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Abstract

Technical developments in neurobiology have reached a point
where the acquisition of high resolution images representing indi-
vidual neurons and synapses becomes possible. For this, the brain
tissue samples are sliced using a diamond knife and imaged with
electron-microscopy (EM). However, the technique achieves a low
resolution in the cutting direction, due to limitations of the mechan-
ical process, making a direct visualization of a dataset difficult. We
aim to increase the depth resolution of the volume by adding new
image slices interpolated from the existing ones, without requiring
modifications to the EM image-capturing method. As classical in-
terpolation methods do not provide satisfactory results on this type
of data, the current paper proposes a re-framing of the problem in
terms of motion volumes, considering the depth axis as a tempo-
ral axis. An optical flow method is adapted to estimate the motion
vectors of pixels in the EM images, and this information is used
to compute and insert multiple new images at certain depths in the
volume. We evaluate the visualization results in comparison with
interpolation methods currently used on EM data, transforming the
highly anisotropic original dataset into a dataset with a larger depth
resolution. The interpolation based on optical flow better reveals
neurite structures with realistic undistorted shapes, and helps to eas-
ier map neuronal connections.

CR Categories: I.4.10 [Image Processing And Computer Vision]:
Image Representation —Volumetric;

I.3.3 [Computer Graphics]: Picture/Image Generation—Display al-
gorithms

Keywords: optical flow, interpolation, volume visualization

1 Introduction

Recent technological developments have increased the inter-
est in the large-scale reconstruction of the neuron-connectivity
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map [Helmstaedter et al. 2008], in order to capture and understand
the structures and neural interactions within the brain. However,
given the increased complexity and size of raw data, the structure-
identification process is not automatic even when using state-of-art
software such as NeuroTrace [Jeong et al. 2010]. Most of the cur-
rent research in this field proposes semi-automatic methods that aim
for reduced interaction with human operators. In this context, vi-
sualizing the volumetric data becomes an important requirement,
enabling specialists to explore and closely investigate the existing
datasets in a 3D environment, in order to adjust or verify the results
of the non-supervised processing stages.

Among the available imaging technologies, only electron mi-
croscopy (EM) provides the required resolution to resolve densely
connected neurons and synapses. Current EM technologies are able
to attain resolutions of 3-5 nanometers per pixel in the cutting plane
(x-y plane).

Like many other bioscience image capturing systems, EM records
image information of the tissue in a slice-by-slice manner. Vol-
umetric datasets are obtained by collecting the EM images of all
slices in depth order. Because the slicing process is mechanical, us-
ing a diamond knife, the minimum achievable thickness for slices
is 20 nm, considering the best performance of the operator. As a
result, the resolution achieved in the depth direction is much lower
compared to the high resolution of the x-y plane. Figure 1 shows an
illustration of the resolutions for a representative EM volume.

These anisotropy characteristics of the dataset, caused by the data
acquisition process, are unavoidable. They bring difficulties and ob-
stacles in the subsequent volume analysis and visualization tasks.
For instance, the structures of neurons are extensively distorted
when being displayed in the ray-casting process. As mentioned, this
poses a serious problem to the experts that aim to resolve neuron-to-
neuron connection ambiguities or that just want to have a realistic
view of the network and of inner cell structures.

The goal of our paper is to perform volume interpolation and use the
generated images to increase the resolution in the z direction, while
maintaining the structures of interest and introducing less visual
artifacts when compared to existing approaches.

Contributions

Our work is centered around two main ideas, both aiming at obtain-
ing better visualizations for EM data, while also being applicable to
more general volumetric datasets. We evaluate the feasibility of ap-
plying a motion-detection algorithm for the anisotropic spatial vol-
ume, and then of using the computed displacement vectors in order
to generate multiple interpolated images. This poses a significant
advantage in comparison with classical interpolation techniques. It
avoids the shadowing effect that appears as a result of mixing data



Figure 1: Illustration of resolutions of the EM volume. The reso-
lution of each pixel is 3−5 nanometers in x and y direction, and a
minimum of 20 nanometers in z direction.

from different structures when computing pixel intensities in the
new images.

Our approach preserves the topology of the interesting structures,
giving a smooth transition between the slices, based on the correct
motion detection. This also introduces less artifacts and makes it
easier to choose a transfer function for 3D volume-rendering.

The second important improvement refers to the design of our pro-
cessing pipeline, that is able to integrate additional structural in-
formation when it is available. For example, it allows us to mask
certain parts of the volume using segmentation data, revealing only
some of the neurites and their connections. This is very impor-
tant for microscopic data, which is extremely dense. The structures
are not surrounded by empty space, and furthermore are very dif-
ficult to separate based on pixel intensities. This typically causes
the structures in the volume to occlude each other, making it hard
to obtain good visualizations.

2 Related Work

The use of electron microscopy in imaging neural tissue is not new.
However, most of the early work has focused on the manual identi-
fication of structures (axons, synapses). Such an approach requires
both highly skilled personnel and a huge amount of time. Just to
take an example, the connectome (neuron connectivity map) for C.
elegans, a worm with only 302 nerve cells, took about 12 years to
build [White et al. 1986]. It was therefore clear that in order to
aim for the full-brain structural-analysis of more complex organ-
isms, automation methods must be found. With recent increases in
computation power, available storage and advances in image pro-
cessing software, a number of new possibilities are starting to be
explored. Scenarios such as neurite segmentation, axon reconstruc-
tion or complex neuronal-tissue volume-visualisations are currently
being researched. This is done in parallel with the improvements to
the image acquisition techniques.

The anisotropy of EM data is recognised as a challenging topic, and
some papers have tried to suggest possible solutions. One exam-
ple [Veeraraghavan et al. 2010] focuses on obtaining images from
six different angles for the same tissue slice and increasing the vol-
ume’s resolution by using sparse tomographic reconstruction. The
main limitation of this method is the reduced data acquisition speed,
that is caused by the repeated imaging of the same sample. For large
volumes of data, this is prohibitive.

In another approach [Jeong et al. 2009], volume visualizations are
improved by superimposing 3D reconstructions of particular ax-
ons, identified and matched in successive slices by active contour

tracking. Also, the paper proposes an on-the-fly linear interpolation
technique for reducing the anisotropy of the dataset. However, the
linear interpolation usually provides poor results. We are aiming
to improve the interpolation quality for better structure identifica-
tion in the successive ray-casting rendering of the volume. A single
pre-processing step is employed to reduce the anisotropy.

Numerous interpolation techniques have been proposed so far, and
the vast majority can be classified as scene-based or object-based.
Because object-based techniques make use of prior structure infor-
mation extracted from the datasets (which is not available and ex-
pensive to compute), we have focused our attention on scene-based
solutions [Grevera and Udupa 1998]. However, finding one that is
suitable for EM data is not an easy task, given the typical low signal
to noise ratio of the images. Optical flow interpolation is one of the
most promising solutions, as it is able to consider the direction of
structure movement, even though no information about the existing
structures is known. It also avoids mixing data from different struc-
tures while computing the output. [Ehrhardt et al. 2006] describes
a similar approach, while exploring only a basic implementation of
optical flow, that does not consider a multiscale analysis. While
this is not an inconvenience for simple datasets, it becomes too un-
reliable for complex or noisy volume data, such as those obtained
through EM scanning.

3 System Pipeline

Figure 2: Workflow: EM optical-flow interpolation and visualiza-
tion

A general workflow of our system pipeline is shown in Figure 2. Let
us assume that the original volumetric dataset has a depth equal to
i (the volume consists of i slices). After applying our interpolation
process, we enlarge the depth to j ( j > i). The extra j− i slices are
generated using the optical flow estimations. Generally, there are
two options of demonstrating our interpolated results:

1. Directly display the sequence of interpolated 2D image slices.

2. Display the 3D interpolated volume by ray casting.

The first method has the disadvantage of requiring the expert to
build a mental model of the structures present in successive slices
in order to have an overall perspective of the dataset. Although
there are software packages that support this task, such as TrakEM2
[Cardona et al. 2010], the process is still very tedious. This justifies



our focus on improving volume visualization techniques, allowing
an intuitive observation and manipulation of EM data.

However, obtaining good 2D interpolation results does not imply
that the ray casting rendering of the same data will give a good vol-
ume visualization. The images of brain tissue are very dense and
interpolation commonly introduces artifacts that can be observed in
the 3D views, considerably reducing the quality of the visualiza-
tion. This was an additional constraint that was considered when
evaluating the optical flow based method.

Furthermore, neuron structures are highly connected and clustered,
which makes it nearly impossible to design a transfer function good
enough to separate them. When the data is available, we use seg-
mentation masks (the optional masking step mentioned in Figure 2)
to reduce the number of features of interest present in the volume so
that the end result can be analyzed more clearly in the 3D rendering.

The rest of this section is structured as follows: Section 3.1 de-
scribes the main steps of our interpolation process. It starts with
the theoretical justification of using motion-detection algorithms on
3D volumetric datasets, interpreting them as 3D motion volumes by
considering the z axis as a temporal axis. Then we explain how we
apply optical flow to estimate the motion vectors of pixels based
on their local gradient with respect to the temporal direction. Mo-
tion vectors allow us to calculate the x-y coordinate of each pixel
when given a specific temporal position. Section 3.2 describes the
method of using segmentation masks to make the volume sparse,
for visualizing the interpolated volume in a 3D ray-casting view.

3.1 The Volume Interpolation Process

3.1.1 Interpreting Volumetric Datasets as Temporal Mo-
tion Volumes

The choice of using optical flow as an interpolation method can be
theoretically justified by reframing the original problem in terms
of pixel motion. Therefore, a three dimensional volumetric dataset
(2D image + 1D depth) can be seen as a 3D dynamic motion volume
(2D image + 1D time), if we consider the z axis to be the temporal
axis t. In motion volume representation, 2D cross sections of neu-
ron structures in the x-y plane move their positions and deform their
shapes along the temporal axis t.

Assume that we are analyzing a volume with i slices, and that each
slice has the resolution of p× q pixels. Then the volume is under-
stood as a set of p×q pixels moving along the temporal axis. The
goal is to compute the motion of each pixel, and according to this
motion, to estimate pixel positions in missing slices.

3.1.2 Computing Optical Flow

Sequences of ordered images allow the estimation of motion as
either instantaneous image velocities or discrete image displace-
ments [Beauchemin and Barron 1995]. The optical-flow method
intends to compute the motion velocity between two neighbouring
images which are taken at time t and t +∆t, at every pixel position.
A pixel from the image with index t at 2D-coordinate (x,y) with
intensity I(x,y, t) will move by ∆x, ∆y, ∆t to the next image taken
at time t +∆t. The following constraint equation can be given:

I(x,y, t) = I(x+∆x,y+∆y, t +∆t) (1)

As the tissue slices are thin, with an interval of 20 nm between
them, we can assume the neuron structures do not have big move-
ments between neighboring slices. The above constraint equation

can be developed through a Taylor series to get:
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which leads to the following well-known result:
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∆x
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∆I
∆y
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∆I
∆t

= 0 (4)

where Vx,Vy are the unknown x and y components of the velocity
or optical flow of P[x,y, t] (The pixel located at coordinates [x,y, t]),
and ∆I

∆x , ∆I
∆y , ∆I

∆t , are the derivatives of the pixel intensity in the di-
rection of x, y and t. This is one equation with two unknowns, so

Figure 3: Optical flow presents motions, (a) Time t1 (b) Time t2 (c)
Optical flow

it is not possible to directly find an unique solution. We make our
second assumption that nearby points in the image plane move in a
similar manner, which also means the velocity has a smooth distri-
bution. Combining the two constraints, we can calculate the optical
flow vectors, as the solution of an energy minimization problem.
Our actual implementation (and thus the chosen energy function,
that penalizes deviations from the proposed model) is based on the
approach taken by [Brox et al. 2004], and for brevity we will omit
the full derivation of the results. Figure 3 shows an example of an
optical-flow vector-map calculated from two images taken at time
t1 and t2. In these two images, two balls are changing positions and
expand shapes as they approach the camera.

3.1.3 Multi-scale Optical Flow Implementation

The formulation given so far accurately computes the optical flow
vectors only if the motion of every given pixel between two slices is
constrained within a fixed-size rectangular window around the ini-
tial coordinates (defined by x±∆x and y±∆y). Because the motion
speed is not previously known or fixed, it is necessary to implement
the equations in a scale-invariant way. This is typically done using
a structure that computes the displacements for various scalings of
the same image, effectively varying the window size: first, at small
scales, global displacements such as translations are detected, while
local shape distortions are taken into account at larger scales.

The process starts with building a Gaussian pyramid for each image
slice. Let I0 be the base level of this image pyramid, containing the
highest resolution image (the original image). Given the base level,



we apply a Gaussian convolution to blur the image and reduce its
size by a certain ratio. We can build the pyramid bottom up until we
reach the top which is a single pixel image. However, the number of
levels (height) of the pyramid can be varied, as a tradeoff between
precision and computation speed.

Let the considered pyramid height be N (a fixed algorithm parame-
ter). We try to compute the optical flow between image a and image
b. First we build a pyramid for each image, and obtain two image
sets:

1)
{

I1
a , I

2
a , ..., I

i
a, ...I

N
a
}

, Ii
a is the ith level of the pyramid obtained

from image a.

2)
{

I1
b , I

2
b , ..., I

i
b, ..., I

N
b
}

, Ii
b is the ith level of the pyramid obtained

from image b.

For a specific level i, we have a pair of images of equal size from
both pyramids. The final optical flow map is computed in two steps:

The first step is to compute optical flow vectors for each pair of
images from each level of the pyramid. In our example above, we
have N pairs of images with varying sizes. We compute N optical-
flow vector-maps for the corresponding image sizes. This particular
model, chosen for determining the preliminary optical flow vectors
for level i in the pyramid, has the added benefit of being indepen-
dent in relation to the computations of the other levels, allowing
for future optimizations (parallelization). The second step is to it-
eratively merge all the vector maps top down by successively cu-
mulating them until the base level is reached. Two optical-flow
vector-maps are cumulated by expanding the upper level map to the
size of the lower level map and by performing simple vector ad-
dition. Figure 4 illustrates the process of multi-scale optical flow
computation.

The main advantage of using a multi-scale structure is that it cor-
rectly computes the collective motion of larger regions. This is usu-
ally the case, as pixels in an image region covering the same neuron
structure should have similar motions. These vectors can be com-
puted in the top levels of the pyramid and are then accumulated
during the top-down vector-merging process. Using a multi-scale
pyramid also makes the algorithm more robust to noise and arti-
facts which cover individual pixels or small regions.

Figure 4: Process of multi-Scale optical flows computation

3.1.4 Creating Interpolated Slices Based on the Optical-
Flow Vector-Maps

So far, we have determined the optical-flow vector-maps for each
image with respect to its neighbors on the time axis. Figure 5a dis-
plays the starting image I(t) and the vector map computed from I(t)

Figure 5: Pixel relations between an existing image and the in-
terpolated image. (a) Existing image I(t) (b) Interpolated image
I(t+∆t). Solid-filled circles represent the pixel intensities in the ex-
isting slice. Hollow circles represent the virtual values that will end
up on the discrete pixel grid after applying the computed optical-
flow motion-vectors to the original data. These are the values that
we need to determine for generating the interpolated image I(t+∆t)

with respect to I(t+1). In order to generate the image I(t+∆t), we
need to compute the intensity values of the ”virtual” points marked
with hollow circles and numbers, that will end up on the discrete
pixel grid after applying the motion vectors to the starting image
(Figure 5b). These values can be obtained by applying a bilinear
interpolation to the surrounding pixel values from the initial image
(those marked with solid-filled circles in Figure 5a). The values are
”virtual” because in I(t) they might represent points that are placed
between two existing pixels. This situation appears since the de-
termined optical-flow vectors are real (and usually do not indicate
motions across an integer number of pixels but contain sub-pixel
fractions).

The computed optical flow vectors define the displacements be-
tween I(t) and I(t + 1). In order to determine the motion from
I(t) to I(t +∆t) we assume a linear variation of the size of the vec-
tors between the original slices. We therefore adjust the size of the
motion vectors based on the actual value of ∆t, in order to control
the positioning of the generated image between I(t) and I(t + 1).
This provides the base for inserting multiple interpolated images
between each pair of slices from the original dataset.

3.2 Sparse Representation

As mentioned previously, a second difficult problem that has to be
solved in order to enable a good visualization of neural EM datasets
is that each slice contains a large number of structures (neurites, mi-
tochondria - see Figure 6), which densely cover the volume. All the
structures of the same type have similar physical properties (trans-
lated into similar grey values in the EM datasets). It is very diffi-
cult to choose a small relevant fraction for volume visualization by
means of a certain transfer function. Therefore, the structures are
normally occluding each other, making visual analysis difficult or
impossible.

Our proposal for tackling this problem is to apply a pre-processing
masking step for the data, in order to make the volume sparse. The
mask is a binary image (see Figure 6), containing the value 0 in
areas that need to be discarded and 1 for areas of interest. Upon
convolution with the EM images, the mask selects only a subset of
the structures of interest for volume visualization. Other mask val-
ues can also be considered if one wants to apply different weights
to some of the features in order to make them more easily selectable
with a transfer function.



Ideally, the mask should be dynamically generated from segmenta-
tion data - after an expert has indicated which structures should be
visualized. His choice could then be modified without re-generating
the interpolated images, in order to analyze different areas in the
volume. When changing the structures that must be displayed, it is
sufficient to apply a fast convolution step with the new mask. While
this whole process introduces the additional requirement of having
data segmentation available, there is no need to perform it in real
time, while visualizing the volume. As a consequence, interactive
visualization can be achieved.

Currently, automatic or semi-automatic segmentation techniques
for neural EM data are emerging [Turaga et al. 2009], and we expect
that our approach could be applied in real-case scenarios. However,
when obtaining segmentation data is not an option, the masks could
be generated based on algorithms that are also less computationally
expensive (for example, edge detection).

Figure 6: Typical EM image and a corresponding binary mask, that
is based on segmentation results. In the image on the left, some of
the structures have been highlighted: in blue - a small fraction of
the neurites; in red - mitochondria, inner cell structures. The mask
selects which neurites will be shown in the volume rendering.

4 Experimental Results

The proposed processing pipeline has been designed for the pur-
pose of improving the visualization of electron microscopy (EM)
volumes, taking into account all the particularities of this type of
data. By focusing on the end result rather than on that of particu-
lar sub-stages, we are taking into account all the variables affecting
the outcome. This allows us to better evaluate appropriate inter-
polation algorithms, in order to help reduce the anisotropy of the
volume while also preserving the structures of interest within.

The following section presents the experimental results for two vol-
umetric datasets, lobster and drosophilaTEM [Cardona et al.
2010], as they are rendered in VolumeShop [Bruckner and Gröller
2005]. Lobster is a well known CT (isotropic) dataset, which we
have used as a base for evaluating the interpolation quality. Because
EM datasets are inherently anisotropic, there is no ground truth to
precisely determine how the actual isotropic result should look like.
Therefore, for obtaining a quantitative evaluation of the optical flow
algorithm, we have used the lobster data. First, the volume was
made anisotropic artificially, by eliminating half of the image slices.
Then, we have applied our interpolation technique and compared
each generated image with the corresponding removed slice.

The second dataset, drosophilaTEM, contains genuine EM data,
anisotropic in the z direction. The results for this dataset were ob-
tained by using exactly the same algorithms and parameter values
as the runs for the lobster dataset. The additional masking step

is used from the pipeline, in order to make the volume sparse and
enable a better focus on the interesting regions.

4.1 Experiment setup

If no interpolation techniques are applied, the resulting volume will
usually be seen highly distorted along the depth direction, making
existing structures and connections particularly hard to identify (see
Figure 7). Typically for EM, the slice spacing is about ten times
higher than pixel spacing, making it impossible to obtain good vi-
sualization results using a direct anisotropic volume rendering, such
as the one proposed by [Li et al. 2009]. The mentioned method has
been designed only for small differences between slice spacing and
pixel spacing.

In order to correct this problem, images must be added to the vol-
ume to fill in the missing data between slices. Acceptable visual-
ization results can be obtained by inserting a small number of in-
terpolated images (anywhere between 1 and 10), in order to better
visualize structural details along the z direction.

Figure 7: The volume before and after the interpolation, with seg-
mentation masks applied. The top image represents a direct ren-
dering of the anisotropic volume. The bottom image is a rendering
of the same dataset, after 8 interpolated images have been added
between each pair of images from the original data.

In our first experiment, we have added a single interpolated slice be-
tween successive images, in both datasets. For evaluation, we have
generated linear interpolation results as well as multi-scale optical-
flow results (our proposed method). For the lobster dataset, the
interpolation was performed after making the volume anisotropic,
removing half of the original images. In order to make a visual com-
parison of the results possible, we have selected a transfer function
for visualizing each original dataset, and kept it consistent for all
the experiments.



A second experiment was performed to evaluate the ability of the
proposed method to reduce the anisotropy of the volume. In this
case, we gradually increased the number of inserted images, from
1 to 8. The same number of intermediate images was generated
using linear interpolation for comparison. However, the artifacts
introduced by the linear interpolation for more than 2 intermediate
images made the neural structures extremely hard to visualize.

4.2 Results

4.2.1 Experiment 1

Figure 8 presents a reference comparison between the optical-flow
interpolation result and the original (isotropic) lobster dataset.
The results show that our method preserves the ability to visually
identify all the important structures in the volume, while introduc-
ing no major artifacts. The number of levels in the multi-scale
pyramid that is built for computing the optical flow was set to 4,
although higher values were also tried. The conclusion was that the
exponential increase in time for running the algorithm computing
more scale levels does not justify the minor improvements in the
final result. This is also supported by the quantitative evaluation of
interpolation results given in Table 1, where the difference in root
mean square error (RMS) between optical flow using 4 pyramid
levels and the one using 15 levels is less than 0.11%. The RMS er-
ror was computed by performing a pixel-wise comparison between
the original lobster slices and the interpolated slices from the same
position within the volume.

Figure 8: (a) Original lobster dataset; (b) Optical-flow interpola-
tion (Experiment 1). The volume contains only half of the original
data; the other slices are being interpolated. Note the discontinu-
ities in the legs region.

The images also show an area where the results could be improved:
thin structures that have a fast changing rate between consecutive

slices, in the direction of anisotropy (for example, the legs section
of the lobster). This can be explained considering that the proposed
optical-flow algorithm deals with fast changing structures by using
the multi-scale approach. Unfortunately, very thin structures are
disappearing in the upper levels of the generated image pyramid,
reducing the quality of the results. However, this is not a severe
limitation considering our final goal of rendering EM data volumes:
the high EM resolution assures that most of the regions of interest
have sufficiently large cross sections so that optimal interpolation
results can be computed.

For comparison, the linear interpolation result is displayed in Fig-
ure 9. A big problem with linear interpolation in volume rendering
is that for obtaining the end-result, it may combine data from totally
different structures. This makes it very difficult for the human op-
erator to do the selection of features by means of a certain transfer
function. Additionally, fringing artifacts are also introduced in the
resulting visualization. Optical flow manages to overcome these
problems by combining data only between corresponding struc-
tures. Effectively, the interpolation is done ”in the direction” of
structure motion.

Because for the lobster dataset we have the ground truth data
available, we were also able to perform some quantitative measure-
ments regarding the precision of the proposed interpolation method.
The results can be seen in Tables 1 and 2. When compared to the
linear interpolation, the method based on optical flow constantly
gives lower RMS errors.

Figure 9: The linear interpolation result for the lobster dataset

RMS Normalized RMS Std Dev
Optical Flow, 4 lev 21.8 8.5% 2.8
Optical Flow, 15 lev 21.5 8.4% 2.9
Linear Interpolation 23.4 9.2% 1.5

Table 1: Quantitive interpolation evaluation using Root Mean
Square (RMS) error when adding 1 interpolated slice to the
anisotropic lobster dataset

A side by side evaluation of the two interpolation techniques can
also be seen in Figure 10, for the masked drosophilaTEM dataset.
We observe that the optical-flow algorithm performs very good, al-
lowing clear structure identification and introducing very few arti-
facts. In contrast, the linear interpolation combines the inner struc-
tures, making them difficult to visualize (as shown in the detail
views).

4.2.2 Experiment 2

For the second experiment, both linear interpolation (with the inser-
tion of equally spaced interpolated slices) and optical-flow results



RMS Normalized RMS Std Dev
Two interpolated slices
Optical Flow 26.2 10.3% 3.2
Linear Interpolation 31.7 12.4% 2.7
Five interpolated slices
Optical Flow 36.3 14.2% 3.2
Linear Interpolation 43.0 16.8% 3.6

Table 2: Quantitive interpolation evaluation using Root Mean
Square (RMS) error when adding 2 and 5 interpolated slices to the
anisotropic lobster dataset

Figure 10: (a) Linear interpolation volume rendering for the
drosophilaTEM dataset after the masking step. Interesting struc-
tures are selected using a transfer function: axons - red; mitochon-
dria - yellow; (b) detail showing visible artifacts. (c) Optical flow
interpolation result using the same transfer function. (d) detail from
optical-flow interpolation

were computed. However, the linear interpolation output becomes
too distorted, so the visualization is really poor. We will skip pre-
senting this result, and instead focus on the volume renderings that
use optical flow as the interpolation technique. As can be observed
in Figure 11, for the drosophilaTEM dataset, there is little degra-
dation in quality when increasing the number of slices, with the
considerable advantage of making the volume isotropic. The verti-
cal structures (axons) and their interconnections can now be visual-
ized as shapes that have realistic proportions.

Figure 11: Two visualizations of the volume after optical-flow in-
terpolation when (a) 2 and (b) 8 images are generated for each pair
of images from the original data. The anisotropy of the volume is
significantly reduced, with little impact on the quality of visualiza-
tion.

4.3 Performance Considerations

One of the main reasons for continuing to use linear or trilinear in-
terpolations for volume visualizations is that they can be computed
very fast with the hardware available today. The implementation of
the proposed optical-flow interpolation was done in MATLAB and
has focused more on the actual processing pipeline and the quality
of the output. Currently, obtaining the interpolation results for a
dataset of size 256×256×32 takes about 20 minutes, scaling lin-
early with the number of image pixels and volume depth. However,
we have not neglected the performance constraints when develop-
ing our processing pipeline and choosing the algorithms. The multi-
scale optical flow algorithm can be relatively easily parallelized and
implemented on the GPU. This remains as a part of future work, but
optimal implementations can provide significant running time im-
provements.

5 Conclusion

In general, interpolation is required whenever the acquired data is
not at the desired level of discretization. Bioscience imaging sys-
tems usually acquire the data in slice-by-slice order, which yields
different sampling rates in x, y, and z directions. Looking into
medical imaging systems, sparse sampling is commonly performed
in clinical examination (for example, in MRI), although isotropic
cross-sectional images are obtainable by using the most advanced
facilities. Volume interpolation plays an important role in these
tasks, and is usually done as a pre-processing step. This paper eval-
uates the multi-scale optical flow algorithm as a possible interpola-



tion method. The motion estimations are then used to create new
images, increasing the depth resolution of the original data. Our
implementation focuses on obtaining good visualizations for EM
images of brain tissue.

However, for applying this method to different datasets and for im-
proving our current results, we will have to investigate solutions for
dealing with thin structures that have a fast changing rate between
consecutive slices. This as well as obtaining efficient implementa-
tions remains as future work.
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