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Abstract— Most of the power of modern graphics cards is
put into the acceleration of shading tasks because here lies the
major bottleneck for most sophisticated real-time algorithms.
By using temporal coherence, i.e. reusing shading information
from a previous frame, this problem can be alleviated. This
paper gives an overview of the concepts of temporal coherence
in real-time rendering and should give the reader the working
practical and theoretical knowledge to exploit temporal coher-
ence in his own algorithms.

I. INTRODUCTION

One of the driving forces of computer graphics is to
render physically correct images with rich visual effects. This
usually requires large scenes with highly detailed models,
as well as computationally intensive shading work to be
incorporated in a modern rendering system. On the other
hand, real-time rendering has the conflicting goal of creating
a sequence of such images fast enough to still allow for con-
tinuous animation and user interaction. Here a limit of at least
60 frames per second is considered as sufficiently smooth for
the human observer, which means the time available for one
frame is about 16 milliseconds. All calculations necessary
to create a frame have to fit into this time budget. This not
only includes all the rendering algorithms we are concerned
with in computer graphics, but may also contain the domain
specific code of an application, artificial intelligence, input
processing and sound rendering.

Although computer graphics hardware has made stagger-
ing advances in terms of speed and programmability, there
still exist a number of algorithms that are too expensive to
be computed in this time budget. A few important examples
include physically correct shadows, depth of field and motion
blur effects, or even an ambient occlusion approximation to
the exact global illumination solution. The situation becomes
worse when these effects are combined with large and com-
plex scenes, in which the hidden geometry often consumes
a significant portion of render time but contributes nothing
to the final images.

One way to circumvent this hard time limit is to capitalize
on Temporal Coherence (TC) and avoid redundant computa-
tions over time. TC is hereby defined as the existence of
a correlation in time of the output of a given algorithm.
For example, in a scene rendered at high frame rates,
there is usually very little difference in the shading over
visible surfaces between two consecutive frames, and the
majority of surfaces are mutually visible (see Figure 1).
Therefore, computing everything from scratch in every frame
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Fig. 1. Temporal coherence that exists in a game-like scene. Left: For a
strafe-left movement the cache misses are shown in green. Right: Plot of
the percentage of pixels found in the cache for each frame of the animation
sequence.

is potentially wasteful. Exploiting the coherence between
adjacent frames and reuse intermediate or final shading result
can therefore reduce the average shading cost of generating
a single frame.

In general, TC can be applied for achieving either of the
following goals:

• Acceleration: A given algorithm can be accelerated
by reformulating it as incremental in time, thereby
amortizing the total workload over several frames. The
output quality may be marginally degraded but the
overall speed improvement is often promising.

• Quality improvement: The results of a given algorithm
can be augmented by taking into account results com-
puted in previous frames. By a slightly increase in
render time, the quality of the result can often be
significantly improved.

• Reducing temporal aliasing: When rendering frames,
for each frame independent rasterizations are produced.
This causes temporal aliasing and can result in strong
flickering artifacts. TC can be applied to avoid this by
introducing knowledge of previous rasterizations into
the calculations for the current one, thereby allowing for
temporal smoothing by dissallowing sudden changes in
coherent regions.

These goals have in common that for a drastic change
in the input some latency in the output may be introduced.
In the acceleration case this requires a major refresh in the
previously computed results, which may cause a sudden drop
of framerate. In the quality improvement case, this means
that over several frames only an approximate solution can be
displayed before the algorithm converges. Fortunately with
relatively high framerates and careful algorithmic designs,
these problems can often be handled smoothly and unnoticed
by the viewer. In addition, ongoing animation may also cause
information from previous frames to be outdated. This has
to be accounted for in order to avoid temporal artifacts such
as after-images or tailing.



Aside from the fact that the redesign of algorithms to
account for TC can be challenging, special care has to be
taken to fit these algorithms to the massively parallel nature
of modern graphics architectures.

II. BACKGROUND

The term frame-to-frame coherence was first introduced by
Sutherland et al. [19] in his seminal paper “Characterization
of Ten Hidden-Surface Algorithms”, in which he describes
various versions of coherence, like scan-line or area coher-
ence that allow for more efficient rendering.

In ray-tracing reprojection of object space information can
be used to allow to reuse information from the previous
frame to accelerate animations [2], [1].

In image-based rendering TC allows to replace parts of
a scene with image-based representations. Complex distant
geometry can be replaced by so called impostors [6], [13].
A scene can also be factorized into multiple layers by
accounting for differences in perception of fore-/background
objects, as well as differences in the motion of objects [8].
The extreme case is frameless rendering, which only relies on
TC instead of spatial coherence [3]. Each pixel is rendered
independently based on the most recent input. Pixels stay
visible for a random time-span. To avoid image tearing pixels
are rendered in a random order.

In image warping images are used as a cache to be reused
and warped into different views. In-between views can be
calculated by morphing a number of reference images [4],
[10], [9]. For each view color and depth are stored. Both
images are warped into the new view to allow for small
camera movements. Then the two images are composited
together to compensate for most disocclusions [9]. A more
involved representations is the render cache [22]. It is
intended as an acceleration data structure for renderers that
are too slow for interactive use. It is a point based structure,
which stores previous results, namely 3d coordinates and
shading information. By using reprojection, image space
sparse sampling heuristics and by exploiting spatio-temporal
image coherence these results can be reused in the current
frame. Progressive refinement allows decoupling the ren-
dering and display frame rates, enabling high interactivity.
This approach was later extended with predictive sampling
and interpolation filters [21] and finally accelerated on the
GPU [20], [24].

III. IMAGE-SPACE REAL-TIME REVERSE REPROJECTION

Similar to Walters’ render cache idea is Nehab et al.’s [11],
[12] so-called reprojection cache, which is introduced as a
way to accelerate real-time pixel shading in hardware raster-
ization renderers (see Figure 2). The main difference to the
render cache is that the reprojection cache does not contain
points but visible pixels in screen space (with additional data
like depth). This is a very hardware friendly approach as
this cache is just a viewport-sized off-screen buffer and can
therefore reside in graphics memory without causing traffic
between GPU and CPU. Another difference that fits perfectly
to hardware is that this method uses reverse reprojection and

Fig. 2. Fast reprojection on the hardware is achieved by back-projecting
each fragment from the current frame (left) into the cache (right) and
incorporating the information found there to shade the current fragment.

therefore can use hardware texture filtering capabilities for
sample retrieval. The reprojection cache approach described
in this paper is similar to our concurrent work [14], where
we specialized in improving shadow quality.

Reprojection is achieved by back-projecting each fragment
p into the coordinate space of the previous frame – the space
in which the reprojection cache was created. Consequently, if
the camera moves, for every currently rendered fragment we
have to find the corresponding position in the reproojection
cache. Since we have the 3D position of our current fragment
(in the post-perspective space of the current view), we can
simply use the view (V) and projection (P) matrices and
their inverses of the current and the last frame to do the
transformation (back into the post-perspective space of the
previous frame):

pprev = Pprev ∗Vprev ∗V−1 ∗P−1 ∗ p (1)

Here p is the fragment in the post-perspective space of
the current frame. This fragment is transformed by P−1,
the inverse projection matrix of the current frame, V−1,
the inverse view matrix of the current frame (we are now
in world space), Vprev, the view matrix of the previous
frame and finally by Pprev , the projection matrix of the
previous frame. After homogenization we are at the posi-
tion the fragment would have had in the previous frame
pprev . For moving objects, we can additionally store the
object space transformation matrices or skinning matrices
to do the backprojection step. Please note that all matrix
transformations can be performed in the vertex shader and
only the homogenization (division by the w-coordinate) has
to happen in the fragment shader.

The obtained position will normally not be at an exact
fragment center in the history buffer except for the special
case that no movement has occurred. Consequently, filtering
the history buffer for the lookup should be done. In practice,
the bilinear filtering that graphics hardware offers shows
good results.

For distinguishing between a cache hit and miss when
reprojecting current fragments into the cache, the depth is
used. If a cache value has a depth equal (±ε) to the current



fragment’s depth, a cache hit is assumed (see Figure 1)
and information from the cache can be reused. Otherwise
no temporally coherent information for this fragment is
available.

Due to its speed and versatility this approach is the de
facto standard for using TC in real-time rendering. In the
following sections we will therefore discuss a selection of
algorithms that are based on this method.

A. Discrete LOD Interpolation

Fig. 3. LOD interpolation combines two buffers containing the discrete
LODs to create smooth LOD transitions. First and second column: buffers;
last column: combination. The top row shows the two LODs in red and
blue respectively.

The idea of discrete level-of-detail (LOD) techniques is to
use a set of representations with different levels of detail for
one model and select the most appropriate representation for
rendering at runtime. Due to memory constrains only a small
number of LODs is being used and therefore switching from
one representation to another can lead to noticeable popping
artifacts. A solution to this problem is to replace the hard
switch by a transition phase, in which the two representations
are alpha blended in screen space [5].

Apart from other problems, this approach requires that the
geometry (and the shaders) of both representations have to be
rendered in this transition phase, thereby generating a higher
rendering cost than the higher quality level alone would
incur. To circumvent this Scherzer and Wimmer introduce
LOD interpolation (see Figure 3) [16]. The idea is that by
using TC the two LODs required during an LOD transition
can be rendered in subsequent frames. Two separate render
passes are used to achieve the transition phase between
adjacent LOD representations: Pass one renders the scene
into an off-screen buffer (called LOD buffer). For objects
in transition we use one of the two LOD representations
and render only a certain amount of its fragments (see
Figure 4), depending one were in the transition (i.e., how
visible) this object currently is. This is done via so-called
visibility textures, which represent a visibility function for
an object. In the next frame the same is done the other LOD
representation and rendered into a second LOD buffer. The
second pass combines these two LOD buffers (one from the
current and one from the previous frame) to create the desired
smooth transition effect.
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LOD K+1LOD K

distance

all

0
transition

Fig. 4. Transition phase from LODk to LODk+1: left:LODk; middle:
midway in the transition all fragments of both LODs are drawn; right:
LODk+1; Below: First LODk+1 is gradually introduced till all its
fragments are drawn. Then LODk is gradually removed by rendering fewer
and fewer fragments. The top two rows show the result of our method and
a false color illustration.

We store a 3D visibility function per object (the visibility
texture) and compare it to a visibility threshold to decide
which fragments to discard. The visibility threshold τ ∈
[0..1] is given by the function depicted in Figure 4. Written
as an equation: λ : R3 × [0..1]→ {true, false}

λ : (p, τ) 7→ visTex(p) > τ (2)

is the function that evaluates for each fragment if it should
be discarded. Here p is the object-space coordinate (before
any animation is applied) of the fragment, τ the visibility
threshold and visTex is the lookup into the visibility tex-
ture. Note that even though the visibility function may be
continuous, the thresholding operation gives a binary result
and therefore no semi-transparent pixels appear.

By using different visibility textures, one can control in
which way the fragments become visible. Examples include
a uniform noise pattern, a function that decreases from the
center outward, or any other function best suited to a given
object. This has the effect that the amount and distribution
of the visible fragments of an object can be controlled (see
Figure 5).

Fig. 5. A uniform noise visibility texture (left) applied to two different
models with visibility τ = 0.5).



B. Hard Shadows

Shadows are widely acknowledged to be one of the global
lighting effects with the most impact on scene perception.
They are perceived as a natural part of a scene and give
important cues about the spatial relationship of objects.

Due to its speed and versatility, shadow mapping is one of
the most used real-time shadowing approaches. The idea is
to first create a depth image of the scene from the point
of view of the light source (shadow map). This image
encodes the front between lit and unlit parts of the scene.
On rendering the scene from the point of view of the camera
each fragment is transformed into this space. Here the depth
of each transformed camera fragment is compared to the
respective depth in the shadow map. If the depth of the
camera fragment is nearer it is lit otherwise it is in shadow
(See Figure 6).

The most concerning visual artifacts of this method orig-
inate from aliasing due to undersampling. The cause for
undersampling is in turn closely related to rasterization that
is used to create the shadow map itself. Rasterization uses
regular grid sampling for rasterization of its primitives. Each
fragment is centered on one of these samples, but is only
correct exactly at its center. If the viewpoint changes from
one frame to the next, the regular grid sampling of the new
frame is likely to be completely different than the previous
one. This frequently results in artifacts, especially noticeable
for thin geometry and the undersampled portions of the scene
called temporal aliasing.

This is especially true for shadow maps. Due to shadow
map focusing, a change in the viewpoint from one frame
to the next also changes the regular grid sampling of the
shadow map. Additionally the rasterized information is not
accessed in the original light-space where it was created, but
in eye-space, which worsens these artifacts. This frequently
results in temporal aliasing artifacts, mainly flickering (See
Figure 6).

The main idea in [14] is to jitter the shadow map viewport
differently in each frame and to combine the results over
several frames, leading to a higher effective resolution.

In order to reduce temporal aliasing, each pixel is in-
terpreted as a separate function f(n) with the time as
the input domain (usually represented by a frame number
n). Temporal anti-aliasing is then done by smoothing this
function. Smoothing itself is done by employing exponential
smoothing:

s(n) = w ∗ f(n) + (1− w) ∗ s(n− 1) 0 < w ≤ 1 (3)

Here w is a weight and s(n−1) is the result of the previous
evaluation. w allows balancing fast adaption of s to changing
input parameters against temporal noise of the function. With
increasing w, s(n) depends more on the result of the current
frame function and less on older frames and vice versa.

The shadow quality in this approach can actually be
made to converge to a pixel-perfect result by optimizing the
choice of the weight between the current and the previous
frame result (stored in a reprojection cache). The weight

is determined according to the confidence of the shadow
lookup. The confidence is higher if the lookup falls near the
center of a shadow map texel, since only near the center of
shadow map texels it is very likely that the sample actually
represents the scene geometry (see Figure 7 and 8).

C. Soft Shadows

In reality most light sources are area light sources and
hence most shadows exhibit soft borders. Light source sam-
pling introduced by Heckbert and Herf [7] creates a shadow
map for every sample (each on a different position on the
light source) and calculates the average (= soft shadow) of
the shadow map test results for each fragment. The primary
problem here is that the number of samples (and therefore
shadow maps) to produce smooth penumbrae is huge and
therefore this approach is slow. Typical methods for real-
time applications approximate an area light by a point light
located at its center and use heuristics to estimate penumbrae,
which leads to soft shadows that are not physically correct.
Here overlapping occluders can lead to unnatural looking
shadow edges, or large penumbrae can cause single sample
soft shadow approaches to either break down or become very
slow

The main idea of our algorithm [15] is to formulate light
source area sampling in an iterative manner, evaluating only
a single shadow map per frame. We start by looking at the
math for light source area sampling: Given n shadow maps,
we can calculate the soft shadow result for a given pixel p
by averaging over the hard shadow results si calculated for
each shadow map. This is given by

ψn(p) =
1

n

n∑
i=1

si(p). (4)

We want to evaluate this formula iteratively by adding
a new shadow map each frame, combining its shadow

Fig. 6. If the rasterization of the shadow map changes (here represented
by a right shift), the shadowing results may also change. On the left three
fragments are in shadow, while on the right five fragments are in shadow.
This results in flickering or swimming artifacts in animations.



Fig. 7. Shadow adaption over time of an undersampled uniform shadow
map after 0 (top-left), 1 (top-middle), 10 (top-right), 20 (bottom-left), 30
(bottom-middle) and 60 (bottom-right) frames.

information with the data from previous frames stored in
a so-called shadow buffer Bprev , and storing it in a new
shadow buffer Bcur. With this approach, the approximated
shadow in the buffer improves from frame to frame and
converges to the true soft shadow result (see Figure 9).

Our approach has the following steps:
• The area sampling is done one sample per frame by cre-

ating a shadow map from a randomly selected position
on the area light. For each screen pixel the hard shadow
results obtained from this shadow map are combined
with the results from previous frames (accumulated in
the reprojection cache) to calculate the soft shadow for
each pixel.

• When a pixel becomes newly visible and therefore no
previous information is available in the reprojection
cache, we use a fast single sample approach (PCSS with
a fixed 4x4 kernel) to generate an initial soft shadow
estimation for this pixel.

• To avoid discontinuities between sampled and estimated
soft shadows, all the estimated pixels are augmented by
using a depth-aware spatial filter to take their neighbor-
hood in the shadow buffer into account.

This results in a very fast soft shadow approach based on
shadow maps that uses temporal reprojection for converging
to the physical correct result (see also Figure 10).

IV. CONCLUSIONS

This paper has given a short introduction into the field of
TC in real-time rendering. TC is of course also used in many
other areas of real-time rendering.

Yang et al. [23] use it for amortizing supersampling: They
maintain several samples from previous frames and combine

Fig. 8. LiSPSM (left) gives good results for a shadow map resolution of
10242 and a viewport of 1680× 1050, but temporal reprojection (middle)
can still give superior results because it uses shadow test confidence (right):
confx,y = 1−max

(
|x− centerx| , |y − centery |

)
· 2.

them in the current frame using reprojection. In the majority
of cases they can thereby avoid the computational cost of
calculating multiple samples for each fragment.

Also analysis papers of the reprojection cache approach
exist. Sitthi-Amorn et al. [17] analyse the potential perfor-
mance gain achievable by introducing the reprojection cache.
They find that a 3-pass algorithm (in contrast to the single
pass or 2-pass algorithms used before) is more efficient to
execute on current hardware. The problem when and how to
update the reprojection cache (refresh policy) is investigated
in [18]. They present automatic methods to select when
and which samples to refresh using a parametric model that
describes the way possible caching decisions affect the visual
fidelity and the shader’s performance.

But due to place constrains many interesting algorithms
had to be omitted. This area is a very active field of research
and there are still many algorithms in real-time rendering that
could also benefit from accounting for TC in the algorithm
design.
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