
Animated Transitions Across
Multiple Dimensions for

Volumetric Data
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Christian Basch
Matrikelnummer 0026388

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Peter Rautek

Wien, October 17, 2011
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Animated Transitions Across
Multiple Dimensions for

Volumetric Data
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Science

by

Christian Basch
Registration Number 0026388

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Ing. Dr.techn. Peter Rautek

Vienna, October 17, 2011
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Basch
Barichgasse 21/19, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First and foremost I want to thank my supervisors Peter Rautekand Eduard Gröller for
their patience and valuable input. Furthermore, I would like to thank my parents for
their financial and moral support, and my girlfriend for her constant encouragement and
persistence. Without them I would not have been able to finishmy studies. Thank you!

ii

Abstract

There are several techniques, that can be used to visualize volumetric data. A data set
can be illustrated using slicing (depicting arbitrary slices through the volume), direct
volume rendering (DVR), or in a more abstract way, histogramsand scatter plots. Usu-
ally these different methods of visualization are being applied separately. To recognize
coherencies between the representations, methods based onLinking and Brushing can
be utilized. These methods highlight voxels in one view, as soon as they are selected in
another one. Coming from scientific visualization, these methods are very useful, when
selecting voxels from 2D data representations, like scatter plots. Of course they are
less useful, when trying to select voxels directly from the volume. Therefore this thesis
explored methods, that are not based on selection and highlighting. Rather, the corre-
lation between different representations is shown by moving voxels between different
volume representations. As a basis, methods like staggeredanimation, acceleration, and
deceleration were adopted, which had been previously used in the graphical analysis of
statistical data.

iii

Kurzfassung

Zur Visualisierung volumetrischer Daten stehen zahlreiche Möglichkeiten zur Verfü-
gung. Ein Datensatz kann mittels Slicing (Darstellung von einzelnen Schnitten durch
das Volumen), Direktem Volumenrendering (DVR), oder auf abstraktere Weise mit-
tels Histogrammen oder Scatterplots dargestellt werden. Üblicherweise werden diese
verschiedenen Visualisierungsmethoden getrennt voneinander angewendet. Um Zusam-
menhänge zwischen den einzelnen Ansichten zu erkennen, stehen Linking und Brus-
hing Methoden zur Verfügung. Dabei werden Elemente in einerAnsicht hervorgeho-
ben, wenn sie in einer anderen Ansicht ausgewählt wurden. Aufgrund ihres Ursprungs
in wissenschaftlicher Visualisierung, ist diese Methode sehr gut auf 2D Datenreprä-
sentationen, wie Scatterplots, anwendbar. Allerdings istsie weniger nützlich, wenn die
Auswahl der Voxel direkt am Volumen durchgeführt wird. Aus diesem Grund wurden
im Rahmen dieser Diplomarbeit Möglichkeiten untersucht, die Zusammenhänge zwi-
schen den unterschiedlichen Darstellungsformen aufzeigen, ohne eine Auswahl an Vo-
xeln treffen zu müssen. Dies wurde realisert, indem Voxel von einer Repräsentation in
die andere mittels animierter Übergänge wechseln. Dafür wurden Methoden wie ver-
setzte Animationen und Be- und Entschleuningung adaptiert,die bereits bei der grafi-
schen Auswertung statistischer Daten angewendet wurden.

iv

Contents

1 Introduction 1

2 State-Of-The-Art in Volume Rendering 3
2.1 Optical Model for Volume Rendering3
2.2 Volume Rendering Techniques . 4

2.2.1 Image-Order Volume Rendering 4
2.2.2 Object-Order Volume Rendering 7
2.2.3 Hybrid-Order Volume Rendering 8
2.2.4 Texture-based Techniques . 9

3 Related Work 12

4 Hybrid Volume Rendering 14
4.1 Volume Splatting . 14
4.2 Raycasting . 16

4.2.1 The Raycasting Pipeline . 16
4.3 Trajectory Rendering . 22

4.3.1 Illumination of Lines . 23

5 Animated Transitions 24
5.1 Principles for Animation . 25
5.2 Interpolation Methods . 25

5.2.1 Convex Combination of Two Points 26
5.2.2 Convex Combination of Three or More Points 30

5.3 Staggered Animation . 32
5.3.1 Optimal Delay . 35
5.3.2 GUI Controls for the Interpolation Parameter 38

5.4 Parameter Transfer Function .38

6 Implementation 41
6.1 Implemented Plug-Ins . 41

v

6.1.1 Volume Splatter . 42
6.1.2 Trajectory Renderer . 42
6.1.3 Parameter Transfer Function 43

7 Results 44
7.1 Interpolation Methods . 44
7.2 Staggered Animation . 44
7.3 Trajectory Rendering . 48

8 Summary 61
8.1 Introduction . 61
8.2 Animated Transitions . 61
8.3 Hybrid Volume Rendering . 62
8.4 Conclusion . 63

Bibliography 64

List of Figures 69

List of Tables 71

vi

CHAPTER 1
Introduction

According to Kosara [15], visualization needs to meet certain criteria, to actually be
called visualization. It must be (a)based on (non-visual) data, (b) produce an image
and (c)the result must be readable and recognizable. The purpose of visualization is
to present data that is abstract or at least not immediately visible (e.g., the inside of a
human body). Usually this data is produced by scientific simulations or measurements.
This work focuses on volumetric medical data, but is also applicable to any grid based
volumetric data. In practice volumetric data consists of volume elements (voxels), that
are arranged on a 3D equidistant grid. Each voxel has two attributes: position and
intensity. Additionally, for each voxel, a surface normal might be approximated by cal-
culating the gradient from neighboring voxels. The gradient is a 3D vector, that points
in the direction of the greatest rate of increase. Using these attributes, volumetric data
can be visualized using several representations. The most common form of visualization
are slices, that are perpendicular to one of the major axes. These are used in medical
diagnosis. Furthermore, 3D renderings are used to literally gain insight into volumetric
data. Besides slicing and 3D renderings, there are more abstract representations, like
statistics and histograms. Histograms strip the voxels offtheir grid coordinates and use
one or both of the remaining attributes to accumulate voxelsin classes. Often used
histograms include 1D intensity histogram, 1D gradient magnitude histogram, and a
2D intensity/gradient magnitude histogram. These representations have advantages in
different use cases, and when combined correctly can provide a very powerful tool for
volume exploration. It is difficult for users to establish a connection between these rep-
resentations, when they are just presented side by side. In addition to exploring each
representation on its own, a user must be able to discover correlations among them. This
helps users to quickly gain insight into the composition of the volumetric data set, and
to identify areas of interest. For this purposeLinking and Brushingtechniques can be
used, where voxels that are selected in one view also get highlighted in the other ones.

1

Linking and Brushing is a technique heavily used in 2D data representations. Applied to
volumetric data, it is very useful when selecting voxels in the 2D histogram. If the user
wants to use Linking and Brushing to pick voxels from the volume, less intuitive tech-
niques like 3D brushes need to be used. Our goal was to allow the user to intuitively and
interactively explore the volume. Inspired by the work of Heer and Robertson [14], who
explored the usefulness of animation in statistical data graphics, we wanted to extend
the idea of Linking and Brushing. Instead of highlighting voxels, we move them from
one representation to the other one. Therefore the paths described by the voxels need to
be calculated. Furthermore the timing of the animation is essential. Letting all voxels
start at the same time, makes the animation unrecognizable.Staggering the starting and
ending times is an effective way to prevent extensive overlap by reducing the number
of simultaneously moving objects. A hybrid volume renderer, consisting of a raycaster
and a volume splatter, was necessary to produce appealing renderings while keeping the
computational cost at a minimum.
Chapter 2 describes the state-of-the-art of volume rendering methods and the underlying
optical model. Chapter 3 takes a look at related work. Chapter 4illustrates the hybrid
volume renderer. The particulars on voxel trajectory calculation and animation timing
can be found in Chapter 5. Chapter 6 describes the details of theimplementation, and
its results are then discussed in Chapter 7. Finally, the contents of this diploma thesis
are summarized in Chapter 8.

2

CHAPTER 2
State-Of-The-Art in Volume Rendering

This chapter gives a brief overview of state-of-the-art volume rendering techniques and
their common optical model.

2.1 Optical Model for Volume Rendering

Optical models for volume rendering can be best explained, by looking at the volume as
a cloud of particles [26]. These particles can either absorbor scatter light coming from
a source. Models that take into account absorption, emission, scattering and shadowing
tend to be very complicated, which is why practical models are simplified in several
ways. A common approximation for the volume rendering integral is given by [27]:

Iλ(x, r) =

∫ L

0

Cλ(s)µ(s)e
−

∫
s

0 µ(t)dtds (2.1)

Here,Iλ is the amount of light of wavelengthλ coming from the direction of ray
r that is received at locationx on the image plane.L is the length of the rayr andµ
is the density of volume particles that receive light from the light sources and reflect
it towards the observer according to their material properties. Cλ is the light of wave-
lengthλ reflected and/or emitted at locations in the direction ofr. The equation takes
emission and absorption effects into account, but discardsmore advanced effects such
as scattering and shadowing.
In general, Equation 2.1 cannot be computed analytically. Hence, practical volume ren-
dering algorithms discretize Equation 2.1 into sequentialintervalsi of size∆s. The
result is the common compositing equation:

3

Iλ(x, r) =

L/∆s∑

i=0

Cλ(si)α(si) ·
i−1∏

j=0

(1− α(sj)) (2.2)

For each intervali along a rayr the volume density is classified, via transfer func-
tionsCλ andα, which respectively assign color and opacity to each samplevaluesi in
the volume.

2.2 Volume Rendering Techniques

A three dimensional gridV : Z3 7→ R is considered to represent a spatial density func-
tion f : R3 7→ R sampled at regular grid points, where the density samples are defined
as [7]:

Vi,j,k = f([xi, yj, zk]) (2.3)

These density samples are also referred to asvoxels, which is an abbreviation for
volume elements. Volumetric data can be processed for viewing in two fundamen-
tally different ways. Usingindirect volume rendering the volumetric data is first con-
verted into an intermediate representation (e.g. via Marching Cubes [23]), and is sub-
sequently rendered with polygon rendering hardware. Contrarily, methods that assign
optical properties directly to the volume elements (voxels) without generating any in-
termediate representation are referred to asdirect volume rendering techniques. Since
this work makes use of direct volume rendering techniques exclusively, the remainder
of this chapter will focus on them. The direct techniques area robust and very flexible
way of displaying volumes, allowing us to illustrate the interior of volumes as well.
Although there is no need for an intermediate representation, they are still computa-
tionally expensive due to the tremendous number of voxels which have to be processed.
The direct volume rendering techniques can be further subdivided into two categories.
The image-order methods produce the image by casting rays through each pixel of the
viewing plane and the color of the pixels is determined by thecontributing voxels. In
contrast, the object-order methods process the volume voxel-by-voxel and project them
on the image plane. Each approach has its advantages and drawbacks, which will be
discussed in the remainder of this chapter.

2.2.1 Image-Order Volume Rendering

Using the image-order approach, the computation emanates from the output image, and
not from the object as it is the case with object-order approaches. For each pixel of the
output image the contributing data samples are determined.The most commonly used
image-order algorithm is raycasting, introduced by Levoy et. al. [19]. This approach

4

p(t)

f(x,y,z)

x

y

zr(t)

Figure 2.1: Illustration of a ray and its corresponding reconstructed density function
p(t) [7].

obtains the pixel values by casting rays through the viewingplane and the volume.
These rays can be defined by their parametric equation [7]

r(t) = x + ω · t (2.4)

wherex is the origin,ω the unit direction andt is the ray parameter. Each ray inter-
secting the volume has a specific density profilep, which depends on the density values
along the ray segment lying inside the volume. This density profile can be expressed by
combining Equation 2.3 and Equation 2.4, yielding:

p(t) = f(r(t)) = f(x + ω · t) (2.5)

Figure 2.1 illustrates a ray and its corresponding reconstructed density profile. The
three-dimensional volume function is reconstructed from the samples taken at discrete
intervals along the ray and by evaluating the optical model for them. If the colors and
opacities are composited in front-to-back order, a ray can be terminated, as soon as
full opacity is reached. This is one of the main advantages ofraycasting, because it

5

avoids processing of occluded regions. Medical datasets usually contain a large number
of voxels that do not contribute to the resulting image (i.e., voxels that are classified as
transparent by the transfer function). Efficiently skipping these non-contributing regions
is one challenge in raycasting and has a major impact on performance. Due to the
large number of voxels to be processed and the high computational complexity, several
performance improvements have been proposed over the years:

Empty Space Skipping

Researchers [20, 40] have reported that in typical volumes 70-95% of the voxels are
classified as transparent by the transfer function. Hence skipping these non-contributing
regions has a major performance impact. Levoy [20] introduced a hierarchical space
skipping method using a binary pyramid, that encodes empty and non-empty space.
Here raycasting starts at the top level of the pyramid. Whenever a non-empty cell is
encountered, the algorithm descends one level, entering whichever cell encloses the
ray’s current location. Otherwise the ray is forwarded to the intersection point with the
next cell on the same level. This idea can been taken further by generating a min-max
octree based on the volume’s data values. Whenever the classification changes, this
octree can be used to efficiently rebuild the binary pyramid.

Adaptive sampling

Volumetric datasets contain regions of identical or similar values. Avoiding sampling
inside those regions, is one way to speed up raycasting and has been proposed by Wal-
sum et al. [42]. Basically, a ray starts sampling the volume atlarge intervals and com-
pares each sample to the previous one. If the difference of the values of two adjacent
samples is beyond a certain threshold, additional samples are taken. This idea can also
be extended to regions with low opacity and as a result minor contribution to the final
image.

Inter-Frame Coherency

When interactively viewing a volume, the difference betweentwo consecutive frames
is usually very small. This fact is being exploited by the C-Buffer technique, proposed
by Yagel and She [49], which for each pixel stores the first non-empty voxel hit by the
corresponding ray. When the viewing parameters are changed,this information is used
to estimate the initial position of a ray in the subsequent frame, by transforming the
C-Buffer accordingly.

6

Adaptive refinement

Proposed by Levoy [21], this technique significantly reduces computational effort by
casting rays only from a subset of pixels of the output image.The values of pixels, for
which no ray was cast from, are interpolated from neighboring pixels. Adaptive refine-
ment is an effective technique to ensure interactivity. While dragging the mouse, only
part of the pixels is rendered and the remainder is interpolated. As soon as the interac-
tion stops, the interpolated pixels get rendered as well. This technique exploits the high
coherency between pixels of the output image. For example, it is highly probable, that
between two pixels of similar color, another pixel of a similar color can be found.

Efficient Memory Access

The way large datasets are stored and accessed in memory has alarge performance
impact. The simplest way to store the volume is a three dimensional array. Due to view-
dependent memory access patterns, this leads to variationsin rendering times, when
changing the viewing parameters. A way to circumvent these limitations is the usage of
a storage scheme named bricking [33]. Here the volume data isstored in equally-sized
blocks, which reduces the view-dependent performance variations without increasing
the memory footprint. A similar storage scheme has been usedin the raycasting tech-
nique develpoed by Law and Yagel [18]. Here, each ray is linked to the cell it initially
enters and also to a list of rays waiting for this cell to become active. Only one block is
active at a time. All rays waiting for the active cell are advanced until they exit the cell.
Since a block is only active once, this approach effectivelyavoids cache thrashing.

2.2.2 Object-Order Volume Rendering

Opposed to image-order techniques, object-order methods determine, how each data
sample affects the pixels on the image plane. In its simplestform, an object-order
algorithm loops through the data samples, projecting each sample onto the image plane.

Splatting, introduced by Westover [47], is a technique thattraverses the volume and
projects footprints (known as splats) onto the image plane.Voxels with zero opacity
can be skipped, as they do not contribute to the final image. This is one of the greatest
advantages of splatting, as it can dramatically reduce the number of voxels that have to
be processed. Using orthographic projection, all the kernels have the same projection or
footprint. Thus, the footprint can be pre-computed once andused for the projection of all
the voxels. Perspective projection requires the footprints to be distorted according to the
distance of the voxels to the observer. In the original approach of the algorithm, all the
voxels are splatted directly onto the final image. This is whythe algorithm is known as
composite-every-sample. This method may cause color bleeding and sparkling artifacts,
because the visibility ordering of splats is imperfect.

7

To increase image quality Westover [47] proposedobject-space sheet-buffer splat-
ting. This method uses three stacks of volume slices, one for eachmajor axis. Here
voxel kernels are summed up within the slices of the stack most parallel to the image
plane. Those slices are then composited to the final image. This approach indeed cor-
rects color bleeding but it also introduces noticeable popping artifacts when the camera
moves around the volume. This happens because the samples along rays may not be
aligned anymore, after a small change in viewing angle leadsto a change of the slicing
direction.

Mueller and Crawfis [29] introduced a method which eliminatesthese drawbacks
and also enhances the approximation of the light transport inside voxels:image-space
sheet-buffer splatting. In their approach voxel kernels are processed within slices par-
allel to the image plane. Therefore, voxels can contribute to more than one sheet. All
voxel kernels that overlap a slab (region between two slices) are clipped to the slab and
summed into a sheet buffer. Once a sheet buffer has received all contributions, it is
composited with the current image, and the slicing slab is advanced forward.

In the image-space sheet-buffer splatting [31], early splat elimination is possible
in front-to-back composition by subdividing the image intosmall tiles and avoiding to
splat voxels that cover tiles that have already reached the maximum opacity. However,
the projection transformation still has to be performed forthese voxels, which makes
this optimization less effective than early ray termination in raycasting.

Vega-Higuera et al. [43] proposed the use ofpoint spritesto render neurovascular
data. This reduces the geometry needed for each voxel from four points (needed for the
quads to represent splats) to one. This idea is also used in the GPU-based implementa-
tion of the image-space sheet-buffer splatting proposed byNeophytou and Mueller [32].
Their approach comprises two steps: First the density values of all voxels of a slice are
projected into an auxiliary buffer using textured point sprites. Then all the pixels of
the buffer are classified and shaded using a fragment shader that computes the gradient
vectors at the pixels on the basis of their density central difference (see Equation 4.4).
Finally, the buffer is composed into the final image.

2.2.3 Hybrid-Order Volume Rendering

Image-order and object-order algorithms have very distinct advantages and disadvan-
tages. Therefore, some effort has been put into combining the advantages of both ap-
proaches.

Shear-warp factorization, introduced by Lacroute [17], issuch an algorithm. It is
considered to be the fastest software-based volume rendering algorithm and is based on
a factorization of the viewing transformation into a shear and a warp transformation.
The volume is sheared such that all viewing rays are parallelto the principal view-
ing axis in sheared-object-space. This way the volume and the image can be traversed
simultaneously. Compositing is performed into an intermediate image. Since this inter-

8

shear

project

warp

viewing rays

image plane

volume

slices

Figure 2.2: Illustration of the basic principle of the shear-warp factorization. The vol-
ume slices are sheared, such that the viewing rays become parallel to the major viewing
axis. After the sheared volume has been projected onto an intermediate image, this
image is then warped, yielding the final image.

mediate image is warped, a two-dimensional warp transformation is applied, producing
the final image. This basic mechanism of shear-warp factorization is illustrated in Fig-
ure 2.2.

The aligned traversal between image and volume is the basis for many optimizations.
A runlength-encoding of the intermediate image allows for an efficient early-ray termi-
nation approach. Additionally, runlength-encoding of thevolume in each of the three
major viewing directions allows skipping of transparent voxels. Furthermore, utilizing
a min-max octree allows for empty space skipping. In contrast to runlength-encoding,
this approach allows fast classification and does not require three copies of the volume.
The problem of shear-warp factorization, however, is the low image quality caused by
the use of bilinear interpolation for reconstruction and a varying sample rate that de-
pends on the viewing direction and projection. These issuesresult in an inferior image
quality compared to other methods, such as raycasting.

2.2.4 Texture-based Techniques

Texture slicing on programmable graphics processing units[22] is one of the predom-
inant volume rendering techniques. One method incorporating graphics hardware is
based on 2D texture mapping [37]. This method stores stacks of slices as 2D textures
in graphics memory for each major viewing axis. The stack most parallel to the view-
ing direction is chosen and mapped on an object-aligned proxy geometry, which is then
rendered in back-to-front order using alpha blending (see Figure 2.3). This approach

9

Figure 2.3: Object-aligned 2D texture slicing [34]. For each of the three major axes, a
stack of 2D textures is stored. The stack most parallel to theimage plane is chosen, and
rendered in back-to-front order as textured quads using alpha blending.

Figure 2.4: Image-aligned 3D texture slicing [34]. The volume is stored as a single 3D
texture and subdivided into polygons parallel to the image plane. These polygons are
rendered in front to back order, using alpha blending.

corresponds to shear-warp factorization and suffers from the same drawbacks, namely,
bilinear interpolation within the slices, and varying sampling rates depending on the
viewing direction.

3D texture methods use image-aligned texture slices. In order for these methods to
work efficiently, the whole volume needs to be uploaded to thegraphics memory as a
3D texture. Using the hardware this texture is then mapped onto polygons parallel to
the viewing plane, which are then rendered in back-to-frontorder using alpha blending
(see Figure 2.4). Contrary to 2D texture slicing, where only bilinear interpolation can be
used, this method allows for trilinear interpolation supported by the graphics hardware.

10

A drawback of this method is that the memory of the graphics hardware must be large
enough to accommodate the whole volume.

11

CHAPTER 3
Related Work

Often data can be visually represented in several ways. To visualize relations between
these representations a technique calledLinking and Brushingis frequently used. Brush-
ing is used to select data and perform several operations on it (e.g., highlighting or
masking). Linking propagates the selection to the other views, applying the same op-
eration there. Brushing was explored by Becker and Cleveland [1], who developed a
system which implemented masking and highlighting. However, the idea of brushing
has been examined even earlier. Fisherkeller et al. [12] used the idea of interactively
selecting a region in their PRIM-9 system, although they did not call it "brushing".
Traditionally brushes in visualization systems are limited to two dimensions, i.e., the
brushes operate in display space. To be able to apply a brush to volumetric data, a three-
dimensional brush is required. Multidimensional brushes have been studied in several
works [16, 25, 44]. Kosara et al. [16] applied linking and brushing to 3D scatterplots,
where three dimensions are arbitrarily selected from an n-dimensional dataset. These
dimensions can also include spatial coordinates. They usedvolume rendering to display
the 3D scatter plot.

In addition to highlighting selected data points in all views, they can be connected
by lines. Collins and Carpendale applied this idea in theirVisLinksystem [5], where dif-
ferent 2D views are represented as semi-transparent planesin 3D space, arranged side
by side. As soon as data is selected in one plane, the selecteddata is connected with
the same data in adjacent planes by what the authors callinter-plane edges. This prop-
agation is recursive, where the level of recursion can be interactively selected. Single
source to single target edges are drawn as straight lines. Single source to many target
edges are drawn using multiple curves calculated with corner cutting [8,9].

Other research concludes that relations between representations can be conveyed
by using animation. Heer and Robertson [14] used animated transitions to communi-
cate the coherence of different representations of statistical data. They found out, that

12

staging and staggering the animations can greatly improve user perception. These tech-
niques reduce occlusion, which is one of the recommendations of the authors. Other
recommendations aremaximize predictability, use simple transitionsandmake transi-
tions as long as needed, but not longer. They have derived their recommendations from
theCongruence PrincipleandApprehension Principlepostulated by Tversky et al. [41].
All these design considerations aim at reducing the cognitive load for the user.

Applying animation to volumetric data means moving individual voxels along dis-
tinct paths. Because the voxels’ coordinates are constantlychanging, volume splatting
has to be used for rendering. Volume splatting is an object-order rendering method
introduced by Westover [47], which traverses the volume voxel-by-voxel and projects
each voxel onto the image plane.

13

CHAPTER 4
Hybrid Volume Rendering

This work employs a hybrid renderer, that uses volume splatting to render animated
voxels, and raycasting to render the remainder of the volume. Using this approach, each
voxel gets rendered by just one of the renderers. This means,the volume is rendered us-
ing raycasting, and splatting is applied to voxels that leave their grid position (see Figure
4.1). We implemented a simple splatter, sufficient for visualizing the voxel animations.
However, to get appealing renderings of the volume, a raycaster was used. Nevertheless
the principle of volume splatting will be explained in the next section, followed by a
more detailed description of the raycasting algorithm.

4.1 Volume Splatting

Object-order algorithms traverse the volume voxel-by-voxel and project them onto the
image plane. A more sophisticated approach,splatting, introduced by Westover [47],
convolves every voxel in object space with a 3D reconstruction filter and accumulates
the voxels’ contribution on the image plane. Volume splatting is comprised of the fol-
lowing steps:

Volume traversal The way of traversing the volume depends on the compositing
method. Simply projecting voxels onto the image plane leadsto the wrong compositing
order of the projected splats. Usually the volume is traversed in slices in approximate
back-to-front order, similar to 2D texture slicing. For more advanced splatting meth-
ods, such asimage-aligned sheet buffers[29], the traversal order is similar to 3D texture
slicing.

14

0

0 0

0 0

0 0

2

2

2 2

2 2

2

2

2

1

1

1

1

1

1 1

Figure 4.1: This figure shows a slice of the volume where the interpolation parameter
0 ≤ t ≤ Intensitymax) is set to 1 and the animation is delayed by ascending intensity.
This means, that voxels with lower intensity values start moving first. The numbers in
the grid represent voxel intensities. Voxels depicted in green have already left their grid
position and are therefore rendered by the volume splatter.Voxels depicted in red still
remain at their grid positions and are rendered by the raycaster. Voxels in gray have
been hidden via the transfer function and are not rendered atall.

Interpolation Splatting derives its efficiency from the use of pre-integrated recon-
struction kernels. For simple splatting, the 3D kernel can be pre-integrated into a generic
2D footprint that is stored as a 2D texture. Because of its low computational cost and
simplicity, this approach was chosen for this work.

Classification and Shading Typically, splatting uses pre-classification and pre-shading
of the volume data. Each voxel stores the resulting RGBα values, which are then multi-
plied by the footprint before projection. Mueller et al. [30] proposed a method for post-
classification and shading in screen space. The gradients are either projected to screen
space, or they are computed in screen space using central differencing (see Equation
4.4).

Compositing Compositing is more complicated for splatting than for othervolume
rendering methods. The easiest compositing approach is calledcomposite every sample,
where the 2D footprint of the kernel is multiplied by the scalar voxel value, projected
to screen space, and blended onto the image plane using graphics hardware [6]. This

15

leads to visible artifacts, like color bleeding from background objects due to incorrect
visibility determination [46]. To remedy this drawback, Westover introducedsheet-
buffer splatting[47]. The splats are now added to a sheet buffer, instead of getting
directly composited to the final image. When all voxels of a slice have contributed to
the sheet buffer, the whole sheet buffer is composited onto the image plane. This does
solve the bleeding artifacts, but also leads to the same problems encountered by 2D
texture slicing methods: Popping artifacts when the slice stack is suddenly changed,
and inferior image quality, due to the lack of trilinear interpolation.

Mueller and Yagel [29] proposed to useimage-aligend sheet-buffers. Here the slices
are parallel to the viewing direction, and the contributions of 3D reconstruction kernels
between slices are added to the sheet buffer, and the result is composited onto the image
plane. This effectively resolves the popping artifacts, however, the intersection of a slice
with the 3D reconstruction kernel is computationally expensive.

Since only a basic splatter was used in this work, only a briefoverview of volume
splatting was given. A comprehensive description of volumesplatting can be found in
related work [34,47,51].

4.2 Raycasting

The other half of the hybrid renderer, is a raycaster, that isused to render voxels, that
have not moved from their volume grid positions. As soon as a voxel leaves its grid
position, it gets discarded by the raycaster and is renderedby the volume splatter.

Raycasting is an image-order algorithm, that processes the output image pixel-by-
pixel and casts rays from each pixel through the volume. Thisprocessing order has the
disadvantage that the dataset must be traversed once for every ray, resulting in redundant
computation (i.e., multiple descents of an octree), but on the other hand enables early
ray termination.

4.2.1 The Raycasting Pipeline

Using raycasting the volume is rendered by casting rays fromthe viewing plane through
the volume and sampling it at discrete intervals along the ray. For each ray intersecting
the volume, four steps are performed at each sampling position. Reconstruction is the
process of reconstructing a continuous function from the discrete dataset. This step
is necessary, since the volume might be sampled at any position. Theclassification
step assigns material properties like color and opacity to the sample obtained by the
reconstruction step. The evaluation of the illumination model afterwards is referred
to asshading. This step often involves the computation of a gradient.Compositing
determines the contribution of the previously classified and shaded sample to the final
image.

16

The findings of Bruckner [3, p. 19-22] and Engel et al. [11] suggest, that the best re-
sults are achieved by the sequenceReconstruction-Classification-Shading-Compositing.
Therefore this setup is applied in this work. The following sections will describe the
steps of the rendering pipeline in more detail.

Reconstruction

In order to be able to sample the volume at arbitrary positions, a continuous volume
functionf : R3 7→ R needs to be reconstructed.

Function Reconstruction A point sample can be represented as a scaled Dirac-pulse
function. Sampling a signal is equivalent to multiplying itby a grid of Dirac-pulses,
one at each sample point, as shown in Figure 4.2 [24]. The Fourier transform of a two
dimensional grid of Dirac-pulses, with frequencyfx in x andfy in y is itself a grid
of impulses with period1/fx in x and1/fy in y. If we call the grid of Dirac-pulses
k(x, y) and the signalg(x, y), then the Fourier transform of the sampled signal,ĝk, is
ĝ ∗ k̂. Sincek is a grid, convolvinĝg with k̂ amounts to duplicatinĝg at every point
of k̂, producing the spectrum shown at the bottom right in Figure 4.2. The copy of̂g
centered at zero is the primary spectrum, and the other copies are calledalias spectra.
If ĝ is zero outside a given region the signal is called band limited. The alias spectra of a
band limited function do not overlap each other if the sampling frequency is chosen high
enough (i.e., the Dirac pulses ofk̂ are sufficiently far away from each other). Thenĝ can
be recovered by multiplyinĝgk by a box function̂h which is one in the Nyquist region
and zero elsewhere. Such a multiplication is equivalent to convolving the sampled data
gk with h, the inverse transform of̂h. This convolution withh allows us to reconstruct
the original signalg by removing, or filtering out, the alias spectra, so we callh a
reconstruction filter.

Thus, the goal of reconstruction is to extract the primary spectrum and to suppress
the alias spectra. Since the primary spectrum comprises thelow frequencies, the re-
construction filter is a low-pass filter. The simplest regionto which ĝ could be limited
is the region of frequencies that are less than half the sampling frequency along each
axis. This limiting frequency is called the Nyquist frequency and the region the Nyquist
region. An ideal reconstruction filter can then be defined to have a Fourier transform
that has the value one in the Nyquist region and zero outside it. The inverse Fourier
transform of such a box function is thesincfunction.

Extending the above to three-dimensional signals encountered in volume rendering,
the sampling grid becomes a three-dimensional lattice and the Nyquist region a cube.
Given this Nyquist region, the ideal convolution filter is the product of three sinc func-
tions:

hI(x, y, z) = (2fN)
3sinc(2fNx)sinc(2fNy)sinc(2fNz) (4.1)

17

ĝ k̂ gk̂ĝ =k̂

g k gk

Figure 4.2: Two-dimensional sampling in the spatial domain(top) and the frequency
domain (bottom) [24].

Here,fN is the three-dimensional Nyquist region. Thus, in principle, a volume sig-
nal can be exactly reconstructed from its samples by convolving it with hI . In practice,
however,hI cannot be implemented, because it has infinite extent in the spatial domain.
Hence practical reconstruction filters will inevitably introduce artifacts into the recon-
structed function. A practical filter takes a weighted sum ofa limited number of samples
to reconstruct a point. In other words, only samples inside afinite region are taken into
account. This region is called the region of support. Filters with a larger region of sup-
port have to weight more samples and are computationally more expensive since more
samples have to be processed.

The simplest interpolation function is the nearest neighbor function, which returns
the value of the sample closest to a given location. Let the point P lie within a cubic cell
at location(xP , yP , zP)

T . The sample values at the eight corners of this cell are denoted
asS(0, 0, 0) . . . S(1, 1, 1). Using the nearest neighbor function the valuevP at location
P is given by:

vP = S(round(xP), round(yP), round(zP)) (4.2)

The most common interpolation function is the trilinear interpolation function, which
is a convex combination of the surrounding 8 samples. This function assumes, that the
value varies linearly along each major axis. According to trilinear interpolation, the
valuevP at locationP is then:

18

(a) original signal (b) trilinear interpolation (c) windowed sinc filter

Figure 4.3: The original signal (a), reconstructed with trilinear interpolation (b) and a
windowed sinc filter (c).

vP = S(0, 0, 0) · (1− xP) · (1− yP) · (1− zP) +
S(1, 0, 0) · xP · (1− yP) · (1− zP) +
S(0, 1, 0) · (1− xP) · yP · (1− zP) +
S(1, 1, 0) · xP · yP · (1− zP) +
S(0, 0, 1) · (1− xP) · (1− yP) · zP +
S(1, 0, 1) · xP · (1− yP) · zP +
S(0, 1, 1) · (1− xP) · yP · zP +
S(1, 1, 1) · xP · yP · zP

(4.3)

Marschner and Lobb [24] have examined various reconstruction filters (see Figure
4.3). The best results were achieved with windowed sinc filters. While providing supe-
rior reconstruction quality, they are also about two ordersof magnitude more expensive
than trilinear interpolation. Therefore, when interactivity is required, the trilinear recon-
struction is often the preferred method, despite its worse quality.

Gradient reconstruction In addition to the continuous volume function the recon-
struction of its first derivative, called the gradient, is also necessary. Since it is an ap-
proximation of the normal of an iso-surface, it can be used for the illumination model.
The quality of the gradient estimation has considerable impact on the quality of the
rendered image. The ideal gradient reconstruction filter isthe coscfilter, which is the
derivate of thesinc filter, discussed in the previous section as the ideal reconstruction
filter. As with the sinc filter, the cosc filter can not be used asa reconstruction filter due
to its infinite extent in the spatial domain.

According to Möller et al. [28] there are four different methods of computing the
gradient:

Derivative First (DF) Using this method the derivative is determined by first com-
puting the normals at the grid points and then interpolatingthese normals.

19

Interpolation First (IF) The derivative at a ray sample location is calculated from
a set of additionally interpolated samples in the neighborhood of the sample location.

Continuous Derivative (CD) This approach uses a derivative filter that is pre-
convolved with the interpolation filter. The gradient at thesample location is computed
by convolving the volume by this combined filter.

Analytic Derivative (AD) This approach is similar to CD, except the derivative
filter is analytically derived from the interpolation filter.

Furthermore, Möller et al. prove that DF, IF and CD are numerically equivalent, and
that AD delivers bad results in some cases. According to them, the CD method is more
of theoretical interest and they used it mainly for analysisof the normal estimation
process. This leaves the DF and IF method for consideration.Although they have
shown, that the IF method generally outperforms the DF approach, Bruckner [3] pointed
out that with an expensive gradient estimation method the DFmethod is preferable. Pre-
computing the gradients at the grid locations would reduce the computational effort, but
also increase the amount of memory needed by three times the size of the volume. Since
the hybrid renderer is already a memory-intensive approach, the gradients are rather
computed on-the-fly for each cell from thecentral differences, which are given by

∇f(x, y, z) ≈
1

2
·



(f(x+ t, y, z)− f(x− t, y, z))
(f(x, y + t, z)− f(x, y − t, z))
(f(x, y, z + t)− f(x, y, z − t))


 , t = 1 (4.4)

wheref(x, y, z) is the 3D density function. Trilinear interpolation is thenused to
calculate the function value and gradient at each resample location.

Classification

Classification is the process of assigning a color and opacityto a reconstructed func-
tion value. Transfer functions, usually implemented as lookup tables, are used for
this mapping. During rendering, the lookup tables containing color and opacity val-
ues are indexed by the reconstructed function value. Levoy first suggested the use of
one-dimensional piecewise linear transfer functions [19]. He also used the gradient
magnitude for opacity modulation, to enhance regions with high gradients and reduce
the opacity of homogeneous regions.

Shading

Although having no physical significance, the Phong illumination model [35] is still
common in computer graphics. It is a local illumination model, which only takes direct

20

L

N
H

V

α

β

Figure 4.4: Phong illumination model:N is the surface normal at the point for which
the illumination model is evaluated. The light vectorL points towards the light source,
and the view vectorV points towards the viewer.H is the half-way vector betweenL
andN .

reflections into account. While this may not be very realistic, it allows illumination to be
computed efficiently. The model consists of independent ambient, diffuse and specular
terms and employs the light vector, the view vector, and surface normal for computation.
The light vector L is the normalized vector from a location in space to the lightsource.
In case of a directional light source, this vector is the samefor all points in a scene. The
view vector V is the normalized vector from a location in space along a viewing ray
to its origin on the image plane. In case of parallel projection, this vector is the same
for all points in a scene. The Phong illumination model was originally designed for
surface rendering. In volume rendering, thesurface normalN is approximated by the
normalized gradient.

Figure 4.4 shows an illustration of the Phong illumination model. Additionally, the
half-way vectorH = 1

2
(L + V) is displayed. The final light intensity is determined

by the three constantskambient, kdiffuse, andkspecular, which control the contribution
of each term. The shaded color is computed by multiplying theinput color (e.g., the
classified sample) by the sum of the three terms, as can be seenin Equation 4.5. This
equation only holds true under the assumption, that the color of the light source is always
white and its color contribution can therefore be disregarded.

cout = cin · (Iambient + Idiffuse + Ispecular) (4.5)

The ambient termIambient is constant and simulates the contribution of indirect re-

21

flections, which are otherwise not accounted for by the model.

Iambient = kambient (4.6)

The diffuse termIdiffuse is based on Lambert’s cosine law, which states that the
reflection of a perfect diffuse surface is proportional to the cosine of the angleα be-
tween the light vectorL and the surface normalN . In other words, the reflection is
proportional to the dot product ofL andN .

Idiffuse = kdiffuse ·max(L ·N, 0) (4.7)

The specular termIspecular simulates specular reflections by adding a highlight.
Blinn [2] proposed to use the half-way vectorH to compute the specular term. The
half-way vector is the vector halfway between the light vector and the view vector. The
specular lighting intensity is then proportional to the cosine of the angleβ between
the half-way vectorH and the surface normalN raised to the power ofn, wheren is
called the specular exponent of the surface and represents its shininess. Higher val-
ues ofn yield smaller, sharper highlights, whereas lower values result in large and soft
highlights.

Ispecular = kspecular ·max((H ·N)n, 0) (4.8)

Compositing

In raycasting, the volume rendering integral is approximated by applying theover-
operator [36] in front-to-back order. This means, at each sample location the current
color and alpha values of a ray are given by

cout = cin + c(s)α(s)(1− αin)
αout = αin + α(s)(1− αin)

(4.9)

wherecin, αin are the color and opacity values already accumulated by the ray. s is
the reconstructed function value andc(s) andα(s) are the classified color and opacity
values derived from the transfer functions. The advantage of using the front-to-back
formulation of the over-operator is the possibility of early ray termination. This is, a ray
can be terminated as soon as it has accumulated full opacity (i.e.,αout = 1).

4.3 Trajectory Rendering

Animated voxels travel between volume representations on predefined trajectories. In-
stead of using these trajectories as an animation path, theycan be rendered themselves
to visualize the connection between two representations. The trajectories can be linear,

22

quadratic or cubic Bézier splines, and are colored accordingto the transfer function.
These splines are approximated by line strips, which have tobe pre-computed on the
CPU.

4.3.1 Illumination of Lines

To render illuminated streamlines, cylinders could be usedto draw the line segments
and light them using graphics hardware. Alternatively, simple line segments as graph-
ical primitives would reduce geometric complexity and therefore speed up rendering
considerably. Unfortunately line segments have no distinct normal vector. Thus it is
impossible to directly apply a shading model like Phong shading for the illumination
of a pointP on a line. LetL be the light direction,V the viewing direction andR the
unit reflection vector (the vector in theL−N -plane with the same angle to the surface
normal as the incident light). Then light intensityI at a given pointP is given by

I = Iambient + Idiffuse + Ispecular
= ka + kdL ·N + ks(V ·R)n.

(4.10)

Choosing the normal vectorN as the one that is coplanar to the tangent vectorT
and the light directionL, L ·N can be expressed withoutN [50]:

L ·N =
√
1− (L · T)2. (4.11)

V ·R can be rewritten withoutR in a similar way, yielding

V ·R = (L · T)(V · T)−
√

1− (L · T)2
√
1− (V · T)2 (4.12)

To exploit graphics hardware for the illumination, the texture matrix is loaded with
L andV :

M =
1

2




L1 V1 0 0
L2 V2 0 0
L3 V3 0 0
1 1 0 0


 (4.13)

Now L · T in Equation 4.11 is set to2t1 − 1 andV · T in Equation 4.12 is set to
2t2 − 1. With t1 andt2 running from0.0 to 1.0 in both coordinates, the results of the
equations are stored in a 2D texture map. Next the texture coordinates ofP are set to
the normalized tangent vector. This way OpenGL calculates the inner products of the
Phong equation with the help of the texture matrix, yieldingthe correct illumination
color inP as texture color. See Zöckler et al. [50] for more details.

23

CHAPTER 5
Animated Transitions

This work employs two methods to connect different volume representations. The first,
trajectory rendering, was already discussed in Section 4.3 and the second,animation,
will be discussed in this chapter.

Each voxel of a volume can be interpreted as an n-dimensionalattribute vector:

v = (a1, a2, . . . , an)
T (5.1)

Some examples for voxel attributes are the grid coordinates(x, y, z), the intensityI
and the gradient magnitudem. The gradient is calculated for each voxel and is a vector,
that points in the direction of the greatest rate of increase, and its magnitude is the
greatest rate of change. Volumetric data can be illustratedin multiple ways. The most
common representations are 2D slices orthogonal to one of the major axes, a 3D view
rendered by one of the techniques described in Section 2.2, and histograms for intensity
and gradient magnitude, as well as a 2D histogram combining these two voxel attributes.
This work focuses on the 3D and the histogram representations. The 3D representation
lives in the spatial domain, whereas the histograms live in the 2D domain. In order to
implement animated transitions between these views, the histograms have to be placed
on a plane in 3D space. Each representation has its own local coordinate system, in
which each voxel has local coordinates. For the 3D view, the voxels’ grid coordinates
are used. The coordinates of a voxel in the 2D histogram are simply its intensity and
its gradient magnitude. In case of 1D histograms, the horizontal axis represents either
the intensity or the gradient magnitude, and the vertical axis is the (logarithmic) bin
position. This bin position is the only coordinate that cannot be mapped to one of the
voxels’ attributes and thus has to be calculated for each voxel. The bin position of a
voxel is the number of voxels present in the according bin after the voxel was added.

24

5.1 Principles for Animation

"Smooth interactive animation is particularly important because it can shift
a user’s task from cognitive to perceptual activity, freeing cognitive pro-
cessing capacity for application tasks." -Robertson (1991)[38, p. 5]

Over the last decades, extensive research has been conducted in the field of anima-
tion. Tversky et al. [41] performed a skeptical analysis of animation and its alleged
superiority to static graphics for "conveying the workings of complex systems". Ac-
cording to them, animations are often too complex or too fastto be accurately perceived.
However they made an exception for animated transitions in visualizations. They also
point out, that the drawbacks of animation can be overcome with the aid of interactivity.
Interactivity allows the user to arbitrarily control the animation by moving forward and
backward or pausing it at any time. They propose two principles that specify conditions
for effective animation. TheirCongruence Principlestates "the structure and content
of the external representation should correspond to the desired structure and content of
the internal representation" and theirApprehension Principlestates "the structure and
content of the external representation should be readily and accurately perceived and
comprehended". According to those principles, data is best presented in its inherent di-
mensions, as long as it is easily comprehensible. Hence, animation should be well suited
for conveying the concept of change over time. Adhering to those principles, however,
does not make animation superior to static graphics per se. The usefulness of animation
is also highly dependent on the number and complexity of the objects being animated,
and the path they describe. When the features of the moving objects are not relevant,
they can be represented by simple colored dots. This visual simplification, as well as
moving the objects along simple trajectories, helps reducing the cognitive load for the
user significantly. However, volumetric datasets are comprised of millions of voxels
(volume elements), leading to unavoidable overlap during the animation. Minimizing
this overlap is a major issue, which can be addressed by reducing the number of objects
moving simultaneously, and by minimizing the overlap of their individual trajectories.
The calculation of these trajectories and minimizing the number of simultaneously mov-
ing objects are described in the next section and in Section 5.3, respectively.

5.2 Interpolation Methods

This section describes the details of the mathematical tools used to facilitate animation.
Let us start by briefly reviewing the theoretical background. A linear combination of
pointsP1, P2, . . ., Pn and weightsλ1, λ2, . . ., λn given by

P0 =
n∑

i=1

λiPi,
n∑

i=1

λi = 1, (5.2)

25

Figure 5.1: The convex hull (blue) can be visualized by imaging an elastic band
stretched out around all points. When the band is released, itassumes the shape of
the convex hull.

is called anaffine combination, when the sum of all weightsλi is 1. Theaffine hull
of a setS of points is the set of all affine combinations of a finite subset of S. For
example, lineAB is the affine hull of pointsA andB, planeABC is the affine hull of
non collinear pointsA, B, andC.

A more restricted subset of affine combinations areconvex combinations, where the
coefficientsλi not only sum up to 1, but are also non-negative. A convex combination
is given by:

P0 =
n∑

i=1

λiPi,
n∑

i=1

λi = 1, λi ≥ 0. (5.3)

The definition of theconvex hullis analogous to the affine hull. The convex hull of
pointsA andB is the segment[AB], and triangleABC is the convex hull of pointsA,
B, andC. An analogy for the convex hull in the plane is shown in Figure5.1.

Since each voxel moves on its owntrajectory, it has to be calculated individually.
This trajectory is the path a voxel describes on its way from one representation to an-
other one. The computation of that path is done on-the-fly by interpolating intermediate
values between the endpoints of the animation. Depending onthe number of these end-
points, different methods have to be applied. When the animation has two endpoints,
the methods described in subsection 5.2.1 are employed. Using three or more endpoints
for the interpolation requires methods described in subsection 5.2.2.

5.2.1 Convex Combination of Two Points

Throughout this section the interpolation parameter is denoted ast and is in the interval
[0, 1]. Whenevert > 0 or t < 1, the voxels are on the move, otherwise they are residing
in one of the representations mentioned earlier. A convex combination of two pointsP1

26

andP2 using1− t andt as their weights respectively, lets the voxels travel on a straight
line between those points.

P0 = (1− t)P1 + tP2

To make the voxels travel on a curved trajectory, parametriccurves can be utilized.
In general, a parametric curve is a function of one independent parameter, denoted as
t. A particular example is a curveP (t) that is defined by a set ofcontrol pointsPi and
blending functionsfi(t), i = 1, . . . , n [39, ch. 5], given by:

P (t) =
n∑

i=1

Piwi(t) (5.4)

Each point on this curve is computed as a weighted sum of all control points. This
means that each point (of the curve) is influenced by every control point according to the
assigned blending function. A blending function defines theweight of the control point
at each point of the curve. A value of 0 indicates that the control point is not affecting
the point on the curve. If the blending function reaches 1, the curve is going through
the control point. An example of blending functions is shownin Figure 5.2, where this
behavior can be observed.

Bézier Curves

In case ofBézier curvesthe set of blending functions - one for each control point - is
given by theBernstein polynomials[39, ch. 2]

Bn
i (t) =

(
n

i

)
(1− t)n−iti, t ∈ [0, 1] (5.5)

where
(
n
i

)
= n!

i!(n−i)!
is the binomial coefficient.

The sum of the Bernstein polynomials of degreen is equivalent to theBinomial
theorem, given by:

n∑

i=0

(
n

i

)
an−ibi = (a+ b)n (5.6)

After substitutinga andb by (1− t) andt respectively, then one has:

n∑

i=0

Bn
i (t) = ((1− t) + t)n ≡ 1 (5.7)

According to Equation 5.3 this fact and thatBn
i (t) ≥ 0 (as can be verified in Figure

5.2), makes the Bézier curve a convex combination of its control polygon. This provides
the Bézier curve with some of its most important properties:

27

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

B
i,1

 (t
)

n=1

(a) n=1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

B
i,2

 (t
)

n=2

(b) n=2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

B
i,3

 (t
)

n=3

(c) n=3

Figure 5.2: The Bernstein polynomialsBn
i (t) for (a)n = 1, (b) n = 2, and (c)n = 3.

The blue, red, green and cyan lines correspond to the blending functions of the first,
second, third and forth control point respectively.

• It always passes through its first and last control points, and is tangent to the
control polygon at these points.

• It can be transformed (translated, rotated, scaled, sheared) by performing these
operations on the control points.

• It lies within the convex hull of the control points.

Finally, when substitutingwi(t) in Equation 5.4 by Equation 5.5, one gets the equa-
tion for the Bézier curve:

C(t) =
n∑

i=0

Pi

(
n

i

)
(1− t)n−iti, t ∈ [0, 1] (5.8)

Evaluation of Bézier Curves The hands-on approach to determine a curve pointC(t)
at timet would be the evaluation of Equation 5.8. Apart from being inefficient, this solu-
tion also suffers from numerical instability caused by raising floating-point numbers to
higher powers. The most common algorithm to evaluate Bézier curves is theDe Castel-
jau algorithm[8]. Basically, Equation 5.8 is rewritten as recursive linear interpolations,
or more precisely recursiveconvex combinations. This way the evaluation is reduced to
basic arithmetic operations and becomes numerically stable. A graphic depiction of the
algorithm along with a short description can be found in Figure 5.3.

Using De Casteljau’s algorithm to evaluate a polynomial curve of degreen, still has
a computational complexity ofO(n2). In an effort to reduce this cost, several evalu-
ation schemes for curves based on the Bernstein polynomial have been proposed. A
comparison of these alternative approaches was done by Delgado and Peña [10]. They
also introduce an algorithm of their own [9], which has a complexity of O(n). Although
their approach seems to be superior to De Casteljau’s algorithm in terms of complex-
ity, let us take a closer look at the number of operations needed to evaluate a Bézier

28

Figure 5.3: De Casteljau’s algorithm for Bézier curves: Each line segment of the control
polygon is subdivided with the ratio1−t

t
and the resulting points are connected. The

process is repeated until one arrives at a single point. Thisis the point of the curve for
the given parametert [48].

1 2 3 4 5 6
0

10

20

30

40

50

60

70

n

no
. o

f o
pe

ra
tio

ns

De Casteljau
Delgado et al.

Figure 5.4: A comparison of De Casteljau’s to Delgado’s [9] algorithm in terms of
computational complexity for a degreen Bézier curve.

curve of degreen. The De Casteljau algorithm needs3n(n+1)
2

and according to Del-
gado and Peña [9], Delgado’s algorithm needs10n basic arithmetic operations. Figure
5.4 reveals, that Delgado’s algorithm is only faster forn ≥ 6. Moreover, forn ≤ 3 De
Casteljau’s algorithm is approximately twice as fast. Sincethe maximum degree used in
this application isn = 3, De Casteljau’s algorithm is preferable to Delgado’s approach.

29

Figure 5.5: Each of the polygon’s circular vertices represents an endpoint of the anima-
tion. When moving the center of mass, represented by the red square, the weights of the
vertices are changed accordingly.

5.2.2 Convex Combination of Three or More Points

The last section described convex combinations of two points, which correspond to two
animation endpoints. Adding endpoints to the animation requires adding points to the
interpolation. When using more than two endpoints, a simple slider is not enough to
interactively change the parameters for the interpolation. The parameters, also referred
to as weights, need to be determined by moving a vertex insidea closed 2D-polygon
(see Figure 5.5), whose vertices represent the animation endpoints. These weights are
then used to interpolate voxel positions for the animation.In order for this procedure
to work, a bijective mapping between the weights and the vertex positions is required.
In other words, for a given polygon a certain combination of vertex weights leads to
exactly one point coplanar to the polygon, and vice versa (see Figure 5.6).

Barycentric Coordinates

The barycentric coordinates of a point specify the center ofmass of the weights placed
at the vertices of asimplex. A simplex is the simplest possible polygon for a given di-
mension. Adding a vertex to a simplex also expands the simplex to a higher dimension.
For instance, a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is
a tetrahedron. So ann-dimensional simplex hasn + 1 vertices. As a consequence, the
points forming a simplex are always linearly independent, and a point inside of a sim-
plex is uniquely determined by its barycentric coordinates. Since this implementation
makes use of barycentric coordinates in the plane, the only simplex taken into account is
the triangle. For a triangle formed by the pointsP1, P2, P3 and their according weights
λ1, λ2, λ3, any pointP0 in the plane of this triangle is given by:

P0 =
3∑

i=1

λiPi,

3∑

i=1

λi = 1 (5.9)

30

λ1
2...λn

2

λ1
m-1...λn

m-1

λ1
m...λn

m

λ1
1...λn

1

Pn P1

P2

P3
P4

Pn-1

Figure 5.6: Bijective mapping: A set of weightsλ1 . . . λn always maps to exactly one
point inside the polygonP1 . . . Pn and vice versa.

The weightsλi are the barycentric coordinates relative to the points of the triangle.
If all weights are non-negative, thenP0 lies inside the triangle. Furthermore, if one of
the weights is 0, thenP0 lies on the opposite edge of the triangle. When two of the
weights are 0, the third weight becomes 1 and placesP0 on the corresponding vertex of
the triangle.

The aforementioned bijective property is needed, because each point must have
unique weights. Otherwise obtaining the weights as described in Figure 5.5 is not pos-
sible. In order to determine the barycentric coordinates ofa point, its Cartesian coordi-
nates have to be transformed with respect to a triangle, using the following equation:

λ1 = (y2−y3)(x−x3)+(x3−x2)(y−y3)
(y2−y3)(x1−x3)+(x3−x2)(y1−y3)

λ2 = (y3−y1)(x−x3)+(x1−x3)(y−y3)
(y2−y3)(x1−x3)+(x3−x2)(y1−y3)

λ3 = 1− λ1 − λ2

(5.10)

Here,x andy are the Cartesian coordinates of a point coplanar to the triangle, andxi

andyi are the Cartesian coordinates of the triangle’s points. Barycentric coordinates can

31

P1

P4 P3

P2

Figure 5.7: Points inside a polytope are not uniquely determined by their barycentric
coordinates. For example, the center of the square can be described as1

2
(P1 + P3) or as

1
2
(P2 + P4) or as1

4
(P1 + P2 + P3 + P4)

be extended from a simplex to apolytope, which is ann-dimensional polygon with more
thann + 1 vertices. However the vertices of a polytope are not linearly independent,
which leads to points, that are not uniquely determined by their barycentric coordinates.
For example, the center of a square can be described as the midpoints of both diagonals,
as shown in Figure 5.7.

A common way to deal with arbitrary polygons in 2D is to triangulate them first,
and apply barycentric coordinates on each simplex. Howeverthe results depend on the
choice of triangulation and contain unnecessary artifacts. An overview of methods for
obtaining unique barycentric coordinates for polytopes can be found in [13,45].

Mean Value Coordinates

Among others, Floater et al [13] proposed a way to generalizebarycentric coordinates
to 2D polytopes, calledmean value coordinates. Letαi, 0 < αi < π, be the angle atP0

in the triangle[P0, Pi, Pi+1], defined cyclically (see Figure 5.8). The weights

λi =
ωi∑k
j=1 ωj

, ωi =
tan(αi−1/2) + tan(αi/2)

‖Pi − P0‖
(5.11)

are coordinates forP0 with respect toP1 . . . Pk. These weights can then be used to
interpolate the voxel positions using Equation 5.3. When used on a triangle, mean value
coordinates are equivalent to barycentric coordinates.

5.3 Staggered Animation

When starting and ending times of all voxels are the same, onlythe voxels closest to
the viewer are visible and occlude the rest. Using transparency alone is not enough to

32

P0

Pi

Pi-1

Pi+1

αi

αi-1

Figure 5.8: Mean value coordinates.

1

0

a

t 10

Figure 5.9: Non delayed animation: The red arrows representmoving voxels,t ∈ [0, 1]
is the interpolation parameter, anda is one of the normalized voxel attributes

clarify the animation, due to the sheer number of voxels. To overcome this problem ei-
ther the overall number of voxels or the number of voxels being moved simultaneously
has to be reduced. Decreasing the number of voxels is not the goal of this work, which
leaves us with decreasing the number of simultaneously moving voxels. In their work
about animations in statistical data graphics [14], Heer and Robertson had to deal with
a similar occlusion problem. According to them, issuing small delays in movement sep-
arated the items’ starting (and ending) times, leading to small but noticeable decreases
in the amount of overlap. This idea was taken and extended by making the delay depen-
dent on one of the normalized voxel attributes. These attributes areintensity, gradient
magnitude, andgrid coordinates. This means that voxels with a low-valued attribute
start moving earlier whereas voxels with high intensities start moving later. This order
can easily be reversed, causing voxels with a high-valued attribute to move first.

For the interpolation a parametert is used. Without delaying the starting time, all
voxels start moving as soon ast is greater than 0 and end their movement whent equals
to 1, which can be observed in Figure 5.9.

Let ta be the interpolation parameter used for moving voxels with acertain attribute

33

1 d+10

td = t · (d + 1)

1

0

a

d · a
 +

 1d · a

ta

d

Figure 5.10:td = t(d + 1) is the delayed interpolation parameter, witht in [0, 1]. a
denotes the normalized voxel attribute used to scale the maximum delayd. Moving
voxels are depicted as red arrows. Their movement starts andstops, as soon astd equals
d · a andd · a+ 1 respectively.

value. Without adding a delay,ta equalst for all values ofa. Whereas adding a delay
separates theta’s into staggered subintervals oft (see Figure 5.10). In order to accom-
modate these subintervals,t needs to be scaled. This delayed and scaled interpolation
parameter is given by

td = d · a+ ta, d ≥ 0, (5.12)

wherea is the normalized voxel attribute andd denotes the maximum delay imposed
on the voxels’ starting times. Whend = 0, no delay is added and all voxels move
simultaneously. Ford > 0 voxels are delayed according to their attributea. In order to
calculate the interval oftd, the earliest starting time and the latest ending time need to
be computed. The earliest starting time obviously is 0 and evaluating Equation 5.12 for
ta = 1 anda = 1, yields the latest ending time ofd+1. Hence,td ∈ [0, d+1] and since
t ∈ [0, 1], td in Equation 5.12 can be substituted byt(d+ 1) yielding:

t(d+ 1) = ta + d · a (5.13)

Solving this equation forta allows us to expressta in terms of the interpolation
parametert, yielding:

ta = t(d+ 1)− d · a (5.14)

Because this equation can yield values outside the interval[0, 1], the result has to be
clamped to a lower and upper bound of 0 and 1, respectively. This is necessary, because

34

t a ta
0.0 0.0 -d
1.0 0.0 1.0
0.0 1.0 0.0
1.0 1.0 d+1

Table 5.1: This table shows the lower and upper bound of the interpolation parameter
ta, which is used to move voxels with attribute valuea (see Equation 5.15).

1

0

a

td 1.50

0

1

1-a

(a) d=0.5

1

0

a

td 20

0

1

1-a

(b) d=1

1

0

a

td 120

0

1

1-a

(c) d=11

Figure 5.11: Moving voxels are represented by red arrows. Figures (a) to (c) illustrate
examples for different values of the delay parameterd, used in Equations 5.14 and 5.15.

ta is used to parameterize a convex combination (see Equation 5.3). Using Equation
5.14, the starting times for the voxels are ascending according to the chosen attributea .
This order can easily be reversed by substitutinga by 1−a. The equation for descending
order is then given by:

ta = t(d+ 1)− d · (1− a) (5.15)

5.3.1 Optimal Delay

Animation is basically a series of consecutive frames. In order to be smooth, the images
shown in two consecutive frames should not change significantly. This is especially
important, when using interactivity, where the user can arbitrarily navigate through the
animation, and pause/resume it at any time. Since the animation is controlled by an
interpolation parametert, the difference between two consecutive frames is proportional
to the difference of the two values oft, used to compute them. Letnmax be the number
of possible values fort, then the smalleststep sizeof t is ∆tmin = 1

nmax

. In case of a
32 bit float, where 1 bit is used for the sign, 7 bits are used forthe exponent and 24 bit
for the coefficient,nmax is 224. As a consequence, the smallest representable difference

35

a amax

x coordinate volume width
y coordinate volume height
z coordinate volume depth

intensity max intensity
gradient magnitude max grad. magnitude

Table 5.2: This table lists the voxel attributesa and the corresponding number of pos-
sible valuesamax. For the intensity and gradient magnitudeamax is not necessarily the
numerical limit of the data type, but rather the highest value occurring in the volume.

is ∆tmin = 2−24 ≈ 5.960 · 10−8. Figure 5.10 shows, that introducing a delayd, scales
the interpolation interval totd = t(d + 1), containing all the subintervals, needed to
animate all distinct attribute values.t remains in the interval[0, 1] and gets subdivided
into subintervals of size1

d+1
. Sincenmax is the number of available animation steps for

the interval oft, the number of stepsn for such a subinterval is given by:

n =
nmax + d

d+ 1
(5.16)

The maximum delaydmax depends on the lowest number of stepsn = nmin required
for a subinterval. Rewriting Equation 5.16, this maximum delay can be written as:

dmax =
nmax − nmin

nmin − 1
(5.17)

The optimal value ofd is found, when the subintervals oft of two consecutive values
of attributea do not overlap and there is no gap between them. In order to be able to
quantify this overlap, the number of possible values for each voxel attribute, must be
taken into account. In general, this numberamax is different for all voxel attributes. A
list of all voxel attributes and their accordingamax can be found in Table 5.2. Using
amax and delayd, the subinterval overlap of two consecutive values ofa is given by:

o = 1−
d

amax

(5.18)

The overlap can be interpreted as the percentage of an interval, overlapped by its
preceding or succeeding interval. In other words, when0 < o ≤ 1, two consecutive
intervals overlap. Ifo < 0, there is a gap between the intervals. Ifo = 1, the two (and
as a consequence, all) intervals coincide. Finally, wheno = 0 there is no overlap and no
gap between them. This behavior is illustrated in Figure 5.12. Using Equation 5.18, the
delay can be expressed in terms of the desired overlap:

d = (1− o)amax (5.19)

36

a

t
(a)o = 1: full overlap

a

t
(b) 0 < o < 1: partial overlap

a

t
(c) o = 0: no overlap, no gap

a

t
(d) o < 0: negative overlap, or gap

Figure 5.12: Illustration of the interval overlapo defined in Equation 5.18.

The goal is to minimize occlusion during the animation process. An overlap of 1
means, that all voxels travel at once, an overlap less than 0 means, that there are gaps
in the animation, where no voxels move at all. This would be a waste of available
animation steps. So the optimal value for the overlap is 0, where voxels start moving
as soon as their attribute-wise predecessors stopped. Evaluating Equation 5.19 for an
overlap of 0 yields the optimal delay for a given attributea:

dopt = amax (5.20)

Depending on the chosen attribute, or ratheramax, dopt could exceeddmax, defined
in Equation 5.17, and as a consequence reduce the number of available animation steps
for a subinterval to a value below the desired minimum. Giventhat even for the float
data type, there are224 animation steps available, this will hardly ever be the case, but
for the sake of completeness the optimal delay should be rewritten as:

dopt = min(amax,
nmax − nmin

nmin

) (5.21)

This ensures an optimal exploitation of the animation stepsfor the subintervals. As
far as this delaying approach goes, the number of simultaneously traveling voxels, has
been minimized. Still, all voxels sharing the same attribute value move at the same time.
For example, let the delay be based on one of the grid coordinates of the voxels. Then
the number of voxels moving simultaneously is at least the number of voxels of a slice

37

perpendicular to the selected axis. This also holds for the remaining voxel attributes,
intensity and gradient magnitude.

5.3.2 GUI Controls for the Interpolation Parameter

Using an optimal delay with no overlap causes problems, whenusing a simple slider.
There are224 animation steps ands possible slider states. Thus, a single slider step
equals2

24

s
animation steps. Optimally, one slider step should correspond to one anima-

tion step. Applying an optimal delay reduces the available interval to 1
d+1

. If the interval
becomes smaller than1/s, steps are being skipped, due to the low resolution of the user
interface. This problem could be circumvented using the mouse wheel or cursor keys on
the slider. However, this makes the control sequential and can hardly be used to traverse
the whole interpolation interval. A good choice of a user interface for the interpolation
parameter would probably be a jog dial, as used for professional video editing systems.

5.4 Parameter Transfer Function

The staggered animation approach does not take the distribution of the voxel attributes
into account. All voxels, regardless of the relative frequency of their attribute value,
use the same amount of time to complete their transition. Attributes like the grid co-
ordinates are equally distributed, meaning, each value of the attribute has the same
frequency throughout the volume. This can easily be verifiedby the fact, that each slice
perpendicular to a selected axis has the same number of voxels. For these attributes,
an adaptive voxel speed is not really necessary. Intensity and gradient magnitude, on
the other hand, are unevenly distributed attributes. For these attributes, conditioning
the traversal speed of the interpolation interval on the frequency of the attribute values
would be preferable. It makes sense to spend more time on frequently occurring voxel
values, and less time on rarely occurring voxel values. Thiscan be realized by apply-
ing a so-calledparameter transfer function (PTF)to the interpolation parametert. This
function yields a transferred interpolation parametert′ and is given by:

t′ = f(t), f : [0, 1] 7→ [0, 1] (5.22)

This function is also used to switch between ascending and descending delay order.
For ascending order,f(t) has to be strictly monotonic increasing, which means:

a < b ⇒ f(a) < f(b) ∀a, b ∈ [0, 1] (5.23)

For descending order,f(t) has to be strictly monotonic decreasing, or formally:

a > b ⇒ f(a) > f(b) ∀a, b ∈ [0, 1] (5.24)

38

t’

t

1

1
0
0

(a) Ascending

t’

t

1

1
0
0

(b) Descending

t’

t

1

1
0
0

(c) Transformation

Figure 5.13: Figures (a) and (b) show the same two parameter transfer functions for
ascending and descending order respectively. A PTF accelerates or decelerates voxels,
when a subinterval oft with constant slope is mapped to a larger or smaller subinterval
of t′, respectively. For example, in the areas highlighted in yellow, a subinterval oft
of size 0.4 is mapped to a subinterval oft′ of size 0.1, effectively slowing down voxels
to a quarter of the original speed represented by the blue line. (c) Geometrically, an
ascending PTF can be converted to a descending PTF and vice versa, by reflecting it
about the line parallel to thet′-axis and intersecting thet-axis att = 0.5.

An ascending PTFfa(t) can be transformed into a descending PTFfd(t) by simply
substituting its parametert by 1− t, yielding:

fa(t) = fd(1− t)
fd(t) = fa(1− t)

(5.25)

This simple transformation makes it unnecessary to define the PTF for ascending
and descending order separately. Figure 5.13 shows a comparison of the same PTFs in
ascending and descending order and a geometric interpretation of the transformation.
f(t) has to be strictly monotonic increasing/decreasing, otherwise the value oft′ would
remain unchanged for subintervals oft and the animation would stop.

For each unevenly distributed voxel attribute, like intensity and gradient magnitude,
it is desirable to define an appropriate PTF. Because of its relation to the frequency
distribution of an attribute, a good PTF can be automatically generated. Figure 5.14
shows the frequency distribution and the cumulative distribution function (CDF) of the
density values of a human head data set. The slope of the CDF of an attribute is steeper
for more frequent values. This is the opposite behavior of the desired PTF. Hence, the
PTF of an attribute can be derived from its CDF through inversion. The inversion can
only be done, if the CDF is strictly increasing, otherwise itsinverse would not be unique.
Since all voxel attributes are discrete, so are their CDFs. Nonetheless, discrete functions
can be inverted as well, by simply swapping the coordinates of their data points. The
result is the discrete attribute-driven PTF. To avoid sudden jumps in the animation, the

39

0,0001

0,001

0,01

0,1

1

(a) Intensity histogram

0

0,2

0,4

0,6

0,8

1

(b) A cumulative distribution
function (CDF)

Figure 5.14: (a) shows a logarithmic histogram of a human head, and (b) shows the
corresponding cumulative distribution function. The highest intensity for this dataset
is 4096. To illustrate the discrete nature of the empirical CDF, the class width of the
histogram was set to 256, resulting in 16 bins. Usually the class size is 1, nevertheless
the values "between" the bins need to be interpolated.

PTF needs to be smoothed. On this account, linear interpolation is applied between
the data points, yielding a piecewise linear function. The CDF of evenly distributed
attributes has a constant slope of 1, and therefore the according attribute-driven PTF
is the unaltered interpolation parametert′ = t. Attribute-driven PTFs automatically
slow down the movement of frequent attribute values, and accelerate the coarser ones.
This is the desired behavior in general, but in some cases adjustments are necessary.
For example, a substantial part of volumetric data is composed of empty space and is
usually transparent. Slowing down these voxels should be avoided, which can be done
by adjusting the attribute-driven PTFs manually.

40

CHAPTER 6
Implementation

The implementation of our visualization prototype was doneas a number of plug-ins
for VolumeShop [4], a volume visualization framework implemented by Bruckner et al.
VolumeShop provides a complete OpenGL and GLSL setup, functionality for loading
and traversing of volumetric data, and interactive transfer functions. The plug-ins were
implemented in Visual Studio 2008 using C++, and OpenGL and GLSL were used to
program the graphics hardware. Using this framework significantly reduced the imple-
mentation effort and allowed us to focus on the implementation of animated transitions.

6.1 Implemented Plug-Ins

The renderer performing the animated transitions must be capable of rendering sin-
gle voxels on arbitrary spatial coordinates. Being an object-order method (see Section
2.2.2) makes volume splatting the ideal candidate. In orderto deliver appealing ren-
dering results of the volume, a volume splatter must render the voxels in back-to-front
order. This either requires a resorting of the voxels any time the viewing parameters
change, or three copies of the volume in memory (see Chapter 4 for details). So it
is either a pre-processing step on the CPU or a considerable increase in memory con-
sumption. On the other hand, when using the splatter solely for voxel animation, simple
compositing using the OpenGL blending functionglBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) is sufficient. This is why a raycaster, included in the
framework, is being used to render the volume, and the animated voxels are rendered
using a very basic volume splatter.

41

6.1.1 Volume Splatter

The voxels are loaded into avertex buffer objectand transferred to graphics memory
once. The actual animation and the shading takes place in thevertex shader. The frag-
ment shader is responsible for drawing the splats.

Vertex Shader The interpolation of the voxel coordinates takes place in eye coordi-
nates, i.e., after transforming the coordinates of the start- and end-points of the anima-
tion with the respectiveModelViewmatrix. The interpolation function can be a Bézier
function of first, second or third degree (see Section 5.2.1).

Instead of usingGL_QUAD the voxels are rendered usingGL_POINT_SPRITES,
which reduces the number of necessary coordinates per voxelfrom four to one. The
size of the point sprites is set in the vertex shader usinggl_PointSize. The color
and opacity of each voxel is derived from the transfer function, which is implemented
as a simple 1D texture, indexed by the normalized voxel intensity. Since the color is
constant throughout a single point sprite, shading also takes place in the vertex shader.

Fragment Shader To avoid quadratic point sprites with constant opacity, theopacity
channel of each point is multiplied by a 2D Gaussian kernel, given by:

G(x, y) =
1

(2πσ2)
· e−

(x−0.5)2+(y−0.5)2

2σ2 (6.1)

Herex, y are the normalized coordinates inside a single point sprite, given by
gl_PointCoord in the fragment shader. The circular 2D Gaussian function isa
bivariate normal distribution of two uncorrelated variatesx andy, andσ is thestandard
deviation. Since the same kernel is applied to each voxel, the computational effort can be
significantly reduced by pre-computing the kernel. The result of the pre-computation is
stored in a texture, which is then used as a lookup table indexed bygl_PointCoord.

6.1.2 Trajectory Renderer

Instead of moving voxels along trajectories, the trajectories themselves are rendered as
line strips. Therefore, a neighborhood of voxels is selected interactively by the user from
either the 2D histogram (using a 2D neighborhood) or the volume (using a 3D neigh-
borhood). The selected voxels are highlighted in both representations and are connected
by their trajectories. In order to render the trajectories,the vertices of each trajectory
need to be pre-computed on the CPU and sent to the GPU asGL_LINE_STRIPs. Each
trajectory gets its color from the transfer function and therefore has the same color as
its corresponding voxel. In order to be able to apply illumination, a normal is required.
Unfortunately, a line does not have a single normal, but rather a normal plane. There-
fore, the vector coplanar to the tangent and the light vectoris chosen as the normal. To

42

Figure 6.1: GUI element to define parameter transfer functions for each of the voxel
attributes. In this example the majority of the interpolation interval is spent animating
voxels with low y-coordinates.

be able to utilize the graphics hardware without pre-computing the normal of each line
segment of each trajectory, the illumination parameters have to be precomputed into a
texture. Here each color channel corresponds to one of the three illumination parame-
ters (ambient, diffuse and specular) used in the Phong equation. A brief description of
this method, introduced by Zöckler et al. [50], can be found in Section 4.3.

6.1.3 Parameter Transfer Function

Besides the renderers, a component to define the parameter transfer functions, described
in Section 5.4, had to be implemented. These functions allowthe user to control the
amount of time spent in certain subintervals of the interpolation parameter. In some
cases it is desirable to spend more time in an interval containing more voxels, and less
time in intervals containing a smaller number of voxels. Figure 6.1 shows the GUI
element used to define the PTFs.

43

CHAPTER 7
Results

The main goal of this work is to help users gain insight into volumetric data. Since
animation is very useful for understanding statistical data [14], we want to apply the
same idea to volumetric data. Animating volumetric data is amajor challenge due to
the huge number of objects to be animated at once. Moving all voxels simultaneously
is not an option, thus staggered animations, introduced by Heer and Robertson [14],
are implemented. Furthermore, to keep the number of simultaneously moving objects
at a minimum, non-contributing voxels are hidden. These measures help reducing the
cognitive load for the user. The figures in this chapter depict animations, that use the
volume as the starting point.

7.1 Interpolation Methods

The voxels’ trajectories can be linear, quadratic and cubicBézier splines (see Section
5.2.1). The animation is controlled by an interpolation parameter0 ≤ t ≤ 1, where
t = 0 andt = 1 represent the start- and end-point of the animation, respectively. The
animation path can be calculated using linear interpolation (Figure 7.1), quadratic inter-
polation (Figure 7.2), or cubic interpolation (Figure 7.3).

7.2 Staggered Animation

The animation can be delayed using one of the inherent voxel attributes. These at-
tributes are the grid coordinates (x, y, z), density and gradient magnitude. The voxels
can either be delayed in ascending or descending attribute order, meaning, that vox-
els with low or high attribute values start moving first. Figure 7.4 shows the results,
when the delay is based on the voxels’ densities. In ascending order, voxels withlow

44

Figure 7.1: The screen shot was taken for an interpolation parametert = 0.2. Two
points are required when using linear interpolation to calculate the animation paths.
The red and green axes are the normalized voxel density and gradient magnitude, re-
spectively. The blue axis was added for spatial orientation.

density start moving first, filling the density/gradient histogram horizontally fromleft
to right. Using descending order, voxels withhigh density move earlier, and the his-
togram is filled horizontally fromright to left. In Figure 7.5 the gradient magnitude is
used to delay the voxels. In ascending order, voxels withlow gradient magnitude start
moving first, filling the density/gradient histogram horizontally from bottom to top. In
contrast, when using descending order, voxels withhigh gradient magnitude start mov-
ing first, and the histogram is filled fromtop to bottom. Figures 7.6, 7.7, and 7.8 show
the results when the delay is based on the voxels’ coordinates. Depending on ascending
or descending order, voxels with lower or higher coordinatevalues start moving first,
respectively. Regardless of the selected order, all voxels of the same slice move simul-
taneously. Using an optimal delay (see Section 5.3.1), onlya single slice moves at each

45

Figure 7.2: The screen shot was taken for an interpolation parametert = 0.2. In addi-
tion to the two points used for linear interpolation, a thirdpoint is required for quadratic
interpolation. The position of the voxel in the histogram locally translated by(0, 0, 1)T

was used. The red and green axes are the normalized voxel density and gradient magni-
tude, respectively. The blue axis was added for spatial orientation.

point in time. The quality of certain animations (especially those delayed by grid coor-
dinates) depends heavily on the chosen camera position and the arrangement of the two
representations. In Figure 7.9, the voxels are animated from the volume to thegradient
magnitude histogramin ascending gradient magnitude order. A bin size of 32 was used
for the logarithmic gradient magnitude histogram. Since the transfer function calculates
colors based on the voxels’ intensities, voxels with the same gradient magnitude values
(but different densities) have different colors. In Figure7.10, the voxels are animated
from the volume to thedensity histogramin ascending density order. This means, that
voxels with low density start moving first. A bin size of 1 was used for the logarithmic
density histogram. Setting the delay parameterd to a sufficiently large value, separates
voxels with same intensities into groups. Figure 7.11 showsthe first two images of an
image sequence of a non-delayed animation (delayd = 0), where all voxels move si-

46

Figure 7.3: The screen shot was taken for an interpolation parametert = 0.2. In addition
to the three points used for quadratic interpolation a forthpoint is required for cubic
interpolation. The additional point is the voxel grid coordinate minus the coordinates of
the volume center. This makes the voxels travel away from thecenter of the volume and
effectively avoids trajectories running through the volume. The red and green axes are
the normalized voxel density and gradient magnitude, respectively. The blue axis was
added for spatial orientation.

47

multaneously. The remainder of the image sequence is shown in Figure 7.12. In this
case no order can be applied. Finally, Figure 7.13 shows the first two images of an image
sequence of an animation using an optimal delay. The last twoimages of this sequence
are shown in Figure 7.14. Using an optimal delay only voxels with the same attribute
value travel simultaneously. These are in this example, allthe voxels of the same slice.

7.3 Trajectory Rendering

When rendering trajectories of the voxels, a neighborhood ofvoxels has to be selected
from the volume. The center and diameter of this neighborhood can be interactively
selected by the user. The voxels contained in this neighborhood are then connected
in both representations by their trajectories, which are shaded using the transfer func-
tion. Figure 7.15 shows an example of trajectory renderingswith different neighborhood
sizes. Here, the arcs in the density/gradient magnitude histogram represent transitions
between regions of different density (e.g., bones and soft tissue). Voxels with low gradi-
ent magnitude reside in a homogeneous neighborhood, whereas voxels with high gradi-
ent magnitude reside in a heterogeneous neighborhood. Adjusting the transfer function
accordingly, allows the user to select a neighborhood from the interior of the volume.
See Section 4.3 for details.

48

(a) Ascending density

(b) Descending density

Figure 7.4: (a) Voxels with low density start moving first. This can be observed in the
density/gradient histogram, which is filled horizontally from left to right. (b) Voxels
with high density move earlier, and the histogram is filled from right to left.

49

(a) Ascending magnitude

(b) Descending magnitude

Figure 7.5: (a) Voxels with low gradient magnitude start moving first. This can be
observed in the density/gradient histogram, which is filledvertically from bottom to
top. (b) Voxels with high gradient magnitude move earlier, and the histogram is filled
from top to bottom.

50

(a) Ascending x-axis

(b) Descending x-axis

Figure 7.6: Voxels with (a) lower or (b) higher x-coordinates start moving first. Voxels
of the same slice move simultaneously. Setting the delay tod = xmax only a single slice
moves at each point in time.

51

(a) Ascending y-axis

(b) Descending y-axis

Figure 7.7: Voxels with (a) lower or (b) higher y-coordinates start moving first. Voxels
of the same slice move simultaneously. Notice, that the volume has been transformed
differently in (a) and (b) to give a better view on the animation. When setting the delay
to d = ymax, only a single slice moves at each point in time.

52

(a) Ascending z-axis

(b) Descending z-axis

Figure 7.8: Voxels with (a) lower or (b) higher z-coordinates start moving first. Voxels
of the same slice move simultaneously. Notice, that the volume has been transformed
differently in (a) and (b) to give a better view on the animation. When setting the delay
to d = zmax, only a single slice moves at each point in time.

53

Figure 7.9: The voxels are animated from the volume to the gradient magnitude his-
togram in ascending gradient magnitude order. This means, that voxels with low gradi-
ent magnitude values move first. A bin size of 32 was used for the logarithmic gradient
magnitude histogram. Since the transfer function calculates colors based on the vox-
els’ intensities, voxels with the same gradient magnitude values (but different densities)
have different colors.

54

Figure 7.10: The voxels are animated from the volume to the density histogram in
ascending density order. This means, that voxels with low density start moving first. A
bin size of 1 was used for the logarithmic density histogram.Setting the delay parameter
d to a sufficiently large value, separates voxels with same intensities into groups.

55

(a) t=0.0

(b) t=0.3

Figure 7.11: When the delay is 0, all voxels start and end theirmovement at the same
time. (a) and (b) show the first two images of the image sequence. The last two images
of the sequence are shown in Figure 7.12.

56

(a) t=0.6

(b) t=1.0

Figure 7.12: When the delay is 0, all voxels start and end theirmovement at the same
time. (a) and (b) show the last two images of the image sequence. The first two images
of the sequence are shown in Figure 7.11.

57

(a) t=0.0001

(b) t=0.002

Figure 7.13: When using an optimal delaydopt, only one slice moves at a time. Each
slice uses a subinterval of the interpolation parameter of size d−1

opt. Since the human
head has an optimal delay of 166 for the z-coordinate (zmax = 166), each slice uses
a subinterval of1/166 ≈ 0.006. (a) and (b) show the first two images of the image
sequence. The last two images of the sequence are shown in Figure 7.14.

58

(a) t=0.004

(b) t=0.006

Figure 7.14: When using an optimal delaydopt, only one slice moves at a time. Each
slice uses a subinterval of the interpolation parameter of size d−1

opt. Since the human
head has an optimal delay of 166 for the z-coordinate (zmax = 166), each slice uses
a subinterval of1/166 ≈ 0.006. (a) and (b) show the last two images of the image
sequence. The first two images of the sequence are shown in Figure 7.13.

59

(a) Neighborhood diameter = 5 voxels

(b) Neighborhood diameter = 10 voxels

Figure 7.15: The trajectory of each voxel of a selected neighborhood is rendered, vi-
sually connecting the same voxel in the two representations. It has the same color and
transparency as the corresponding voxel. The size and location of the neighborhood
can be changed interactively, using the mouse cursor. The arcs in the density/gradient
magnitude histogram represent transitions between regions of different density (e.g.,
bones and soft tissue). Voxels with low gradient magnitude reside in a homogeneous
neighborhood, whereas voxels with high gradient magnitudereside in a heterogeneous
neighborhood.

60

CHAPTER 8
Summary

8.1 Introduction

Volumetric data consists of volume elements (voxels), arranged on a 3D equidistant
grid. Each voxel has 3D coordinates and an intensity. Additionally, for each voxel,
a surface normal can be approximated by the gradient. The gradient is a vector, that
points in the direction of the greatest rate of intensity increase. Several representations
can then be used to visualize the volumetric data. The most common form are slices
perpendicular to one of the major axes. Furthermore, 3D renderings are used to literally
gain insight into volumetric data. A more abstract representation of volumetric data are
histograms. Here only the intensity and/or gradient magnitude are used yielding three
possible histograms: 1D intensity histogram, 1D gradient magnitude histogram, and a
2D intensity/gradient magnitude histogram.

To gain insight into the data, the correlations between these representations need to
be examined. In particular the correlation between the 3D rendering and the histograms
are of interest. Usually this connection is shown viaLinking and Brushingtechniques,
where voxels that are selected in one view also get highlighted in the other ones.

8.2 Animated Transitions

We extended the idea of Linking and Brushing, so instead of highlighting voxels, we
moved them from one representation to another one. When animating voxels individu-
ally, their paths need to be calculated. This was done using Bézier curves of first, second,
or third degree. Bèzier curves were calculated on the GPU using corner-cutting. After
examining multiple algorithms, the De Casteljau algorithm was selected, due to its high
performance on low degree curves.

61

For the animation an interpolation parameter0 ≤ t ≤ 1 is used, where 0 and 1 rep-
resent the starting and ending point of the animation respectively. The voxels’ position
is then calculated as a convex combination of the coordinates of the start and the end
point. Without any further modifications, changingt automatically changes the position
of every voxel, which leads to high occlusion. Delaying the start and end times reduces
the number of simultaneously moving objects, and as an effect reduces the number of
overlapping voxels. The delay can be based on one of the voxels’ normalized attributes:
grid coordinates, intensity, or gradient magnitude. For example, voxels with low in-
tensity start moving first, whereas voxels with high intensity start moving later. This
delayed interpolation parameterta is given by

ta = t(d+ 1)− d · a, d ≥ 0, (8.1)

whered is the delaying factor anda is the normalized voxel attribute. Ifd = 0, the
interpolation parameter remains unchanged. Using this approach, voxels with the same
attribute value move at the same time (e.g., all voxels of thesame slice). In order to
avoid overlapping of voxels with consecutive attribute values, the delay must not be set
too small. On the other hand, to avoid gaps between those voxels, the delay must not be
set too high. The optimal delay corresponds to the maximum value of a voxel attribute.
In case of the x-coordinate the optimal delay is the volume width, and for the intensity
it is the difference between the highest and the lowest occurring intensity.

In addition to delaying the animation, we also implemented aso-calledparameter
transfer function, which allows us to spend more or less time in certain subintervals
of the volume. This is particularly useful, if the user wantsto spend more time on
intervals with many voxels and less time on empty subintervals. This parameter transfer
function can be derived from the cumulative distribution function of an attribute through
inversion. Of course, this is only useful for unevenly distributed attributes like intensity
and gradient magnitude.

8.3 Hybrid Volume Rendering

In order to render the volume as well as individual voxels, a volume splatter was used.
For a volume splatter to produce correct renderings, eitherthe volume needs to be sorted
in back-to-front order for each frame, or three stacks of slices (one for each major axis)
have to be stored in graphics memory. The former requires constant pre-sorting on the
CPU, and the latter requires three times the amount of memory.Therefore a hybrid
rendering approach was chosen. Here, the volume gets rendered by a raycaster, and
as soon as voxels leave their grid position, they are rendered as simple point sprites
in no particular order. To get better results the alpha channel of each point sprite is
multiplied by a 2D Gaussian kernel. Each voxel is either rendered as point sprite or by
the raycaster, but never twice. This approach still requires twice as much memory as a

62

raycaster, but produces appealing renderings of the volumewithout constantly sorting
of the volume.

8.4 Conclusion

We have presented different alternatives toLinking and Brushingfor volumetric data. It
is difficult to assess the value of animation in revealing correlations between different
representations. Due the ephemeral nature of animation, a voxel cannot be displayed in
more than one place at once. Depending on the selected delaying attribute this makes
it hard to determine the origin and destination of a single voxel. Using this delaying
approach, the number of simultaneously moving objects can only be reduced to a certain
degree. Voxels with the same attribute value will always move at the same time.

Additional methods to reduce the number of animated objectscould be implemented,
including windowing and volume segmentation. The animation would then be applied
to the selection only. This would drastically reduce the number of simultaneously mov-
ing objects and minimize occlusion in the process. Furthermore, acceleration and de-
celeration at the starting point and the ending point, respectively, could be added.

63

Bibliography

[1] R. A. Becker and W. S. Cleveland. Brushing scatterplots.Technometrics, pages
127–142, 1987.

[2] J. F. Blinn. Models of light reflection for computer synthesized pictures. InPro-
ceedings of the International IEEE Conference on Computer graphics and inter-
active techniques, pages 192–198, 1977.

[3] S. Bruckner. Efficient Volume Visualization of Large Medical Datasets. Mas-
ter’s thesis, Institute of Computer Graphics and Algorithms, Vienna University of
Technology, 2004.

[4] S. Bruckner and M. E. Gröller. VolumeShop: An InteractiveSystem for Direct
Volume Illustration. InProceedings of the International IEEE Conference on Vi-
sualization, pages 671–678, 2005.

[5] C. Collins and S. Carpendale. VisLink: Revealing Relationships Amongst Visu-
alizations. IEEE Transactions on Visualization and Computer Graphics, pages
1192–1199, 2007.

[6] R. Crawfis and N. Max. Direct volume visualization of three-dimensional vector
fields. InProceedings of the IEEE workshop on Volume visualization, pages 55–
60, 1992.

[7] B. Csebfalvi. Interactive Volume-Rendering Techniques for Medical DataVisu-
alization. PhD thesis, Institute of Computer Graphics and Algorithms,Vienna
University of Technology, 2001.

[8] P. de Casteljau. Outillages méthodes calcul. Technical report, Citroën, Paris, 1959.

[9] J. Delgado and J. M. Peña. A linear complexity algorithm for the Bernstein basis.
In International Conference on Geometric Modeling and Graphics, pages 162–
167, 2003.

64

[10] J. Delgado and J. M. Peña. On efficient algorithms for polynomial evaluation in
CAGD. In Monografías del Seminario Matemático García de Galdeano 31, pages
111–120, 2004.

[11] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume render-
ing using hardware-accelerated pixel shading. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16, 2001.

[12] M. A. Fisherkeller, J. H. Friedman, and J. W. Tukey. PRIM-9: An Interactive
Multi-dimensional Data Display and Analysis System. InACM Pacific ’75, pages
140–145, 1975.

[13] M. S. Floater. Mean value coordinates.Computer Aided Geometry Design, pages
19–27, 2003.

[14] J. Heer and G. G. Robertson. Animated Transitions in Statistical Data Graphics.
IEEE Transactions on Visualization and Computer Graphics, pages 1240–1247,
2007.

[15] R. Kosara. Visualization Criticism - The Missing Link Between Information Vi-
sualization and Art. InProceedings of the International IEEE Conference on In-
formation Visualization, pages 631–636, 2007.

[16] R. Kosara, G. N. Sahling, and H. Hauser. Linking Scientific and Information
Visualization with Interactive 3D Scatterplots. InProceedings of the Interna-
tional IEEE Conference on Computer Graphics, Visualization and Computer Vi-
sion, pages 133–140, 2004.

[17] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. InProceedings of the International IEEE Confer-
ence on Computer graphics and interactive techniques, pages 451–458, 1994.

[18] A. Law and R. Yagel. An optimal ray traversal scheme for visualizing colossal
medical volumes. InProceedings of the International IEEE Conference on Visu-
alization in Biomedical Computing, pages 43–52, 1996.

[19] M. Levoy. Display of surfaces from volume data.IEEE Computer Graphics and
Applications, pages 29–37, 1988.

[20] M. Levoy. Efficient ray tracing of volume data.ACM Transactions on Graphics,
pages 245–261, 1990.

[21] M. Levoy. Volume rendering by adaptive refinement.Visual Computing, pages
2–7, 1990.

65

[22] E. Lindholm, M. J. Kilgard, and H. Moreton. A user-programmable vertex engine.
In Proceedings of the International IEEE Conference on Computergraphics and
interactive techniques, pages 149–158, 2001.

[23] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm.SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

[24] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume
rendering. InProceedings of the International IEEE Conference on Visualization,
pages 100–107, 1994.

[25] A. R. Martin and M. O. Ward. High Dimensional Brushing for Interactive Explo-
ration of Multivariate Data. InProceedings of the International IEEE Conference
on Visualization, pages 271–, 1995.

[26] N. Max. Optical models for direct volume rendering.IEEE Transactions on Visu-
alization and Computer Graphics, pages 99–108, 1995.

[27] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. Apractical evalua-
tion of popular volume rendering algorithms. InProceedings of the IEEE sympo-
sium on Volume visualization, pages 81–90, 2000.

[28] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison of normal esti-
mation schemes. InProceedings of the International IEEE Conference on Visual-
ization, pages 19–26, 1997.

[29] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-based
splatting. InProceedings of the International IEEE Conference on Visualization,
pages 239–245, 1998.

[30] K. Mueller, T. Möller, and R. Crawfis. Splatting without the blur. InProceedings
of the International IEEE Conference on Visualization, pages 363–370, 1999.

[31] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-Quality Splatting on
Rectilinear Grids with Efficient Culling of Occluded Voxels.IEEE Transactions
on Visualization and Computer Graphics, pages 116–134, 1999.

[32] N. Neophytou and K. Mueller. GPU accelerated image aligned splatting. InFourth
International Workshop on Volume Graphics, pages 197–242, 2005.

[33] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley. Interac-
tive ray tracing for volume visualization.IEEE Transactions on Visualization and
Computer Graphics, pages 238 –250, 1999.

66

[34] H. Pfister. Hardware-Accelerated Volume Rendering. InThe Visualization Hand-
book, chapter 11, pages 229–260. Elsevier, 2004.

[35] B. T. Phong.Illumination for computer-generated images. PhD thesis, The Uni-
versity of Utah, 1973.

[36] T. Porter and T. Duff. Compositing digital images.SIGGRAPH Computer Graph-
ics, 18:253–259, 1984.

[37] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.Interactive volume
rendering on standard PC graphics hardware using multi-textures and multi-stage
rasterization. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pages 109–118, 2000.

[38] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Information visualization using
3d interactive animation. InProceedings of the SIGCHI conference on Human fac-
tors in computing systems: Reaching through technology, pages 461–462, 1991.

[39] T. W. Sederberg. Computer Aided Geometric Design Course Notes.
http://www.tsplines.com/educationportal.html, last retrieved
on 24.08.2011.

[40] K. R. Subramanian and D. S. Fussell. Applying space subdivision techniques
to volume rendering. InProceedings of the International IEEE Conference on
Visualization, pages 150–159, 1990.

[41] B. Tversky, J. Bauer Morrison, and M. Betrancourt. Animation: can it facilitate?
International Journal of Human-Computer Studies, pages 247–262, 2002.

[42] T. van Walsum, A. J. S. Hin, Versloot J., and F. H. Post. Efficient Hybrid Rendering
of Volume Data and Polygons. InAdvances in Scientific Visualization, pages 83–
96. Springer-Verlag, 1992.

[43] F. Vega-Higuera, P. Hastreiter, R. Fahlbusch, and G. Greiner. High performance
volume splatting for visualization of neurovascular data.In Proceedings of the
International IEEE Conference on Visualization, pages 271–278, 2005.

[44] M.O. Ward. XmdvTool: integrating multiple methods forvisualizing multivariate
data. InProceedings of the International IEEE Conference on Visualization, pages
326–333, 1994.

[45] J. Warren, S. Schaefer, A. Hirani, and M. Desbrun. Barycentric coordinates for
convex sets.Advances in Computational Mathematics, pages 319–338, 2007.

67

http://www.tsplines.com/educationportal.html

[46] L. Westover. Interactive volume rendering. InProceedings of the Chapel Hill
workshop on Volume visualization, pages 9–16, 1989.

[47] L. Westover. Footprint evaluation for volume rendering. SIGGRAPH Computer
Graphics, pages 367–376, 1990.

[48] Wikipedia. De Casteljau’s algorithm.http://en.wikipedia.org/wiki/
De_Casteljau’s_algorithm, last retrieved on 24.08.2011.

[49] R. Yagel and Z. Shi. Accelerating volume animation by space-leaping. InProceed-
ings of the International IEEE Conference on Visualization, pages 62–69, 1993.

[50] M. Zöckler, D. Stalling, and H.-C. Hege. Interactive visualization of 3D-vector
fields using illuminated stream lines. InProceedings of the International IEEE
Conference on Visualization, pages 107–113, 1996.

[51] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. EWA volume splatting. In
Proceedings of the International IEEE Conference on Visualization, pages 29–36,
2001.

68

http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
http://en.wikipedia.org/wiki/De_Casteljau's_algorithm

List of Figures

2.1 Density Profile . 5
2.2 Shear-warp Factorization .. . 9
2.3 Texture Slicing 2D . 10
2.4 Texture Slicing 3D . 10

4.1 Hybrid Volume Renderer . 15
4.2 2D sampling . 18
4.3 Reconstruction Filter .19
4.4 Phong Illumination Model .21

5.1 Convex Hull . 26
5.2 The Bernstein polynomials forn = 1, 2, 3 28
5.3 The De-Casteljau algorithm .. 29
5.4 Casteljau vs. Delgado . 29
5.5 User Interface: Mean Value Coordinates 30
5.6 Bijective mapping . 31
5.7 Polytope . 32
5.8 Mean value coordinates .33
5.9 Non delayed animation . 33
5.10 Delayed interpolation parameter 34
5.11 Delayed Starting Times .. 35
5.12 Interval Overlap .37
5.13 Parameter Transfer Function 39
5.14 Histogram and CDF of a human head . 40

6.1 Parameter Transfer Function GUI 43

7.1 Results: Linear Interpolation Method 45
7.2 Results: Quadratic Interpolation Method 46
7.3 Results: Cubic Interpolation Method 47
7.4 Results: Density . 49
7.5 Results: Gradient magnitude .. 50

69

7.6 Results: x-axis . 51
7.7 Results: y-axis . 52
7.8 Results: z-axis . 53
7.9 Results: 1D gradient magnitude histogram 54
7.10 Results: 1D density histogram .. . 55
7.11 Results: Animation sequence (Delay=0) (1/2) 56
7.12 Results: Animation sequence (Delay=0) (2/2) 57
7.13 Results: Animation sequence (Delay=Optimal) (1/2) 58
7.14 Results: Animation sequence (Delay=Optimal) (2/2) 59
7.15 Results: Trajectories .. 60

70

List of Tables

5.1 Possible Values Ofta . 35
5.2 Voxel Attributes . 36

71

	Introduction
	State-Of-The-Art in Volume Rendering
	Optical Model for Volume Rendering
	Volume Rendering Techniques
	Image-Order Volume Rendering
	Object-Order Volume Rendering
	Hybrid-Order Volume Rendering
	Texture-based Techniques

	Related Work
	Hybrid Volume Rendering
	Volume Splatting
	Raycasting
	The Raycasting Pipeline

	Trajectory Rendering
	Illumination of Lines

	Animated Transitions
	Principles for Animation
	Interpolation Methods
	Convex Combination of Two Points
	Convex Combination of Three or More Points

	Staggered Animation
	Optimal Delay
	GUI Controls for the Interpolation Parameter

	Parameter Transfer Function

	Implementation
	Implemented Plug-Ins
	Volume Splatter
	Trajectory Renderer
	Parameter Transfer Function

	Results
	Interpolation Methods
	Staggered Animation
	Trajectory Rendering

	Summary
	Introduction
	Animated Transitions
	Hybrid Volume Rendering
	Conclusion

	Bibliography
	List of Figures
	List of Tables

