
Connected Meshes
Johannes Unterguggenberger∗

Student
Martin Ilčı́k
Supervisor

Figure 1: These figures show a shape connected with a shape grammar. The left figure shows the not connected shape. The
middle and right figures show the same shape with connected vertices. The geometry still consists of separate polyhedrons, but
their vertices have been changed to a connection-point’s coordinates. The separate polyhedrons can be seen at the middle figure.

Abstract

This report presents techniques to connect 2-dimensional and
3-dimensional shapes. These techniques have been devel-
oped to connect basic shapes which are generated by a shape
grammar for computer generated architecture, in particular
for CGA shape. Consider an arm: the shape grammar cre-
ates two cuboids - one for the upper arm and one for the
lower arm. When the arm is bent, the two cuboids should be
connected at the elbow. How to do that, where to store the
connectivity information, and different connection-strategies
are the main topics of this report.

Keywords: shape grammars, procedural modeling, shape
connectivity

1 Introduction

Humanoid characters are widely used in today’s computer
graphic applications like games, movies, or simulations. The
classical approach to model humanoid characters is to use a
3D-modelling tool and create the geometry manually. If the
model should be animated, a skeleton has to be added to the
mesh. The model’s geometry is altered based on the skeleton
(bone rotations, etc.). [Badler et al. 1993], [Ratner 2003]

Manually modelling a humanoid model or creating vari-
ations of an existing one can be very time-consuming. A
procedural approach to create humanoid models based
on a shape grammar called CGA shape is presented in [?]
and [Fiedler 2009]. CGA shape [Müller et al. 2006] has
been developed specifically for the automatic design of
computer-generated architecture. With a grammar-based
procedure, creating variations of existing models is just
adjusting a few parameters, and yet the resulting humanoid
model’s stature or body weight has changed, for example. A
skeletal system for posing and interactive manipulation of

∗e-mail: johannes.unterguggenberger@gmail.com

generated models has been added to GCA shape [?].

So far, the modified CGA shape grammar produced models
consisting of shapes which are connected with a kinematic
skeleton. However, these shapes are not connected geomet-
rically (see figure 1). How to connect these shapes is ad-
dressed by this report. In section 2 we discuss where to store
the connection information. Section 3 presents the geome-
try adaption concept to reconnect meshes after moved apart.
After these two preparing steps, in section 4 the algorithms
for connecting 2D and 3D geometry are explained in detail.
This involves some math [Papula 2007], which is explained
in section 5.

Figure 2: Class diagram showing the CGA shape, and kine-
matic section

2 Store the connection information

Figure 2 shows the parts of the CGA framework which
are relevant for the decision where to store connectivity
information. A shape always has an associated kinematic
section. The kinematic section contains parent and child
relations. A shape is aggregated with one kinematic section,
there is a 1:1 relation between them. Because of that and
because the connectivity information needs to reference the
shape’s geometry, we have decided to store the connectivity

information directly with the shape.

Connectivity information means a mapping from a parent
shape’s vertex to a vertex of one of the children’s vertices,
which it is connected to. Such a parent-to-child mapping is
stored in a child shape. This is the most convenient place to
store the mapping. If a parent has more child shapes, which
could be the case after a parallel split, separate connectivity
information has to be stored for each child. By storing the
vertex mapping in the child shape, no further data structures
are needed. The tree representing parent-to-child relations is
already there in form of the associated kinematic section and
its parent and child references.

Connectivity preservation

The vertex mappings are weak references - the vertex indices
of the shape’s geometry are stored in the vertex mapping.
Therefore, it has to be taken care of updating that mapping
whenever the geometry changes so that the vertex indices
change. This could happen, when a subsequent sequential
split is applied to a shape - the vertex indices will most
probably be different after the split.

In order to preserve the connectivity, whenever a split is
applied to a shape the vertex mappings have to be updated
to the new vertex indices. Also all of that shape’s children
have to be updated to the new vertex indices. The parent
shape’s vertex mappings do not have to be updated because
connectivity information is stored in the children. That
means the splitted shape contains the vertex mappings
from its parent to itself and only its own mapping has to
be updated. However, if the shape has children, all of
their vertex mappings have to be updated as well. It has
to be ensured that the mappings are updated whenever an
operation has been applied which changes the vertex indices.

See figure 3 for the extended class diagram including the
vertex mapping and the weak references to polygon vertex
indices in case of a 2D shape, or to polyhedron vertex indices
in case of a 3D shape, respectively.

3 Geometry adaption

Applying a split rule on a shape could create geometry similar
to that shown in figure 4. No rotations or scales are applied on
the middle shape, which has the effect that both, the parent
shape’s vertices and it’s child shape’s vertices have exactly
the same coordinates. The right shape has a rotation applied.
How to connect the associated vertices is described in sec-
tion 4. Before the connection algorithm is applied, it has to
be ensured that both shapes to be connected have the same
amount of vertices on the connection-facet. After a sequential
split, this is the case innately since the sequential split does
not change geometry but split the existing geometry.

It is more complicated with a parallel split. After a parallel
split has been applied on a child shape, usually new parent
geometry has to be created. See figure 5. After the parallel
split the parent shape has 4 child shapes. In order to connect
each of the 4 child shapes to the parent shape, the parent’s
geometry must have as many vertices along the connect-line

Figure 3: Class diagram including the vertex mapping and
the weak references to polygon and to polyhedron

as all of the children together along the connect-line.

The new parent geometry is generated right after the
parallel split is applied and before any rotations or other
transformations are applied. At this time the positions of all
child shapes are known and additional parent vertices are
created at the positions of the corresponding vertices of the
child shapes. The mappings are stored in the child shapes
and used during rendering for doing the connections.

Creating the new vertices is quite simple. The algorithm
moves along the parent’s poly-line in counter clockwise di-
rection until the connect-line is found, which is then replaced
by several shorter lines. The vertex positions for these shorter
lines come from the child shapes. Start-point and end-point
have exactly the same coordinates as the two connected ver-
tices in the child shape. To get them in the right order, the
child’s poly-line is traversed in clockwise direction until both
connected vertices have been found.

Geometry creation in 3D

Creating new geometry for 3D-shapes is even more challeng-
ing because it is not just adding a few additional points to a
polyline. In the 3D case, actually facets are connected to each
other (despite still their vertices are stored as connection-
information). Therefore, new facets have to be added to
the geometry. Figure 6 shows a way of creating new, valid
connection-geometry, which is implemented by our imple-
mentation. In that example, the facet facing in the opposing
direction remains unchanged. This is good if the shape is
connected to a parent shape. Generally, all facets remain the
same except for the connect-facet and the two side-facets of
the connect-facet.

Figure 6: In order to add connect-facets to the parent geometry, vertices have to be added along the edges on both sides of the
original facet in split direction - the red vertices in figure (a). The orange vertices are also needed, but they are already there in
the original polyhedron. Between those newly created vertices facets are created. This, however, does not yield a valid closed
polyhedron. The side facets have to be replaced by new ones, too, as illustrated in figure (b). The geometry of the back-facing
facet is not changed to avoid any problems with eventually existing connectivity to a parent-shape. Figures (c), (d), and (e) show
an example of a connected parallel split with the parent shape from figure (b) from different perspectives.

Figure 4: The topmost image shows an already splitted shape
without any rotations or scalings applied to the parts. The
vertices numbered with b1, b2, b3 should be connected to
c1, c2, c3 in this order. The middle image shows the result
with the last part rotated but not connected. The bottom
image shows the shapes with the same rotation and with
their vertices connected.

4 Connecting the vertices

In the previous sections preparing the shapes for connecting
has been discussed. In section 2 the right place to store the
connection-information (also referred to as vertex-mapping)
has been investigated. The essence of the previous section 3 is
that for some cases the shape’s geometry has to be extended
in order to get enough vertices to connect all child-shapes to.

In this section the actual connecting-algorithms are explained.
Connecting two shapes means moving their mapped vertices
both to the same new position. This position is the connect-
point. In order to find that position, several different meth-
ods will be introduced, which are called shape-connectors. The
shape-connectors for 2D shapes and for 3D shapes work dif-

Figure 5: The left image shows a parent shape which has 4
children. These were created via parallel split. Immediately
after the split all vertices that should be connected lie on the
blue line. In the middle image rotations are applied to all
of the child shapes. In order to connect them to the parent,
additional vertices have to be added to the parent along the
connect-line. The red dots represent the positions where the
vertices have to be added - exactly at the positions where
the cyan vertices of the child shapes were before the rotation.
The right image shows the final result with connected shapes.
The parent’s (red) vertices and the corresponding children’s
(cyan) vertices have been moved to the same positions.

ferently, of course. The same types of shape-connectors exist
for 2D and 3D, which there are:

• child-to-parent-connector

• parent-to-child-connector

• midpoint-connector

• intersection-point-connector

The individual connectors are described under the following
sections for the 2D case and the 3D case. What is very impor-
tant in either case is to follow these steps for rendering both,
the parent’s and the child’s vertex which are to be connected:

1. Convert child vertex to parent’s coordinate system

2. Calculate connection point via a shape-connector and
update vertex position

3. Convert child vertex back into its coordinate system

4. Render the shape with the updated vertex positions

Connecting a 2D shape

Three connector-types are quite easy to implement. The
parent-to-child-connector simply moves the parent vertex to the
child vertex position.
The child-to-parent-connector moves the child vertex to the par-
ent vertex position.
And the midpoint-connector calculates the point which is in
the middle of the parent vertex and the child vertex using the
formula:

~m =

(px+cx
2py+cy
2

)
(1)

where ~m is the midpoint, p is the parent vertex, and c is
the child vertex, each of the vertices is represented by a
2-dimensional vector.

The intersection-point-connector searches for the only line adja-
cent to the vertex whose second endpoint is not in the vertex-
mapping and creates the line equation y = kx+d based on the
two endpoints (one of which is the vertex to be connected),
where k is the slope, and d is the y-intersect. Such a line equa-
tion is searched for both, the parent shape (y = kpx + dp) and
the child shape (y = kcx + dc). Finally, the intersection point ~p
is calculated:

px =
dp − dc

kc − kp

py = kppx + kp

~p =
(

px
py

) (2)

Our algorithm uses the midpoint-connector if no intersection
point could be found as a fall-back. This can happen if the
lines are parallel. See figure 7 for more details on the 2D
intersection-point-connector. If no line can be found with one
endpoint in the mapping and the other endpoint not in the
mapping, an approximation or rather an assumption is made:
The line orthogonal to the line between the current vertex and
the following connected vertex is used to intersect with the
other shape’s selected intersection-line. Figure 8 shows the
different results depending on the connector applied.

Connecting a 3D shape

In the 3D case, the intersection-point-connector is quite
involved. The other three connector types are rather easy
to implement in 3D, too. The parent-to-child-connector, and
the child-to-parent-connector simply move the vertex to the
parent’s or child’s vertex position, respectively. The midpoint-
connector simply averages the x, y, and z components of the
two vertices. The different results of the several connectors
applied are shown in figure 8.

The 3D intersection-point-connector basically works similar
to the 2D counterpart. The big difference to 2D is that the
two lines found (the extended edges of both shapes) can
not be intersected with each other to find the intersection

Figure 7: The intersection-point-connector first searches the
right edges. Once found, the parent-edge and the child-edge
are extended to find their intersection point. The top im-
age shows all adjacent lines to the vertices to connect, which
there are the parent’s vertex p and the child’s vertex c. Our
algorithm chooses the adjacent line with one endpoint in the
vertex-mapping and the other point not in the mapping. The
other candidate has both endpoints in the mapping. This al-
gorithm works for all sequentially splitted shapes. The mid-
dle figure shows the lines chosen and their intersection point.
The positions of the parent vertex p and the child vertex c
are moved to that intersection point’s position. The bottom
figure shows the final result.

point, because in the general case they won’t intersect in the
3-dimensional space. To find the edge to be extended, we
have to find two facets adjacent to the vertex, which have 2
vertices not in the connection-mapping and the third is the
vertex to connect. From these two facets, plane equations
are generated. Those 2 planes are then intersected, and their
intersection line is the extended edge. Each vertex has at
least 3 adjacent facets. In case of an sequential split and well
formed shapes, exactly one of those facets is the connect-facet
(the facet which should be connected to the other shape), i.e.
there are 2 more facets which we can find the plane equation
for. Doing this for both, the parent and the child shape, yields
the extend-edge for the parent-shape and the extend-edge
for the client-shape. See figure 9 to get a better understanding.

The child’s line is intersected with up to 2 planes from the
parent shape and, vice versa, the parent’s line is intersected
with up to 2 planes from the child shape. This yields up to

Figure 8: Figures (b) to (e) show the results of the different shape-connectors applied. (a) is the original (sequentially splitted)
shape without vertices connected. The top row shows a 2D shape while the bottom row shows a 3D shape. Figure (b) shows the
child-to-parent-connector, while in figure (c) the parent vertices are moved to the child’s vertex positions using the parent-to-
child-connector. (d) shows the midpoint-connector applied to the shapes, and figure (e) shows the intersection-point-connector
in action, which basically extends adjacent edges.

4 intersection points, all of which are possible candidates
for the intersection point. 2 of those 4 points are eliminated
like follows: Of one pair of intersection points, only the
intersection point whose distance to the connection-vertices
is lower than the other point’s distance is chosen. This leaves
2 candidates left (see figure 9).

There are 3 strategies how to get the ultimate connection-
point:

• Chose the one of these points whose summed distances
to the original parent and child vertices is lower than the
other point’s distance to them. We call this the shortest-
distance-point.

• Calculate the midpoint of the two intersection-points by
simply averaging the x, y, and z coordinates of the two
candidates.

• Assume the 2 extended edges to be skew lines, search
for the position of the shortest distance between those
two lines - their adjoining line. Then take the point in
the middle of the adjoining line as the connection-point.
We call this the skew-lines-point.

It can’t be said, that one of these methods is the best for
all cases. Depending on how the shapes to be connected
are located in the 3D space (rotated, translated, scaled, etc.)
to each other, one of those methods will produce the best
result, but not always the same method. It depends on the
case. Usually, if the constellation is ”nicely behaved”, the
skew-lines-point should be a good choice. But sometimes,
the shortest distance between the skew lines is very far away
from the vertices to be connected. In that case, our algorithm
uses the midpoint. Also when the vertices are very close
to each other, the midpoint produces better results. Our
current implementation uses a decision tree which chooses
the skew-lines-point if the skew lines are not too far away
from each other and the skew-lines-point is not much farther
away from the vertices than the midpoint. In most other
cases, the midpoint is used.

Also for the 3D case exists an approximation to the extended

edge. If less than 2 appropriate facets exist for a specific
vertex, the facet-normal of the facet to be connected at the
position of the vertex to be connected is used instead of the
intersection-line of the two planes as an approximation to the
extended edge. This usually happens with shapes a parallel
split has been applied to.

5 Mathematical background

The mathematical calculations for the 2D shapes are quite
easy. Basically, not much more than the line equation
y = kx + d is needed. 3D calculations are a little bit more
involved, therefore the mathematical utilities used by our
implementation are explained here. See also [Papula 2007].

For all calculations, the vectorial representations of lines and
planes are used. All vertices on the line ~g are represented by

~g = ~o + λ~r (3)

where ~o is the position vector, ~r is the direction vector, and λ
is a scalar. All vertices on a plane ~e are represented by

~e = ~a + β~b + γ~c (4)

where~a is the position vector,~b and~c are the direction vectors,
and β and γ are scalar values. The parameters of a plane in
vectorial representation can be created from 3 points of a given
facet (~p1, ~p2, and ~p3) like follows:

~a = ~p1

~b = ~p2 − ~p1

~c = ~p3 − ~p1

(5)

The normal ~n of a plane is calculated by

~n = ~c ×~b (6)

Now let’s see how to compute the intersecting line between
two planes with normal vectors ~n1 (plane 1) and ~n2 (plane
2). The line’s direction vector ~r is the cross product of both
plane-normals:

~r = ~n1 × ~n2 (7)

To get the position vector ~o, the following system of equations
has to be solved:

~n1· (~o − ~a1) = 0

~n2· (~o − ~a2) = 0
(8)

or with the dot product applied, the equations become:

n1x (ox − a1x) + n1y (oy − a1y) + n1z (oz − a1z) = 0

n2x (ox − a2x) + n2y (oy − a2y) + n2z (oz − a2z) = 0
(9)

where ~n1 and ~n2 are the normals, and ~a1 and ~a2 are the
position vectors of the planes.

A plane and a line have an intersection point, if the dot prod-
uct of the plane’s normal vector ~n with the line’s direction
vector ~r is different from zero - i.e. ~n·~r , 0. Then their inter-
section point ~gi can be calculated by:

λ =
~n· (~a − ~o)
~n·~r

~gi = ~o + λ~r
(10)

where ~a is the plane’s position vector, and ~o is the line’s
position vector. First, λ is calculated which is then used with
the vectorial line representation to calculate the intersection
point ~gi with the plane.

Finally, let’s see how to find the shortest distance between two
skew lines ~o1 +λ~r1, and ~o2 +λ~r2. First, we get the direction ~d of
their adjoining line segments by calculating the normalised
cross-product of their directions:

~d = ~r1 × ~r2

~d =
~d

|~d|

(11)

Then line 1 is extruded along direction ~d, creating plane 1, and
line 2 is also extruded along direction ~d which yields plane 2.

Plane 1:
~o1 + β(~r1 − ~o1) + γ(~d − ~o1) (12)

Plane 2:
~o2 + β(~r2 − ~o2) + γ(~d − ~o2) (13)

The two endpoints ~p1 and ~p2 of the adjoining line segment
can be found by intersecting line 1 with plane 2 and the
second endpoint by intersecting line 2 with plane 1.

~p1 = intersect(Line1, Plane2)
~p2 = intersect(Line2, Plane1)

The length of the adjoining line segment is simply the distance
between those two endpoints:

length = |~p2 − ~p1|

6 Future work

Our current implementation works fine for ”nicely behaved”
shapes. However, there might be some problems with non-
optimal scenarios. For the 3D intersection point connector,
for example, the decision tree which point to use (the skew-
lines-point, the midpoint, or the shortest-distance-point) can
surely be tweaked so the intersection-point-connector produces
even better results.

What’s more problematic is the routine for creating new par-
ent geometry for 3D shapes after a parallel split. Currently it
works for not too complex geometry and if the split direction
is parallel to the connection-facet. For arbitrary geometry
and to cover all cases and all split directions, this routine has
to be revised.

Other ideas to think about in future are things like volume
preservation or mass preservation. Just have a look at fig-
ure 8 (e), the volume of the connected shape has increased
significantly compared to the original shape (a). None of
these considerations has been implemented yet and could be
a topic for future extensions.

References

Badler, N. I., Phillips, C. B., andWebber, B. L. 1993. Simulat-
ing humans: computer graphics animation and control. Oxford
University Press, Inc., New York, NY, USA.

Fiedler, S. 2009. Procedural human posing using cga gram-
mars. Tech. rep.

Ilcik, M., Fiedler, S., Purgathofer, W., and Wimmer, M.,
2010. Procedural skeletons: Kinematic extensions to cga-
shape grammars, 5.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., andVanGool,
L. 2006. Procedural modeling of buildings. In ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIG-
GRAPH ’06, 614–623.

Papula, L. 2007. Mathematik für Ingenieure und Naturwis-
senschaftler Band 1, 11th ed. Viehweg.

Ratner, P. 2003. 3-D Human Modeling and Animation, 2nd ed.
John Wiley & Sons, Inc., New York, NY, USA.

Figure 9: Under the assumption that the left shape is the
parent shape and the right shape is the child shape, in figure
(a) you see the parent’s edge extended and intersected with
the two planes adjacent to the vertex that are not the connect
plane. Intersecting the edge with both planes yields two
intersection points. P1, the intersection point with the red line,
is chosen because it is located nearer to the original vertices. In
(b) the same procedure is illustrated for the child’s extended
edge intersected with the parent planes. The intersection
point with the yellow plane is nearer to the vertices than
the one with the red plane, so P3 is chosen as the second
connection-point candidate which is outlined in (c). Figure
(d) shows the scene from a different perspective. It can be
seen that the two extended edges don’t intersect. They are
skew lines.

