FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Animated Transitions Across
Multiple Dimensions for
Volumetric Data

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Informatik
eingereicht von

Christian Basch
Matrikelnummer 0026388

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eduard Groller
Mitwirkung: Dipl.-Ing. Dr.techn. Peter Rautek

Wien, October 17, 2011

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Faculty of Informatics

FAKULTAT
FUR INFORMATIK

Animated Transitions Across
Multiple Dimensions for
Volumetric Data

MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer Science
by

Christian Basch
Registration Number 0026388

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eduard Groller
Assistance: Dipl.-Ing. Dr.techn. Peter Rautek

Vienna, October 17, 2011

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Christian Basch
Barichgasse 21/19, 1030 Wien

Hiermit erklare ich, dass ich diese Arbeit selbstéandiga&st habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollstandig angegebdmehand dass ich die Stellen
der Arbeit - einschlie3lich Tabellen, Karten und Abbildeng-, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnomnreh auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht.habe

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

First and foremost | want to thank my supervisors Peter RaanekEduard Groller for
their patience and valuable input. Furthermore, | woulé li& thank my parents for
their financial and moral support, and my girlfriend for henstant encouragement and
persistence. Without them | would not have been able to fimgistudies. Thank you!

Abstract

There are several techniques, that can be used to visualiumetric data. A data set
can be illustrated using slicing (depicting arbitrary eichrough the volume), direct
volume rendering (DVR), or in a more abstract way, histogram$scatter plots. Usu-
ally these different methods of visualization are beingligpjseparately. To recognize
coherencies between the representations, methods basaokory and Brushing can
be utilized. These methods highlight voxels in one view,@msas they are selected in
another one. Coming from scientific visualization, thesehoes are very useful, when
selecting voxels from 2D data representations, like scattgs. Of course they are
less useful, when trying to select voxels directly from tb&wme. Therefore this thesis
explored methods, that are not based on selection and djinginiy. Rather, the corre-
lation between different representations is shown by ngvioxels between different
volume representations. As a basis, methods like staggersthtion, acceleration, and
deceleration were adopted, which had been previously st igraphical analysis of
statistical data.

Kurzfassung

Zur Visualisierung volumetrischer Daten stehen zahlreibtoglichkeiten zur Verfu-
gung. Ein Datensatz kann mittels Slicing (Darstellung vorzelnen Schnitten durch
das Volumen), Direktem Volumenrendering (DVR), oder auftibsere Weise mit-
tels Histogrammen oder Scatterplots dargestellt werddtickierweise werden diese
verschiedenen Visualisierungsmethoden getrennt vonéaraangewendet. Um Zusam-
menhé&nge zwischen den einzelnen Ansichten zu erkenndmnsteénking und Brus-
hing Methoden zur Verfiigung. Dabei werden Elemente in efresicht hervorgeho-
ben, wenn sie in einer anderen Ansicht ausgewahlt wurdefgridvd ihres Ursprungs
in wissenschaftlicher Visualisierung, ist diese Methodbarsgut auf 2D Datenrepra-
sentationen, wie Scatterplots, anwendbar. Allerdingsiestveniger nutzlich, wenn die
Auswahl der Voxel direkt am Volumen durchgefihrt wird. Auesem Grund wurden
im Rahmen dieser Diplomarbeit Moglichkeiten untersuche, dusammenhange zwi-
schen den unterschiedlichen Darstellungsformen aufag@ene eine Auswahl an Vo-
xeln treffen zu missen. Dies wurde realisert, indem Voxel @mer Reprasentation in
die andere mittels animierter Ubergange wechseln. DafiidenMethoden wie ver-
setzte Animationen und Be- und Entschleuningung adaptertbereits bei der grafi-
schen Auswertung statistischer Daten angewendet wurden.

Contents

[1__Introduction| 1

ate-Of-The-Art in Volume Rendering 3
Optical Model for Volume Rendering 3
olume Rendering Te 'hes 4
mage-Order Volume Rendering 4

Vi

CHAPTER

Introduction

According to Kosaral[15], visualization needs to meet ¢ertaiteria, to actually be
called visualization. It must be (dased on (non-visual) dat#b) produce an image
and (c)the result must be readable and recognizablée purpose of visualization is
to present data that is abstract or at least not immediatsiyle (e.g., the inside of a
human body). Usually this data is produced by scientific fatns or measurements.
This work focuses on volumetric medical data, but is alsdiegiple to any grid based
volumetric data. In practice volumetric data consists déinee elements (voxels), that
are arranged on a 3D equidistant grid. Each voxel has twibatidss: position and
intensity. Additionally, for each voxel, a surface normaght be approximated by cal-
culating the gradient from neighboring voxels. The gratism 3D vector, that points
in the direction of the greatest rate of increase. Usingdlaibutes, volumetric data
can be visualized using several representations. The rmoshon form of visualization
are slices, that are perpendicular to one of the major axbkesél'are used in medical
diagnosis. Furthermore, 3D renderings are used to liyegalin insight into volumetric
data. Besides slicing and 3D renderings, there are moreaabsépresentations, like
statistics and histograms. Histograms strip the voxelshefir grid coordinates and use
one or both of the remaining attributes to accumulate vokeldasses. Often used
histograms include 1D intensity histogram, 1D gradient ni@agle histogram, and a
2D intensity/gradient magnitude histogram. These reptesens have advantages in
different use cases, and when combined correctly can pravicery powerful tool for
volume exploration. It is difficult for users to establishanoection between these rep-
resentations, when they are just presented side by sidedditian to exploring each
representation on its own, a user must be able to discovezlabons among them. This
helps users to quickly gain insight into the compositionhe& volumetric data set, and
to identify areas of interest. For this purpdseking and Brushingechniques can be
used, where voxels that are selected in one view also gelidtigéd in the other ones.

Linking and Brushing is a technique heavily used in 2D dataasgntations. Applied to
volumetric data, it is very useful when selecting voxelsha 2D histogram. If the user
wants to use Linking and Brushing to pick voxels from the vodyhess intuitive tech-
niques like 3D brushes need to be used. Our goal was to allwddr to intuitively and
interactively explore the volume. Inspired by the work ofgland Robertson [14], who
explored the usefulness of animation in statistical da#glgics, we wanted to extend
the idea of Linking and Brushing. Instead of highlighting etsx we move them from
one representation to the other one. Therefore the patbslges by the voxels need to
be calculated. Furthermore the timing of the animation gep8al. Letting all voxels
start at the same time, makes the animation unrecognizataggering the starting and
ending times is an effective way to prevent extensive opeolareducing the number
of simultaneously moving objects. A hybrid volume rendecensisting of a raycaster
and a volume splatter, was necessary to produce appeatidgriegs while keeping the
computational cost at a minimum.

Chaptef 2 describes the state-of-the-art of volume renglemgthods and the underlying
optical model. Chaptér 3 takes a look at related work. Chapikustrates the hybrid
volume renderer. The particulars on voxel trajectory dakbon and animation timing
can be found in Chaptéf 5. Chapiér 6 describes the details @hilementation, and
its results are then discussed in Chapter 7. Finally, theectsf this diploma thesis
are summarized in Chapfer 8.

CHAPTER

State-Of-The-Art in Volume Rendering

This chapter gives a brief overview of state-of-the-artmoé rendering techniques and
their common optical model.

2.1 Optical Model for Volume Rendering

Optical models for volume rendering can be best explaingthdking at the volume as
a cloud of particled [26]. These particles can either absodzatter light coming from
a source. Models that take into account absorption, enmissgattering and shadowing
tend to be very complicated, which is why practical modets simplified in several
ways. A common approximation for the volume rendering iraes given by [27]:

L
[)\<£L’,T'):/ C(s)p(s)e Jo v g (2.1)
0

Here, I, is the amount of light of wavelength coming from the direction of ray
r that is received at location on the image planeL is the length of the ray and
is the density of volume particles that receive light frore tlght sources and reflect
it towards the observer according to their material praper) is the light of wave-
length \ reflected and/or emitted at locatienn the direction ofr. The equation takes
emission and absorption effects into account, but discaiale advanced effects such
as scattering and shadowing.
In general, Equation 2.1 cannot be computed analyticaiynde, practical volume ren-
dering algorithms discretize Equatibn 2.1 into sequemtitdrvalsi of size As. The
result is the common compositing equation:

L/As i—1
L(e,r) = Calsdacs) - [T (1= alsy) (2.2)
i=0 §=0
For each interval along a rayr the volume density is classified, via transfer func-
tionsC'\ anda, which respectively assign color and opacity to each sangilee s; in
the volume.

2.2 \Volume Rendering Technigues

A three dimensional grid : Z3 — R is considered to represent a spatial density func-
tion f: R? — R sampled at regular grid points, where the density samptedefined
as [1]:

Vijk = f([2i, Y5, 2]) (2.3)

These density samples are also referred teca®ls which is an abbreviation for
volume elements. Volumetric data can be processed for mggwi two fundamen-
tally different ways. Usingndirect volume rendering the volumetric data is first con-
verted into an intermediate representation (e.g. via MagcBubes([2B]), and is sub-
sequently rendered with polygon rendering hardware. Colytranethods that assign
optical properties directly to the volume elements (voxelghout generating any in-
termediate representation are referred taliesct volume rendering techniques. Since
this work makes use of direct volume rendering techniquetusively, the remainder
of this chapter will focus on them. The direct techniquesaarebust and very flexible
way of displaying volumes, allowing us to illustrate theeinor of volumes as well.
Although there is no need for an intermediate represematieey are still computa-
tionally expensive due to the tremendous number of voxelsiwiinave to be processed.
The direct volume rendering techniques can be further sudmt into two categories.
The image-order methods produce the image by casting raysgh each pixel of the
viewing plane and the color of the pixels is determined bydbetributing voxels. In
contrast, the object-order methods process the volumd-ayxeoxel and project them
on the image plane. Each approach has its advantages andadiesywhich will be
discussed in the remainder of this chapter.

2.2.1 Image-Order Volume Rendering

Using the image-order approach, the computation emanatesthe output image, and
not from the object as it is the case with object-order apgrea. For each pixel of the
output image the contributing data samples are determified.most commonly used
image-order algorithm is raycasting, introduced by Levbyad. [19]. This approach

4

Figure 2.1: lllustration of a ray and its corresponding restoucted density function

p(t) [7].

obtains the pixel values by casting rays through the viewitagne and the volume.
These rays can be defined by their parametric equation [7]

rit) =x+w-t (2.4)

wherex is the origin,w the unit direction and is the ray parameter. Each ray inter-
secting the volume has a specific density prafjlerhich depends on the density values
along the ray segment lying inside the volume. This densibfile can be expressed by
combining Equatiof 213 and EquationI2.4, yielding:

p(t) = f(r(t)) = f(X+w-1) (2.5)
Figure[Z.1 illustrates a ray and its corresponding recanttd density profile. The
three-dimensional volume function is reconstructed frommgamples taken at discrete
intervals along the ray and by evaluating the optical modettiem. If the colors and
opacities are composited in front-to-back order, a ray canebminated, as soon as
full opacity is reached. This is one of the main advantagesapéasting, because it

5

avoids processing of occluded regions. Medical datasetslysontain a large number
of voxels that do not contribute to the resulting image (vexels that are classified as
transparent by the transfer function). Efficiently skigpthese non-contributing regions
is one challenge in raycasting and has a major impact on mpeafice. Due to the
large number of voxels to be processed and the high compnghitomplexity, several
performance improvements have been proposed over the years

Empty Space Skipping

Researchers [20, 40] have reported that in typical volume85P@ of the voxels are
classified as transparent by the transfer function. Herippisky these non-contributing
regions has a major performance impact. Levoy [20] intredua hierarchical space
skipping method using a binary pyramid, that encodes emiptlyreon-empty space.
Here raycasting starts at the top level of the pyramid. Whenawmon-empty cell is
encountered, the algorithm descends one level, enteringhever cell encloses the
ray’s current location. Otherwise the ray is forwarded ®ititersection point with the
next cell on the same level. This idea can been taken furthgeherating a min-max
octree based on the volume’s data values. Whenever thefidagsn changes, this
octree can be used to efficiently rebuild the binary pyramid.

Adaptive sampling

Volumetric datasets contain regions of identical or simialues. Avoiding sampling
inside those regions, is one way to speed up raycasting anddsn proposed by Wal-
sum et al.[[42]. Basically, a ray starts sampling the volumlargke intervals and com-
pares each sample to the previous one. If the differenceeovdlues of two adjacent
samples is beyond a certain threshold, additional sampéeken. This idea can also
be extended to regions with low opacity and as a result minotribution to the final
image.

Inter-Frame Coherency

When interactively viewing a volume, the difference betwaeo consecutive frames
is usually very small. This fact is being exploited by the CfButechnique, proposed
by Yagel and She [49], which for each pixel stores the firstaopty voxel hit by the

corresponding ray. When the viewing parameters are chatigednformation is used

to estimate the initial position of a ray in the subsequeaini, by transforming the
C-Buffer accordingly.

Adaptive refinement

Proposed by Levoy [21], this technique significantly reducemputational effort by
casting rays only from a subset of pixels of the output imagdee values of pixels, for
which no ray was cast from, are interpolated from neighlgppixels. Adaptive refine-
ment is an effective technique to ensure interactivity. Wiilagging the mouse, only
part of the pixels is rendered and the remainder is intetpdlaAs soon as the interac-
tion stops, the interpolated pixels get rendered as welk fHthnique exploits the high
coherency between pixels of the output image. For exampkehighly probable, that
between two pixels of similar color, another pixel of a semitolor can be found.

Efficient Memory Access

The way large datasets are stored and accessed in memoryl&@e gperformance
impact. The simplest way to store the volume is a three diroaabkarray. Due to view-
dependent memory access patterns, this leads to variatiaesidering times, when
changing the viewing parameters. A way to circumvent thiesigdtions is the usage of
a storage scheme named bricking![33]. Here the volume datarned in equally-sized
blocks, which reduces the view-dependent performanceatians without increasing
the memory footprint. A similar storage scheme has been ustt raycasting tech-
nique develpoed by Law and Yagel [18]. Here, each ray is tirtkethe cell it initially
enters and also to a list of rays waiting for this cell to beeamtive. Only one block is
active at a time. All rays waiting for the active cell are adeed until they exit the cell.
Since a block is only active once, this approach effecti@styids cache thrashing.

2.2.2 Object-Order Volume Rendering

Opposed to image-order techniques, object-order methet#srdine, how each data
sample affects the pixels on the image plane. In its simgtast, an object-order
algorithm loops through the data samples, projecting eactpke onto the image plane.

Splatting, introduced by Westover [47], is a technique ttaaterses the volume and
projects footprints (known as splats) onto the image plaviexels with zero opacity
can be skipped, as they do not contribute to the final images i$lone of the greatest
advantages of splatting, as it can dramatically reduce tinger of voxels that have to
be processed. Using orthographic projection, all the Ketmeve the same projection or
footprint. Thus, the footprint can be pre-computed oncelesadl for the projection of all
the voxels. Perspective projection requires the footptimbe distorted according to the
distance of the voxels to the observer. In the original apginaof the algorithm, all the
voxels are splatted directly onto the final image. This is Wie/algorithm is known as
composite-every-sampl&his method may cause color bleeding and sparkling atsifac
because the visibility ordering of splats is imperfect.

To increase image quality Westover [47] proposéject-space sheet-buffer splat-
ting. This method uses three stacks of volume slices, one for eaghr axis. Here
voxel kernels are summed up within the slices of the stack pasllel to the image
plane. Those slices are then composited to the final images. approach indeed cor-
rects color bleeding but it also introduces noticeable papprtifacts when the camera
moves around the volume. This happens because the samphgsralys may not be
aligned anymore, after a small change in viewing angle Iéadschange of the slicing
direction.

Mueller and Crawfis[[29] introduced a method which elimindte=sse drawbacks
and also enhances the approximation of the light transpsidé voxelsimage-space
sheet-buffer splattingln their approach voxel kernels are processed within slpz=e-
allel to the image plane. Therefore, voxels can contribotedre than one sheet. All
voxel kernels that overlap a slab (region between two gliaesclipped to the slab and
summed into a sheet buffer. Once a sheet buffer has receivedndributions, it is
composited with the current image, and the slicing slabvaaded forward.

In the image-space sheet-buffer splatting! [31], earlytsglianination is possible
in front-to-back composition by subdividing the image istoall tiles and avoiding to
splat voxels that cover tiles that have already reached trémum opacity. However,
the projection transformation still has to be performedtfase voxels, which makes
this optimization less effective than early ray terminatio raycasting.

Vega-Higuera et all [43] proposed the usepofnt spritesto render neurovascular
data. This reduces the geometry needed for each voxel franpfants (needed for the
guads to represent splats) to one. This idea is also used GRtJ-based implementa-
tion of the image-space sheet-buffer splatting proposdddmphytou and Muellel [32].
Their approach comprises two steps: First the density sadfiall voxels of a slice are
projected into an auxiliary buffer using textured pointitgs. Then all the pixels of
the buffer are classified and shaded using a fragment shzatexdmputes the gradient
vectors at the pixels on the basis of their density centfééréince (see Equation 4.4).
Finally, the buffer is composed into the final image.

2.2.3 Hybrid-Order Volume Rendering

Image-order and object-order algorithms have very dis@vantages and disadvan-
tages. Therefore, some effort has been put into combinie@dlvantages of both ap-
proaches.

Shear-warp factorization, introduced by Lacroute [17]sush an algorithm. It is
considered to be the fastest software-based volume regde&igorithm and is based on
a factorization of the viewing transformation into a shelad a warp transformation.
The volume is sheared such that all viewing rays are parti¢he principal view-
ing axis in sheared-object-space. This way the volume amdihthhge can be traversed
simultaneously. Compositing is performed into an interraedimage. Since this inter-

8

viewing rays shear

Ay [T

volume
\ slices

project

s warp

image plane

Figure 2.2: lllustration of the basic principle of the shearp factorization. The vol-
ume slices are sheared, such that the viewing rays becorallepto the major viewing

axis. After the sheared volume has been projected onto anmmetliate image, this
image is then warped, yielding the final image.

mediate image is warped, a two-dimensional warp transfbom#s applied, producing
the final image. This basic mechanism of shear-warp fa@boa is illustrated in Fig-
ure(2.2.

The aligned traversal between image and volume is the lmasiseny optimizations.
A runlength-encoding of the intermediate image allows foeéicient early-ray termi-
nation approach. Additionally, runlength-encoding of tledume in each of the three
major viewing directions allows skipping of transparenxeis. Furthermore, utilizing
a min-max octree allows for empty space skipping. In coht@asunlength-encoding,
this approach allows fast classification and does not redhree copies of the volume.
The problem of shear-warp factorization, however, is theilnage quality caused by
the use of bilinear interpolation for reconstruction andagying sample rate that de-
pends on the viewing direction and projection. These issemdt in an inferior image
guality compared to other methods, such as raycasting.

2.2.4 Texture-based Techniques

Texture slicing on programmable graphics processing 2#kis one of the predom-
inant volume rendering techniques. One method incorpagagraphics hardware is
based on 2D texture mapping [37]. This method stores stdcgiéces as 2D textures
in graphics memory for each major viewing axis. The stacktpasallel to the view-

ing direction is chosen and mapped on an object-alignedypgermetry, which is then
rendered in back-to-front order using alpha blending (dgarE[2.3). This approach

9

P

Figure 2.3: Object-aligned 2D texture slicing [34]. For lead the three major axes, a
stack of 2D textures is stored. The stack most parallel tantiage plane is chosen, and
rendered in back-to-front order as textured quads usirtgaaiending.

Figure 2.4: Image-aligned 3D texture slicing [34]. The vohuis stored as a single 3D
texture and subdivided into polygons parallel to the imalgeg. These polygons are
rendered in front to back order, using alpha blending.

corresponds to shear-warp factorization and suffers fl@rsaime drawbacks, namely,
bilinear interpolation within the slices, and varying sdimgp rates depending on the
viewing direction.

3D texture methods use image-aligned texture slices. lardad these methods to
work efficiently, the whole volume needs to be uploaded togitaghics memory as a
3D texture. Using the hardware this texture is then mappé¢ad polygons parallel to
the viewing plane, which are then rendered in back-to-foyder using alpha blending
(see Figuré 2]4). Contrary to 2D texture slicing, where oillpdar interpolation can be
used, this method allows for trilinear interpolation sugipd by the graphics hardware.

10

A drawback of this method is that the memory of the graphicg\ware must be large
enough to accommodate the whole volume.

11

CHAPTER

Related Work

Often data can be visually represented in several ways. Sialize relations between
these representations a technique cdlieling and Brushings frequently used. Brush-
ing is used to select data and perform several operations$ @ngi, highlighting or
masking). Linking propagates the selection to the othensjepplying the same op-
eration there. Brushing was explored by Becker and Clevelahdvio developed a
system which implemented masking and highlighting. Howethee idea of brushing
has been examined even earlier. Fisherkeller et al. [12] tise idea of interactively
selecting a region in their PRIM-9 system, although they did ¢all it "brushing".
Traditionally brushes in visualization systems are limhite two dimensions, i.e., the
brushes operate in display space. To be able to apply a ywsiumetric data, a three-
dimensional brush is required. Multidimensional brushaghbeen studied in several
works [16/25, 44]. Kosara et al. [16] applied linking and $dring to 3D scatterplots,
where three dimensions are arbitrarily selected from amredsional dataset. These
dimensions can also include spatial coordinates. Theywseace rendering to display
the 3D scatter plot.

In addition to highlighting selected data points in all vigwhey can be connected
by lines. Collins and Carpendale applied this idea in tWskLinksystem[[5], where dif-
ferent 2D views are represented as semi-transparent plad&s space, arranged side
by side. As soon as data is selected in one plane, the selgatads connected with
the same data in adjacent planes by what the authorstetplane edgesThis prop-
agation is recursive, where the level of recursion can beractively selected. Single
source to single target edges are drawn as straight linegleSsource to many target
edges are drawn using multiple curves calculated with caraing [8/9].

Other research concludes that relations between repeatgerst can be conveyed
by using animation. Heer and Robertson/[14] used animateditians to communi-
cate the coherence of different representations of statistata. They found out, that

12

staging and staggering the animations can greatly imprsgeperception. These tech-
nigues reduce occlusion, which is one of the recommendatérthe authors. Other
recommendations amaximize predictabilityuse simple transitionand make transi-
tions as long as needed, but not long&hey have derived their recommendations from
theCongruence PrinciplandApprehension Principlpostulated by Tversky et al. [41].
All these design considerations aim at reducing the cognitiad for the user.

Applying animation to volumetric data means moving indiwativoxels along dis-
tinct paths. Because the voxels’ coordinates are constahdgging, volume splatting
has to be used for rendering. Volume splatting is an obje¢rorendering method
introduced by Westover [47], which traverses the volumeelidny-voxel and projects
each voxel onto the image plane.

13

CHAPTER
Hybrid Volume Rendering

This work employs a hybrid renderer, that uses volume spiatb render animated
voxels, and raycasting to render the remainder of the vallseng this approach, each
voxel gets rendered by just one of the renderers. This méangplume is rendered us-
ing raycasting, and splatting is applied to voxels thatégheir grid position (see Figure
4.1). We implemented a simple splatter, sufficient for viizireg the voxel animations.
However, to get appealing renderings of the volume, a ragcass used. Nevertheless
the principle of volume splatting will be explained in thexhsection, followed by a
more detailed description of the raycasting algorithm.

4.1 Volume Splatting

Object-order algorithms traverse the volume voxel-byel@nd project them onto the
image plane. A more sophisticated approagiatting introduced by Westover [47],
convolves every voxel in object space with a 3D reconstouactilter and accumulates
the voxels’ contribution on the image plane. Volume sphatiis comprised of the fol-
lowing steps:

Volume traversal The way of traversing the volume depends on the compositing
method. Simply projecting voxels onto the image plane léadlse wrong compositing
order of the projected splats. Usually the volume is traaeis slices in approximate
back-to-front order, similar to 2D texture slicing. For rmadvanced splatting meth-
ods, such asnage-aligned sheet buffe29], the traversal order is similar to 3D texture
slicing.

14

Figure 4.1: This figure shows a slice of the volume where therjmlation parameter
0 <t < Intensity,q.) IS Set to 1 and the animation is delayed by ascending iritensi
This means, that voxels with lower intensity values starvimg first. The numbers in
the grid represent voxel intensities. Voxels depicted aegrhave already left their grid
position and are therefore rendered by the volume splatteels depicted in red still
remain at their grid positions and are rendered by the ragrcasoxels in gray have
been hidden via the transfer function and are not renderalll at

Interpolation Splatting derives its efficiency from the use of pre-intéggarecon-
struction kernels. For simple splatting, the 3D kernel capie-integrated into a generic
2D footprint that is stored as a 2D texture. Because of its lomputational cost and
simplicity, this approach was chosen for this work.

Classification and Shading Typically, splatting uses pre-classification and pre-giad
of the volume data. Each voxel stores the resulting R@8&lues, which are then multi-
plied by the footprint before projection. Mueller et al. [3oposed a method for post-
classification and shading in screen space. The gradientstaer projected to screen
space, or they are computed in screen space using cenfeakdifing (see Equation

4.4).

Compositing Compositing is more complicated for splatting than for othaelume

rendering methods. The easiest compositing approachésicaimposite every sample
where the 2D footprint of the kernel is multiplied by the scaloxel value, projected
to screen space, and blended onto the image plane usingiegdqandware [6]. This

15

leads to visible artifacts, like color bleeding from baaignd objects due to incorrect
visibility determination [[46]. To remedy this drawback, SWever introducedheet-
buffer splatting[47]. The splats are now added to a sheet buffer, instead ttihge
directly composited to the final image. When all voxels of aeslhave contributed to
the sheet buffer, the whole sheet buffer is composited dr@anhage plane. This does
solve the bleeding artifacts, but also leads to the samel@rsbencountered by 2D
texture slicing methods: Popping artifacts when the slieeksis suddenly changed,
and inferior image quality, due to the lack of trilinear irgelation.

Mueller and Yagel [29] proposed to useage-aligend sheet-bufferslere the slices
are parallel to the viewing direction, and the contribusiaf 3D reconstruction kernels
between slices are added to the sheet buffer, and the resoltiposited onto the image
plane. This effectively resolves the popping artifactsyéeer, the intersection of a slice
with the 3D reconstruction kernel is computationally exgiea.

Since only a basic splatter was used in this work, only a laetview of volume
splatting was given. A comprehensive description of voligplatting can be found in
related work[[34,47,51].

4.2 Raycasting

The other half of the hybrid renderer, is a raycaster, thasex to render voxels, that
have not moved from their volume grid positions. As soon asxelleaves its grid
position, it gets discarded by the raycaster and is rendsréde volume splatter.

Raycasting is an image-order algorithm, that processesutmibimage pixel-by-
pixel and casts rays from each pixel through the volume. ptosessing order has the
disadvantage that the dataset must be traversed once fgraygresulting in redundant
computation (i.e., multiple descents of an octree), buthendther hand enables early
ray termination.

4.2.1 The Raycasting Pipeline

Using raycasting the volume is rendered by casting rays thenviewing plane through
the volume and sampling it at discrete intervals along tlyefar each ray intersecting
the volume, four steps are performed at each sampling posRieconstructionis the
process of reconstructing a continuous function from tiseréte dataset. This step
IS necessary, since the volume might be sampled at any gsifihe classification
step assigns material properties like color and opacithéosample obtained by the
reconstruction step. The evaluation of the illuminationdeloafterwards is referred
to asshading This step often involves the computation of a gradigbompositing
determines the contribution of the previously classified ainaded sample to the final
image.

16

The findings of Bruckner [3, p. 19-22] and Engel etlall[11] segjgthat the best re-
sults are achieved by the sequeR&Eonstruction-Classification-Shading-Compositing
Therefore this setup is applied in this work. The followiregtons will describe the
steps of the rendering pipeline in more detail.

Reconstruction

In order to be able to sample the volume at arbitrary possti@ancontinuous volume
function f: R?® — IR needs to be reconstructed.

Function Reconstruction A point sample can be represented as a scaled Dirac-pulse
function. Sampling a signal is equivalent to multiplyingoit a grid of Dirac-pulses,
one at each sample point, as shown in Figurée (4.2 [24]. Theiérawansform of a two
dimensional grid of Dirac-pulses, with frequengy in x and f, in y is itself a grid
of impulses with period/f, in x and1/f, in y. If we call the grid of Dirac-pulses
k(z,y) and the signaf(zx,y), then the Fourier transform of the sampled sig@/ﬁl, is

g = k. Sincek is a grid, convolvingg with & amounts to duplicating at every point
of k, producing the spectrum shown at the bottom right in FiguBe Zhe copy ofj
centered at zero is the primary spectrum, and the other €@peecalledilias spectra

If ¢ is zero outside a given region the signal is called banddichiThe alias spectra of a
band limited function do not overlap each other if the sangpfrequency is chosen high
enough (i.e., the Dirac pulses bfre sufficiently far away from each other). Thecan
be recovered by muItipIyinéE by a box functions which is one in the Nyquist region
and zero elsewhere. Such a multiplication is equivalenbtwvelving the sampled data
gk with h, the inverse transform df. This convolution with allows us to reconstruct
the original signaly by removing, or filtering out, the alias spectra, so we éal
reconstruction filter

Thus, the goal of reconstruction is to extract the primamgcsmum and to suppress
the alias spectra. Since the primary spectrum comprisekwhéequencies, the re-
construction filter is a low-pass filter. The simplest regionvhich g could be limited
is the region of frequencies that are less than half the sagflequency along each
axis. This limiting frequency is called the Nyquist frequgm@nd the region the Nyquist
region. An ideal reconstruction filter can then be definedaeeha Fourier transform
that has the value one in the Nyquist region and zero outsid€hie inverse Fourier
transform of such a box function is tisencfunction.

Extending the above to three-dimensional signals encoenhia volume rendering,
the sampling grid becomes a three-dimensional lattice Bad\tyquist region a cube.
Given this Nyquist region, the ideal convolution filter igtproduct of three sinc func-
tions:

hi(z,y,2) = (2fn)*sinc(2fyz)sinc(2fny)sinc(2fy2) (4.1)

17

Figure 4.2: Two-dimensional sampling in the spatial don{éap) and the frequency
domain (bottom)/[24].

Here, fy is the three-dimensional Nyquist region. Thus, in prirej@a volume sig-
nal can be exactly reconstructed from its samples by comgivwith /;. In practice,
howeverh; cannot be implemented, because it has infinite extent ingékes domain.
Hence practical reconstruction filters will inevitablynotiuce artifacts into the recon-
structed function. A practical filter takes a weighted sura fnited number of samples
to reconstruct a point. In other words, only samples insitiei region are taken into
account. This region is called the region of support. Fsligith a larger region of sup-
port have to weight more samples and are computationally regpensive since more
samples have to be processed.

The simplest interpolation function is the nearest neigtiboction, which returns
the value of the sample closest to a given location. Let that golie within a cubic cell
atlocation(zp, yp, zp). The sample values at the eight corners of this cell are denot
assS(0,0,0) ...S5(1,1,1). Using the nearest neighbor function the valyeat location
P is given by:

vp = S(round(xzp), round(yp), round(zp)) 4.2)

The most common interpolation function is the trilineaeniolation function, which
is a convex combination of the surrounding 8 samples. Thistfan assumes, that the
value varies linearly along each major axis. According tim&rar interpolation, the
valuevp at locationP is then:

18

(a) original signal (b) trilinear interpolation (c) windowed sinc filter

Figure 4.3: The original signal (a), reconstructed withrteiar interpolation (b) and a
windowed sinc filter (c).

Up = S(0,0,0) (1 —C(Zp) : (1—yp) (1—Zp) +
S(].,0,0) rp . (1—yp) . (]_—Zp) +
S(O,l,O) : (1—1‘13) - Yp . (1—213) +
5(1,1,0) - XTp - Yp . (1—ZP) + (4 3)
5(070,1) . (1—(Ep) . (1—yp> - Zp + '
5(1,0,1) rp : (1—yp) - Zp +
5(07171)) (1 _xP) - yp T 2P +
S(1,1,1) - zp - yp - zp

Marschner and Lobh [24] have examined various reconstndtiters (see Figure
[4.3). The best results were achieved with windowed singsilté/hile providing supe-
rior reconstruction quality, they are also about two ordémmagnitude more expensive
than trilinear interpolation. Therefore, when interaityivs required, the trilinear recon-
struction is often the preferred method, despite its wotsdity.

Gradient reconstruction In addition to the continuous volume function the recon-
struction of its first derivative, called the gradient, ismahecessary. Since it is an ap-
proximation of the normal of an iso-surface, it can be usedtfe illumination model.
The quality of the gradient estimation has considerableachpn the quality of the
rendered image. The ideal gradient reconstruction filténescoscfilter, which is the
derivate of thesincfilter, discussed in the previous section as the ideal reéngton
filter. As with the sinc filter, the cosc filter can not be use@asconstruction filter due
to its infinite extent in the spatial domain.

According to Mdller et al.[[28] there are four different metts of computing the
gradient:

Derivative First (DF) Using this method the derivative is determined by first com-
puting the normals at the grid points and then interpolairege normals.

19

Interpolation First (IF) The derivative at a ray sample location is calculated from
a set of additionally interpolated samples in the neighbodof the sample location.

Continuous Derivative (CD) This approach uses a derivative filter that is pre-
convolved with the interpolation filter. The gradient at Hanple location is computed
by convolving the volume by this combined filter.

Analytic Derivative (AD) This approach is similar to CD, except the derivative
filter is analytically derived from the interpolation filter

Furthermore, Moller et al. prove that DF, IF and CD are nunadig§ieequivalent, and
that AD delivers bad results in some cases. According to thieenCD method is more
of theoretical interest and they used it mainly for analysfisthe normal estimation
process. This leaves the DF and IF method for consideratdithough they have
shown, that the IF method generally outperforms the DF agagroBruckner [3] pointed
out that with an expensive gradient estimation method thenethod is preferable. Pre-
computing the gradients at the grid locations would redbheecomputational effort, but
also increase the amount of memory needed by three timegéhefshe volume. Since
the hybrid renderer is already a memory-intensive approt@hgradients are rather
computed on-the-fly for each cell from tkentral differenceswhich are given by

1 (f(x+t,y,z)—f(x—t,y,z))
@y +t2) = fley—t2)), t=1 (4.4)
(f(z,y,z2+1) = f(z,y,2—1))

where f(z,y, z) is the 3D density function. Trilinear interpolation is thesed to
calculate the function value and gradient at each resaropéion.

Vf(l’,y,Z) ~ 5

Classification

Classification is the process of assigning a color and opé#eity reconstructed func-
tion value. Transfer functions, usually implemented askigotables, are used for
this mapping. During rendering, the lookup tables contajrsolor and opacity val-

ues are indexed by the reconstructed function value. Levsiyduggested the use of
one-dimensional piecewise linear transfer functions .[18E also used the gradient
magnitude for opacity modulation, to enhance regions wigi lyradients and reduce
the opacity of homogeneous regions.

Shading

Although having no physical significance, the Phong illuation model[[35] is still
common in computer graphics. Itis a local illumination mipaéich only takes direct

20

Figure 4.4: Phong illumination modelV is the surface normal at the point for which
the illumination model is evaluated. The light vecfopoints towards the light source,
and the view vectol/ points towards the viewelH is the half-way vector betweeh
andN.

reflections into account. While this may not be very realjstiallows illumination to be
computed efficiently. The model consists of independentiamjdiffuse and specular
terms and employs the light vector, the view vector, ancsa@rfiormal for computation.
Thelight vector L is the normalized vector from a location in space to the lgghtrce.
In case of a directional light source, this vector is the sénall points in a scene. The
view vector V' is the normalized vector from a location in space along a wigway
to its origin on the image plane. In case of parallel progectithis vector is the same
for all points in a scene. The Phong illumination model wagioally designed for
surface rendering. In volume rendering, wface normal NV is approximated by the
normalized gradient.

Figure[4.4 shows an illustration of the Phong illuminatioadel. Additionally, the
half-way vectordd = (L + V) is displayed. The final light intensity is determined
by the three constants,,.picnt, Kdif fuses andkspecuiar, Which control the contribution
of each term. The shaded color is computed by multiplyingitipeit color (e.g., the
classified sample) by the sum of the three terms, as can barsé&guation 4.6. This
equation only holds true under the assumption, that the obtbe light source is always
white and its color contribution can therefore be disregdrd

Cout = Cin * (Iambient + Idz’ffuse + Ispecular) (45)
The ambient term,,..;en: IS CONStant and simulates the contribution of indirect re-

21

flections, which are otherwise not accounted for by the model

Iambient - kambient (46)

The diffuse termly;sr.se IS based on Lambert’s cosine law, which states that the
reflection of a perfect diffuse surface is proportional te tdosine of the angle be-
tween the light vector, and the surface norma/’. In other words, the reflection is
proportional to the dot product df and N.

Liif fuse = Kdif fuse - max(L - N, 0) 4.7)

The specular ternt,....., Simulates specular reflections by adding a highlight.
Blinn [2] proposed to use the half-way vectér to compute the specular term. The
half-way vector is the vector halfway between the light eeend the view vector. The
specular lighting intensity is then proportional to the inesof the angle3 between
the half-way vector/ and the surface norma&¥ raised to the power aof, wheren is
called the specular exponent of the surface and repredsrghininess. Higher val-
ues ofn yield smaller, sharper highlights, whereas lower valusslten large and soft
highlights.

Ispeculm' = kspecular : max((H ' N>n7 O) (48)

Compositing

In raycasting, the volume rendering integral is approxedaby applying theover-
operator[36] in front-to-back order. This means, at each sampletionahe current
color and alpha values of a ray are given by

Cout = Cin+ C(S)Oé(S)(l - ai”)
Qoyt = Qip + (X(S)(l - ain) (49)
wherec;,, «;, are the color and opacity values already accumulated byathe s
the reconstructed function value and) anda(s) are the classified color and opacity
values derived from the transfer functions. The advantdgesimg the front-to-back
formulation of the over-operator is the possibility of gardy termination. This is, a ray

can be terminated as soon as it has accumulated full opaeityn(,.; = 1).

4.3 Trajectory Rendering

Animated voxels travel between volume representationsredgfined trajectories. In-
stead of using these trajectories as an animation pathctnepe rendered themselves
to visualize the connection between two representatiohs.tijectories can be linear,

22

quadratic or cubic Bézier splines, and are colored accortdirthe transfer function.
These splines are approximated by line strips, which haveetpre-computed on the
CPU.

4.3.1 [lllumination of Lines

To render illuminated streamlines, cylinders could be usedraw the line segments
and light them using graphics hardware. Alternatively,@arline segments as graph-
ical primitives would reduce geometric complexity and #fere speed up rendering
considerably. Unfortunately line segments have no distieecmal vector. Thus it is
impossible to directly apply a shading model like Phong sigébr the illumination

of a point P on a line. LetL be the light direction}’ the viewing direction and? the
unit reflection vector (the vector in the— N-plane with the same angle to the surface
normal as the incident light). Then light intensityat a given pointP is given by

I = [ambient + [diffuse + Ispecular
= kot kgL N+ ky(V-R)" (4.10)

Choosing the normal vecta¥ as the one that is coplanar to the tangent vegtor
and the light directiorl,, L - N can be expressed withoi [50]:
L-N=+/1—(L-T) (4.11)

V' - R can be rewritten withouR in a similar way, yielding

V.- R=(L-T)(V-T)=+/1—(L-T)2\/1—(V-T)? (4.12)

To exploit graphics hardware for the illumination, the text matrix is loaded with
LandV:

Li Vi 00
1Ly, v, 00

M=o |20 (4.13)
1 100

Now L - T in Equation’4.111 is set t®t; — 1 andV - T in Equation(4.1R is set to
2ty — 1. With ¢t; andt, running from0.0 to 1.0 in both coordinates, the results of the
equations are stored in a 2D texture map. Next the texturedocwies ofP are set to
the normalized tangent vector. This way OpenGL calculdtedriner products of the
Phong equation with the help of the texture matrix, yieldihg correct illumination
color in P as texture color. See Zéckler et al. [50] for more details.

23

CHAPTER

Animated Transitions

This work employs two methods to connect different volun@esentations. The first,
trajectory renderingwas already discussed in Section| 4.3 and the seamihation
will be discussed in this chapter.

Each voxel of a volume can be interpreted as an n-dimensaitrddute vector:

v= (a17a27"'7an)T (51)

Some examples for voxel attributes are the grid coordinatesg =), the intensity/
and the gradient magnitude. The gradient is calculated for each voxel and is a vector,
that points in the direction of the greatest rate of increasel its magnitude is the
greatest rate of change. Volumetric data can be illustriat@aultiple ways. The most
common representations are 2D slices orthogonal to onesahtijor axes, a 3D view
rendered by one of the techniques described in Sdctidbnriziatograms for intensity
and gradient magnitude, as well as a 2D histogram combihigggttwo voxel attributes.
This work focuses on the 3D and the histogram represengatitime 3D representation
lives in the spatial domain, whereas the histograms livéén2D domain. In order to
implement animated transitions between these views, gtedrams have to be placed
on a plane in 3D space. Each representation has its own looatlioate system, in
which each voxel has local coordinates. For the 3D view, theshs’ grid coordinates
are used. The coordinates of a voxel in the 2D histogram amplgiits intensity and
its gradient magnitude. In case of 1D histograms, the hot&axis represents either
the intensity or the gradient magnitude, and the verticé axthe (logarithmic) bin
position. This bin position is the only coordinate that catnbe mapped to one of the
voxels’ attributes and thus has to be calculated for eacllvokhe bin position of a
voxel is the number of voxels present in the according bierdfte voxel was added.

24

5.1 Principles for Animation

"Smooth interactive animation is particularly importantaese it can shift
a user’s task from cognitive to perceptual activity, frgesognitive pro-
cessing capacity for application tasksRebertson (199188, p. 5]

Over the last decades, extensive research has been cahdutte field of anima-
tion. Tversky et al.[[41] performed a skeptical analysis wih@tion and its alleged
superiority to static graphics for "conveying the workingscomplex systems”. Ac-
cording to them, animations are often too complex or tootalse accurately perceived.
However they made an exception for animated transitionssinalizations. They also
point out, that the drawbacks of animation can be overcorttetive aid of interactivity.
Interactivity allows the user to arbitrarily control theimration by moving forward and
backward or pausing it at any time. They propose two prirsiphat specify conditions
for effective animation. Thei€ongruence Principletates "the structure and content
of the external representation should correspond to thieedestructure and content of
the internal representation” and théipprehension Principlstates "the structure and
content of the external representation should be readidlyaacurately perceived and
comprehended"”. According to those principles, data is besgmted in its inherent di-
mensions, as long as it is easily comprehensible. Henaaadioin should be well suited
for conveying the concept of change over time. Adhering tséhprinciples, however,
does not make animation superior to static graphics pertsgusefulness of animation
is also highly dependent on the number and complexity of theats being animated,
and the path they describe. When the features of the moviregisbare not relevant,
they can be represented by simple colored dots. This visuglification, as well as
moving the objects along simple trajectories, helps redytie cognitive load for the
user significantly. However, volumetric datasets are casegrof millions of voxels
(volume elements), leading to unavoidable overlap durireganimation. Minimizing
this overlap is a major issue, which can be addressed byiregitiee number of objects
moving simultaneously, and by minimizing the overlap ofitledividual trajectories.
The calculation of these trajectories and minimizing thenhar of simultaneously mov-
ing objects are described in the next section and in Sectiréspectively.

5.2 Interpolation Methods

This section describes the details of the mathematicas tagdd to facilitate animation.
Let us start by briefly reviewing the theoretical backgrauadlinear combination of
points P, P, ..., P, and weights\, Xs, ..., A, given by

n

Py = im, d =1, (5.2)
=1

i=1

25

Figure 5.1: The convex hull (blue) can be visualized by imggan elastic band
stretched out around all points. When the band is releasedsimes the shape of
the convex hull.

is called amaffine combinationwhen the sum of all weights; is 1. Theaffine hull
of a setS of points is the set of all affine combinations of a finite subxfeS. For
example, lineAB is the affine hull of pointsA and B, planeABC is the affine hull of
non collinear pointsA, B, andC.

A more restricted subset of affine combinations@mevex combinationsvhere the
coefficients\; not only sum up to 1, but are also non-negative. A convex coatlan
is given by:

The definition of theconvex hulis analogous to the affine hull. The convex hull of
points A and B is the segmentAd B, and triangleABC' is the convex hull of pointst,
B, andC'. An analogy for the convex hull in the plane is shown in Figbu®

Since each voxel moves on its ownajectory, it has to be calculated individually.
This trajectory is the path a voxel describes on its way frora eepresentation to an-
other one. The computation of that path is done on-the-flyntgrpolating intermediate
values between the endpoints of the animation. Dependirtigeonumber of these end-
points, different methods have to be applied. When the armoméias two endpoints,
the methods described in subsecfion 5.2.1 are employedgltisiee or more endpoints
for the interpolation requires methods described in sulseb.2.2.

5.2.1 Convex Combination of Two Points

Throughout this section the interpolation parameter i©thghas and is in the interval
[0,1]. Whenevet > 0 ort < 1, the voxels are on the move, otherwise they are residing
in one of the representations mentioned earlier. A convexotoation of two points?,

26

andP; usingl — ¢ andt as their weights respectively, lets the voxels travel omagttt
line between those points.

Py=(1—t)P, +tP,

To make the voxels travel on a curved trajectory, parametniges can be utilized.
In general, a parametric curve is a function of one indepeihgdarameter, denoted as
t. A particular example is a curv@(t) that is defined by a set @bntrol pointsP; and
blending functiond;(t),7 = 1,...,n [39, ch. 5], given by:

= 3" P () (5.4)

Each point on this curve is computed as a weighted sum of atfralopoints. This
means that each point (of the curve) is influenced by everyralgpoint according to the
assigned blending function. A blending function defineswieght of the control point
at each point of the curve. A value of O indicates that therobioint is not affecting
the point on the curve. If the blending function reaches &,dtrve is going through
the control point. An example of blending functions is shawirigure[5.2, where this
behavior can be observed.

Bézier Curves

In case ofBézier curvesghe set of blending functions - one for each control point - is
given by theBernstein polynomialf39, ch. 2]

1

B'(t) = (n) (1—t)""t", tel0,1] (5.5)

where(") = is the binomial coefficient.
The sum of the éernsteln polynomials of degreés equivalent to théBinomial
theorem given by:

- n n—ipt __ n
> (Z)a b = (a+D) (5.6)

=0
After substitutings andb by (1 — ¢) andt respectively, then one has:

Z BMt)=((1-t)+t)"=1 (5.7)
According to Equatio@lS this fact and thaf (¢) > 0 (as can be verified in Figure
[5.2), makes the Bézier curve a convex combination of its obptlygon. This provides

the Bézier curve with some of its most important properties:

27

n=1 n=2 n=3

0.8 0.8 0.8

0.6

(
B

@ 04 0.4 o 0.4

0.2 0.2 0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(@ n=1 (b) n=2 (c)n=3

Figure 5.2: The Bernstein polynomial'(¢) for (a)n = 1, (b)n = 2, and (c)n = 3.
The blue, red, green and cyan lines correspond to the blgridirctions of the first,
second, third and forth control point respectively.

e It always passes through its first and last control pointsl, iarntangent to the
control polygon at these points.

e It can be transformed (translated, rotated, scaled, stiebyeperforming these
operations on the control points.

e |t lies within the convex hull of the control points.

Finally, when substituting;(¢) in Equatior. 5.4 by Equatidn 8.5, one gets the equa-
tion for the Bézier curve:

C(t) = zn: P (T;) (1—t)""", t€]0,1] (5.8)

Evaluation of Bézier Curves The hands-on approach to determine a curve goint
at timet would be the evaluation of Equatibnb.8. Apart from beindfinent, this solu-
tion also suffers from numerical instability caused by iraisloating-point numbers to
higher powers. The most common algorithm to evaluate Bémiees is theDe Castel-
jau algorithm[8]. Basically, Equatiof 518 is rewritten as recursive linegerpolations,
or more precisely recursivanvex combinations his way the evaluation is reduced to
basic arithmetic operations and becomes numericallyest#bgraphic depiction of the
algorithm along with a short description can be found in FedfL3.

Using De Casteljau’s algorithm to evaluate a polynomial ewsf/degree., still has
a computational complexity aP(n?). In an effort to reduce this cost, several evalu-
ation schemes for curves based on the Bernstein polynomval @en proposed. A
comparison of these alternative approaches was done bwiend Peia [10]. They
also introduce an algorithm of their own [9], which has a ctexiy of O(n). Although
their approach seems to be superior to De Casteljau’s digoiit terms of complex-
ity, let us take a closer look at the number of operations eeed evaluate a Bézier

28

Py
Py

Py
Y . P 2
0
Fo
P

Figure 5.3: De Casteljau’s algorithm for Bézier curves: Eauhsegment of the control
polygon is subdivided with the rati&-* and the resulting points are connected. The
process is repeated until one arrives at a single point. i$hige point of the curve for
the given parameter|48].

70

w B a o2}
o o o o
T T T T

no. of operations

N
o
T

De Casteljau |
Delgado et al.

[Eny
o

o

1 2 3 4 5 6

Figure 5.4: A comparison of De Casteljau’s to Delgadd’s [@oaithm in terms of
computational complexity for a degreeBézier curve.

curve of degreen. The De Casteljau algorithm nee&@%l) and according to Del-
gado and Penal[9], Delgado’s algorithm neéds basic arithmetic operations. Figure
reveals, that Delgado’s algorithm is only fasterior 6. Moreover, forn < 3 De
Casteljau’s algorithm is approximately twice as fast. Stheemaximum degree used in
this application is» = 3, De Casteljau’s algorithm is preferable to Delgado’s apginoa

29

Figure 5.5: Each of the polygon’s circular vertices repnésan endpoint of the anima-
tion. When moving the center of mass, represented by the tedeghe weights of the
vertices are changed accordingly.

5.2.2 Convex Combination of Three or More Points

The last section described convex combinations of two ppwtich correspond to two
animation endpoints. Adding endpoints to the animatiomireg adding points to the
interpolation. When using more than two endpoints, a simiidersis not enough to
interactively change the parameters for the interpolafidre parameters, also referred
to as weights, need to be determined by moving a vertex irsidesed 2D-polygon
(see Figuré 5]5), whose vertices represent the animatidpogmts. These weights are
then used to interpolate voxel positions for the animatimnorder for this procedure
to work, a bijective mapping between the weights and theaxgubsitions is required.
In other words, for a given polygon a certain combination eftex weights leads to
exactly one point coplanar to the polygon, and vice versa sgurd 5.5).

Barycentric Coordinates

The barycentric coordinates of a point specify the centenass of the weights placed
at the vertices of aimplex A simplex is the simplest possible polygon for a given di-
mension. Adding a vertex to a simplex also expands the skripla higher dimension.
For instance, a 1-simplex is a line segment, a 2-simplexnsiagle, and a 3-simplex is
a tetrahedron. So am-dimensional simplex has + 1 vertices. As a consequence, the
points forming a simplex are always linearly independend a point inside of a sim-
plex is uniquely determined by its barycentric coordinatesce this implementation
makes use of barycentric coordinates in the plane, the anjylex taken into account is
the triangle. For a triangle formed by the poifts P, P; and their according weights
A1, A2, Az, @any pointF, in the plane of this triangle is given by:

Py=> NP, > A=1 (5.9)

30

M

A2..\.2)
| y
T~ °

C7\1 m-1 ...)‘\nm_‘I

P4

AMAT
P3

Figure 5.6: Bijective mapping: A set of weights . .. \,, always maps to exactly one
point inside the polygo®; ... P, and vice versa.

The weights\; are the barycentric coordinates relative to the points ettiangle.

If all weights are non-negative, thdr lies inside the triangle. Furthermore, if one of
the weights is 0, ther®, lies on the opposite edge of the triangle. When two of the
weights are 0, the third weight becomes 1 and pld&esn the corresponding vertex of
the triangle.

The aforementioned bijective property is needed, becaask point must have
unique weights. Otherwise obtaining the weights as desdrib Figuré 5.5 is not pos-
sible. In order to determine the barycentric coordinates dint, its Cartesian coordi-
nates have to be transformed with respect to a triangleguasafollowing equation:

A, = (y2—y3)(z—z3)+(z3—22)(y—ys)
1 (y2—y3)(z1—23)+(z3—22)(y1—Y3)

— _ws—y)(@—as)+(x1-23)(y—ys)
A2 =) s a2) (v ye) (5.10)

)\3 == 1—/\1—>\2

Here,z andy are the Cartesian coordinates of a point coplanar to thegteaandr;
andy; are the Cartesian coordinates of the triangle’s points. Baatyic coordinates can

31

P4 P3

Figure 5.7: Points inside a polytope are not uniquely detegthby their barycentric
coordinates. For example, the center of the square can belskbas; (P, + P;) or as
%(P2+P4) OraSi(P1+P2+P3+P4)

be extended from a simplex tgalytope which is am-dimensional polygon with more
thann + 1 vertices. However the vertices of a polytope are not linesxdiependent,

which leads to points, that are not uniquely determined by tharycentric coordinates.
For example, the center of a square can be described as theintglof both diagonals,
as shown in Figure 5.7.

A common way to deal with arbitrary polygons in 2D is to triatege them first,
and apply barycentric coordinates on each simplex. Howtineresults depend on the
choice of triangulation and contain unnecessary artifatsoverview of methods for
obtaining unique barycentric coordinates for polytopestmafound inl[[13, 45].

Mean Value Coordinates

Among others, Floater et al [13] proposed a way to generabzgcentric coordinates
to 2D polytopes, calledhean value coordinateset «;, 0 < «; < 7, be the angle ab,

in the triangle[P, P;, P;1], defined cyclically (see Figufe.8). The weights

Wi tan(a;_1/2) + tan(a;/2)

)\i = [Ww; =

Zj:le |17 — Bl

are coordinates foF, with respect taP; ... P,. These weights can then be used to
interpolate the voxel positions using Equafion 5.3. Whemnl asea triangle, mean value

coordinates are equivalent to barycentric coordinates.

(5.11)

5.3 Staggered Animation

When starting and ending times of all voxels are the same, thielyoxels closest to
the viewer are visible and occlude the rest. Using transggralone is not enough to

32

[

Pi1

Figure 5.8: Mean value coordinates.

- VVVVVYV

0 t

Figure 5.9: Non delayed animation: The red arrows reprasentng voxelss € [0, 1]
is the interpolation parameter, ands one of the normalized voxel attributes

clarify the animation, due to the sheer number of voxels. viercome this problem ei-
ther the overall number of voxels or the number of voxels p@noved simultaneously
has to be reduced. Decreasing the number of voxels is nootdeogthis work, which
leaves us with decreasing the number of simultaneously myovoxels. In their work
about animations in statistical data graphics [14], HeerRabertson had to deal with
a similar occlusion problem. According to them, issuing Bhelays in movement sep-
arated the items’ starting (and ending) times, leading tallsbut noticeable decreases
in the amount of overlap. This idea was taken and extendeddiynmg the delay depen-
dent on one of the normalized voxel attributes. These atgarantensity gradient
magnitude andgrid coordinates This means that voxels with a low-valued attribute
start moving earlier whereas voxels with high intensiti@stsnoving later. This order
can easily be reversed, causing voxels with a high-valueithate to move first.

For the interpolation a parameters used. Without delaying the starting time, all
voxels start moving as soon ass greater than 0 and end their movement whequals
to 1, which can be observed in Figlre]5.9.

Lett, be the interpolation parameter used for moving voxels witkréain attribute

33

1 >
>
2> ”'/
. N
a 6, - »,’ ’OX
7’ ,,/ 6'
Pz
/»,
ol < >
0 1 d+1
< ta > !
e tg=t-(d+1) >

Figure 5.10:t; = t(d + 1) is the delayed interpolation parameter, witm [0,1]. a
denotes the normalized voxel attribute used to scale thenmuaxx delayd. Moving
voxels are depicted as red arrows. Their movement startstapd, as soon ag equals
d-aandd - a + 1 respectively.

value. Without adding a delay, equalst for all values ofa. Whereas adding a delay
separates thg’s into staggered subintervals ofsee Figuré 5.10). In order to accom-
modate these subintervatsneeds to be scaled. This delayed and scaled interpolation
parameter is given by

ta=d-a+t,, d>0, (5.12)

whereq is the normalized voxel attribute adalenotes the maximum delay imposed
on the voxels’ starting times. Wheh = 0, no delay is added and all voxels move
simultaneously. Fo#l > 0 voxels are delayed according to their attributdn order to
calculate the interval ofy, the earliest starting time and the latest ending time need t
be computed. The earliest starting time obviously is 0 ardleting Equation 5.12 for
t, = 1 anda = 1, yields the latest ending time df+ 1. Hence{, € [0, d + 1] and since
t € [0,1], t; in Equatiori5.I2 can be substituted#§y + 1) yielding:

td+1)=t,+d-a (5.13)
Solving this equation for, allows us to express, in terms of the interpolation
parametet, yielding:
to=td+1)—d-a (5.14)
Because this equation can yield values outside the intérvH| the result has to be
clamped to a lower and upper bound of 0 and 1, respectivelg.i$inecessary, because

34

t a ta
0.0/00| d
1.0/ 0.0| 1.0
0.0/ 1.0| 0.0
1.0/ 1.0| d+1

Table 5.1: This table shows the lower and upper bound of ttezgolation parameter
t4, Which is used to move voxels with attribute valuésee Equation 5.15).

1 —_—————0 1 pr——— R =10
‘ > Nordl
. : i -
a —_— 1-a a P 1-a a Rl 1-a
) ,’’,' =)

0 > 1 (0] e—_ 1 ol=" 1

0 t4 1.5 0 tq 2 0 tq 12
(a) d=0.5 (b) d=1 () d=11

Figure 5.11: Moving voxels are represented by red arrowgurés (a) to (c) illustrate
examples for different values of the delay paramétersed in Equatioris 5.114 ahd 5.15.

t, is used to parameterize a convex combination (see Equat)n Bsing Equation
[5.14, the starting times for the voxels are ascending asuptd the chosen attribute.
This order can easily be reversed by substitutity 1 —a. The equation for descending
order is then given by:

to=t(d+1)—d-(1—a) (5.15)

5.3.1 Optimal Delay

Animation is basically a series of consecutive frames. tteoto be smooth, the images
shown in two consecutive frames should not change signtficaithis is especially
important, when using interactivity, where the user cairttily navigate through the
animation, and pause/resume it at any time. Since the aoimet controlled by an
interpolation parameter the difference between two consecutive frames is propaati

to the difference of the two values gfused to compute them. Let, .. be the number

of possible values fot, then the smallesttep sizeof ¢ is At i, = — L Incase of a

32 bit float, where 1 bit is used for the sign, 7 bits are used!h‘erexﬁ%ent and 24 bit

for the coefficienty,,.. is 22*. As a consequence, the smallest representable difference

35

a Umaz
x coordinate volume width
y coordinate volume height
z coordinate volume depth
intensity max intensity
gradient magnitude max grad. magnitude

Table 5.2: This table lists the voxel attributegand the corresponding number of pos-
sible values:,,.,. For the intensity and gradient magnitudg,, is not necessarily the
numerical limit of the data type, but rather the highest galacurring in the volume.

iS Atpin = 272* & 5.960 - 1078, Figure[5.1D shows, that introducing a delgyscales
the interpolation interval te;, = ¢(d + 1), containing all the subintervals, needed to
animate all distinct attribute valuesremains in the intervdD, 1] and gets subdivided
into subintervals of siz%. Sincen,,.. i1s the number of available animation steps for
the interval oft, the number of steps for such a subinterval is given by:

_ Mnaz +d
T a1
The maximum delay,,... depends on the lowest number of steps n,,;, required
for a subinterval. Rewriting Equation 5]16, this maximumegietan be written as:

(5.16)

Qe = —maz — Tmin (5.17)
Nomin — 1
The optimal value off is found, when the subintervals ©bf two consecutive values
of attributea do not overlap and there is no gap between them. In order tbleet@
guantify this overlap, the number of possible values foheamxel attribute, must be
taken into account. In general, this numbey,, is different for all voxel attributes. A
list of all voxel attributes and their according,,, can be found in Table 5.2. Using
amae @and delayd, the subinterval overlap of two consecutive values of given by:

d

amaw
The overlap can be interpreted as the percentage of anahtexerlapped by its
preceding or succeeding interval. In other words, wheno < 1, two consecutive
intervals overlap. Ib < 0, there is a gap between the intervalso K 1, the two (and
as a consequence, all) intervals coincide. Finally, when0 there is no overlap and no
gap between them. This behavior is illustrated in Figur@5Using Equation 5.18, the
delay can be expressed in terms of the desired overlap:

0o=1- (5.18)

d=(1-0)amae (5.19)

36

—> —_—
a = 2 —_—
> —)
t t
(8) o = 1: full overlap (b) 0 < o < 1: partial overlap
i — —
2 — ; —
— —
t t
(c) o = 0: no overlap, no gap (d) o < 0: negative overlap, or gap

Figure 5.12: lllustration of the interval overlaplefined in Equation 5.18.

The goal is to minimize occlusion during the animation pesceAn overlap of 1
means, that all voxels travel at once, an overlap less thardhs) that there are gaps
in the animation, where no voxels move at all. This would beastey of available
animation steps. So the optimal value for the overlap is Grevlvoxels start moving
as soon as their attribute-wise predecessors stoppedudiivey Equation 5.19 for an
overlap of 0 yields the optimal delay for a given attribute

opt = Amag (5.20)

Depending on the chosen attribute, or rathgr,, d.,: could exceedl,,,,, defined
in Equatiori 5.1]7, and as a consequence reduce the numbexilatde animation steps
for a subinterval to a value below the desired minimum. Gitrext even for the float
data type, there ar2?* animation steps available, this will hardly ever be the chse
for the sake of completeness the optimal delay should beattewas:

dopt = min(amaza w) (521)
This ensures an optimal exploitation of the animation stepthe subintervals. As
far as this delaying approach goes, the number of simultestgdraveling voxels, has
been minimized. Still, all voxels sharing the same attelugtlue move at the same time.
For example, let the delay be based on one of the grid codedirtd the voxels. Then
the number of voxels moving simultaneously is at least thalyer of voxels of a slice

37

perpendicular to the selected axis. This also holds for éinearning voxel attributes,
intensity and gradient magnitude.

5.3.2 GUI Controls for the Interpolation Parameter

Using an optimal delay with no overlap causes problems, wisémg a simple slider.
There are2** animation steps ans possible slider states. Thus, a single slider step
equals% animation steps. Optimally, one slider step should cooedpo one anima-
tion step. Applying an optimal delay reduces the availatierval toﬁ. If the interval
becomes smaller thal's, steps are being skipped, due to the low resolution of the use
interface. This problem could be circumvented using thesaauheel or cursor keys on
the slider. However, this makes the control sequential amchardly be used to traverse
the whole interpolation interval. A good choice of a useeifdce for the interpolation
parameter would probably be a jog dial, as used for profaasmdeo editing systems.

5.4 Parameter Transfer Function

The staggered animation approach does not take the distnbof the voxel attributes
into account. All voxels, regardless of the relative fregmyeof their attribute value,
use the same amount of time to complete their transitiontibAties like the grid co-
ordinates are equally distributed, meaning, each valudefattribute has the same
frequency throughout the volume. This can easily be verlfiethe fact, that each slice
perpendicular to a selected axis has the same number ofsvokel these attributes,
an adaptive voxel speed is not really necessary. Intensdygaadient magnitude, on
the other hand, are unevenly distributed attributes. Fesedhattributes, conditioning
the traversal speed of the interpolation interval on thgueacy of the attribute values
would be preferable. It makes sense to spend more time ondngly occurring voxel
values, and less time on rarely occurring voxel values. Taisbe realized by apply-
ing a so-callegparameter transfer function (PTR the interpolation parameterThis
function yields a transferred interpolation parametand is given by:

= f(t), f:]0,1] > [0,1] (5.22)

This function is also used to switch between ascending asceteling delay order.
For ascending ordef,(t) has to be strictly monotonic increasing, which means:

a<b= f(a) < f(b) Va,bel0,1] (5.23)
For descending ordef,(t) has to be strictly monotonic decreasing, or formally:

a>b= f(a)> f(b) Va,be[0,1] (5.24)

38

0 1t 0 Tt 0 1t
(a) Ascending (b) Descending (c) Transformation

Figure 5.13: Figures (a) and (b) show the same two paranratesfer functions for
ascending and descending order respectively. A PTF aateseor decelerates voxels,
when a subinterval af with constant slope is mapped to a larger or smaller sulviaker
of t/, respectively. For example, in the areas highlighted itoyela subinterval of

of size 0.4 is mapped to a subintervaltobf size 0.1, effectively slowing down voxels
to a quarter of the original speed represented by the blee l{o) Geometrically, an
ascending PTF can be converted to a descending PTF and v by reflecting it
about the line parallel to th#-axis and intersecting thieaxis att = 0.5.

An ascending PTH,(¢) can be transformed into a descending BT&) by simply
substituting its parametery 1 — ¢, yielding:

fa(t) = fd(l - t)
fat) = fa(1—1)

This simple transformation makes it unnecessary to defied”tfF for ascending
and descending order separately. Figurel5.13 shows a czmpaf the same PTFs in
ascending and descending order and a geometric intelipretatthe transformation.
f(t) has to be strictly monotonic increasing/decreasing, otiserthe value of’ would
remain unchanged for subintervalstand the animation would stop.

For each unevenly distributed voxel attribute, like infgnand gradient magnitude,
it is desirable to define an appropriate PTF. Because of igdioel to the frequency
distribution of an attribute, a good PTF can be automatiogéinerated. Figure 5.114
shows the frequency distribution and the cumulative digtron function (CDF) of the
density values of a human head data set. The slope of the CDFatfrébute is steeper
for more frequent values. This is the opposite behavior efdésired PTF. Hence, the
PTF of an attribute can be derived from its CDF through ineersiThe inversion can
only be done, if the CDF is strictly increasing, otherwiseérit&rse would not be unique.
Since all voxel attributes are discrete, so are their CDFsielleless, discrete functions
can be inverted as well, by simply swapping the coordinateékedr data points. The
result is the discrete attribute-driven PTF. To avoid saddenps in the animation, the

(5.25)

39

14 1

) r/"
0,1 + /
0,6
0,01 - /
0,4
0,001 - /
0,2

0,0001 - 0

(a) Intensity histogram (b) A cumulative distribution
function (CDF)

Figure 5.14: (a) shows a logarithmic histogram of a humardhaad (b) shows the
corresponding cumulative distribution function. The leghintensity for this dataset
is 4096. To illustrate the discrete nature of the empiricaFCthe class width of the
histogram was set to 256, resulting in 16 bins. Usually thsskize is 1, nevertheless
the values "between" the bins need to be interpolated.

PTF needs to be smoothed. On this account, linear interpolét applied between
the data points, yielding a piecewise linear function. TheFC evenly distributed
attributes has a constant slope of 1, and therefore the dingoattribute-driven PTF
is the unaltered interpolation parametér= ¢. Attribute-driven PTFs automatically
slow down the movement of frequent attribute values, anélacate the coarser ones.
This is the desired behavior in general, but in some casestagnts are necessary.
For example, a substantial part of volumetric data is coragpad empty space and is
usually transparent. Slowing down these voxels should b&lad, which can be done
by adjusting the attribute-driven PTFs manually.

40

CHAPTER

Implementation

The implementation of our visualization prototype was dasea number of plug-ins
for VolumeShop!]4], a volume visualization framework implented by Bruckner et al.
VolumeShop provides a complete OpenGL and GLSL setup, itumality for loading

and traversing of volumetric data, and interactive tranfections. The plug-ins were
implemented in Visual Studio 2008 using C++, and OpenGL an&IGwere used to
program the graphics hardware. Using this framework sicpnifily reduced the imple-
mentation effort and allowed us to focus on the implemeotadif animated transitions.

6.1 Implemented Plug-Ins

The renderer performing the animated transitions must palia of rendering sin-
gle voxels on arbitrary spatial coordinates. Being an obpeder method (see Section
[2.2.2) makes volume splatting the ideal candidate. In otdlefeliver appealing ren-
dering results of the volume, a volume splatter must rerfueeroxels in back-to-front
order. This either requires a resorting of the voxels angtthre viewing parameters
change, or three copies of the volume in memory (see Chapter details). So it
is either a pre-processing step on the CPU or a consideratyeaise in memory con-
sumption. On the other hand, when using the splatter sadelydxel animation, simple
compositing using the OpenGL blending funct@inBl endFunc(GL_SRC_ALPHA,
GL_ONE_M NUS_SRC_ALPHA) is sufficient. This is why a raycaster, included in the
framework, is being used to render the volume, and the aetinatxels are rendered
using a very basic volume splatter.

41

6.1.1 Volume Splatter

The voxels are loaded into\gertex buffer objecand transferred to graphics memory
once. The actual animation and the shading takes place wvettex shader. The frag-
ment shader is responsible for drawing the splats.

Vertex Shader The interpolation of the voxel coordinates takes place m @yordi-
nates, i.e., after transforming the coordinates of the-stad end-points of the anima-
tion with the respectiviModelViewmatrix. The interpolation function can be a Bézier
function of first, second or third degree (see Sedtion b.2.1)

Instead of using3._ QUAD the voxels are rendered usi@)_PO NT_SPRI TES,
which reduces the number of necessary coordinates per fraxelfour to one. The
size of the point sprites is set in the vertex shader ugingPoi nt Si ze. The color
and opacity of each voxel is derived from the transfer fuorgtwhich is implemented
as a simple 1D texture, indexed by the normalized voxel Bitgn Since the color is
constant throughout a single point sprite, shading alsestakace in the vertex shader.

Fragment Shader To avoid quadratic point sprites with constant opacity,dpacity
channel of each point is multiplied by a 2D Gaussian kernegrgby:
1 (2-0.5)24(y=0.5)2
G =——-€e 22 6.1
(z,9) Gro?) € (6.1)
Herex, y are the normalized coordinates inside a single point sgiven by

gl _Poi nt Coor d in the fragment shader. The circular 2D Gaussian functioa is
bivariate normal distribution of two uncorrelated vargateandy, ando is thestandard
deviation Since the same kernel is applied to each voxel, the compuogeffort can be
significantly reduced by pre-computing the kernel. The ltedfuithe pre-computation is
stored in a texture, which is then used as a lookup table gdibygl _Poi nt Coor d.

6.1.2 Trajectory Renderer

Instead of moving voxels along trajectories, the trajeetothemselves are rendered as
line strips. Therefore, a neighborhood of voxels is setetteractively by the user from
either the 2D histogram (using a 2D neighborhood) or themelusing a 3D neigh-
borhood). The selected voxels are highlighted in both sations and are connected
by their trajectories. In order to render the trajectortbs, vertices of each trajectory
need to be pre-computed on the CPU and sent to the GIAU dsl NE_STRI Ps. Each
trajectory gets its color from the transfer function andd¢iere has the same color as
its corresponding voxel. In order to be able to apply illuation, a normal is required.
Unfortunately, a line does not have a single normal, buteraghnormal plane. There-
fore, the vector coplanar to the tangent and the light vastohosen as the normal. To

42

Figure 6.1: GUI element to define parameter transfer funstior each of the voxel
attributes. In this example the majority of the interpaatinterval is spent animating
voxels with low y-coordinates.

be able to utilize the graphics hardware without pre-comnguhe normal of each line
segment of each trajectory, the illumination parameteve @ be precomputed into a
texture. Here each color channel corresponds to one of tee thumination parame-
ters (ambient, diffuse and specular) used in the Phong iequai brief description of
this method, introduced by Zdckler et al. [50], can be foun8eéctior 4.3.

6.1.3 Parameter Transfer Function

Besides the renderers, a component to define the parametsfetriunctions, described
in Section 5.4, had to be implemented. These functions alf@wser to control the
amount of time spent in certain subintervals of the inteapoh parameter. In some
cases it is desirable to spend more time in an interval coingimore voxels, and less
time in intervals containing a smaller number of voxels. Ur&6.1 shows the GUI
element used to define the PTFs.

43

CHAPTER

Results

The main goal of this work is to help users gain insight intduweetric data. Since
animation is very useful for understanding statisticabdd#], we want to apply the
same idea to volumetric data. Animating volumetric data isagor challenge due to
the huge number of objects to be animated at once. Movingaklg simultaneously
is not an option, thus staggered animations, introduced ésr ldnd Robertson [14],
are implemented. Furthermore, to keep the number of simedtasly moving objects
at a minimum, non-contributing voxels are hidden. Theseswmes help reducing the
cognitive load for the user. The figures in this chapter degmémations, that use the
volume as the starting point.

7.1 Interpolation Methods

The voxels’ trajectories can be linear, quadratic and c8@éizier splines (see Section
(.2.1). The animation is controlled by an interpolationgmaeter0 < ¢ < 1, where

t = 0 andt = 1 represent the start- and end-point of the animation, reéispéc The
animation path can be calculated using linear interpalgffagure 7.1), quadratic inter-
polation (Figuré_72), or cubic interpolation (Figlirel7.3)

7.2 Staggered Animation

The animation can be delayed using one of the inherent vak@biges. These at-
tributes are the grid coordinates (x, y, z), density and igradnagnitude. The voxels
can either be delayed in ascending or descending attribdter,aneaning, that vox-
els with low or high attribute values start moving first. Higl¥.4 shows the results,
when the delay is based on the voxels’ densities. In ascgraditer, voxels witHow

44

Figure 7.1: The screen shot was taken for an interpolatisampetert = 0.2. Two
points are required when using linear interpolation to wale the animation paths.
The red and green axes are the normalized voxel density aatilegt magnitude, re-
spectively. The blue axis was added for spatial orientation

density start moving first, filling the density/gradienttbigram horizontally fromeft

to right. Using descending order, voxels witiigh density move earlier, and the his-
togram is filled horizontally fronmtight to left In Figure[7.b the gradient magnitude is
used to delay the voxels. In ascending order, voxels lwithgradient magnitude start
moving first, filling the density/gradient histogram homtally from bottom to top In
contrast, when using descending order, voxels Wighh gradient magnitude start mov-
ing first, and the histogram is filled frotop to bottom Figures 7.6 717, arld 7.8 show
the results when the delay is based on the voxels’ coordin®tepending on ascending
or descending order, voxels with lower or higher coordinatieies start moving first,
respectively. Regardless of the selected order, all voXdlseosame slice move simul-
taneously. Using an optimal delay (see Sedtion 5.3.1), asingle slice moves at each

45

Figure 7.2: The screen shot was taken for an interpolatioanpetert = 0.2. In addi-
tion to the two points used for linear interpolation, a thpaint is required for quadratic
interpolation. The position of the voxel in the histograradby translated by0, 0, 1)"
was used. The red and green axes are the normalized voxélydams gradient magni-
tude, respectively. The blue axis was added for spatiahtai®n.

point in time. The quality of certain animations (espegi#itiose delayed by grid coor-
dinates) depends heavily on the chosen camera positiorharadrangement of the two
representations. In Figure 7.9, the voxels are animated fhe@ volume to thgradient
magnitude histograrm ascending gradient magnitude order. A bin size of 32 wad us
for the logarithmic gradient magnitude histogram. Sineetthnsfer function calculates
colors based on the voxels’ intensities, voxels with theesgnadient magnitude values
(but different densities) have different colors. In Figift&Q, the voxels are animated
from the volume to thelensity histogranin ascending density order. This means, that
voxels with low density start moving first. A bin size of 1 wased for the logarithmic
density histogram. Setting the delay paraméttr a sufficiently large value, separates
voxels with same intensities into groups. Figure 77.11 shibedirst two images of an
image sequence of a non-delayed animation (délay 0), where all voxels move si-

46

Figure 7.3: The screen shot was taken for an interpolaticarpeter = 0.2. In addition

to the three points used for quadratic interpolation a fpaint is required for cubic
interpolation. The additional point is the voxel grid coi@te minus the coordinates of
the volume center. This makes the voxels travel away froncéiméer of the volume and
effectively avoids trajectories running through the volunThe red and green axes are
the normalized voxel density and gradient magnitude, sm@dy. The blue axis was
added for spatial orientation.

a7

multaneously. The remainder of the image sequence is showigure[Z.IP. In this

case no order can be applied. Finally, Figure7.13 showsrtéviio images of an image
sequence of an animation using an optimal delay. The lasinhages of this sequence
are shown in Figure_7.14. Using an optimal delay only voxeth the same attribute
value travel simultaneously. These are in this exampléhallzoxels of the same slice.

7.3 Trajectory Rendering

When rendering trajectories of the voxels, a neighborhoodgéls has to be selected
from the volume. The center and diameter of this neighbathzan be interactively
selected by the user. The voxels contained in this neigldooifare then connected
in both representations by their trajectories, which awdsld using the transfer func-
tion. Figure 7.1b shows an example of trajectory rendenvigsdifferent neighborhood
sizes. Here, the arcs in the density/gradient magnitudedram represent transitions
between regions of different density (e.g., bones and issfi¢). Voxels with low gradi-
ent magnitude reside in a homogeneous neighborhood, waheogals with high gradi-
ent magnitude reside in a heterogeneous neighborhoods#atjthe transfer function
accordingly, allows the user to select a neighborhood frioeninterior of the volume.
See Section 413 for details.

48

(b) Descending density

Figure 7.4: (a) Voxels with low density start moving first.i¥lean be observed in the
density/gradient histogram, which is filled horizontallprh left to right. (b) Voxels
with high density move earlier, and the histogram is fillezhirright to left.

49

(a) Ascending magnitude

(b) Descending magnitude

Figure 7.5: (a) Voxels with low gradient magnitude start mgvfirst. This can be
observed in the density/gradient histogram, which is filedtically from bottom to
top. (b) Voxels with high gradient magnitude move earliex éhe histogram is filled

from top to bottom.

50

(a) Ascending x-axis

(b) Descending x-axis

Figure 7.6: Voxels with (a) lower or (b) higher x-coordimastart moving first. Voxels
of the same slice move simultaneously. Setting the deldy-tor,,.... only a single slice
moves at each point in time.

51

(a) Ascending y-axis

(b) Descending y-axis

Figure 7.7: Voxels with (a) lower or (b) higher y-coordimastart moving first. Voxels
of the same slice move simultaneously. Notice, that thenaellhas been transformed
differently in (a) and (b) to give a better view on the aniroatiWhen setting the delay
to d = y,.az, ONly @ single slice moves at each point in time.

52

(a) Ascending z-axis

(b) Descending z-axis

Figure 7.8: Voxels with (a) lower or (b) higher z-coordirastart moving first. Voxels
of the same slice move simultaneously. Notice, that themaellhas been transformed
differently in (a) and (b) to give a better view on the aniroatiWhen setting the delay
to d = z,.42, ONly a single slice moves at each point in time.

53

Figure 7.9: The voxels are animated from the volume to theigra magnitude his-
togram in ascending gradient magnitude order. This mehasybxels with low gradi-
ent magnitude values move first. A bin size of 32 was used ®tagarithmic gradient
magnitude histogram. Since the transfer function caleslablors based on the vox-
els’ intensities, voxels with the same gradient magnitualaes (but different densities)
have different colors.

54

Figure 7.10: The voxels are animated from the volume to thesitie histogram in
ascending density order. This means, that voxels with lawsite start moving first. A
bin size of 1 was used for the logarithmic density histogr&etting the delay parameter
d to a sufficiently large value, separates voxels with samensities into groups.

55

(a) t=0.0

Figure 7.11: When the delay is 0, all voxels start and end therement at the same
time. (a) and (b) show the first two images of the image sequenRue last two images
of the sequence are shown in Figlire 7.12.

(b) t=0.3

56

(a) t=0.6

Figure 7.12: When the delay is 0, all voxels start and end thewement at the same
time. (a) and (b) show the last two images of the image segudrie first two images
of the sequence are shown in Figlire 7.11.

(b) t=1.0

57

(a) t=0.0001

Figure 7.13: When using an optimal deldy,, only one slice moves at a time. Each
slice uses a subinterval of the interpolation parameterizrm‘@lt. Since the human
head has an optimal delay of 166 for the z-coordinajg.(= 166), each slice uses
a subinterval ofl /166 ~ 0.006. (a) and (b) show the first two images of the image
sequence. The last two images of the sequence are showruireid 4.

(b) t=0.002

58

(a) t=0.004

(b) t=0.006

Figure 7.14: When using an optimal deldy,, only one slice moves at a time. Each
slice uses a subinterval of the interpolation parameteiizef &,;. Since the human
head has an optimal delay of 166 for the z-coordinajg (= 166), each slice uses
a subinterval ofl /166 ~ 0.006. (a) and (b) show the last two images of the image
sequence. The first two images of the sequence are shownureHdL3.

59

(b) Neighborhood diameter = 10 voxels

Figure 7.15: The trajectory of each voxel of a selected rimghood is rendered, vi-

sually connecting the same voxel in the two representatitifieas the same color and
transparency as the corresponding voxel. The size anddacat the neighborhood

can be changed interactively, using the mouse cursor. Tdsimthe density/gradient

magnitude histogram represent transitions between regimlifferent density (e.g.,

bones and soft tissue). Voxels with low gradient magnitiesede in a homogeneous
neighborhood, whereas voxels with high gradient magnitedile in a heterogeneous
neighborhood.

60

CHAPTER

Summary

8.1 Introduction

Volumetric data consists of volume elements (voxels), rayea on a 3D equidistant
grid. Each voxel has 3D coordinates and an intensity. Adlditily, for each voxel,
a surface normal can be approximated by the gradient. Thiiegrtais a vector, that
points in the direction of the greatest rate of intensity@ase. Several representations
can then be used to visualize the volumetric data. The mestum form are slices
perpendicular to one of the major axes. Furthermore, 3Darngls are used to literally
gain insight into volumetric data. A more abstract représtgim of volumetric data are
histograms. Here only the intensity and/or gradient magieitare used yielding three
possible histograms: 1D intensity histogram, 1D gradieagnitude histogram, and a
2D intensity/gradient magnitude histogram.

To gain insight into the data, the correlations betweenethepresentations need to
be examined. In particular the correlation between the 3idegng and the histograms
are of interest. Usually this connection is shown hiaking and Brushindgechniques,
where voxels that are selected in one view also get higldayht the other ones.

8.2 Animated Transitions

We extended the idea of Linking and Brushing, so instead diligigting voxels, we
moved them from one representation to another one. When angnexels individu-
ally, their paths need to be calculated. This was done usiagBeéurves of first, second,
or third degree. Bezier curves were calculated on the GPlusimer-cutting. After
examining multiple algorithms, the De Casteljau algoritheaswelected, due to its high
performance on low degree curves.

61

For the animation an interpolation parameiex ¢ < 1 is used, where 0 and 1 rep-
resent the starting and ending point of the animation résede The voxels’ position
is then calculated as a convex combination of the coordsnaft¢he start and the end
point. Without any further modifications, changihgutomatically changes the position
of every voxel, which leads to high occlusion. Delaying tteetsand end times reduces
the number of simultaneously moving objects, and as antaféeltices the number of
overlapping voxels. The delay can be based on one of thes/ax@imalized attributes:
grid coordinates, intensity, or gradient magnitude. Fanegle, voxels with low in-
tensity start moving first, whereas voxels with high intgnstart moving later. This
delayed interpolation parametgris given by

to=t{d+1)—d-a, d>0, (8.1)

whered is the delaying factor and is the normalized voxel attribute. df = 0, the
interpolation parameter remains unchanged. Using thisoagp, voxels with the same
attribute value move at the same time (e.g., all voxels ofstree slice). In order to
avoid overlapping of voxels with consecutive attributewes, the delay must not be set
too small. On the other hand, to avoid gaps between thosdsydike delay must not be
set too high. The optimal delay corresponds to the maximuoewaf a voxel attribute.
In case of the x-coordinate the optimal delay is the volundthyiand for the intensity
it is the difference between the highest and the lowest orguntensity.

In addition to delaying the animation, we also implementexb-aalledparameter
transfer function which allows us to spend more or less time in certain subiate
of the volume. This is particularly useful, if the user watdsspend more time on
intervals with many voxels and less time on empty subintervehis parameter transfer
function can be derived from the cumulative distributiondtion of an attribute through
inversion. Of course, this is only useful for unevenly disited attributes like intensity
and gradient magnitude.

8.3 Hybrid Volume Rendering

In order to render the volume as well as individual voxelsplme splatter was used.
For a volume splatter to produce correct renderings, eitieevolume needs to be sorted
in back-to-front order for each frame, or three stacks aesli(one for each major axis)
have to be stored in graphics memory. The former requirestanhpre-sorting on the
CPU, and the latter requires three times the amount of membhgrefore a hybrid
rendering approach was chosen. Here, the volume gets ezhfgra raycaster, and
as soon as voxels leave their grid position, they are reddasesimple point sprites
in no particular order. To get better results the alpha cbkhoheach point sprite is
multiplied by a 2D Gaussian kernel. Each voxel is either ezad as point sprite or by
the raycaster, but never twice. This approach still reguinece as much memory as a

62

raycaster, but produces appealing renderings of the voluith@ut constantly sorting
of the volume.

8.4 Conclusion

We have presented different alternatives.itaking and Brushindor volumetric data. It
is difficult to assess the value of animation in revealinge&ations between different
representations. Due the ephemeral nature of animatiarxed gannot be displayed in
more than one place at once. Depending on the selected niglatgribute this makes
it hard to determine the origin and destination of a singleelo Using this delaying
approach, the number of simultaneously moving objects ngnb® reduced to a certain
degree. Voxels with the same attribute value will always enatthe same time.
Additional methods to reduce the number of animated obgxikl be implemented,
including windowing and volume segmentation. The aninmati@uld then be applied
to the selection only. This would drastically reduce the hanof simultaneously mov-
ing objects and minimize occlusion in the process. Furtloeemacceleration and de-
celeration at the starting point and the ending point, retsgy, could be added.

63

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

Bibliography

R. A. Becker and W. S. Cleveland. Brushing scatterpldischnometricspages
127-142, 1987.

J. F. Blinn. Models of light reflection for computer synsieed pictures. IrPro-
ceedings of the International IEEE Conference on Computeplycs and inter-
active techniguegages 192-198, 1977.

S. Bruckner. Efficient Volume Visualization of Large Medl Datasets. Mas-
ter’s thesis, Institute of Computer Graphics and AlgorithiWienna University of
Technology, 2004.

S. Bruckner and M. E. Groller. VolumeShop: An Interactisgstem for Direct
Volume lllustration. InProceedings of the International IEEE Conference on Vi-
sualization pages 671-678, 2005.

C. Collins and S. Carpendale. VisLink: Revealing RelatiopslAmongst Visu-
alizations. IEEE Transactions on Visualization and Computer Graphmgages
1192-1199, 2007.

R. Crawfis and N. Max. Direct volume visualization of thréeensional vector
fields. InProceedings of the IEEE workshop on Volume visualizati@ages 55—
60, 1992.

B. Csebfalvi. Interactive Volume-Rendering Techniques for Medical Détu-
alization PhD thesis, Institute of Computer Graphics and Algorithivisnna
University of Technology, 2001.

P. de Casteljau. Outillages méthodes calcul. Technégaint, Citroén, Paris, 1959.

J. Delgado and J. M. Pefa. A linear complexity algoritlanthe Bernstein basis.
In International Conference on Geometric Modeling and Graghpages 162—
167, 2003.

64

[10] J. Delgado and J. M. Peiia. On efficient algorithms foypomial evaluation in
CAGD. InMonografias del Seminario Matematico Garcia de Galdean@ages
111-120, 2004.

[11] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integed volume render-
ing using hardware-accelerated pixel shading.Ptaceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardwpages 9—-16, 2001.

[12] M. A. Fisherkeller, J. H. Friedman, and J. W. Tukey. PR3M-AnN Interactive
Multi-dimensional Data Display and Analysis System A@M Pacific '75 pages
140-145, 1975.

[13] M. S. Floater. Mean value coordinatgSomputer Aided Geometry Desjgrages
19-27, 2003.

[14] J. Heer and G. G. Robertson. Animated Transitions iniSteal Data Graphics.
IEEE Transactions on Visualization and Computer Graphmasges 1240-1247,
2007.

[15] R. Kosara. Visualization Criticism - The Missing Link Beden Information Vi-
sualization and Art. IrfProceedings of the International IEEE Conference on In-
formation Visualizationpages 631-636, 2007.

[16] R. Kosara, G. N. Sahling, and H. Hauser. Linking Scient#nd Information
Visualization with Interactive 3D Scatterplots. Rroceedings of the Interna-
tional IEEE Conference on Computer Graphics, Visualizatiod &omputer Vi-
sion, pages 133-140, 2004.

[17] P. Lacroute and M. Levoy. Fast volume rendering usingems-warp factorization
of the viewing transformation. IRroceedings of the International IEEE Confer-
ence on Computer graphics and interactive technigpages 451-458, 1994.

[18] A. Law and R. Yagel. An optimal ray traversal scheme faualizing colossal
medical volumes. IfProceedings of the International IEEE Conference on Visu-
alization in Biomedical Computingages 43-52, 1996.

[19] M. Levoy. Display of surfaces from volume datieEE Computer Graphics and
Applications pages 29-37, 1988.

[20] M. Levoy. Efficient ray tracing of volume dataACM Transactions on Graphigcs
pages 245-261, 1990.

[21] M. Levoy. Volume rendering by adaptive refinemeMisual Computingpages
2—7, 1990.

65

[22] E. Lindholm, M. J. Kilgard, and H. Moreton. A user-pregnmable vertex engine.
In Proceedings of the International IEEE Conference on Compuyitaphics and
interactive techniquegpages 149-158, 2001.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high hetson 3D surface
construction algorithmSIGGRAPH Computer Graphic21(4):163-169, 1987.

[24] S. R. Marschner and R. J. Lobb. An evaluation of reconsitndilters for volume
rendering. InProceedings of the International IEEE Conference on Vigadibn
pages 100-107, 1994.

[25] A. R. Martin and M. O. Ward. High Dimensional Brushing fortéractive Explo-
ration of Multivariate Data. IProceedings of the International IEEE Conference
on Visualizationpages 271—, 1995.

[26] N. Max. Optical models for direct volume rendering&EE Transactions on Visu-
alization and Computer Graphi¢cpages 99-108, 1995.

[27] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfispractical evalua-
tion of popular volume rendering algorithms. Pnoceedings of the IEEE sympo-
sium on Volume visualizatippages 81-90, 2000.

[28] T. Mdller, R. Machiraju, K. Mueller, and R. Yagel. A common of normal esti-
mation schemes. IRroceedings of the International IEEE Conference on Visual-
ization pages 19-26, 1997.

[29] K. Mueller and R. Crawfis. Eliminating popping artifacts sheet buffer-based
splatting. InProceedings of the International IEEE Conference on Vizadion
pages 239-245, 1998.

[30] K. Mueller, T. Méller, and R. Crawfis. Splatting withoutdlblur. InProceedings
of the International IEEE Conference on Visualizatipages 363—370, 1999.

[31] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-@Quabplatting on
Rectilinear Grids with Efficient Culling of Occluded Voxel#£EE Transactions
on Visualization and Computer Graphjgsages 116-134, 1999.

[32] N. Neophytou and K. Mueller. GPU accelerated imageradysplatting. IfFourth
International Workshop on Volume Graphigmges 197-242, 2005.

[33] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansewl, B Shirley. Interac-
tive ray tracing for volume visualizatiodlEEE Transactions on Visualization and
Computer Graphicspages 238 —250, 1999.

66

[34] H. Pfister. Hardware-Accelerated Volume RenderingThe Visualization Hand-

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

book chapter 11, pages 229-260. Elsevier, 2004.

B. T. Phong.lllumination for computer-generated imagelBhD thesis, The Uni-
versity of Utah, 1973.

T. Porter and T. Duff. Compositing digital imageslIGGRAPH Computer Graph-
ics, 18:253-259, 1984.

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Hntieractive volume
rendering on standard PC graphics hardware using multintes and multi-stage
rasterization. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardway@ages 109-118, 2000.

G. G. Robertson, J. D. Mackinlay, and S. K. Card. Inforimatrisualization using
3d interactive animation. IRroceedings of the SIGCHI conference on Human fac-
tors in computing systems: Reaching through technglpgges 461-462, 1991.

T. W. Sederberg. Computer Aided Geometric Design CourssedN
http://ww.tsplines.com educationportal.htm , last retrieved
on 24.08.2011.

K. R. Subramanian and D. S. Fussell. Applying space sididn techniques
to volume rendering. IfProceedings of the International IEEE Conference on
Visualization pages 150-159, 1990.

B. Tversky, J. Bauer Morrison, and M. Betrancourt. Aniroatican it facilitate?
International Journal of Human-Computer Studipages 247-262, 2002.

T.van Walsum, A. J. S. Hin, Versloot J., and F. H. Posticieht Hybrid Rendering
of Volume Data and Polygons. Wdvances in Scientific Visualizatiopages 83—
96. Springer-Verlag, 1992.

F. Vega-Higuera, P. Hastreiter, R. Fahlbusch, and Gin@re High performance
volume splatting for visualization of neurovascular data.Proceedings of the
International IEEE Conference on Visualizatiggages 271-278, 2005.

M.O. Ward. XmdvTool: integrating multiple methods fasualizing multivariate
data. InProceedings of the International IEEE Conference on Vigadilon pages
326-333, 1994.

J. Warren, S. Schaefer, A. Hirani, and M. Desbrun. Bamyree coordinates for
convex setsAdvances in Computational Mathematipages 319-338, 2007.

67

http://www.tsplines.com/educationportal.html

[46] L. Westover. Interactive volume rendering. Mmoceedings of the Chapel Hill
workshop on Volume visualizatippages 9—-16, 1989.

[47] L. Westover. Footprint evaluation for volume rendegrirSIGGRAPH Computer
Graphics pages 367-376, 1990.

[48] Wikipedia. De Casteljau’s algorithnint t p: // en. wi ki pedi a. or g/ wi ki /
De_Casteljau’ s_al gorithm lastretrieved on 24.08.2011.

[49] R.Yageland Z. Shi. Accelerating volume animation bycspbeaping. IfProceed-
ings of the International IEEE Conference on Visualizatipages 62—69, 1993.

[50] M. Zockler, D. Stalling, and H.-C. Hege. Interactive wadization of 3D-vector
fields using illuminated stream lines. Rroceedings of the International IEEE
Conference on Visualizatippages 107-113, 1996.

[51] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA votusplatting. In
Proceedings of the International IEEE Conference on Vigadilon pages 29-36,
2001.

68

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

List of Figures

nterpolation Method 45
nterpolation Method 46
nterpolation Method 47

49

7.6 Results: X-aXiS

.7 Results:y-axis.

7.8 ResUllS: Z-aXiS

7.9 Results: 1D gradient magnitude histogram 54
7.10 Results: 1D density hiStOQIAMo 55
7.11 Results: Animation sequence (Delay=0) (1/2) . 56
7.12 Results: Animation sequence (Delay=0) (2/2 57
7.13 Results: Animation sequence (Delay=Optimal) (1/2) 58
7.14 Results: Animation sequence (Delay=Optimal) (2/2) 59

70

List of Tables

71

	Introduction
	State-Of-The-Art in Volume Rendering
	Optical Model for Volume Rendering
	Volume Rendering Techniques
	Image-Order Volume Rendering
	Object-Order Volume Rendering
	Hybrid-Order Volume Rendering
	Texture-based Techniques

	Related Work
	Hybrid Volume Rendering
	Volume Splatting
	Raycasting
	The Raycasting Pipeline

	Trajectory Rendering
	Illumination of Lines

	Animated Transitions
	Principles for Animation
	Interpolation Methods
	Convex Combination of Two Points
	Convex Combination of Three or More Points

	Staggered Animation
	Optimal Delay
	GUI Controls for the Interpolation Parameter

	Parameter Transfer Function

	Implementation
	Implemented Plug-Ins
	Volume Splatter
	Trajectory Renderer
	Parameter Transfer Function

	Results
	Interpolation Methods
	Staggered Animation
	Trajectory Rendering

	Summary
	Introduction
	Animated Transitions
	Hybrid Volume Rendering
	Conclusion

	Bibliography
	List of Figures
	List of Tables

