstruction performance. Other works in this field
use radial basis functions (RBFs) or more specifically, thin-plate splines [4]
[3].
In order to lower the computational complexity that RBFs imply while still
maintaining a good reconstruction quality, approximations can be used.
Both Arigovindan et al. [1] and Vuçini et al. [10] use B-splines instead
of thin-plate splines, improving the reconstruction speed by orders of mag-
nitude.
This work takes their findings and translates them into a CUDA based im-
plementation in order to use the vast amount of processing power present
in recent GPUs.
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3 Datasets

For testing, images and volumetric datasets are used for 2D and 3D re-
construction, respectively. Both synthetic and natural images are utilized
to test different reconstruction aspects. For testing purposes, the sample
points are extracted from complete datasets to be able to compare the re-
constructed results with the originals. To measure the reconstruction error
objectively, an error metric is utilized (see Appendix B). Images 1 and 2
each shows four of the used datasets.
If not stated otherwise, the sample points are selected by first filtering with
a Laplacian filter (see Appendix A) and selecting the points with the high-
est absolute laplacian values. This guarantees that the points with a high
gradient are selected first and less important regions are selected last.
The selected datasets range from high detail (Bridge, Natural Convection,
Skull) to low detail (Head, Fuel).
Another type of 3D datasets which doesn’t provide a ground truth is also
tested to verify the reconstruction on real world non-uniform point clouds.
These datasets can be reconstructed at almost arbitrary sizes, making an-
other trade-off between faster reconstruction and more correct results possi-
ble. Modifying the reconstruction grid’s size along the different dimensions
can also be used to provide varying levels of detail. Image 3 shows four
renderings from the pool of non-uniform datasets.
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Figure 1: Selection of used image datasets: a) Bridge, b) Lena, c) Fruits and d)
Head, all 512×512
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Figure 2: Renderings of used volume datasets: a) Skull (256×256×256), b) Fuel
(64×64×64), c) Neghip (64×64×64), d) Hydrogen Atom (128×128×128)
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Figure 3: Renderings of used non-uniform volume datasets: a) Cooling
Jacket (222×128×122), b) Natural Convection (61×61×61), c) Flow Transport
(44×58×58), d) Fuel Injection (39×51×60)
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4 Setup

The building blocks for the linear system are B-spline basis functions of the
form:

β(x) =



x3

6 0 < x ≤ 1
−3x3+12x2−12x+4

6 1 < x ≤ 2
3x3−24x2+60−44

6 2 < x ≤ 3
(4−x)3

6 3 < x ≤ 4
0 otherwise

(1)

The temporary matrix F is constructed out of B-spline products. For the
3D case:

Fi,NxNym+Nxl+k = β(xi − k)β(yi − l)β(zi −m) (2)

Therefore, F TF is calculated like this:

(F TF )NxNym1+Nxl1+k1,NxNym2+Nxl2+k2

=∑
i
β(xi − k1)β(yi − l1)β(zi −m1)β(xi − k2)β(yi − l2)β(zi −m2)

Note that, due to the finite support of the B-spline function β, only samples
within 4 units in each dimension can influence each entry in F TF .
F T f is calculated in a similar fashion:

(F T f)NxNym+Nxl+k =
∑
i

fiβ(xi − k)β(yi − l)β(zi −m) (3)

In order to perform the reconstruction, a linear system of the form

(F TF + λR)x = F T f (4)

has to be set up.
R is the regularization matrix scaled by λ, the regularization factor, which
governs the smoothness of the reconstruction. Each value in R is only de-
pendent on the position in the matrix. This can be done very efficiently (3D
case):

Rx,y,z = T2,x ∗ T0,y ∗ T0,z +

2 ∗ T1,x ∗ T1,y ∗ T0,z +

T0,x ∗ T2,y ∗ T0,z +

2 ∗ T1,x ∗ T0,y ∗ T1,z +

2 ∗ T0,x ∗ T1,y ∗ T1,z +

T0,x ∗ T0,y ∗ T2,z
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T is a small lookup table consisting of pre-calculated integrals.
F TF and F T f are dependent on the sample points f . Replacing F TF +λR
with A and F T f with b yields the typical equation:

Ax = b (5)

which needs to be solved for x.
For matrix F TF and the right-side vector F T f , both a shooting and a gath-
ering algorithm were tried. The shooting algorithm is easier to implement
but also requires the serialization of write-accesses to avoid race conditions.
The gathering algorithm on the other hand is fully parallelized and is also
independent from the number of sample points, effectively making the recon-
struction process as a whole dependent on the size of the reconstruction grid
only. Unfortunately, the gathering algorithm requires the reconstruction
grid to be aligned with the positions of the sample points. This is a serious
limitation and makes it impractical for most real-world cases. Therefore, the
shooting algorithm is used throughout the report. For datasets which’ point
positions only differ by a multiple of the grid size, the gathering algorithm
could improve reconstruction times though.
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5 Single resolution linear equation solvers

5.1 Domain description

To get a better understanding, one first has to look at the problem at hand.
The task is to solve a very large linear system, depending on the recon-
struction grid’s size. In most cases, direct solvers would be inappropriate
for these systems as they aren’t able to work on these amounts of data in
a reasonable timeframe. Iterative approaches on the other hand can tackle
such systems well and also provide more flexibility concerning the needed
accuracy of the results.
An important property of the matrix A (5) is its sparsity (due to the B-spline
basis functions). This makes the use of a sparse matrix storage scheme not
only viable but also necessary, given its size. Furthermore, the matrix is
symmetric and positive semi-definite, which affects the range of suitable al-
gorithms as well as their convergence behavior.
Although a multi-grid approach is used (introduced in section 6), it still
relies on normal iterative approaches to do the actual solving. 3 different
solvers were implemented and tested out. With CUDA being a massive
parallel environment, it is of most importance for the algorithms to be par-
allelized to achieve good performance. The following sections point out the
specialities and difficulties when being implemented in CUDA and when
used in a multi-grid approach. The shown algorithms relate to the 3D case.
For a more detailed mathematical explanation of the linear equation solvers,
refer to [2].

5.2 Building blocks for matrix-vector calculations

The whole reconstruction process mostly consists of basic matrix-vector op-
erations. These include:

* Vector scaling

* Vector dot product

* AXPY (vector addition preceded by scalar multiplication of one vec-
tor)

* Matrix-vector multiplication.

CUBLAS, which is an add-on library to CUDA, offers most of these oper-
ations. Only the matrix-vector multiplication needs to be implemented to
work with the special dense matrix structure (Algorithm 1 and 2). Note
that the parts inside the outer loops can be run in parallel and hence are
implemented inside a single CUDA kernel.
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Algorithm 1 3D Parallel matrix-vector multiplication multiply(A, b̄)

{Outer, fully parallelizable loops}
for i = 0 to Nx − 1 do {Parallel}

for j = 0 to Ny − 1 do {Parallel}
for k = 0 to Nz − 1 do {Parallel}
multiplyKernel(A, b̄, x̄, i, j, k)

end for
end for

end for
return x̄

Algorithm 2 3D Multiplication kernel multiplyKernel(A, b̄, x̄, i, j, k)

t̄x = [Nx ∗ 3− 6, Nx ∗ 2− 3, Nx − 1, 0, Nx, Nx ∗ 2− 1, Nx ∗ 3− 3]
t̄y = [Ny ∗ 3− 6, Ny ∗ 2− 3, Ny − 1, 0, Ny, Ny ∗ 2− 1, Ny ∗ 3− 3]
t̄z = [Nz ∗ 3− 6, Nz ∗ 2− 3, Nz − 1, 0, Nz, Nz ∗ 2− 1, Nz ∗ 3− 3]
s = 0
for jx = max(−3,−i) to min(3, Nx − 1− i) do

for jy = max(−3,−j) to min(3, Ny − 1− j) do
for jz = max(−3,−k) to min(3, Nz − 1− k) do
{Single component multiplication and summation}
s = s+Ai+t̄x(jx+3),j+t̄y(jy+3),k+t̄z(jz+3)

∗ bi+jx,j+jy ,k+jz

end for
end for

end for

{Set output}
xi,j,k = s
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5.3 Conjugate Gradient

Fortunately, Conjugate Gradient is parallel in nature and only relies on
operations that are not dependent on it’s own partial results. Per iteration,
the algorithm needs to compute the following:

* 1 matrix-vector multiplications

* 3 dot products

* 3 AXPY operations

Algorithm 3 shows the implementation of the parallel Conjugate Gradient
method.

Algorithm 3 Parallel Conjugate Gradient algorithm CG(A, b̄, x̄)

{Allocate space for temporary vectors}
r̄ = Allocate(Nx ∗Ny ∗Nz) {Residual vector}
p̄ = Allocate(Nx ∗Ny ∗Nz) {Current gradient vector}

¯tmp = Allocate(Nx ∗Ny ∗Nz) {Temporary vector}

{Calculate initial residuals}
r̄ = multiply(A, b̄)
r̄ = axpy(r̄, b̄,−1)

{Iteration loop}
for i = 0 to numIterations− 1 do
{Calculate λ = (r̄T r̄)/(p̄TAp̄)}
rDot = dot(r̄, r̄)

¯tmp = multiply(A, p̄)
pDot = dot(p̄, p̄)
λ = rDot/pDot

x̄ = axpy(p̄, x̄, λ) {Update x̄}

r̄ = axpy( ¯tmp, r̄,−λ) {Update r̄}

β = dot(r̄, r̄)/rDot {Calculate β}

p̄ = axpy(p̄, r̄, β) {Update p̄}
end for

5.4 Jacobi

The Jacobi algorithm is implemented by first taking the diagonal part of
the matrix and inverting it as a setup-step. This can be performed very
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fast because in the dense matrix format used, the diagonal part corresponds
to the first Nx, Ny and Nz values in each dimension. The inversion of
the diagonal matrix is trivial and can be implemented very efficiently. Per
iteration, the algorithm needs to compute the following:

* 2 matrix-vector multiplications

* 1 vector multiplication

* 1 AXPY operation

The Jacobi algorithm has the least expensive setup cost but also the slowest
convergence rate of the tested algorithms.

Algorithm 4 Parallel Jacobi algorithm Jacobi(A, b̄, x̄)

{Setup diagonal inverse matrix}
Ã = inverseDiagonal(A)

{Allocate temporary vectors}
r̄ = Allocate(Nx ∗Ny ∗Nz)

¯tmp = Allocate(Nx ∗Ny ∗Nz)

{Iteration loop}
for i = 0 to numIterations− 1 do
{Calculate residuls}
r̄ = multiply(A, x̄)
r̄ = axpy(r̄, b̄,−1)

{Calculate tmp}
¯tmp = multiply(Ã, r̄)

{Add to x}
x̄ = axpy( ¯tmp, x̄, 1)

end for

5.5 Gauss-Seidel

The Gauss-Seidel algorithm is the hardest to implement efficiently on par-
allel hardware. The reason is that unlike the other two algorithms, each
Gauss-Seidel iteration is dependent on it’s own partial results [2, chapter
2.2.2]. Without adjustments, it can only run in a completely serial fashion,
making it useless for GPU calculations. Fortunately, it’s possible to exploit
the special structure of matrix A. Each result value is only dependent on
the 7 values above it. Therefore, a modified form of red-black ordering can
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be implemented [2, chapter 2.4]. By re-ordering the system, it is possible
to fully parallelize 1/8th of the new partial results for each iteration. These
results are then used for computing the next values. Repeating the process
8 times, the iteration is complete. Figure 4 shows this multi color ordering.
Algorithms 5 shows the index conversion into the red-black ordering. Taking
the original index as input, it outputs the reordered index position of a line.
Algorithm 6 shows the reverse operations.

...

...

......

Figure 4: Reordering of the matrix to achieve better parallelization

The parallel calculation itself is very similar to a matrix vector multiplica-
tion plus one vector addition and one vector division afterwards. Note that
the shown algorithm 8 only works on systems where Nx % 8 = 0. Similar
to the matrix-vector multiplication, the outer loops can be run in parallel.
The Gauss-Seidel algorithm has a big setup cost because of the reordering
of the linear system. Looking at the convergence rate, it performs better
than Jacobi but worse than Conjugate Gradient.

Algorithm 5 Marshal marshal(x)

return (x % (Nx/8)) ∗ 8 + (x/(Nx/8))

Algorithm 6 Unmarshal unmarshal(x)

return (x % 8) ∗ (Nx/8) + (x/8)

17



Algorithm 7 Gauss-Seidel kernel GSKernel(A, b̄M , x̄M , a)

{Separate lookup table for each dimension}
t̄x = [Nx ∗ 3− 6, Nx ∗ 2− 3, Nx − 1, 0, Nx, Nx ∗ 2− 1, Nx ∗ 3− 3]
t̄y = [Ny ∗ 3− 6, Ny ∗ 2− 3, Ny − 1, 0, Ny, Ny ∗ 2− 1, Ny ∗ 3− 3]
t̄z = [Nz ∗ 3− 6, Nz ∗ 2− 3, Nz − 1, 0, Nz, Nz ∗ 2− 1, Nz ∗ 3− 3]

{Retrieve indices}
i = a % Nx

j = (a/Nx) % Ny

k = a/(Nx ∗Ny)

iU = unmarshal(i) {Marshal index along x-dimension}
s = 0
for jUx = max(−3,−iU ) to min(3, Nx − 1− iU ) do

for jy = max(−3,−j) to min(3, Ny − 1− j) do
for jz = max(−3,−k) to min(3, Nz − 1− k) do

{Calculate unmarshalled index for matrix A}
indexA = iU + t̄x(jUx +3), j + t̄y(jy+3), k + t̄z(jz+3)

{Calculate marshalled index for vector x̄}
indexx = marshal(iU + jUx ), j + jy, k + jz

{Add to intermediate result}
s = s+AindexA

∗ x̄Mindexx

end for
end for

end for

{Set output}
x̄Mi,j,k = (b̄Mi,j,k − s)/AiU ,j,k
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Algorithm 8 Parallel Gauss-Seidel algorithm GS(A, b̄, x̄)

{Allocate marshalled temporary vectors}
x̄M = Allocate(Nx ∗Ny ∗Nz)
b̄M = Allocate(Nx ∗Ny ∗Nz)

{Marshal left- and right-hand side vector}
for x = 0 to Nx − 1 do {Parallel}

for y = 0 to Ny − 1 do {Parallel}
for z = 0 to Nz − 1 do {Parallel}
b̄Mmarshal(x),y,z = b̄x,y,z

x̄Mmarshal(x),y,z = x̄x,y,z
end for

end for
end for

{Iteration loop}
for i = 0 to numIterations− 1 do

for it = 0 to 7 do

start = it ∗ (Nx
3/8)

end = (it+ 1) ∗ (Nx
3/8)

{Iteration}
for a = start to end− 1 do {Parallel}
GSKernel(A, b̄M , x̄M , a)

end for
end for

end for

{Unmarshal result-vector}
for x = 0 to Nx − 1 do {Parallel}

for y = 0 to Ny − 1 do {Parallel}
for z = 0 to Nz − 1 do {Parallel}
x̄unmarshal(x),y,z = x̄Mx,y,z

end for
end for

end for
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6 Multigrid linear equation solver

Because of the interscale 2-scale relation of B-splines [1], which form the
building blocks for the reconstruction, the linear system can be brought to
a coarser and therefore smaller scale and solved there. After upsampling,
the intermediate result can act as a good initializer for the system at the
bigger scale. This process can be deployed recursively, greatly increasing
the reconstruction process’ speed. The algorithm is shown schematically in
figure 5.

Figure 5: The multigrid approach, shown in a modular fashion, thereby making
the recursive nature of the algorithm visible. Note that every line of ”Solve” can be
split up into another smaller scale problem.

To further speed up reconstruction, a mechanism called coarse-grid cor-
rection is applied. After performing the initial iterations for a given reso-
lution (j), the residuals are calculated, downsampled to (j + 1) and used
as the right-hand side for a smaller linear system A(j+1)e = r(j+1). The
result e, which acts as a form of error-correction, is upsampled again and
added to the current solution. After coarse-grid correction, another number
of iterations is carried out.
In order to implement a multi grid solver, fast vector up- and downsampling,
as well as matrix downsampling is needed. These operations are composed
of binomial filter operations, coarsening by dropping every second value and
expanding by adding zeroes between two values, treating each dimension
separately. Algorithms 9, 10, 11, 12, 13 and 14 show these operations for
vectors along the X dimension. The operations for the other dimensions are
implemented likewise.
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Algorithms 15 and 16 are used for downsampling and filtering the dense
matrix along the X dimension. Again, the other dimensions are operated
on in a similar fashion. Figure 6 shows the steps necessary to downsample
a matrix visually.

Algorithm 9 Kernel for filtering vector along X dimension
filterV ectorXKernel(x̄, x̄f , width, height, depth, x, y, z)

filter = [1, 4, 6, 4, 1]

x̄fx,y,z = 0
denom = 0
for i = 0 to 4 do
dx = x+ (i− 2)
if 0 <= dx < width then
denom = denom+ filteri
x̄fx,y,z = x̄fx,y,z + x̄dx,y,z

end if
end for
x̄fx,y,z = 1/denom

Algorithm 10 Filtering vector along X dimension
filterV ectorX(x̄, x̄f , width, height, depth)

for i = 0 to width− 1 do {parallel}
for j = 0 to height− 1 do {parallel}

for k = 0 to depth− 1 do {parallel}
filterV ectorXKernel(x̄, x̄f , width, height, depth, i, j, k)

end for
end for

end for

Algorithm 11 Kernel for reducing vector along X dimension
reduceV ectorXKernel(x̄, x̄r, width, widthsmall, height, x, y, z)

x̄rx+y∗widthsmall+z∗widthsmall∗height = x̄fx∗2+y∗width+z∗width∗height
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Algorithm 12 Reducing vector along X dimension
reduceV ectorX(x̄, x̄r, width, widthsmall, height)

for i = 0 to width− 1 do {parallel}
for j = 0 to height− 1 do {parallel}

for k = 0 to depth− 1 do {parallel}
reduceV ectorXKernel(x̄, x̄r, width, widthsmall, height, i, j, k)

end for
end for

end for

Algorithm 13 Kernel for expanding vector along X dimension
expandV ectorXKernel(x̄, x̄e, width, widthsmall, height, x, y, z)

x̄ex∗2+y∗width+z∗width∗height = x̄fx+y∗widthsmall+z∗widthsmall∗height

Algorithm 14 Expanding vector along X dimension
expandV ectorX(x̄, x̄e, width, widthsmall, height)

for i = 0 to width− 1 do {parallel}
for j = 0 to height− 1 do {parallel}

for k = 0 to depth− 1 do {parallel}
expandV ectorXKernel(x̄, x̄e, width, widthsmall, height, i, j, k)

end for
end for

end for
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Figure 6: Downsampling of a 3D matrix: a) Start-matrix, b) downsample along
first dimension, c) filter along first dimension, d) downsample along second dimen-
sion, e) filter along second dimension, f) downsample along third dimension, g)
filter along third dimension
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Algorithm 15 Kernel for filtering matrix along X dimension
filterMatrixX(A,Af , x, y, z)

filter = [1, 4, 6, 4, 1,
4, 16, 24, 16, 4,
6, 24, 36, 24, 6,
4, 16, 24, 16, 4,
1, 4, 6, 4, 1]

dk = [0,−1,−2,−3,−4,
1, 0,−1,−2,−3,
2, 1, 0,−1,−2,
3, 2, 1, 0,−1,
4, 3, 2, 1, 0]

dj = [−2,−2,−2,−2,−2,
−2,−1,−1,−1,−1,
−2,−1, 0, 0, 0,
−2,−1, 0, 1, 1,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2,
−2,−1, 0, 1, 2]

denseIndexJumpsX = [0, Nx, Nx ∗ 2− 1, Nx ∗ 3− 3, Nx ∗ 4− 6, Nx ∗ 5−
10, Nx ∗ 6− 15, Nx ∗ 7− 21]
DMSizesX = [Nx, Nx− 1, Nx− 2, Nx− 3, Nx− 4, Nx− 5, Nx− 6, Nx− 7]

{Convert dense index}
jcx = x, kc = 0
while jcx >= Nx − kc do
jcx− = Nx − kc, kc = kc + 1

end while
{Filter operation}
s = 0, denom = 0
for i = 0 to 24 do
k = |kc + dki |, jx = jcx + dji+kc∗5

if 0 <= jx < DMSizesXk then
denom = denom+ filteri
if k <= 4 then
s = s+AdenseIndexJumpsXk+jx,y,z ∗ filteri

end if
end if

end for
Af

x,y,z = s/denom
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Algorithm 16 Kernel for reducing matrix along X dimension
reduceMatrixX(A,Ar, x, y, z)

denseIndexJumpsX = [0, Nx, Nx ∗ 2− 1, Nx ∗ 3− 3, Nx ∗ 4− 6, Nx ∗ 5−
10, Nx ∗ 6− 15, Nx ∗ 7− 21]
Nh

x = (Nx − 1)/2 + 1
denseIndexJumpsXh = [0, Nh

x , N
h
x ∗2−1, Nh

x ∗3−3, Nh
x ∗3−6, Nh

x ∗3−
10, Nh

x ∗ 3− 15, Nh
x ∗ 3− 21]

t = 0
if x >= denseIndexJumpsXh

1 then
t = t+ 1

end if
if x >= denseIndexJumpsXh

2 then
t = t+ 1

end if
if x >= denseIndexJumpsXh

3 then
t = t+ 1

end if
nx = denseIndexJumpsXt∗2 + (x− denseIndexJumpsXh

t ) ∗ 2
Ar

x,y,z = Anx,y,z

7 Block-based reconstruction

The reconstruction of bigger datasets, especially volumetric ones, is very
memory intense. Most of it is needed for storing and handling the dense ma-
trix. For example, the matrix for a dataset with 64×64×64 values amounts
to about 72 MB. For a dataset of size 128×128×128 even 559 MB, already
too much for low-end GPUs. When downsampling, a temporary matrix of
roughly twice the size is needed, taking away even more memory. Adding
the other necessary elements (input samples, left- and right hand size vec-
tors, temporary data, ...) can be too much for a GPU to handle. To be
able to reconstruct these datasets without exceeding the memory limit, a
block-based approach is implemented.
The input samples are grouped into blocks, thereby separating the dataset.
Each block is then reconstructed independently. Finally, the partial results
are assembled back into the final image or volume.
However, this results in visible seams located at the edges between the
blocks. To counter that, the reconstruction area for each block is enlarged
by 4 units in each direction (exactly the range of a cubic B-splines’ influ-
ence) and the block-result is extracted again afterwards. These paddings
of course negatively affect performance. For example: when reconstruct-
ing a 64×64×64 dataset with 2 blocks in each dimension, 8 blocks of size
38×38×38 need to be reconstructed. Extracting areas of size 32×32×32 in
the center of each block, the final results are assembled again.
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8 Visualization

Whereas 2D-datasets can easily be shown as images, volumetric datasets
need to be visualized by projecting them onto the 2D computer screen.
Therefore, an interactive volumetric ray tracer was implemented. Each sin-
gle pixel value of the resulting image is calculated by one CUDA thread.
For better visual results, the scalar values are transformed into RGBA-
vectors with a so-called ”transfer-function”. Figure 14 shows the visualiza-
tion of the Skull dataset. Figure 7 shows the color map that is used by the
transfer function to determine the color and opacity. The transfer function
that adds RGBA values when encountering a voxel with density input is
shown in algorithm 17.

Figure 7: Color map used for visualization of volumetric datasets

Algorithm 17 Transfer function TF (input,map, r, g, b, a)

index = input ∗ width(map)
r = r + (1− a) ∗ input ∗mapindex.red ∗mapindex.alpha
g = g + (1− a) ∗ input ∗mapindex.green ∗mapindex.alpha
b = b+ (1− a) ∗ input ∗mapindex.blue ∗mapindex.alpha
a = a+ (1− a) ∗ input ∗mapindex.alpha
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9 Implementation details

The used code is optimized for CUDA compute capabilities 1.2. Some ker-
nels need to perform atomic float-additions to ensure correct results without
race conditions. Unfortunately, this function does not exist natively for ver-
sions < 2.0 so a (slow) manual implementation has to be deployed [9, chapter
B.11.1]. With some tweaking, a version optimized for >= 2.0 could be set
up as well.

9.1 Dense matrix format

In order to reduce the memory footprint, the matrix is stored in a dense
format which eliminates empty and duplicate values present in the normal
representation. The matrix is already created in this format to fully elimi-
nate the need for the sparse representation and further speed up the process.
For the 3D case, this reduces the storage requirement from Nx

2 ∗Ny
2 ∗Nz

2 ∗
4 bytes to (Nx∗4−6)∗(Ny∗4−6)∗(Nz∗4−6)∗4 bytes. Another advantage is
the improved performance when performing a matrix-vector multiplication.

9.2 Performance considerations

The most important performance improvements are achieved by coalescing
global memory accesses [8, chapter 3.2.1]. While most steps can be fully co-
alesced, some have too unusual access patterns, which can either not be put
in a better, coalesce-able order or the process was determined be too time
and/or memory consuming. Unfortunately, the often-used dense matrix-
vector multiplication is one of those operations (see algorithm 1). In these
cases, texture memory is used to speed up fetching of spatially close-by val-
ues through the GPU’s texture cache.
Another important performance factor is kernel-size. The used CUDA ker-
nels are optimized to use as few registers as possible in order to keep all
data in the (fast) registers and avoid spilling it over to (slow) local memory.
To constantly occupy the GPU it is critical that enough threads can work in
parallel on each kernel launch. On GPUs with CUDA compute capabilities
up to 1.3, 512 threads can be spawned at the same time. Approximately
half of them need to be used in order to fully occupy the GPU, depending on
the kernel’s size. On the other hand, too many threads increase the register
pressure, which can have even higher negative effects on performance. A
careful trade-off has to be chosen for each kernel call separately.
Small improvements are achieved by pre-computing values like the coeffi-
cients for the regularization matrix.
On the GPU, integer modulo-operations are very slow and are hence replaced
by bit-shifts whenever possible. The same is true for divisions, which are
replaced by either multiplication with the (pre-calculated) reciprocal value
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or bit-shifts, whenever possible.
The end results show that for most inputs, the critical parts of the recon-
struction process are the F TF matrix creation and the dense matrix-vector
multiplication (table 1). Great care was taken when optimizing these com-
ponents.

Component Percentage

Create F TF matrix 47,16 %

Multiply vector matrix 37,98 %

Create F T f vector 5,46 %

Filter matrix 5,03 %

Add R matrix 2,36 %

Rest 2,01 %

Table 1: Relative computation times of components when reconstructing the Nat-
ural Convection dataset (61×61×61).
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10 Results

Many CUDA enabled Nvidia cards only provide a subset of all possible
instructions. This is reflected by the CUDA compute capability version-
ing. For example, GPUs with a compute capability <2.0 can only spawn
512 threads simultaneously in each kernel-call. With capability >=2.0, this
upper bound is increased to 1024. Working with atomic floating-point oper-
ations inside kernels also requires at least version 2.0. Devices with a higher
compute capability version feature more raw processing power as well. For
a detailed explanation, see [9]. If not stated otherwise, the tests were per-
formed on a Nvidia GT 220 with 1 GB RAM. This device has a CUDA
compute capability of 1.2.

10.1 Single resolution results

10.1.1 Comparison of linear system solvers

The reconstruction process was carried out using the 3 single resolution
solvers to be able to compare their performances. Each solver was iterated
100 times. The 2D dataset Fruits and the 3D dataset Natural Convection
were used and the results are shown in Tables 2 and 3. Other datasets show
similar results.
The metric to compare the reconstruction performance is described in Ap-
pendix B. Overall, the Conjugate Gradient solver produces the best results.
Jacobi, albeit simple to implement, doesn’t offer good convergence rates.
Gauss-Seidel is not suited for a truly parallel implementation and therefore
can’t achieve a satisfying iteration speed. Conjugate Gradient achieves the
best convergence rate by far and also the best iteration speed. Therefore,
this method is used throughout this report.

Sample points: 20 % 30 % 50 %

Time RMSg Time RMSg Time RMSg

Jacobi 1,663 1,31 1,719 0,72 1,813 0,30

Gauss-Seidel 2,457 1,27 2,497 0,69 2,534 0,26

Conjugate Gradient 1,404 0,34 1,416 0,21 1,503 0,18

Table 2: Comparison of linear equation solvers using the Fruits dataset (λ = 1.9).
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Time RMS

Jacobi 1,663 1,31

Gauss-Seidel 2,457 1,27

Conjugate Gradient 1,404 0,34

Table 3: Comparison of linear equation solvers using the Natural Convection
dataset (λ = 0.001).

10.2 Optimal regularization

An important factor for the reconstruction quality is the regularization vari-
able λ. Deciding the optimal value is not easy and is very much dependent
on the input samples. Figures 9 and 10 show the reconstruction results for
the used datasets with varying values of λ. The best results for the image
datasets are obtained using a λ value in the interval [2, 3]. Higher values
result in blurred images, lower values produce too many artifacts in areas
where few or no sample points are present. Image 8 shows this visually. From
the three presented results, the center image offers the best reconstruction
quality with a λ of 2,1.

Figure 8: Reconstructed Lena dataset with varying λ parameter. From left to
right: λ: 0,1 RMSg: 8,03; λ: 2,1 RMSg: 5,08; λ: 4,1 RMSg: 5,34

The volume datasets require much smaller λ values. This is due to the
decreased complexity in these datasets and the additional dimension, which
increases the chance for a reconstruction point to have an input sample
nearby. Especially the hydrogen dataset is almost completely defined by the
20 % of sample points and hence needs very little regularization. In general,
the optimal value needs to be determined on a per dataset basis.
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Figure 9: 2D reconstruction results for varying values of λ. 20 percent sample
points are used.

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lambda

R
M

S
g

 

 
Fuel
Neghip
Skull
Hydrogen

Figure 10: 3D reconstruction results for varying values of λ. 20 percent sample
points are used.
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10.3 Varying sample point percentages

The more information is present about the dataset, the more precise the
reconstruction can be. Figure 11 shows the reconstruction errors for the 2D
datasets.
All datasets reach an almost constant error rate when increasing the number
of sample points. These stationary rates are mostly affected by the used λ-
value. Smaller values of λ result in smaller errors for high sample point
percentages, but perform worse for percentages < 50%.
Especially the complexity of the Bridge dataset can be seen here. While
the other datasets reach a more or less stationary error rate at around 30
%, it takes about 50 % of the data to attain a constant rate for the Bridge
dataset.
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Figure 11: Reconstruction results for varying sample point percentages.

10.4 Multigrid results

10.4.1 Optimal multi grid parameters

There are a few parameters which affect multigrid performance, namely N ,
N0, N1, N2, M , M0, M1, M2 and P . N0 denotes the number of initial
iterations, N1 and N2 are the number of iterations before and after the
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coarse-grid correction and N denotes the number of coarse-grid corrections.
M , M0, M1 and M2 are the parameters for the corresponding error system.
P is the number of recursive steps and hence the size of the multigrid pyra-
mid that needs to be set up.
Finding the optimal combination is not trivial and is mostly a tradeoff be-
tween reconstruction quality and speed. In general, the error system requires
less iterations. A good value for P is around 2 to 3, depending on the re-
construction size. Figure 12 shows the reconstruction results for different
values of N . It can be seen that while the reconstruction time rises rather
linearly, the RMSg error rates sink in a higher degree fashion.
Figure 13 graphs the error rates and reconstruction times for the Lena
dataset with varying values of P . The reconstruction times rise about loga-
rithmically due to the decreased complexities of the smaller resolution linear
systems. RMSg values drop quickly but then stagnate and can even get
worse with increased numbers of resolution.
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Figure 12: Reconstruction with varying N values using the Lena dataset. Other
parameters: N0 = 10, N1 = 20, N2 = 20, M = 2, M0 = 10, M1 = 5, M2 = 10 and
P = 2

10.4.2 Comparison with single grid

Using a multigrid approach offers great performance improvements for bigger
datasets. However, because of the initial setup cost involved it is slower for
small datasets. Table 4 shows the reconstruction of the Neghip dataset. The
multigrid parameters were chosen to match the RMSg values of the single
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Figure 13: Reconstruction with varying P values using the Lena dataset. Other
parameters: N = 3, N0 = 10, N1 = 20, N2 = 20, M = 2, M0 = 10, M1 = 5 and
M2 = 10

grid reconstruction to get a better view on the reconstruction times. In this
example, it is about 2,5 seconds faster.

Sample points: 20 % 30 % 50 %

Multigrid 2,11 s 2,12 s 2,13 s

Single grid 4,58 s 4,59 s 4,60 s

Table 4: Comparison of reconstruction performance of single and multigrid method
using the Neghip dataset. Multigrid parameters: N = 3, N0 = 10, N1 = 10,
N2 = 10, M = 2, M0 = 10, M1 = 5, M2 = 10 and P = 2; number of single grid
iterations: 100
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10.5 Visual results

Figure 14 shows the original Skull dataset, visualized with the implemented
ray tracer. Figure 15 shows the result of the reconstruction from 20 percent
of laplacian-selected data, rendered using the same settings (angle, transfer
function, ...). In most parts, the reconstruction is not distinguishable from
the original. However, areas like the teeth show differences. This is due
to the high values located there in the original dataset. The regularization
smoothes out the reconstructed data and high-valued peaks tend to get cut
off.

Figure 14: Visualization of the original Skull dataset
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Figure 15: Visualization of the reconstructed Skull dataset using 20 percent of the
original data (λ = 0.003)

10.6 Hardware comparisons

The GT220, which is used for all measurements until this point, is a rather
low end consumer card. In this chapter, the implementation is tested out
on another GPU, namely the GTX 285. Tables 5 and 6 show the differences
in reconstruction time.
The GTX 285 has about 5 times the number of microprocessors of the GT

220. But other factors like the read and write bandwidths also play a role.
Comparing the raw processing power of the devices and the reconstruction
times, a speedup in the range of 300 % to 500 % can be witnessed, depending
on the reconstruction size.
When realizing the reconstruction process, good parallelization was the main
goal. The resulting implementation scales almost linearly with the amount
of parallel processing power. It is expected that with even better hardware,
faster reconstruction times are possible.
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Sample points: 20 % 30 % 50 %

Nvidia GT 220 156,16 s 156,91 s 158,60 s

Nvidia GTX 285 28,70 s 29,00 s 29,83 s

Table 5: Comparison of reconstruction times on different hardware using the Skull
dataset. Multigrid parameters: N = 3, N0 = 2, N1 = 2, N2 = 2, M = 2, M0 = 2,
M1 = 2, M2 = 2 and P = 2

Sample points: 20 % 30 % 50 %

Nvidia GT 220 2,11 s 2,12 s 2,13 s

Nvidia GTX 285 0,85 s 0,88 s 0,89 s

Table 6: Comparison of reconstruction times on different hardware using the
Neghip dataset. Multigrid parameters: N = 3, N0 = 10, N1 = 10, N2 = 10,
M = 2, M0 = 10, M1 = 5, M2 = 10 and P = 2

10.7 Comparison to CPU based implementations

It is hard to compare GPU and CPU implementations of the same algo-
rithms. They have different performance factors and sometimes even require
completely different approaches to the same problem. Therefore, the follow-
ing table 8 should be not be taken as a strict 1 to 1 comparison of the same
algorithms. As an example, the CPU based implementations of Vuçini et al.
[10] and Tech 2011 [5] both use the Gauss-Seidel technique as the preferred
linear equation solver. For the GPU implementation however, this approach
was determined to be impossible to parallelize up to a satisfying level and
the Conjugate Gradient technique is chosen instead.
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CUDA based* Tech2011** Vuçini et al.***

Dataset Times RMSg Times RMSg Times RMSg

Engine 21,1 s 0,44 45,9 s 0,54 76,8 s 0,94
256×256×256

Tooth 25,7 s 0,45 74,0 s 0,41 112,8 s 0,57
256×256×160

CT Chest 69,4 s 0,34 192,9 s 0,39 304,8 s 0,6
384×384×240

Carp 63,2 s 0,32 219,1 s 0,38 343,8 s 0,36
256×256×512

Table 7: Comparison table with CPU implementations by Vuçini et al. and Tech
2011.
* Nvidia GTX 285, 2 GB memory
** Intel Core 2 Quad Q9400 CPU @ 2.67 GHz and 2 GB memory
*** Intel Dual-core CPU @ 2.7 GHz, 6 GB memory

Dataset λ block-based Times RMSg

Bridge (512×512) 1,8 no 1,18 s 10,53

Lena (512×512) 2,1 no 1,20 s 5,08

Fruits (512×512) 2,1 no 1,18 s 4,42

Head (512×512) 2,3 no 0,64 s 1,99

Table 8: Final results for the used image datasets. 20 percent of the original
dataset are used, selected based on their laplacian value.
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Dataset λ block-based Times RMSg

Neghip (64×64×64) 0,002 no 2,56 s 0,496

Fuel (64×64×64) 0,0015 no 2,624 s 0,081

Hydrogen (128×128×128) 0,004 yes (2x1x1) 18,483 s 0,072

Skull (256×256×256) 0,002 yes (2x2x2) 156,42 s 0,264

Aneurism (256×256×256) 0,001 yes (2x2x2) 156,88 s 0,388

Table 9: Final results for the 3D datasets extracted from the ground truth. 20
percent of the original dataset are used, selected based on their Laplacian value.

Dataset λ block-based Times RMS

Oil (38×40×38) 0,003 no 1,037 s 0,13

Natural Convection (61×61×61) 0,001 no 3,512 s 1,136

Synthetic Chirp (64×64×64) 0,001 no 2,675 s 0,153

Flow Transport (44×58×58) 0,002 no 1,86 s 0,052

Fuel Injection (39×51×60) 0,001 no 1,745 s 0,362

Cooling Jacket (222×128×122) 0,02 yes (2x1x1) 118,64 s 1,121

Table 10: Final results for the non-uniform 3D datasets. The sizes indicate the
reconstruction grid’s dimensions.

10.8 Final results

Table 9 shows the final reconstruction times and RMSg results for the 3D
datasets created from their uniform ground truth. 20 percent of Laplacian
points were selected. Most of the reconstruction parameters were set based
on empirical knowledge. λ was set based on the findings in Chapter 10.2.
Table 10 presents the results for the non-uniform datasets where no ground
truth is known. Instead of the RMSg, the RMS error is evaluated.
Regarding reconstruction errors, the datasets with the least detail also show
the lowest RMSg results. Consequently, datasets with strongly oscillating or
otherwise rapidly changing values show relatively high error results. These
datasets also require more iterations, negatively affecting the reconstruction
times.
Apart from this, the reconstruction grid’s size is the most defining factor for
the time it takes to reconstruct. Bigger datasets benefit from fully occupying
the GPU most of the time. Smaller sets can’t take advantage of the available
parallel processing powers. Having to reconstruct in a block-based fashion
also influences the performance in a negative way.
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11 Conclusion

The methods developed by Arigovindan et al. [1] and Vuçini et al. [10] for
reconstructing two- and three-dimensional non-uniform datasets and con-
verting them to a uniform representation are carried out using traditional
CPU implementation techniques. This work takes the existing knowledge of
these works and transforms it into a CUDA based implementation.
By exploiting the similarity of cubic B-splines to the computationally ex-
pensive thin-plate splines, the reconstruction can be carried out much more
efficiently. The interscale relation of B-splines of odd degree makes a multi-
resolution approach possible, resulting in further performance improvements.
The linear system, which’ size is dependent only on the reconstruction grid,
is solved by a parallel Conjugate Gradient implementation. Bigger datasets
require a block-based approach to overcome the relatively sparse amount of
memory present in GPUs.
Most crucial for the performance is the amount of parallelization of the used
algorithms. The performed tests show that the reconstruction method used
can be implemented in an efficient manner on current graphics cards. Using
the knowledge on CUDA and GPUs in general lead to a highly parallel real-
ization that scales almost linearly with the available hardware resources (See
tables 5 and 6). Keeping in mind the ever increasing amount of processing
power present in current GPUs, the expected reconstruction times should
further decrease as better GPUs become available.
While determining the optimal reconstruction parameters is possible on an
empirical basis, this is not always feasible in practice, especially when the
ground truth is not known. Some applications will require feasible parame-
ters before performing a costly reconstruction. No methods for finding them
in an efficient manner exist yet. Future works might be able to answer these
questions satisfactory.
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Appendix A

We define the 3D Laplacian kernel as follows:

Laplacian(V ) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
(6)

where V represents the volume given as a 3D regular grid.

Appendix B

The root mean square (RMS) error is defined as follows:

RMS =

√∑M
i (F (xi, yi, zi)− fi)2

M
× 100

Maxvalue
(7)

where F is the approximating function, f are the given values, Maxvalue is
the maximum value in the given point set and M is the number of points.
For the error estimation in the Laplacian datasets we will compute the global
RMS error (RMSg) in all regular points (including the points not retained
in the Laplacian dataset, i.e., M = Nx ×Ny ×Nz).
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