
Noise and Artifact Reduction in
Interactive Volume Renderings of
Electron-Microscopy Data-Sets.

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Andreas Ritzberger
Matrikelnummer 0527000

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Ing. Dr.techn. Markus Hadwiger, Dipl.-Ing. (FH) Dr.techn. Johanna Beyer

Wien, 15.05.2010
(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Widmung

Gesegnet sind die, die geben können, ohne sich daran zu erinnern

und die, die nehmen können, ohne es zu vergessen.

-Melvin Schleeds

Mit dieser Widmung möchte ich mich bei meinen Eltern bedanken, die mich all

die Jahre selbstlos und tatkräftig in meiner schulischen und studentischen Laufbahn

unterstützt haben. Ohne euch wäre ich nicht dort wo ich heute bin!

Danke!

i

Erklärung zur Verfassung der
Arbeit

Andreas Ritzberger, Zinckgasse 22/Top 53, 1150 Wien

Hiermit erkäre ich, dass ich diese Arbeit selbsändig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollsändig angegeben habe und dass ich die

Stellen der Arbeit - einschlielich Tabellen, Karten und Abbildungen -, die anderen

Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf

jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. Mai 2010

(Unterschrift Verfasser)

ii

Abstract

Connectomics is an emerging area of neuroscience that is concerned with under-

standing the neural algorithms embeded in the neural circuits of the brain by tracking

neurons and studying their connections. From all the available scanning technolo-

gies only electron microscopy (EM) can provide sufficient scanning resolutions

in order to identify neural processes. EM data sets, however, suffer from bad

signal-to-noise ratio and artifacts introduced to the data set during the sectioning

and digital reconstruction process of the scanned specimen. In this thesis we present

two different approaches that generally allow noise and artifact reduction on vol-

umetric data sets and which can be used to increase the visual quality of direct

volume renderings (DVRs) of EM data sets. The fist approach we developed was an

interactive, on-the-fly filtering framework that allows a user to filter even very large

volume data set with resizable 3D filter-kernels. For comparison, we implemented

an average, a Gaussian, and a bilateral filter. The second approach we investigated

is a semi-automatic one that allows a user to select regions within a data set. Similar

regions are then retrieved by our algorithm using multiresolution histograms and

the user can remove these regions from the rendering. By selecting and hiding

regions containing noise or artifacts, the desired noise- and artifact-reduction can be

achieved. We are going to show that both methods we investigated are suitable for

removing noise and artifacts in EM data sets.

iii

Kurzfassung

Connectomics ist ein aufstrebender Fachbereich der Neuro-Wissenschaften, der

danach strebt, die in den neuronalen Schaltungen des Gehirns versteckten Algo-

rithmen zu verstehen. Das wird zu erreichen versucht, indem man die Neuronen

im Gehirn verfolgt und deren Verbindungen untersucht. Von all den verfügbaren

bildgebenden Verfahren bietet lediglich ein Elektronen Mikroskop die nötige Auflösung,

um neuronale Prozesse abzubilden. Datensätze, die mit einem Elektronen-Mikroskop

erstellt wurden, weisen jedoch sowohl einen schlechten Signal-Rausch-Abstand

als auch Artefakte auf, die während der Vorbereitung und der Abtastung einer

Probe entstehen. In dieser Arbeit stellen wir zwei Ansätze vor, den Signal-Rausch-

Abstand zu verbessern und die Artefakte zu reduzieren. Der erste Ansatz, der

entwickelt wurde, reduziert das Rauschen, indem die Datensätze mit einem 3D

Filter geglättet werden. Das Besondere an diesem Ansatz ist, dass er interaktiv ist

und die Datensätze ”on-the-fly“ gefiltert werden. Zum Vergleich wurden ein Box-,

ein Gauss- und ein bilateraler Filter implementiert. Der zweite Ansatz, den wir

untersucht haben, arbeitet semi-automatisch. Er erlaubt es einem Benutzer, Regio-

nen innerhalb eines Datensatzes zu selektieren und diese und ähnliche Regionen

dann, mit Hilfe von Histogrammen der unterschiedlichen Auflösungsstufen dieser

Regionen, auszublenden. Wenn nun Regionen selektiert und ausgeblendet werden,

die Rauschen oder Artefakte beinhalten, wird die angestrebte Reduktion dieser

beiden Störfaktoren erreicht. Wir werden zeigen, dass beide vorgestellten Methoden

dazu geeignet sind, in, von einem Elektronen-Mikroskop erstellten, Datensätzen,

den Signal-Rausch-Abstand zu erhöhen und die Artifakte beim Volumen Rendering

zu reduzieren.

iv

Contents

1 Introduction 1
1.1 Motivation . 5

1.2 Goals . 6

1.3 Organization . 6

2 Fundamentals 8
2.1 Volume Rendering . 8

2.2 Image Processing . 12

2.2.1 Noise Reduction . 13

2.2.2 Histograms . 13

2.3 Electron Microscopy . 16

2.3.1 Basic Types of Electron Microscopes 16

2.3.2 3D Data Set Generation 18

2.4 GPGPU . 19

2.4.1 Why GPGPU . 19

2.4.2 CUDA . 19

3 Related Work 23
3.1 Noise Reduction in Volumetric Data Sets 24

3.2 Texture and Structure Matching 24

3.3 GPGPU Ray Casting . 26

4 Overview over the used Volume Rendering Framework 27
4.1 Caching Large Datasets . 28

4.2 CUDA Ray Caster of the HVR Framework 30

5 Filtering Module - Noise Reduction by Filtering 32
5.1 Average Blur . 34

v

CONTENTS vi

5.2 Gaussian Blur . 35

5.3 Bilateral Filtering . 38

5.4 Implementation . 39

6 Volume Exploration Module - Data Reduction by Picking 45
6.1 Structure Recognition in Theory 47

6.2 Implementation . 52

6.2.1 Construction of Volume Pyramid 52

6.2.2 Class Layout . 54

6.2.2.1 VE Histogram 55

6.2.2.2 VE MultiHistogram 55

6.2.2.3 VE MultiHistogramManager 56

6.2.3 User Interface and Usage 57

7 Results and Evaluation 62
7.1 Results - Filtering . 63

7.2 Results - Picking . 66

8 Summary 73
8.1 Conclusion . 75

8.2 Future Work . 77

Acknowledgments 77

Bibliography iii

vi

Chapter 1

Introduction

Every contrivance of man, every tool, every instrument, every uten-

sil, every article designed for use, of each and every kind, evolved from

a very simple beginning.

-Robert Collier

Understanding the human brain has been a scientific goal for centuries. From

healing diseases to inventing new types of artificial intelligence (AI), a complete

understanding of the mechanics underlying the brain functions is crucial - and not yet

accomplished. In almost all areas of biology, there is the need to find connections

between biochemical functions and molecular structures [BD06]. Chalfie et al.

[CSW+85] showed in their work that the need for structural connectivity information

exists in systems biology as well. They reconstructed the nervous system of a C.

elegans which allowed them to present a detailed description of the functionality

of its nervous system. Having a complete connectivity map for a particular part of

the nervous system of a more advanced specimen like a mouse for example so that

its neural algorithms can be understood is however a daunting task [Mar02]. For

a single mouse cortical column, the number of neurons will be 104 larger than the

number of neurons and neural connections in the C. elegans [BS98, Fia02]. The

science investigating these neural connections is called Connectomics [STR05].

Connectomics is an emerging and active part of neurobiology [JBH+09] that aims

to understand the neural algorithms embedded in the neural circuits by following the

neurons and studying their connections. From all available scanning technologies

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Different examples of artifacts introduced to EM data sets during data set
generation. (a) Shows an artifact with uniform shape while (b) shows a large uniform
artifact with several smaller, blurry ones. (c) indicates that the artifacts not necessarily
have to be black. The white spot in this image is an artifact as well. (d) shows three small
artifacts spread across the image. The artifacts are marked by red ellipses.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Direct volume rendering of an EM data set using a 1D transfer function. The
same intensities of the axons and the artifacts make it almost impossible for the user to
distinguish between the structures by using just a 1D transfer function.

only electron microscopy (EM) can provide sufficient scanning resolutions to iden-

tify neural processes [JBH+09]. Since resolutions up to 3nm can be achieved with

recent EM technologies [JBH+09] the storage capacity necessary to accommodate

a scan of a tissue sample of several nanometers in size can be up to several terabytes

[JBH+09]. Despite the high resolution of EM scans, EM data sets suffer from poor

signal to noise ratio [BD06]. Further, the process of combining EM scans to data

sets may introduce unwanted artifacts (see Section 2.3.2). Figure 1.1 shows four

different examples of artifacts introduced to EM data sets during the imaging and

reconstruction stage. This figure shows that these artifacts may vary in size, shape

and intensity.

Besides the computational issue of handling large neurological data sets, one must

not forget the problems which users evaluating these data sets may experience.

Manually searching these data sets for neural connections [JBH+09] and finding

neural connections or distinguishing relevant from nonrelevant data within a Tera-

byte-sized, noisy scan is a tiresome task and can easily be compared to searching

a needle not only in a haystack but more accurately in the whole barn. Although

the EM data sets used for Connectomics are of three-dimensional nature and could

3

CHAPTER 1. INTRODUCTION 4

therefore be considered ideal for volume rendering [DCH88], the current practice

of the researchers when they are trying to identify structures of interest is solely

based on examining 2D slices of an EM data set. This may be due to the fact that

the complex structure of nerve cells makes direct volume rendering (DVR) difficult,

especially when using transfer functions based solely on image intensity and gradient

[JBH+09]. DVR is a volume rendering technique that maps the intensity of each

sample point of a volume data set to a specific color and opacity provided by the

transfer function (see Section 2.1). Figure 1.2 shows a direct volume rendering of an

EM data set using a 1D transfer function based on image intensity. The tube-shaped

structures in that figure are the myelin sheaths of the axons, which have almost the

same intensity as the noise and the artifacts introduced to the data set during data

set generation. Thus, using this type of volume rendering for identifying structures

is not yet feasible.

With this thesis we aim at improving the visual quality of direct volume rendering of

EM data sets using 1D transfer functions based on image intensity. To accomplish

this, we investigate two different approaches to reduce noise and artifacts in EM

data sets. The first approach reduces image noise uniformly throughout the data

set. The noise-reduction is accomplished using digital filtering. Digital filtering,

in the context of digital images or digital volume data sets, is an image processing

technique (see Section 2.2) that applies a 2D filter to an image that enhances or hides

certain properties of the image. In our case, digital filters are used for smoothing an

EM data set. Smoothing in this case means that the filters are used to reduce details

within the data set. The amount of smoothing depends on the filter size. To perform

filtering operations on volumetric data sets, we use three-dimensional filter kernels.

The key element of our filtering approach is, that the data sets are filtered on the

fly. This means that the filtering of the data set is repeated for each frame. On the

fly filtering of the data set avoids the extra storage space needed to store prefiltered

data sets. Besides the reduction of required storage space, on the fly filtering was

chosen because it provides the flexibility to interactively select the type, the size

and the dimensionality of the filter that is applied to the data set. This enables a user

to interactively compare different filter types at different degrees of smoothing. The

second approach we investigated is a semi-automatic one that allows the user to

choose which structures of a data set he wants to see. After the user selects such

a structure within the data set, multiresolution-histograms [HGN01a] are used to

find similar structures which are then selected as well. The user choses whether

4

CHAPTER 1. INTRODUCTION 5

Figure 1.3: Volume rendering of an EM data set without and with filtering. (a) original
volume rendering. (b) Volume rendering of the data set after noise removal and artifact
reduction.

selected structures are visible and the rest of the data set is hidden or vice versa. The

two approaches presented in this thesis have been integrated in an existing volume

visualization framework called HVR.

1.1 Motivation

Connectomics is a scientific area with ambitious goals. If successful, the research

done in Connectomics may be a great step towards understanding biological neural

structures and eventually the human brain itself. This knowledge may lead to

advancement not only in neurology and medicine but in creating artificial neural

networks and new forms of AI as well and we appreciate the opportunity to not

only be a part of these developments but to contribute in a useful manner using

the knowledge of our own field of research. With our work, we want to facilitate

the exploration of EM data sets. We want to reduce image noise and artificial

artifacts within the EM data set so that the researchers can focus on exploring the

parts of the data set they are interested in. Figure 1.3 (a) shows an unprocessed

EM data set volume rendered with a 1D transfer function. The same as it is the

case in Figure 1.2, the axons are surrounded by noise and artifacts. Image 1.3 (b)

shows the desired outcome when rendering the same EM data set and using the

same transfer function, but including a noise reduction step before rendering. We

5

CHAPTER 1. INTRODUCTION 6

hope that our work contributes to an increase of acceptance of volume rendering in

Connectomics. We further hope that the researches may experience the advantages

of directly studying the neural connections in 3D over manually segmenting the

neural connections in each 2D slice of an EM data set.

1.2 Goals

Besides the ultimate longtime goal of proving the feasibility of volume rendering in

Connectomics, this thesis focuses on improving the user experience when viewing

direct volume renderings of EM data sets by increasing the visual quality of the

renderings. The main goal hereby is to counteract the issues direct volume rendering

encounters when being used on EM data sets. Namely these issues are the low signal

to noise ratio, which renders the traditional use of DVR and 1D transfer functions

virtually useless, and the large amount of, vastly nonessential, data that has to be

explored in order to track neural connections throughout the volume.

Since evaluating the visual appearance of the renderings produced by our approaches

goes beyond the scope of this thesis we focus our evaluation on the implementation

issues of our methods. We will further show the noise reduction capabilities of our

two approaches by providing respective screenshots for comparison.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 lays the technical

foundation for this thesis. In Section 2.1 the concepts of direct volume rendering

are explained. Section 2.3 shortly explains the theory behind electron microscopy,

explains the two major types of electron microscopes and shows how EM data

sets are formed. Section 2.2 gives a short introduction to image processing while

Section 2.4 explains the reasons for using general purpose GPU computing and gives

a short introduction to NVIDIA’s general purpose GPU API called CUDA. Chapter 3

gives an overview over research related to volume rendering of EM data sets, filtering

volume data on the GPU, and using histograms for finding structures in volumes or

images. An introduction to the HVR framework is given in Chapter 4 since both

modules developed for this thesis were incorporated into this framework. Chapter 5

6

CHAPTER 1. INTRODUCTION 7

presents our filtering module and explains the theory behind the implemented

filters. It further provides detailed information on the implementation of these

filters. Chapter 6 presents our volume exploration module. Section 6.1 explains

the theory behind the way similar structures are found. Section 6.2 explains the

implementation of the volume exploration module from a conceptional point of view

and gives insight on its user interface and usage. The results and the evaluation of

the two approaches investigated in this thesis are provided in Chapter 7. A summary

and a conclusion of this thesis as well as the outlook on future enhancements to this

work are presented in Chapter 8.

7

Chapter 2

Fundamentals

He who has not first laid his foundations may be able with great

ability to lay them afterwards, but they will be laid with trouble to the

architect and danger to the building.

-Niccolo Machiavelli

This chapter gives an overview over the topics this thesis is associated with. We pro-

vide an overview and a short explanation of each topic to lay down the fundamentals

to comprehend, observe and evaluate the techniques and results we present during

the remainder of this thesis. Within the next sections we explain the basics of direct

volume rendering and image processing, we shortly explain electron microscopy

and the generation of EM data sets and we explain the principles of general purpose

GPU computation using NVIDIA’s CUDA as an example.

2.1 Volume Rendering

Volume rendering is a part of computer graphics. Computer graphics investigates

the pictorial synthesis of computer based models, while image processing (see

Section 2.2) on the other hand treats the reverse process [FVDFH95]. Volume

rendering is accepted to be widely applicable for viewing medical data [LL94] and

in computer-aided medical treatment visualization plays an important role [ZB09].

All techniques that deal with the visualization of volumetric data sets are considered

8

CHAPTER 2. FUNDAMENTALS 9

to be volume rendering. These volumetric data sets digitally represent a 3D-object

by 3D sample points which usually are organized in regular grids [Max95] and

stored as intensity values. As analogy to pixels in 2D imaging, the sample points

in volumetric data sets are often referred to as ”voxels“. Levoy was the first to

present volume rendering as an alternative to constructing a mesh of polygons

out of the sample points of a volume data set [Lev90]. He presented the idea of

omitting intermediate geometric representations and obtaining an image by shading

all sample points and projecting them onto the image plane. In accordance to the

explanation of volume rendering given by Levoy, Max [Max95] defined DVR as

follows:

Direct Volume Rendering refers to techniques which produce a

projected image directly from the volume data, without intermediate

constructs such as surface polygons.

The idea of directly rendering volume data sets without intermediate polygon meshes

is now known as direct volume rendering (DVR). Nowadays, the terms ”volume

rendering“ and ”direct volume rendering“ are used interchangeably, since DVR has

become the most popular volume rendering technique.

Implementation wise, DVR can be classified into three main types [EKE01]:

• image based DVR: The appearance of the volume is evaluated for every

pixel of the image the volume is rendered to. The most prominent example

for image based DVR is ray casting [RPSC99]. The basic idea for using ray

casting for volume rendering is that for each pixel of the image plane, a ray is

shot into the volume. Along each ray, the volume is traversed and the colors

and opacities of the voxels that are hit by the ray are accumulated to obtain

the final color for a pixel.

• object based DVR: In contrast to image based DVR, the voxels of a volume

project their color onto the image plane. The whole volume has to be traversed

to obtain the final pixel color. Examples for object based DVR are splatting

[ZvBG01] techniques or shear-warp rendering [LL94].

• texture based DVR: A volume is represented by textured 2D-planes that are

combined using hardware accelerated blending. The volume can either be

9

CHAPTER 2. FUNDAMENTALS 10

represented by three stacks of planes using 2D texture maps or one stack of

planes using a 3D texture map. For the first approach, the planes of each stack

are aligned to one coordinate axis while the planes in the second approach

are view port aligned.

The common theme of all three DVR types is, that they all aim at evaluating the

volume rendering integral [KVH84, MHB+00] for each pixel [EKE01]:

Iλ (x,r) =
∫ L

0
Cλ (s)µ(s)e−

∫ s
0 µ(t)dtds (2.1)

Equation 2.1 shows the formal description of the volume rendering integral where

Iλ is the amount of light or intensity of a light source that is received at location x

on the image plane. The variable λ represents the wavelength of the light source.

The direction of the ray of light that hits the image plane and that originates from

the light source is represented by r. L is the length of this ray. Cλ is the light

of wavelength λ that is reflected and/or emitted at location s in direction r. The

densities of the volume’s particles are given by µ . These particles may reflect or

emit light towards the observer. Since an analytic computation of Equation 2.1

is generally not possible [Max95], practical volume rendering algorithms use a

discretized volume rendering integral as compositing equation:

Iλ (x,r) =
L/∆s

∑
i=0

Cλ (si)α(si) ·
i−1

∏
j=0

(1−α(s j)) (2.2)

Equation 2.2 shows the discretized version of the volume rendering integral. The

colors C(si) and opacities α(si) are calculated for each interval i. ∆s is the interval

width and the opacity is given by α . Functions that assign colors and opacities to

intensity values are referred to as transfer functions.

The DVR type of choice on modern consumer graphics hardware is GPU based ray

casting as it was originally proposed by Krüger and Westermann

[KW03]. They proposed to implement a ray caster fully in the fragment shader of

the GPU. This approach became feasible with the introduction of programmable

vertex and fragment shaders and uses the distinct advantages a GPU has over a

CPU when it comes to graphical tasks. These advantages are a massively parallel

10

CHAPTER 2. FUNDAMENTALS 11

Figure 2.1: This figure [Sch05] shows the front and back faces of the bounding box rendered
to textures. The texture coordinates of each point are encoded in the color channel of the
respective texture. Subtracting these textures yields the viewing vectors for the ray casting
step.

architecture, fast memory access and fast vector operations. The GPU ray casting

algorithm proposed by Krüger and Westermann will be explained in more detail

since it is the basis for the ray casting algorithm that is used in this thesis to render

the EM data sets. First of all, the volume data set is stored in a 3D texture map

to take advantage of the graphics card’s built-in trilinear filtering capability. At

any point within the volume and for any desired resolution, trilinear interpolated

intensity values are provided. Then a bounding box is created around the volume.

In the first rendering pass, the front faces of this bounding box are rendered to a 2D

RGB texture. In the vertex shader, the xyz coordinates of the vertices are stored in

the RGB values of the texture. This results in a 2D texture map that has the same

resolution as the view port and contains the colored rendering of the bounding box.

Every colored pixel in the 2D texture map represents an entry point for a ray that is

cast into the volume. The coordinates of the entry points of the rays are therefore

encoded in the color channel of this 2D RGB texture. The next step in the ray

casting algorithm is to retrieve the directions of the rays. This is done by rendering

the back faces of the bounding box to a 2D RGBA texture, in contrast to the 2D

RGB texture of the previous step. In the vertex shader, the xyz coordinates of the

vertices are then subtracted from the RGB values of the texture map obtained in

the previous step. The resulting vectors are stored in the RGB values of the RGBA

texture. The length of each vector is stored in the respective α channel. In total

we have two texture maps that are needed for rendering: The texture map of the

11

CHAPTER 2. FUNDAMENTALS 12

entry points and the texture map of the direction vectors. Figure 2.1 shows the

rendered front and back faces of the bounding box of the volume that is rendered.

The original colors of the vertices have been replaced with their texture coordinates.

When these two textures are subtracted, the viewing vectors for the ray casting step

are obtained. The entry-point texture map and the direction texture are congruent

and provide a starting point and a direction for every fragment to be rendered. The

actual ray casting step is performed by another fragment shader in a third render

pass. Here, for each fragment a ray is cast from the respective starting point along

the direction vector. In a predefined step size, the intensities of the 3D texture are

retrieved and accumulated using a transfer function. The ray is terminated when its

length equals the length of the stored direction vector or the accumulated opacity

of the ray is larger than a given threshold. The termination of such a ray because

its opacity exceeds a given threshold is called ”early ray termination“. To increase

performance and to remove sampling artifacts, various techniques like empty space

skipping or hitpoint refinement can be used [Sch05].

2.2 Image Processing

The scope of computer imaging is as vast as the scope of computer graphics.

While computer graphics investigates the pictorial synthesis of computer based

models, computer imaging deals with obtaining information or modifies the visual

appearance of already created images. Image processing is an area of computer

imaging where a human being is involved in the visual loop [Umb05]. Although the

images are processed by digital computers, the processing is steered and examined

by people. Digital image processing therefore concerns the transformations of

an image to a digital format and its processing by digital computers [Pit00]. The

major topics in image processing are the restoration and the enhancement of digital

images. Image restoration techniques include the reduction of image noise and

image distortions that occur due to misalignment of the optical systems of cameras.

Enhancement techniques aim at improving the images visually, e.g. by the use of

contrast stretching [Umb05] or sharpening [Umb05]. In the filtering framework

developed for this thesis we use image restoration techniques to remove the noise in

EM data sets. The operations that are used for reconstruction or restoration purposes

either aim at an image’s topography or the statistics of the distribution of image

intensities. The use of digital filters exploit an image’s topography, thus sharpening

12

CHAPTER 2. FUNDAMENTALS 13

is a proper example for this kind of operations. Contrast stretching is an example

for the use of statistical information on image intensities because it depends on the

use of intensity histograms. These intensity histograms store the distribution of the

image intensities.

2.2.1 Noise Reduction

Noise is defined as brightness variations in regions that are ideally uniform

[Rus06] and results from misalignment or defects of the optical systems of the

imaging devices. The amount of noise within an image can be expressed by the

signal-to-noise ratio. The signal-to-noise ratio is the ratio between two contrasts.

The first one is the contrast of an image that is solely due to structural differences in

the image. The second one is the contrast that is due to the noise level in the image.

The smaller the signal-to-noise ratio, the harder it gets to distinguish between signal

and noise. Thus detecting image structures gets harder the smaller the signal-to-

noise ratio is. In the context of this thesis, we examine the kind of noise that is

introduced to EM data sets. This noise is introduced during the preparation of a

specimen for the EM scan. For a detailed description of electron microscopy see

Section 2.3. Noise is introduced to EM data sets due to variations in the field emis-

sion current at the tip of the electron microscope. These variations occur because

the electron emissions from the tip can shift from one atom of the tip to another.

This shift of the electron beam produces a change of several percent in electron

beam current [GNE+03]. This change in electron beam current results in a change

of intensities in the emissions that are reflected from the scanned specimen on to the

detectors of the electron microscope. Different intensities of the emissions result in

different intensities in the EM data set. No matter where the noise comes from, the

basic assumption to noise reduction is, that pixels are smaller than important details

of an image and that for most pixels, their neighbors represent the same structure

[Rus06]. By averaging these neighbors, the influence of outliers to an image is

reduced. This assumption is the basis of digital filters.

2.2.2 Histograms

A useful initial characterization of an image is often based on statistical information

on the intensity distribution of the image’s pixels [SOS00]. Intensity histograms

13

CHAPTER 2. FUNDAMENTALS 14

provide the means to efficiently store and evaluate the intensity distributions of

an image and offer a compact representation of the global intensity distribution

of an image. An intensity histogram is constructed by examining the intensity

values of each pixel of a given image and counting the number of pixels for each

possible intensity value. Intensity histograms usually are displayed as a plot that

shows the number of image pixels for each of these possible intensity values

[MS00]. On the histogram plot, each intensity value is represented by a so called

histogram bin. The height of the bin represents the number of pixels that have

the same intensity. By choosing a greater width of a bin, intensity values can be

summarized to one bin. The most basic initial characterizations one can obtain from

intensity histograms are about the image brightness and image contrast. The char-

acterization of an image’s brightness can be obtained as the result from averaging

the possible intensity values weighted with the height of the respective histogram

bin. In a range from [0,255] intensity values, an average of 0 represents a uniformly

black, or in terms of brightness, a uniformly dark image. An average of 255 on

the other hand represents a fully white or bright image. The contrast of an image

is expressed by the range of intensities the histogram bins cover in a histogram

plot. This range is called the dynamic range and is an indicator for the contrast

of an image. The greater this range is, the higher is the image’s contrast. Besides

information on average image brightness and image contrast, there are other useful

properties of intensity histograms. The location of the majority of occupied bins

for example offers insight on the illumination of an image. When the majority of

the occupied bins is concentrated on the lower end of the dynamic range, it is an

indicator that the image is too dark while a concentration on the other end of the

dynamic range is an indicator that it is too bright. The most commonly examined

histogram feature are peaks in the bin distribution of the histogram [SOS00]. A

peak is a concentration of bins that exceeds the base line of the other bins. In the

context of this thesis examining the peaks of the intensity histograms of images

from EM scans of neural tissue, strong peaks in the lower end of the dynamic range

may indicate either the presence of an axon or a strong artifact introduced by the

EM.

In image processing, operations that aim at altering the appearance of an image

based on a desired change in the intensity histogram are called histogram trans-

formations. Histogram transformations are operators that generate a new output

histogram by modifying the profile of the input histogram. The intensity values of

14

CHAPTER 2. FUNDAMENTALS 15

Figure 2.2: Histogram equalization used for contrast enhancement. a) Original Image.
b) Histogram of the original image. c) Image after histogram equalization. d) Equalized
histogram. Image from [Qur05]

the image are changed so that the desired output histogram is matched. Examples

for histogram transformations are histogram expansion [Hum77] and histogram

equalization [KLK+97]. Figure 2.2 shows the usage of histogram equalization for

contrast enhancement on an image. Image 2.2 a) is an image of low contrast and is

used as input image for the histogram equalization. Since in low-contrast images

the concentration of the bins in a relatively small part of the dynamic range of the

image can be observed, the low contrast can be seen as well in its histogram as it is

shown in Image 2.2 b). After histogram equalization, the bins of the new histogram

shown in Image 2.2 d) are spread over the whole dynamic range of the image. The

higher contrast of the image after histogram equalization is shown in Image 2.2

c). While histogram transformations can be used to improve the visual quality of

images, in this thesis we exploit the statistical informations provided by intensity

histograms (see Section 6.1) to achieve noise reduction and an improvement of the

visual quality of our renderings.

15

CHAPTER 2. FUNDAMENTALS 16

2.3 Electron Microscopy

Depending on eyesight and illumination, the smallest distance that can be dis-

tinguished by man lies between 0.1 and 0.2mm [WC09]. This distance is, so

to speak, the resolution of the human vision. All techniques that provide the

means to observe smaller distances can be comprehended as microscopy. The

maximal magnification of a common visible light microscope (VLM) is given by

δ = 0.61λ where δ is the maximal magnification and λ the wavelength of the

used light source. The magnification of the VLM therefore directly depends on

the wavelength of the light source. Generally formulated, when using radiation

for magnification, the degree of magnification depends on the wavelength of the

source-radiation. The idea to use electrons to magnify the smallest of structures

comes from the understanding that the wavelength of electrons are even smaller

than atoms and that these wavelengths depend on the energy of the electrons

[WC09]. Theoretically, resolutions as small as the wavelength of an electron are

possible. Although this kind of resolution is not yet reached, electron microscopy

is the only current available technique which provides enough resolution to follow

axons and dendrites [BD06]. This is why they are used to produce the data sets used

in Connectomics and our own research.

2.3.1 Basic Types of Electron Microscopes

The data sets we work on in this thesis were generated by a scanning electron

microscope (SEM). The resolution of a SEM lies in the nm-µm scale while its

magnification range reaches from 10 to 10.000 times [GNE+03]. When a specimen

is to be examined by a SEM, the area containing this specimen is irradiated with a

finely focused electron beam. This beam either sweeps the specimen in a regular grid

across its surface so that an image can be produced, or it remains static over a certain

position to analyze the specimen at that position. In contrast to the transmission

electron microscope, that is described later on, the electron ray of a SEM does not

carry the whole image of a specimen but rasterizes it. The signals emitted by a

SEM are secondary and backscattered electrons, x-rays and other photons of various

energies. The secondary and backscattered electrons are the most interesting signals

for imaging since their variance mainly depends on the specimens topography

[GNE+03]. When the secondary electron emission is confined to a very small

16

CHAPTER 2. FUNDAMENTALS 17

Figure 2.3: A schematic view of a SEM can be seen in this figure. Diagram courtesy of
Iowa State University SEM Homepage (http://www.mse.iastate.edu/microscopy/path2.html)

volume near the beam, the impact area permits obtainable resolutions of nearly the

size of the focused electron beam.

The basic components of a SEM are the lens system, the electron gun, the visual

system and the associated electronics. When a beam is emitted by the electron

gun it is focused by the lens system. The interaction of this primary electron beam

with the specimen results in the scattering of this primary electron beam into the

different signals that then can be measured by specialized detectors. Figure 2.3

shows a schematic setup of a SEM. Although the SEM has a poorer resolution than

the transmission electron microscope it allows a larger specimen size. Transmission

electron microscopy (TEM) was the first successful attempt to use electron beams

for magnifications far beyond the capabilities of VLMs [WC09]. The components

of the TEM are mostly the same as a SEM. The main difference between these

two electron microscopes (EMs) lies in the way the images are generated. While

the SEM samples a specimen at a regular grid, the high voltage beam of the TEM

carries the whole image of the specimen. A TEM, similar to a SEM, consists of an

illumination system, an objective lens stage and an imaging system. The objective

lens stage and the specimen holder are the heart of a TEM because that is where all

the interaction between electrons and the specimen take place. This region of the

TEM is about 10mm in size which also represents a hard limit for specimen sizes.

17

CHAPTER 2. FUNDAMENTALS 18

2.3.2 3D Data Set Generation

In contrast to other imaging technologies like CT or MRI, which are able to non

destructively obtain volume data from a specimen, electron microscopy can only

obtain images of surfaces that can influence the electron beam. To obtain a volu-

metric data set from a specimen, this specimen has to be sectioned. Sectioning is

the process of dividing a specimen into layers which are scanned separately and

ultimately leads to the destruction of the specimen. To obtain volumetric data of

organic tissue, thick blocks (several 100µm) of tissue are frozen so they are not

distorted during the sectioning process [BD06]. A diamond blade then cuts away

thin sections from the frozen tissue which are approximately 50nm thick. These

sections are then transfered and positioned on a grid as preparation for imaging with

the EM. The thickness of these sections is responsible for the fact that the depth res-

olution in EM data sets is lower than the horizontal and vertical resolution. Besides

the disadvantage of a low depth resolution, sectioning is tedious and prone to error

[BD06]. The most prominent problems with sectioning are the possible loss of

sections and the uneven section thickness mentioned above. These problems lead

to image distortions and uneven illumination of the sections. The transfer of the

sections from the cutting to the imaging stage may damage the sections and intro-

duce debris which lead to the noise and artifacts we aim at removing in our work.

These problems make automated alignment of the sections and therefore the digital

reconstruction of the specimen difficult. To get the final data set, the single images

have to be registered to each other. In order to register two images, a transformation

must be found to correlate a point in the first image to one point in the second

one [Bro92, MV98]. The main problems when registering two images are noise

and geometric distortions, which are both present in EM data sets. Inconsistencies

between two images that are supposed to be aligned are called misalignments. When

the type of misalignment is known, it is the task of the registration algorithm to

counteract these. When type and degree of misalignment is not known, like it is the

case in EM data sets, the primary approach to register the images is called point

mapping. This method consists of three stages. First, image features are calculated

in one of the images that are to be registered. The second stage computes image

features in the other images and determines spacial mapping functions according

to these features. The third stage uses these functions to chose how the images are

aligned.

18

CHAPTER 2. FUNDAMENTALS 19

2.4 GPGPU

Harvesting the computational powers of graphics processing units (GPUs) for

general purpose computations like physically-based simulations or database queries

is called general purpose GPU (GPGPU) computation. The reason to use GPUs

for general purpose computations as well as an overview over NVIDIA’s CUDA, a

GPGPU API, is given in the following.

2.4.1 Why GPGPU

The main feature of GPUs that is exploited in GPGPU computations is their parallel

processing capability. GPUs are designed for high performance parallel processing

because graphical tasks, especially evaluating vertices or pixels, are highly paralleliz-

able tasks, which GPUs are designed to handle. In recent years GPUs evolved into

extremely flexible and powerful parallel processors [Har05]. The introduction of

programmable fragment and vertex shaders and the recent introduction of dedicated

GPGPU APIs and their support of high level programming languages facilitate

the interaction with the GPUs. Precision wise, 32 bit floating point operations

throughout the pipeline are common at present. The performance of recent GPUs is

demonstrated by the specifications of recent consumer graphics cards. According

to NVIDIA the GeForce 295 GTX can reach up to 596 GFLOPS/sec with a peak

memory bandwidth of 223,7 GB/sec. The annual performance increase of GPUs and

graphics cards in general exceeds Moore’s law because the innovation in graphics

hardware is driven by the multi-billion dollar video game market [OLG+07].

2.4.2 CUDA

Before GPGPU APIs were available, general purpose algorithms for GPUs had to

be expressed as graphics primitives, textures and triangles using a graphics API.

The first step towards programmable GPGPU APIs and towards NVIDIA’s CUDA

was set in 2004 by introducing a stream programming model that aims at moving

away from graphics APIs by using a cross compiler to compile extended C code to

a shading language [BFH+04].

19

CHAPTER 2. FUNDAMENTALS 20

Figure 2.4: Architecture of a CUDA kernel from [NVI10a]. One CUDA kernel runs one
CUDA grid which contains multiple CUDA blocks. These CUDA blocks consist of CUDA
threads which are executed in parallel.

Instead of using a compiler to compile C code to a shader language, the software

part of CUDA (short for Compute Unified Device Architecture) is co-designed with

the actual graphics hardware [NVI10b]. Syntax wise, CUDA programs are written

in a version of C that is enhanced with a small set of extensions which grant access

to the GPU and the memory of a graphics card. The CUDA programming model

distinguishes between CPU (host) and GPU (device) code. Data exchange works

in both directions and is not limited to graphical data structures. Arrays, single

variables or structures may be exchanged. The parallel portion of an application is

handled on the device by a CUDA kernel. Only one CUDA kernel is executed at a

time but many CUDA threads are executed in each of these kernels in parallel. Each

of these threads runs the same code. To allow cooperation between the threads, the

kernels are divided into logical structures called CUDA blocks. Each block contains

an equal amount of threads and allows these threads to exchange data using a fast

shared memory. The blocks can only exchange data among themselves using the

slow global memory. Further, these blocks are organized in one CUDA grid per

20

CHAPTER 2. FUNDAMENTALS 21

kernel. Within hardware specific limitations, block and grid size are arbitrary. It

is however recommended [NVI10a] that the block and grid size are chosen so that

there are at least as many blocks as there are multiprocessors on the device. Grids

may be organized as 1D or 2D arrays of blocks while the blocks can be organized

in 1D to 3D arrays of threads. Each thread has access to its location within the

block, the size of the block as well as the location of the block within the grid.

With this information one can determine the location of a thread within a kernel.

Figure 2.4 shows the interrelationships of threads, blocks and grids. Besides proper

planing of a parallel algorithm, efficient usage of the memory bandwidth of the

different memory types of CUDA is essential to the overall performance of a kernel

[NVI10a]. Besides a small register for each thread, the fastest memory in the CUDA

architecture is the shared memory that is available to all threads within a block. The

important parts of designing a parallel algorithm in CUDA are to limit interaction

with slow memory types like global memory and to avoid bank conflicts in shared

memory. These bank conflicts can drastically reduce the performance of the shared

memory. Bank conflicts occur when two different threads of the same block try

to access the same memory bank of their assigned shared memory. These bank

conflicts may double the execution time of a kernel. Figure 2.5 shows the different

types of memories in CUDA and their scope. Per-thread local memory is the fastest

one and takes zero clock cycles per instruction [NVI10a] but is only accessible for

one thread. Shared memory is faster than global memory but can only be accessed

within one block. Global memory is the slowest memory and can be accessed GPU

wide.

21

CHAPTER 2. FUNDAMENTALS 22

Figure 2.5: Different memory types and their designated use in the CUDA architecture
[NVI10a]. Per-thread local memory is the fastest but smallest memory type. Per-block
shared memory is accessed as fast as per-thread local memory. Successive CUDA kernels
can access the same global memory. Global memory is the slowest memory type.

22

Chapter 3

Related Work

So, let us not be blind to our differences - but let us also direct

attention to our common interests and to the means by which those

differences can be resolved.

-John F. Kennedy

In this chapter, we present and introduce the research topics this thesis is built

upon. Although the main goal of our work is to find the means to reduce noise

and artificial artifacts in EM data-sets on-the-fly, our work falls into the domain

of multiple research areas. This is mainly due to the fact that we decided to

evaluate and compare two different approaches to that goal, namely filtering and

multiresolution-histogram matching. To our knowledge, there has been no attempt to

use multiresolution-histograms to find or eliminate certain structures of EM data-sets

or any other kind of volumetric data-sets. Besides presenting research on the topic

of noise reduction in volumetric data-sets, we further present research on the topic

of texture and structure matching since this is the research area multiresolution-

histogram matching origins from. We further present work related to DVR of

electron microscopy or neurological data and the usage of general purpose GPU

computing for volume rendering.

23

CHAPTER 3. RELATED WORK 24

3.1 Noise Reduction in Volumetric Data Sets

Jeong et al. [JBH+09] were the first to propose using image-processing filtering-

techniques to reduce the noise in EM data-sets for improving the quality of vol-

ume rendering. They further suggested a CUDA implementation of those filter-

ing techniques to enable on-the-fly filtering of the EM data-set. The main goal

of their work was to use edge detection prior to a semi automatic segmentation

method to segment neurons in EM data-sets of neural tissue. They use the fil-

tering techniques to reduce the noise in the EM data-set and thus improve the

results of their edge detection method. The ideas presented in their work were

the basis for the development of our filtering framework. Like EM data-sets, data-

sets retrieved by electron tomography suffer from very bad signal to noise ratio

[FH01]. This bad signal to noise ratio results from issues with the preparation

process of a specimen. To achieve a combination of efficient noise reduction and

excellent signal preservation, Frangakis et al. propose an approach based on non-

linear anisotropic diffusion [FH99]. Their use of neural networks and the required

preparation, training and preprocessing time that comes along with that makes their

approach not suitable for achieving our goals. In contrast to their proposal, our

filtering framework provides effective noise reduction that is simple to use and does

not require any preprocessing time.

3.2 Texture and Structure Matching

With their work on multiresolution-histograms Hadjidemetriou et al. laid the foun-

dation for our usage of multiresolution-histograms. Instead of finding noise or other

structures in a volumetric data-set, they aimed at retrieving similar textures from a

database of Brodatz textures [HGN04]. The main idea behind their work is that the

combination of histograms of different resolution levels of the original image can

encode spacial information and therefore is superior for matching in comparison to

regular histograms. For a more detailed explanation of their proposal see Section 6.1.

Carlotto et al. [Car84] propose a texture matching technique where the texture is

measured by the local histogram computed in a window that slides over a given

image. For each shift of this window, the local histograms are updated and compared

to a precomputed sample distribution of textures of interest. They suggest to use the

24

CHAPTER 3. RELATED WORK 25

comparison of local histograms on top of other image measuring techniques like gra-

dient magnitude or gradient level. However, they consider local histograms of a gray

scale image not suited as sole measuring technique because these local histograms

capture gray level variations but do not represent textural properties. Although they

have achieved a classification success rate of 96%, their approach can not be applied

to our problem. This is due to the fact that the computational costs of shifting a

window accross a volume, as well as continously calculating and updating the local

histograms, render this approach useless when interactive frame rates are desired. In

their work on texture classification, Ojala et al. [OPM02] use uniform patterns as an

operator to detect micro structures in images like edges or lines. They enhance this

operator by using discrete occurrence histograms of these uniform patterns. They

use these occurrence histograms together with the uniform patterns and show that

these are powerful texture features. This is due to the fact that occurrence histograms

together with the uniform patterns can estimate the underlying distribution of the

micro structures they want to detect. Like Hadjidemetriou et al. they use different

spacial resolutions to increase the accuracy of their method. Instead of using dif-

ferent resolutions of the original image however, they use different resolutions of

the uniform patterns. A different take on histograms is proposed by Liu and Wang.

They introduce a new kind of histogram, namely a spectral histogram as a feature

statistic for texture classification [LW03]. These spectral histograms consist of the

responses obtained by a variety of filters. They encode the local structure as well as

the global appearance of an image. To yield better optimization performance, they

provide a selection algorithm to chose the filter types that are best suited for the

respective texture they want to match. The number of filters they use depends on

the texture and therefore may differ from texture to texture. Although the quality of

their presented results seems suitable as alternative to our multiresolution-histogram

matching, the differing number of used filters and the thereby differing execu-

tion times prohibit Lius and Wang’s approach from being used for our purposes

because it is not interactive. A survey of other texture classification techniques

using image processing and filtering techniques is given by Randen and Husoy

[RH99].

25

CHAPTER 3. RELATED WORK 26

3.3 GPGPU Ray Casting

Although numerous work has been done on GPU implementations of ray casting

algorithms for volume rendering [KW03, Sch05, RV06], there is little to no literature

on how to translate these ray casting algorithms from shader languages like GLSL

to GPGPU API’s like CUDA. In our research we did not find hard evidence if

this translation is a straight forward one by simply treating CUDA-threads like

fragments. However, we have found research done on a CUDA implementation

of a ray caster that is used to render unstructured grids. In [MRB+08], Maximo et

al. propose a CUDA implementation of the VF-Ray algorithm proposed as CPU

implementation in [RMB+07]. Except the face reduction and projection step, the ray

casting algorithm itself works similar to that introduced by Krüger and Westermann

[KW03] for the DVR of structured grids. The only difference between these two

ray casters is, that VF-Ray intersects and retrieves the values from the visible faces

while the ray that is cast in Krügers ray caster calculates the values from the voxels

of the volume. The fact that the VF-Ray method assigns one CUDA-thread to

each pixel that needs to be rendered as well as the performance of the VF-Ray

presented in [MRB+08] suggest that a translation of Krügers algorithm to CUDA

can be done by assigning one CUDA-thread to each pixel that needs to be rendered.

Our own implementation of ray-tracing in CUDA showed an unexpected outcome.

Translating the code from our GLSL implementation to CUDA almost halved its

performance.

26

Chapter 4

Overview over the used Volume
Rendering Framework

There is only one way in which a person acquires a new idea; by

combination or association of two or more ideas he already has into

a new juxtaposition in such a manner as to discover a relationship

among them of which he was not previously aware.

-Francis A. Carter

The ”HVR framework“ developed by Hadwiger at the VRVIS Vienna [Had04]

is written in C++ and is especially designed for volume rendering and volume

visualization. Its main advantage lies in its expandability allowing a variety of

implementations for different volume-rendering techniques as well as different

shading languages like GLSL or CG. Examples for supported volume rendering

techniques are object-aligned slices [EKE01], axis-aligned slices [EEH+00] as well

as GPU-based ray casting using 3D textures instead of slices. GPU-based ray casting

was made possible by the invention of programmable shaders and their support of

3D textures. Thus the HVR framework supports implementations of GPU-based

ray casting using either GLSL, CG or, most recently, NVIDIA’s CUDA parallel

computing architecture (see Section 2.4.2). According to Fung and Mann [FM08]

image processing techniques can be significantly sped up by using the parallel

computation capabilities of modern graphics-card. This speedup is necessary in our

goal to provide on-the-fly noise reduction on EM data sets. Because of this fact

27

CHAPTER 4. OVERVIEW OVER THE USED VOLUME RENDERING
FRAMEWORK 28

and the ease with which data can be exchanged between CPU and GPU when using

CUDA , the CUDA based implementation of a ray caster (see Subsection 4.2) was

chosen as a basis for the noise reduction step (see Section 5). In order to explain

the various changes made to the HVR framework during the work on this thesis,

we give a short overview over the key elements of the HVR framework. The main

element is an interface that provides access to all the other components. The texture

manager manages the volume data sets CPU wise, is responsible for creating the

textures on the GPU and handles the caching of the CPU volume data for the GPU.

This caching is necessary in order to display volumes that otherwise would not fit

into the graphics-card memory (see Subsection 4.1). Any implementation of the

ray casing-class contains a GPU based ray caster that may be individually enhanced

by additional functionality, like ”alpha-blending“ [WVW94]“, ”MIP [JHK+99]

(maximum intensity projection)“ or, in our case, image processing techniques. The

further is a class that is responsible for exchanging data and instructions between

any given GUI and the ray caster.

4.1 Caching Large Datasets

In contrast to the performance enhancement techniques presented in Section 2.1, like

early ray termination or empty space skipping, caching does not aim at optimizing

rendering performance. It aims at ensuring that even large volume data sets, which

otherwise would not fit into the graphics-card memory, can be displayed. The

implemented caching algorithm is based on the algorithm proposed by Beyer et

al. [BHMF08]. Since the functionality of the texture manager and its caching

technique have been vastly used and slightly altered in the course of this thesis

(see Section 6.2.1), they are going to be explained more thoroughly. In order to

be cached, the volume is subdivided into equally sized subvolumes that are called

”tiles“. The cache itself is a 3D texture that is dimensioned so that it can hold a

predefined number of these tiles. For fast texture filtering when stored in the cache,

border voxels are attached to the tiles. Therefore, the subvolumes that are stored

in the cache are bigger than the original tiles and are called ”blocks“. The cache

therefore is called ”block-cache“. For each render pass a list of active blocks is

determined by culling the original volume against a transfer function or clipping

planes. The blocks contained in that list are stored in the block-cache. Due to

viewport changes and only when viewport culling is enabled, blocks that were

28

CHAPTER 4. OVERVIEW OVER THE USED VOLUME RENDERING
FRAMEWORK 29

Figure 4.1: Storage of tiles of a volume in a block-cache. a) Original location of the tiles
in the volume. b) Random location of the tiles in the block-cache. For fast texture-filtering,
border voxels are attached to the tiles before they are stored. Image courtesy of the VRVis
Research Center

culled away previously may become visible and vice versa. When this occurs,

invisible blocks are removed from the cache while newly visible ones are inserted.

Thus, blocks adjacent to each other in block-cache space may not be adjacent in

volume space. Block-cache space and volume space are both local coordinate spaces

in the range of [0,1]. A small 3D address-translation texture is used to translate

volume-space coordinates into block-cache space-coordinates.

x′x,y,z =
xx,y,z · vsizex,y,z + tx,y,z

csizex,y,z
(4.1)

tx,y,z = b′x,y,z ·bres′x,y,z−bx,y,z ·bresx,y,z (4.2)

Equation 4.1 shows the retrieval of texture space block-cache coordinates x′x,y,z
from the volume-space coordinates xx,y,z. vsizex,y,z is the volume size in voxels

and csizex,y,z is the cache size in voxels. Dividing by csizex,y,z brings the result of

xx,y,z · vsizex,y,z + tx,y,z from block-cache space to block-cache texture space. tx,y,z
stores the offset from xx,y,z to the block-cache coordinates x′x,y,z. The offset tx,y,z is

stored as RGB tuple in the address-translation texture and is calculated according to

equation 4.2. b′x,y,z is the block-position in the cache while bres′x,y,z represents the

block-size. bx,y,z and bresx,y,z respectively are the tile position in the volume and the

tile size.

29

CHAPTER 4. OVERVIEW OVER THE USED VOLUME RENDERING
FRAMEWORK 30

The texture manager administers both, the block-cache texture as well as the 3D

address-translation texture. When blocks have to be exchanged in the block-cache,

blocks not needed are removed and replaced by new blocks. The address offsets in

the address-translation texture then have to be updated as well. Figure 4.1 shows an

illustration of tiles of a volume being stored at random locations in a block cache.

For the sake of simplicity, we only show a 2D representation of the volume and the

block cache.

4.2 CUDA Ray Caster of the HVR Framework

The CUDA ray caster can be used as any other ray caster within the framework and

contains all the render modes that use CUDA. A render mode is an option for a ray

caster that influences the outcome of the rendering. DVR and MIP for example can

be options for the same implementation of a GPU ray caster. Each render mode

may implement its own ray-casting technique or share it with other render modes.

The concept of a GPU ray caster in CUDA is similar to the one described in 2.1,

using 2D textures for the starting positions of the rays as well as their direction. The

output is written to another buffer called the ”output buffer“.

Implementing the ray-casting step in CUDA is similar to an implementation in

a fragment shader. For each CUDA thread - similar to a fragment in a fragment

shader - a ray is cast into the volume. Beginning at the starting position given by its

location from the texture of entry points, the ray is cast along the direction given by

its location from the texture containing the directions. The ray may be terminated

by either exiting the volume, reaching a voxel which meets a given abort criterion

or reaching a predefined opacity-threshold when integrating the voxels’ opacity

along the ray. The opacity and color of a voxel are set by the texture containing the

transfer function. When the ray is terminated, the combined color and opacity is

written to the output buffer. Casting the rays for each texel in the output buffer is

done in parallel. That means that all rays are cast simultaneously.

Before actually casting the rays, the CUDA grid size as well as the CUDA block

size have to be defined. The grid size is given by the screen dimensions divided by

the dimensions of the blocks where all blocks are equally sized. For example having

a screen size of 512x512, and wanting a block size of 8x8, the grid size would be

30

CHAPTER 4. OVERVIEW OVER THE USED VOLUME RENDERING
FRAMEWORK 31

64x64. Both, grid size and block size are two dimensional values. The block size

is chosen to maximize parallelization by balancing the workload evenly between

all the blocks within the grid. When the grid and block sizes are determined, all

textures and arrays needed are bound to textures. Binding the textures as well as

determining the block and grid sizes sizes is done on CPU. When the CUDA kernel

containing the ray casting step is started, all textures and values assigned to CUDA

are accessible to the kernel.

31

Chapter 5

Filtering Module - Noise
Reduction by Filtering

I was like a boy playing on the sea-shore, and diverting myself now

and then finding a smoother pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.

-Isaac Newton

The first technique we investigated in our search for the means to reduce the noise

and artifacts in EM data sets is called filtering and will be described in this chapter.

We developed a filtering module as enhancement for the HVR framework that allows

on-the-fly noise reduction in volumetric data sets of any kind. Although the filtering

step for every frame is done prior to the DVR of the data set, filtering and DVR

together still achieve interactive frame rates. This is achieved by using a caching

algorithm described in Section 5.4 that makes sure that only parts of the volume

have to be filtered that firstly are visible and secondly have not been filtered before.

Generally spoken, filtering is to selectively choose specific frequencies from all

the frequencies available in a given signal. In this work, the expression filtering

is used in terms of smoothing a signal by removing high-frequency fluctuations.

These high-frequency fluctuations are called noise. Removing this noise results

in a smoother, less detailed signal. Digital 2D-images or digital 3D-volumes are

discrete signals in the spacial domain. The filters described in this work are discrete

filters applied to the image in the spacial domain. Filters applied to the frequency

32

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING33

domain are not examined in this work. To filter a discrete signal in discrete spacial

domain one usually iterates over all values of the signal which are then replaced by

the combined values of their neighborhood. The way these values are weighted and

combined depends on the filter type while the size and shape of their neighborhood

is defined by the filter kernel. The filter kernel can be understood to be a matrix

that is overlaid on every voxel of a volume. The kernel contains multiplication

factors that are applied to the voxel and its neighbors. When all values have been

multiplied, the value of the voxel, the filter is applied to, is replaced by the sum of

the products. Since filter kernels can further be seen as the translation of continuous

filter functions to the spatial domain, different filter kernels represent different

functions and thus lead to different results when applied. The amount of smoothing

that is achieved by a filter is determined by the size of the filter kernel because the

larger a filter kernel gets, the more values are weighted and combined. The more

values are used, the less influence one individual pixel has on the final result and

the more uniform the filtered image becomes. In this work all filter kernels have

a symmetric shape and all filter sizes are given in voxels. This means that every

discrete value that is filtered lies in the center of the filter kernel. Examples for

symmetrical filter kernels are a 5x5 filter kernel in 2D or a 5x5x5 filter kernel in

3D. Since EM data sets are extremely dense, noisy and heavily textured [JBH+09]

these filtering methods are used for reducing the noise. Besides reducing noise for a

smoother and more visually appealing DVR of the data set, this noise reduction can

be used prior to other techniques which aim at enhancing the volume as well. As an

example of these techniques which benefit from pre-filtering the volume, Jeong et. al.

propose a ”Local Histogram based Edge Detection“ method to enhance the volume’s

raw data [JBH+09]. We chose on-the-fly filtering as approach to filter our data sets

because it allows us to steer the filtering process more flexibly. We can interactively

change filter types and filter sizes and this allows us to try and compare different

settings of our filtering module. Thus, we do not have to load prefiltered data sets in

order to study the effects different filters have on a data set. Further, our on-the-fly

filtering approach is much more memory efficient than saving all prefiltered data

sets because we simply do not need any other data set than the original one. To

control the filtering process the user can interact with the data set by selecting one

of the provided filtering techniques and setting the dimensionality and the size of

the filter kernel. The user may further adjust the rendering of the EM data set by

adjusting the transfer function. Besides adjusting the visibility of certain intensities

and controlling the smoothing of the data set, the user has no further control over the

33

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING34

Figure 5.1: Artifacts of average filter. a) original image b) averaged with a 25x25 kernel
size. Note the axis aligned artifacts.

visibility of structures within the data set. This gives the user the ability to achieve

noise reduction within a maximum of three mouse-clicks. Although knowledge

on the properties and achievable results of the different filter types and different

kernel sizes increases the efficiency with which the user can perform the desired

noise reduction, our filtering module supports the trial and error approach for less

experienced users as well. This is mainly achieved by immediately reacting on

selecting different filter types or kernel sizes. Depending on filter type and kernel

size, applying the changes, re-filtering the data set and rendering the volume is

done at 15−20 f ps. Using NVIDIAs CUDA for implementing the different filter

types in our filtering module, we have 3 different filter types implemented so far.

We have chosen CUDA as a basis for our implementation because GPGPU is

known to greatly speed up parallelizeable image processing techniques like filtering

[FM08]. In the following we explain the theoretical background and the properties

of the implemented filters. After the introduction of the filters, we explain their

CUDA implementation with respect to their variable kernel sizes.

5.1 Average Blur

The most basic filter of the ones implemented in the filtering module is the ”average

filter“. The average filter belongs to the category of uniform filters which all

34

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING35

have in common that all the values within the filter kernel support have the same

weight. When filtering an image with an average filter, the surrounding pixels of the

filtered one are accumulated and normalized. Normalization is done by dividing

the accumulated value by the total number of accumulated pixels to ensure that the

output value of the filter is not larger than the largest possible pixel value. The main

advantage of the average filter is, that it is fast and easy to compute. However, when

using large filter kernels, average filters generally introduce axis aligned streaks and

artifacts. Figure 5.1 shows one layer of an EM data set of neural tissue that is filtered

with a 25x25 average filter. Figure 5.1 a) is the original layer while Figure 5.1 b)

shows the same layer after applying the average filter. Note the axis-aligned artifacts

introduced to image b) due to a too large filter size.

A[I]p =
1
n

n

∑
q=1

Iq (5.1)

Equation 5.1 shows the formal description of a 1D average filter. A[I]p is the

averaged value of an image I at the pixel position p. n is the filter kernel size and Iq

is the value of the image I at pixel position q.

5.2 Gaussian Blur

Gaussian blur is one of the most widely used smoothing operations in image pro-

cessing [WM98]. This results from the fact that besides being very ”smooth“, the

circular symmetry of the filter allows edges and lines to be treated similarly in each

direction [WM98]. This is in contrast to the non-isotropic, box shaped average filter.

The Gaussian blur therefore provides a consistent low pass filter regardless of the im-

age’s orientation. Because of its isotropy, the Gaussian blur is often used to de-noise

an image prior to other image processing techniques like edge detection. Figure

5.2 shows that pre-filtering a volume with a Gaussian blur before applying an edge

detection algorithm, significantly reduces the number of edges resulting from image

noise. Since edges can be viewed as discontinuities in the intensity of an image,

these discontinuities can be associated with various derivatives of the image function

[SB91]. Using the derivatives to find edges however introduces noise to the result

[TP86]. By using a Gaussian blur prior to edge detection and therefore low pass

35

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING36

Figure 5.2: Impact of smoothing an EM data set with a Gaussian blur. (a) Original Slice of
an EM data set. (b) Results of an edge-detection algorithm on image (a). (c) Slice of the
same data set filtered with a 5x5 Gaussian blur. (d) Applying edge detection to a pre-filtered
image significantly reduces the amount of edges in the final rendering.

filtering the image, the introduction of noise can be prevented [SB91].

GB[I]p = ∑
q∈S

Gσ (‖p−q‖)Iq (5.2)

Gσ (x) =
1√

2 ·π ·σ
· e−

x2

2σ2 (5.3)

Equation 5.2 shows the application of a Gaussian filter to an image. S is the image,

p is the location of the center pixel, q the location of a pixel in the range of the

filter kernel and Iq is the intensity of the pixel q. Gσ is the filter weight resulting

36

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING37

Figure 5.3: Same layer of an EM data set filtered with a Gaussian blur using two different
σ values. a) Using a σ value of 6. b) Using a σ value of 12.

from the Gaussian filter function that has the radius σ . GB[I]p is the result of the

Gaussian blur for pixel p. The calculation of a 1D Gaussian filter weight Gσ for

the distance x is shown in Equation 5.3. Equation 5.2 helps to understand that

x = ‖p−q‖. The value σ is the standard deviation of the Gaussian distribution and

determines the radius of the Gaussian filter curve. The larger σ is set, the wider

the Gaussian filter curve gets and the more pixels can be taken into account for

filtering. Although it is possible to have a σ that produces a larger radius than the

chosen filter kernel size, in our work we chose σ to match our kernel sizes to ensure

that the contribution of the voxels, that have the greatest distance to the center of

the filter, is minimal. Figure 5.3 shows two images of the same layer of an EM

data set. Figure 5.3 (a) is filtered with a Gaussian blur that uses a σ of 6 while

Figure 5.3 (b) is filtered using a σ of 12. In Figure 5.3 (b), the Gaussian filter curve

includes more pixels which results in a greater smoothing than in Figure 5.3 (a).

Implementation wise, performing a Gaussian blur on an image using a 2D Gaussian

filter can lead to rather long execution times [WM98]. In order to speed up these

execution times, the Gaussian filter’s linear separability can be exploited. That

means that multi-dimensional Gaussians can be separated into one-dimensional

Gaussian filter vectors [VVYV98]. One for each direction. These one-dimensional

Gaussian filter vectors can be calculated using Equation 5.3.

37

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING38

5.3 Bilateral Filtering

Bilateral filtering addresses the issue of smoothing edges or lines when applying a

Gaussian blur to an image. A Gaussian blur can be viewed as a weighted average of

the pixels in the neighborhood in which the weights decrease with the distance from

the filter’s center [TM98]. Thus nearby pixels are expected to be of similar intensity.

This assumption fails, of course, in case of lines or edges. To preserve these edges

while concurrently removing noise from an image, Tomasi et. al. introduced the

concept of bilateral filtering. The main idea behind bilateral filtering is to take the

differences of image intensities into account, as well as traditional spacial distances

as they are used for Gaussian filtering.

BF [I]p =
1

Wp
∑
q∈S

Gσs(‖p−q‖)Gσr(
∣∣Ip− Iq

∣∣)Iq (5.4)

Equation 5.4 shows, that the bilateral filter is an enhancement to the Gaussian filter

presented in Equation 5.2. Gσs in this case calculates the space weight while Gσr

calculates the range weight. Both weights are calculated according to Equation 5.3.

Ip is the intensity at pixel p while Iq is the intensity of pixel q. Wp is the normalization

factor that is calculated by summing up the Gaussian as well as the bilateral filter

weights. While the filter coefficients of a Gaussian filter decrease with the distance

of a pixel to its center, the filter coefficients of a bilateral filter decrease with the

difference between the pixel’s intensity and the intensity of the center pixel. This

way pixels that have intensity values that are similar to the intensity value of the

center pixel are weighted with a higher value. This results in the smoothing of

mostly uniform areas while edges and lines are preserved. The bilateral filtering of

a noisy signal around an edge is shown in Figure 5.4. This Figure shows that by

combining a spatial filter with an intensity filter, the bilaterally filtered value of a

pixel is influenced mainly by pixels that are spatially close and that have a similar

intensity. Figure 5.4 further shows that this influence of distance and similarity

results in the smoothing of uniform areas and the preservation of edges that were

mentioned above.

38

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING39

Figure 5.4: Image [DD02] showing the influence of spatial distance and intensity similarity
on bilateral filters. From left to right: Input image, filter kernel in spatial domain, filter
kernel in intensity domain, combination of spatial and intensity filter kernels, output image.

5.4 Implementation

Before being concerned with the actual filtering process, we had to ensure that only

visible parts of the volume are filtered. Filtering the whole volume for every frame

would on the one hand exceed the memory capacity of our graphics card and would

drastically increase the render time for each frame. The block cache described in

Section 4.1 does provide a visibility check to make sure that only visible blocks

are rendered. We decided to implement an additional cache to this block cache that

uses a smaller block size. That way we have more control over the parts of the

volume that are filtered and minimize computational overhead. Each element of

this new cache, similar to the block cache, represents a visible sub-volume of the

EM data set. All of these elements are of equal size and are called ”bricks“. These

bricks are smaller than the blocks and thus provide a much more accurate visibility

check. Hence less parts of the volume have to be filtered. The visibility check is

performed for every frame. Every frame when the cache is full invisible bricks are

removed from the cache and the newly visible ones are added. When the cache still

has capacity, new bricks are simply added. After performing the visibility check,

all newly added bricks are filtered. In order to filter the bricks present in the cache

using CUDA the first step is to determine how to set up the CUDA block size to

ensure that the parallel computation capability of the GPU is used efficiently. In our

approach we have set the CUDA block size so that each CUDA thread represents a

location within the filter kernel. This means that the CUDA block size and the filter

kernel size are equal and that each thread always has the same offset to the center

of the filter. The center of a CUDA block is the center of the filter kernel and can

be related to the voxel from the brick that is filtered. Each CUDA block processes

exactly one brick of the cache. When the CUDA block starts filtering a brick, each

thread loops over all voxels of the brick. This is done by starting a loop for the x-, y-

and z-axis of the coordinates of the voxels The offset of each thread from the center

39

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING40

of the CUDA block is added to the starting coordinate of the loops. This way, every

time one thread calculates the filtered value of a voxel, the other hreads calculate

the filtered value of the neighboring voxels simultaneously. After the filtered values

are calculated, one thread combines the values and writes them back to the brick.

Thus, every step of the loops, one voxel is filtered. This calculation process can be

understood as moving the brick beneath the filter. Figure 5.5 illustrates the parallel

calculation of the filter values for each step of the loops. The rectangles marked

by dotted lines represent the the voxels of the brick. Rectangles filled by a stripe

pattern represent the border voxels of the brick. The blue raster represents the filter

kernel and the numbers in brackets represent the offsets of the threads from the

center of the CUDA block. Each step of one of the loops increases the coordinates

of the respective axis for all threads. This means that in every step of the loops the

brick is shifted by one voxel and the filter values are calculated for the new voxels.

Since the bricks stored in the cache not necessarily have to be adjacent in the volume,

it has to be accounted for how to filter the border voxels of a brick. Using the voxels

of neighboring bricks in the cache or assuming the missing voxels to be of low

density results in filtering artifacts. Thus the brick has to be large enough to store

border voxels from its neighboring bricks as well. To prevent any filtering artifacts,

this border has to be half the filter kernel size in each direction.

Program 5.1 shows a C style pseudo implementation for filtering a brick in CUDA.

Note that this code is executed by each CUDA thread of the CUDA kernel. The

actual position of a voxel of a brick in the volume is given by sample_pos. This

position is obtained by adding the internal brick location of a voxel brick_pos

to the offset a thread has in the volume thread_volume_offset. This is

repeated for all voxels of brick. The brick size is given by brick_size. The

intensity of a voxel tex_density at position sample_pos is then multiplied

with the respective filter weight for the current CUDA thread index threadIdx.

Each CUDA thread then adds its calculated intensity value to the final filter value.

After making sure that all weighted intensities are added to the final value by using

CUDAs __synchronise() command, only one CUDA thread normalizes the

filter value, by dividing it by the sum of its filter weights, and writes it back to the

brick at position output_pos.

We have now laid out the foundation for filtering a brick in CUDA. The remainder

of this chapter describes the peculiarities of the implemented filter types. The

40

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING41

1 // For each CUDA thread:
2
3 for(brick_pos.x=0; brick_pos.x<brick_size.x; brick_pos.x++)
4 {
5 for(brick_pos.y=0; brickPos.y<brick_size.y; brick_pos.y++)
6 {
7 for(brick_pos.z=0; brick_pos.z<brick_size.z; brick_pos.z++)
8 {
9 sample_pos = brick_pos + thread_volume_offset;

10
11 tex_density = getVolumeIntensity(sample_pos);
12
13 tex_density *= getFilterWeight(filter_type, threadIdx);
14 filter_value += tex_density;
15
16 __synchronise();
17
18 if(threadIdx == 0)
19 {
20 normalize(&filter_value);
21 writeOutput(output_pos, filter_value);
22 }
23 }
24 }
25 }

Program 5.1: C style pseudo implementation of our CUDA filtering algorithm.

average filter is the least complex one of the implemented filter types. To perform

averaging, each CUDA thread adds the intensity of its corresponding voxel to

the CUDA block wide shared storage variable. After this is done and the CUDA

threads are synchronized, one CUDA thread performs the normalization step to

get the final filtering-value. In case of an average filter, the getFilterWeight

method of Program 5.1 returns 1. Once the filter value is obtained it is stored in the

corresponding brick of the brick cache. Since the bilateral filter differs only slightly

from the Gaussian filter, the implementation of the Gaussian filter is explained

in more detail in the following. The Gaussian filter weights only depend on the

distance from the kernel center to every other location within the filter kernel and

thus can be precomputed. Because of the separability of the Gaussian filter, we only

need to precompute a 1D Gaussian filter instead of a 3D Gaussian filter. In case of a

desired 3x3x3 filter the naive approach of calculating one weight for each position

of the filter kernel results in 27 calculations. Using separable filters and exploiting

the symmetry of the Gaussian filter, only 2 filter weights need to be calculated.

Generally, the storage size needed to store a symmetric 1D Gaussian filter kernel is

41

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING42

ceil(s/2) where ceil rounds a decimal number to the next higher integer

value and s is the desired filter kernel size.

Wx = Gσs (|cx− tx|) (5.5)

Wy = Gσs (|cy− ty|) (5.6)

Wz = Gσs (|cz− tz|) (5.7)

Wxyz = Wx ·Wy ·Wz (5.8)

The Gaussian filter weights can be calculated in parallel on the GPU using CUDA.

This is due to the fact that Gaussian filter weights are computed based on one dis-

tance value. Since the distance values between the filter’s center and its surrounding

voxels are not related to each other, they can be calculated independently and in

parallel. The calculated filter weights remain in global memory on the graphics card

for further reuse during the actual filtering. The distance from CUDA threads to the

center of the CUDA block are the input for the Gaussian filter function. The use

of separated 1D filter kernels requires to treat the coordinates of center and CUDA

threads separately for each direction. For three dimensions three filter weights are

used, one for each direction. Equations 5.5-5.7 explain the calculation of the filter

weights for each direction where cx,cy,cz represents the center coordinates and

tx, ty, tz represents the thread coordinates. Equation 5.8 shows that the final weight

Wxyz at CUDA thread position xyz results from multiplying the direction weights Wx,

Wy and Wz. The weighted intensity is given by multiplying the original intensity at

the CUDA thread-position with the final filter weight Wxyz. All filtered values from

CUDA threads within the CUDA block are summed up to get the final filtered-value

of the CUDA block. The implementation of the bilateral filter is an enhancement to

the Gaussian filter and re-uses its precomputed filter weights. The bilateral filter

introduces a second weight besides the final filter weight of the Gaussian filter. This

filter weight is calculated by the same function Gσr as the Gaussian filter weight.

The difference lies in the chosen input parameter. While the Gaussian filter weights

42

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING43

depend on the distance of two spacial locations, the bilateral filter weight depends

on the difference between two intensity values. This difference is calculated by sub-

tracting the smaller intensity value from the bigger one and normalizing them to the

range of [0,1]. When combining bilateral and Gaussian filter weights for calculating

the final filter value the Wp factor from Equation 5.4 is used for normalization. Due

to the separability of the Gaussian filter, we use only the 1D Gaussian function to

calculate the Gaussian filter weights. Since this function was imlemented to tage

the radius σ as input, this function is re-used for the bilateral filter weight because

the difference of two 1D intensity values is per definition one dimensional. The

radius σ is set to be 1.0 since this is maximal distance between intensities that

can occur in our data sets. The bilateral filter weights are not precomputed but

calculated on-the-fly for each CUDA thread because it is not known in advance

which intensities are present in the volume. The final filter value is calculated by

multiplying the intensity value of the voxel that is filtered first by the Gaussian filter

weight and then by the bilateral filter weight.

43

CHAPTER 5. FILTERING MODULE - NOISE REDUCTION BY FILTERING44

Figure 5.5: Filtering of a part of a brick. Rectangles that have a dotted line as border are
the voxels of the brick. Rectangles filled with a stripe pattern are the border voxels of the
brick. The blue raster is the filter kernel and the number in brackets are the CUDA thread
offsets to the filter kernel-center. From (a) to (d) the brick is shifted by one voxel by looping
over the voxels coordinates. CUDA thread offsets are added to the voxel-coordinates of the
loops to calculate filtered values for all voxels within the filter kernel.

44

Chapter 6

Volume Exploration Module -
Data Reduction by Picking

If you limit your choices only to what seems possible or reasonable,

you disconnect yourself from what you truly want, and all that is left is

a compromise.

-Robert Fritz

With the module presented in this chapter, we enable the user to define which

structures of the volume he considers to be either noise or relevant. Instead of

contextless smoothing operations on the entire volume, like it is the case with our

filtering module presented in Chapter 5, we give the user the means to select the

structures of the volume he wants to see and hide the rest. Finding structures in

data of any kind is the domain of pattern recognition systems. Pattern recognition

systems compare formally described structures statistically to a given data set

[Fuk90]. The general goal of these pattern recognition systems is to automate the

decision making process in matching and comparing data of any kind. Pattern

recognition is not limited to images. Pattern recognition systems may be used for

finding and recognizing a structure in an image and automatically mark it or buying

stocks by analyzing a complex pattern of information. Using automated pattern

recognition systems, however, requires the individual parametrization of any desired

type of structure a user may want to find.

45

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 46

Figure 6.1: The dark ellipsoid like shapes in both images (a) and (b) are myelin sheaths
of two different axons. The variance in size and shape of axons makes it hard to develop
automated segmentation algorithms.

In case of volume data sets of neural tissues like the EM data sets we use in

this thesis we do not have single images to compare patterns but a 3D volume to

find these patterns in. Structures and shapes may vary drastically in neural tissue

which can be observed in Figure 6.1. This figure shows the same two axons in

two different regions of the volume. Note that even the same axon may vary its

shape drastically within the same data set. Finding axons in an EM data set would

require matching the points of interest acquired from the desired structures against

the whole EM data set to find similar ones [Rip08]. To account for the possible

variance in shape and scale of the structures within the volume, the patterns as well

as the data set have to be processed and searched at each different possible scale

[AAR04]. Searching the whole EM data set to find voxels that are connected to

resemble a given pattern and repeating that procedure for each possible scale of

these patterns would at least be time consuming if not impossible. As solution for

this problem we propose a user guided out-of-core solution that allows a user to

select or discard structures from a volume data set by simply clicking on a DVR of

this data set. By clicking on the data set, the user marks the structures he wants to

suppress and our algorithm finds and suppresses similar structures as well. This can

be done either on a fully opaque rendering of the data set or on a DVR that already

uses a transfer function to mask certain intensities. With each click, more structures

are found and suppressed and the rendering of the data set is constantly adjusted to

show the data set without the suppressed structures. For the user’s convenience we

46

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 47

implemented the functionality to undo any selection or reset all selections.

In the remainder of this chapter we describe the theory behind our matching algo-

rithm. We further explain the technical conversion of this theory to our ”Volume

Exploration module“ (VE module) and give a short introduction to the usage and

the user interface of this module.

6.1 Structure Recognition in Theory

Effectiveness and efficiency are key requirements in user interface design [Opp02].

To accomplish efficient interaction with the data set we believe that providing the

user with instant feedback on his actions is crucial. Since we want a user guided

solution for our structure-recognition technique we need instant feedback on his

selections. We provide this instant feedback by using a fast and easy to compute

matching algorithm. Histograms have been widely used for structure recognition

tasks [AHP04, LVB+93] because they are easy and fast to compute and provide a

significant data reduction in comparison to the original image data. They are robust

to noise and to local image transformations [HGN01a]. EM data sets are noisy by

nature and the shape and transformations of regions of interest may vary drastically

even within the data set. Histograms seem to be the ideal choice for matching

structures within EM data sets. Histograms however are unable to encode spatial

correlations [HGN01b]. In other words, two images may have the same histogram

although their composition is completely different. Hadjidemetriou et al. propose

a new type of histogram that encodes spatial correlations by using histograms of

different resolution levels of the original image [HGN01b]. In their paper they call

this type of histogram a ”multiresolution histogram“ and define it as follows:

A multiresolution histogram is the set of intensity histograms of an

image at multiple resolutions.

Analyzing histograms of different image resolutions allows to discriminate between

different images even if the histograms of their original images are equal. Multires-

olution histograms therefore are sensitive to changes in image structure and image

transformation, which makes them useful for matching operations. Figure 6.2 shows

the image pyramids and histograms for two images having the same histogram at the

47

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 48

Figure 6.2: Examples of two multiresolution histograms [HGN04]. The bottom row shows
the original images and their identical histograms. The other rows show the two images at
decreasing resolutions. The lower the resolution becomes, the more the histograms differ.

48

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 49

initial resolution. Note the increasing difference of the histograms at each resolution

step. The first step of Hadjidemetrou’s algorithm is to calculate the image pyramids

of the images they want to match. An image pyramid is created by low pass filtering

an image with a two dimenstional filter, a Gaussian blur for example [OABB85].

The filtered image then is subsampled by removing every other row and pixel to

obtain an image of half the size of its predecessor. This process is repeated until the

desired number of resolution-steps for the image pyramid is obtained. This process

is expendable to 3D volumes by using 3D low pass filters and removing every other

image layer in z−direction in addition to every other voxel. To decrease execution

time when calculating the image or the volume pyramid, calculating the filter values

for pixel or voxels, that are removed anyway, can be omitted. An image pyramid as

well as a volume pyramid consists of a base image, or a base volume respectively

and a series of successively smaller sub-images or sub-volumes each of half the

resolution of their predecessor. To form a multiresolution histogram as it is proposed

[HGN01b], an intensity histogram is computed for each level of the image pyramid.

In order to compare the multiresolution histograms, Hadjidemetriou et al. calculate

the Manhattan distances of the corresponding histograms at each resolution level.

The sum of all Manhattan distances calculated for two multiresolution histograms is

then used as a feature for comparison. The Manhattan distance (or L1 distance) can

be understood as the distance between two points on a regular grid where only paths

parallel to the axes can be taken [SPHC02]. Formally, the L1 distance is calculated

according to Equation 6.1 where n is the number of bins of the histograms, L1 is the

L1 distance and a and b are the two histograms we want to calculate the distance of

and n is the bin size of the histogram. The L1 distance is known to be better suited

for the use with histograms than the Euclidean distance [DPVN08] since it provides

a more accurate difference in high-dimensional data.

L1 =
n

∑
i=1
|ai−bi| (6.1)

In a later work, Hadjidemetriou et al. proposed an improved way of measuring

the distance between multiresolution histograms [HGN04]. Instead of using the

sum of all the L1 distances of every level of the multiresolution histogram, they

propose an implementation that caters more to the dissimilarities of the single levels

of the multiresolution histograms. For this reason they developed a new type of

multiresolution histogram as well as a new way of measuring the distance. The

49

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 50

main differences between the original proposal and its enhancement are the way the

multiresolution histograms are built and how the distances between two multireso-

lution histograms are calculated. To form the multiresolution histograms, no longer

the intensity histograms for each resolution level are calculated, but the differences

between the histograms of consecutive image resolutions. These differences are

called difference histograms and are computed by taking two histograms of consec-

utive resolution levels and subtracting the histogram-values for each bin. An image

pyramid consisting of n levels thus has n−1 difference histograms. Further, not the

intensity histograms for each resolution level are used to calculate the difference

histograms but the cumulative histograms of these intensity histograms. Cumulative

histograms are constructed by consecutively summing up all histogram bins of one

intensity histogram. This gives a histogram that has a plot that has increased bin

heights for every step on the intensity-value axis.

CHi =
i

∑
j=1

H j (6.2)

Equation 6.2 shows the formal description of the construction of a cumulative

histogram. The cumulative histogram CH at intensity value i is the sum of all

the histogram values of histogram H, that range from the lowest intensity j to

the actual intensity i. The cumulative histogram can be seen as a histogram that

stores, for each intensity value, the probability to find a pixel that has an equal

or less intensity . In order to calculate the cumulative histograms and then the

difference histograms, every original intensity histogram is normalized using its

L1 length as normalization-factor. Normalizing the intensity histograms makes the

multiresolution histograms independent of image size and resolution [HGN04].

v f =
n

∑
i=1

dhi (6.3)

To calculate the distance between the multiresolution histograms, all difference

histograms are summed up to form a feature vector according to Equation 6.3. v f

is the feature vector, dhi is the vector representation of a difference histogram at

resolution level i and n is the total number of resolution levels of the multiresolution

histogram. The distance between two multiresolution histograms is the L1 distance

of their feature vectors.

50

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 51

Figure 6.3: Steps of the matching algorithm [HGN04]. After constructing the image
pyramid, the histograms are generated and normalized. Then the cumulative- and difference
histograms are generated and renormalized. After construction of the feature vector they
are used for comparison using the L1 distance.

To give a short summary on the multiresolution histogram matching-algorithm, we

list each step of the algorithm in consecutive order:constructing the image pyramid

and computing the intensity histograms, normalizing the intensity histograms using

L1 norm, computing cumulative- and difference histograms, combining the differ-

ence histograms to form the feature vector and calculating the distance between two

feature vectors using the L1 distance. Figure 6.3 presents these steps in a graphical

manner.

The matching-algorithm proposed [HGN04] aims at comparing images within a

database to find similar ones. Our goal however is not to find images in databases

but to find similar structures within the same EM data set. Therefore we have to

expand multiresolution histogram matching from 2D image pyramids to 3D volume

pyramids. In contrast to comparing images within a database, the sizes and locations

of the structures a user might want to eliminate are not known in advance and may

not only differ from data set to data set but within the same data set as well. To

overcome this issue we decided to divide the volume into smaller sub-volumes of

equal size, similar to the bricks used in Section 5.4. This however results in issues

that are discussed more thoroughly in Section 7.2. Each of these bricks is selectable

and has its own multiresolution histogram. When selected, the multiresolution

51

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 52

histogram of the selected brick is compared to the multiresolution histograms of

all the other bricks to identify and either show or eliminate similar bricks. The

remainder of this chapter explains how we expanded multiresolution histogram

matching from finding 2D images in image databases to finding sub volumes in a

3D volume data set.

6.2 Implementation

The implementation of the multiresolution histogram matching-algorithm is a trans-

lation of the single steps of the matching algorithm presented in Section 6.1. At

first, the volume pyramid is constructed by using the graphics cards memory and

CUDA. Then the histograms and multiresolution histograms are calculated in a

preprocessing step and stored for reuse. Storing the multiresolution histograms

for reuse means that they only have to be computed when a data set is loaded

to the HVR framework for the first time. When a data set is loaded for the first

time, the multiresolution histograms are calculated and stored on disk. When the

same data set is loaded again, the multiresolution histograms are read from local

memory. This speeds up the preprocessing step of the VE module. After activating

histogram-picking in the HVR framework, a user can pick any visible brick of the

volume. Once a brick has been picked, its multiresolution histogram is compared

to the ones of all the other bricks. When the distance between two multiresolution

histograms is within a user chosen L1 distance, the bricks in question are marked

and can either be set to be visible or hidden to the user. The remainder of this

section describes the construction of the volume pyramid and the class layout of

all the classes implemented for the multiresolution histogram matching algorithm.

We further explain how a brick is picked in the DVR of a data set and give a short

overview over the usage and the user interface of the VE module.

6.2.1 Construction of Volume Pyramid

The construction of the volume pyramid uses the texture manager described in

Section 4.1 as well as the capability of CUDA to access, modify and copy data

directly on the graphics card. Similar to a texture handled by the texture manager,

the volume pyramid is stored as one 3D cache-texture and one address-texture per

52

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 53

resolution level. Having different cache- and address-textures for each resolution

level avoids introducing additional coordinate transformations as it would be the

case with mipmapping extended to 3D [Wil83, BIP99]. Since no hardware 3D

mipmapping exists yet, these transformations would have to be done by software.

Performing these transformations in software is slower than using different cache-

textures because these additional transformations would have to be calculated for

each voxel along a ray of the ray caster in order to get the right voxel of the

desired mipmap-level. By using different cache- and address-textures, no additional

transformations are introduced and besides exchanging the adress and cache textures

for each resolution level, the code of the CUDA ray caster remains unchanged. This

makes our approach to volume pyramids easily adaptable to any CUDA ray caster

using the implementation introduced in Section 4.2. Since each cache texture

represents the same volume at different resolutions, we construct each of these

cache textures to have the same layout. This way, the texture manager does not have

to handle different cache layouts. However, the texture manager had to be changed

to handle multiple instances of cache textures instead of one. Another issue, that

using multiple cache textures at different resolutions introduces, is that although

the layout of the blocks within each cache is the same, the address textures for each

resolution level have to differ. This can be understood by examining Equations 4.1

and 4.2. There it is evident, that the texture-space block-cache coordinates x′x,y,z
depend on volume and cache size as well as tile and block size. When bisecting a

volume, volume size and tile size are both half their original size in order to keep

the same volume size to tile size ratio. The size of a block in the cache texture

however is set by the size of the respective tile combined with the border voxels.

Since the number of border voxels stays the same for each resolution step, the

cache texture for each resolution is slightly bigger than half the size of the original

one. Due to that disproportion of volume and cache size, the address texture has

to be calculated separately for each resolution level. Reducing the resolution of

the blocks from one cache texture to another cache texture is done directly on

the graphics-card. Since CUDA does not allow direct texture-modification, the

blocks have to be copied to an intermediate CUDA array before being copied to

their designated texture. This copy process is done in its own CUDA kernel in

which the resolution reduction takes place as well. For every resolution step of the

volume pyramid, the lower-resolution blocks are calculated from the original cache

texture. Equation 6.4 shows the retrieval of the correct voxel for any resolution

level. In this equation, blockthreadIdxx,y,z represents the index of the voxel of the

53

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 54

block at threadIdxx,y,z which is the actual CUDA thread index in the block. To

get the position of the voxel in the cache, the offset startPosx,y,z has to be added

to the CUDA thread index. This offset is the index of the original block in the

cache and the factor stepsize is calculated according to Equation 6.5. This offset

increases with each resolution level and by multiplying the CUDA thread index with

it, the distance between the voxels that are stored for each resolution level increases

as well. The resolution level of the new block is given by level. For example at

resolution level 1 (starting at level 0 for the original resolution), every second voxel

is copied into the new block.

blockthreadIdxx,y,z = startPosx,y,z + threadIdxx,y,z · stepsize (6.4)

stepsize = 2level (6.5)

The histograms of each resolution of each brick are calculated from the respective

cache textures in an additional step. Each brick and its different resolution levels are

extracted from the cache textures and the histograms are calculated by looping over

the intensity values for each resolution. Our reasons of treating the volume pyramid

generation and the histogram calculation separately is that the whole process of

constructing the different cache textures of the different resolutions fully takes place

on the GPU. The histograms however need to be present in the host environment to

perform the matching calculations. Although the histograms can be calculated on

the graphics card by CUDA, they still need to be copied back to the host which is

time consuming and slows down the generation of the volume pyramid.

6.2.2 Class Layout

The classes described in the following manage histograms as well as multiresolution

histograms and handle the picking process. After loading or calculating each

histogram for each resolution level of a brick, each histogram is stored in an object

of the VE_Histogram class. These VE_Histogram objects are then added to

an object of the VE_MultiHistogram class, which is the implementation of

a multiresolution histogram as it is proposed by Hadjidemetriou et al. [HGN04].

54

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 55

When all VE_Histograms are added, the VE_MultiHistogram is added to

the VE_MultiHistogramManager. The VE_MultiHistogramManager

contains all the logic for comparing the multiresolution histograms and setting the

visibility of the bricks. In the following the properties and functionality of these

classes are described in more detail.

6.2.2.1 VE Histogram

The VE_Histogram contains all the functionality to handle one single histogram.

After a histogram is stored in this class, it is automatically normalized with the L1

norm. From this normalized version the cumulative histogram is computed and

stored together with the original histogram. Further, this class contains functionality

to obtain the distance between two histograms. The histograms to calculate the

distance from may be intensity, cumulative or difference histograms or any other

multi-dimensional vector. The distance functions are implemented as member

functions of the VE_Histogram class, taking two multi-dimensional vectors as

input. Even though the L1 distance measurement is better suited for histograms

[DPVN08], for comparison the Euclidean distance measurement can be used as well.

In addition to distance measurement, the VE_Histogram class also contains the

means to calculate a difference histogram out of two other histograms. This function

is a static implementation as well, and allows two multi-dimensional vectors as

input and returns the difference histogram as output. This strategy, similar to the

distance calculation, allows the construction of a difference histogram out of any

kind of multi-dimensional vector.

6.2.2.2 VE MultiHistogram

The VE_MultiHistogram class stores one VE_Histogram for every resolu-

tion level of the data set and represents the multiresolution histogram for one

pickable brick. It provides functionality to add or remove VE_Histograms

as well as it generates the feature vector for the distance measurement method

described by Hadjidemetriou et al. [HGN04]. The feature vector is adjusted

whenever a VE_Histogram is added or removed. While the VE_Histogram

class can calculate the distance between two single-resolution histograms, the

VE_MultiHistogram class calculates the distance between two multiresolution

55

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 56

histograms. Currently, there exist two different implementations to retrieve the dis-

tance between two multiresolution histograms. The first one implements the method

originally proposed by Hadjidemetriou et al.

[HGN01b]. Here the L1 distances between the histograms of the same resolution

level is calculated for each resolution. The distances for each resolution level then

are summed up to get the final distance. The second implementation is presented

in [HGN04] and uses the L1 distance of the feature vectors of two multiresolution

histograms. Since both implementations require the L1 distance between multi-

dimensional vectors, the implementation of the L1 distance in the VE_Histogram

class is used. For comparison, the user may change the kind of distance measure he

wants to use.

6.2.2.3 VE MultiHistogramManager

The VE_MultiHistogramManger contains the actual implementation of the

algorithm proposed by Hadjidemetriou et al. [HGN04]. It contains one list of all

VE_MultiHistograms of the bricks within the volume. Any brick within that

list can be found by its coordinates within the volume. When a brick is picked, the

according multiresolution histogram is found using these coordinates.

The VE_MultiHistogramManager further maintains two arrays. One array

contains the visibility information for each brick of the volume and the other ar-

ray contains color information for each brick. This color information is used

to mark selected bricks in the DVR of the volume. Each frame, a texture is

generated for each of these arrays. In the DVR, every voxel along each ray is

tested against these textures and has either its’ visibility or color changed when

the textures contain that specific information. The first action after picking a

brick is to assign a color to it by saving the color at the respective location in

the color array. Then the distance between the multiresolution histogram of the

picked brick and all the other multiresolution histograms are calculated. If one of

these distances falls below a user set threshold, the brick is marked in the visibil-

ity array. Any distance measurement supported by the VE_MultiHistogram

class can be chosen to calculate that distance. So far, both multiresolution his-

togram comparison methods introduced by Hadjidemetriou et al. are supported.

After the visibility of all bricks is determined, the visibility array as well as the

color array can be obtained from the VE_MultiHistogramManager by us-

56

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 57

ing the respective methods and can be assigned to the textures that are used in

DVR. Each voxel in these textures represents exactly one brick of the volume.

Thus, these textures have as many voxels as there are bricks in the volume. The

VE_MultiHistogramManger further contains functions to facilitate interact-

ing with it. It provides functionality to undo a selection, clear all selections as well as

remove individual picked bricks. The usage of these functions is further explained

in Subsection 6.2.3. The VE_MultiHistogramManger further contains the

functionality for automatically storing and loading a multiresolution histogram as

it was introduced at the beginning of this chapter. When a data set is loaded, the

VE_MultiHistogramManager checks whether histograms are stored for this

data set. If the histograms are stored, they are loaded from local memory directly

into the VE_MultiHistogramManager and the process of obtaining the his-

tograms from the volume texture on the GPU is omitted. When the histograms are

stored locally, this caching method speeds up the startup time of the HVR framework

by a factor of 100.

6.2.3 User Interface and Usage

This section describes the interaction possibilities with the VE module. The main

interaction between the user and the VE module is selecting a brick in the volume.

This selection is done by clicking on the DVR of the data set. From this clicking

position in 2D screen space, a ray is cast in viewing direction through the volume.

The first non transparent voxel that is hit by the ray belongs to the brick that is

selected. Since volume and brick size are known, the 3D volume coordinates of this

brick can be calculated using the volume coordinates of the hit voxel. The 3D volume

coordinates are then used as input for the VE_MultiHistogramManager to

find the respective multiresolution histogram and start the events leading to coloring

picked bricks and modifying the visibility of similar ones. The retrieval and opacity

change of similar bricks as well as the coloring of the selected ones is performed at

interactive framerates. This allows immediate reaction to the users interaction with

the VE module.

After having picked a brick, the user interface provides the following interaction

possibilities with the VE module:

• Undo button: When having picked a brick unintentionally, the user can

57

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 58

Figure 6.4: User interface of the VE module. The user chooses the type of distance
measurement, the distance threshold (that is a L1 distance of two multiresolution histograms)
for the measurement, and the number of resolution levels that are taken into account. He
can toggle the visual markings of picked bricks and can invert the visibility of the matching
bricks.

58

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 59

Figure 6.5: Different interaction possibilities with the VE module. (a) Picking bricks using
the slice view. (b) Picking bricks in an opaque rendering in DVR. (c) Inverting the selection.
(d) Picking additional bricks in inverted selection. (e) Change of transfer function on
selection. (f) Picking bricks after application of a transfer function. The colored dots are
selected bricks.

59

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 60

undo this selection pressing this button. He can deselect any picked brick by

clicking on it again. After undoing or deselecting a brick, the visibility of all

bricks is reset and calculated again.

• Reset button: In order to enable the user to explore a volume based on

different criteria, the user always can reset the volume to its original state

by using this button. Doing so will remove all picked bricks and reset the

visibility of all bricks. After that, the whole process of selecting and changing

the visibility of bricks can start again.

• Invert checkbox: During testing, it has been proven useful to be able to invert

the visibility of marked bricks. That means, after checking this checkbox,

visible bricks become invisible and vice versa.

• Show picked bricks checkbox: The user might as well want to examine

visible bricks without having the color overlay of picked bricks occluding

them. Therefore, the user can toggle the visibility of the color overlay of

picked bricks by checking the ”show picked bricks checkbox“.

To provide additional information to the user, the last five multiresolution histograms

are displayed in an extra window. Each multiresolution histogram displays all its

resolution levels. For each resolution level, the cumulative- and intensity histograms

are combined into one visualization. Although the visualization of the cumulative

histogram is arranged behind the visualization of the intensity histogram, and thus

the first fiew bins of the cumulative histogram are occluded, it still provides insight

on the shape of the cumulative histogram. The most important information on the

structure of a brick is given by its intensity histogram since it reveals the most

prominent intensity distributions. Thus the visualization of the intensity histogram

is arranged on top of the visualization of the cumulative histogram. The background

color of the histogram visualization matches the color overlay of the picked brick it

belongs to. This facilitates the identification of the different histograms that belong

to different bricks. Displaying these histograms is necessary to compensate for the

lack of 3D information when picking in 2D. The picking process occurs in 2D since

the volume is rendered to a 2D canvas. Opaque voxels of a brick occlude voxels

behind them and thus only the histograms can reveal the composition of a brick.

Figure 6.4 shows the user interface of the VE module. It shows the interaction

possibilities with the VE module and the display of the multiresolution histograms.

Figure 6.5 shows the different interaction possibilities with a volume. Figure 6.5(a)

60

CHAPTER 6. VOLUME EXPLORATION MODULE - DATA REDUCTION BY
PICKING 61

shows a slice view of a Connectomics data set where two different bricks have been

picked. The picked bricks are colored differently. Figure 6.5(b) shows the picking

of bricks on a fully opaque DVR of the same Connectomics data set. Bricks similar

to the picked ones have already been set to invisible. The functionality of the ”invert“

checkbox is demonstrated in Figure 6.5(c). In this figure, only one brick is picked.

To increase the number of matched bricks, additional bricks can be picked. This

works as well when the visibility of the bricks is inverted. Increasing the number

of matches when inverted visibility is selected is demonstrated in Figure 6.5(d).

The application of a 1D transfer function to visible bricks is demonstrated in

Figures 6.5(e)-(f). In Figure 6.5(f) we show that bricks can be picked after the

application of a transfer function.

61

Chapter 7

Results and Evaluation

There are no secrets to success. It is the result of preparation, hard

work, and learning from failure.

-Colin Powell

This chapter presents the results of our attempt to improve the quality of direct

volume rendering of EM data sets by reducing noise and artifacts in these data sets.

We show our findings by comparing the results for both approaches we investigated.

First, our filtering module is evaluated. The second part of this chapter describes

the results that we achieved using our VE module. The performance evaluations for

both methods were done on the following system:

• Processor: Intel Core i7 CPU 2.64 GHz

• RAM: 6GB DDR2

• Graphics Processor: NVIDIA GeForce 280GTX

For filtering, we present the execution times and frame rates of the different filters we

implemented. The performance of the VE module is evaluated in terms of generation

times for the volume pyramid and multiresolution histograms respectively and the

achieved frame rates.

62

CHAPTER 7. RESULTS AND EVALUATION 63

Volume Size Brick
Count

Filter Method Kernel Size Execution Time FPS

256×256×159 1594 Average 3×1 0.026s 17
256×256×159 1594 Average 3×3 0.026s 17
256×256×159 1594 Gauss 3×1 0.097s 14
256×256×159 1594 Gauss 3×3 0.134s 14
256×256×159 1594 Gauss 7×1 0.174s 14
256×256×159 1594 Bilateral 3×1 0.175s 14
256×256×159 1594 Bilateral 3×3 0.175s 14
256×256×159 1594 Bilateral 7×1 0.253s 14

Table 7.1: This table shows the execution times of the filters implemented in the filtering
module. Note that the increase of time correlates with the increase of the complexity of the
filters. The filter setups shown in this table are ordered first by their complexity and second
by their filter size.

7.1 Results - Filtering

The results for the filtering module are evaluated due to two criteria: The execution

time of each filter and the quality of the produced images. Table 7.1 shows the

execution times of the different filters implemented. This results were obtained by

filtering a data set that is 256×256×159 voxels in size. The brick size is set to be

10×10×10 voxels with 2 border voxels in each dimension. The execution time

depends on the number of bricks that need to be filtered and the complexity of the

filters. The maximal number of bricks as well as their size are predefined by the

brick cache. Since only bricks present in the brick cache are filtered, only these two

values influence the execution time.

The visual quality achieved by the filtering module can be observed in Figures 7.1

and 7.2. Figure 7.1 shows filtered slices of an EM data set of neural tissue rendered at

full opacity. We used a filter kernel size of 7×7×1 for all three filters demonstrated

in this figure. We set the third dimension in the filter kernels to one to demonstrate

that our filtering module is capable of filtering in 2D when displaying 2D slices. Our

EM data sets are anisotrop. This means that the slice distance in z-direction is greater

then the voxel distances in x- and y-direction. When applying a 3D filter while

displaying 2D slices, the voxels of adjacent slices are included in the filter values as

well and thus result in an undesired blending of these slices. Filtering only in 2D

when displaying 2D slices solves this problem. Figure 7.1 (a) shows the rendering

of the unprocessed slice for comparison. Figures 7.1 (b)-(d) show the slice being

63

CHAPTER 7. RESULTS AND EVALUATION 64

Figure 7.1: 2D slice of a filtered 256× 256× 159 voxel EM data set. (a) Original axis-
aligned slice of the data set with a fully opaque transfer function. (b)-(d) show the same
slice being rendered by the average (b), Gaussian (c) and bilateral (d) filter. Filter-kernel
size for all three filters was 7×7×1.

filtered by the average, Gaussian and bilateral filter explained in Chapter 5. The

average filter results in the highest degree of blurring. However the image structures

are highly blurred as well. Due to using 3D filters and trilinear texture interpolation

provided by the graphics hardware, the axis aligned artifacts usually present in

average-filtered images (see Section 5.1) are reduced. The Gaussian filter produces

uniform blurring of the image and the image structures remain distinguishable. The

bilateral filter unifies the blurring of uniform image structures and the preservation

of their boundaries. Figure 7.2 shows the DVR of a volume where the noise and

artifact reduction is performed with the same filters as in Figure 7.1. Figure 7.2 (a)

provides a DVR of the unprocessed EM data set for comparison with the filtered

64

CHAPTER 7. RESULTS AND EVALUATION 65

Figure 7.2: 3D DVR of a filtered 256×256×159 voxel EM data set. (a) is the DVR of the
data set. (b)-(d) DVR of the same EM data set from the same point of view using the same
transfer function but different filters. In (b) the volume was filtered by the average filter, in
(c) the Gaussian filter was used and (d) was filtered using the bilateral filter. The kernel size
for each filter is 5×5×5 voxels.

ones. Figures 7.2 (b)-(d) show the same EM data set from the same point of view

but preprocessed using our filtering module. In (b) the average filter was used for

preprocessing, in (c) the Gaussian filter was applied and (d) used the bilateral filter.

Every filter kernels had a size of 5×5×5 voxels. Figure 7.1 and 7.2 show that the

desired noise reduction is obtained and the entire volume appears smoother and less

grainy.

We further show that our filtering module can be combined with other image-

processing techniques. We tested our module in combination with the edge detection

and edge highlighting method proposed by Jeong et. al. in [JBH+09]. Figure 7.3

65

CHAPTER 7. RESULTS AND EVALUATION 66

Figure 7.3: Filtering combined with edge detection to highlight boundaries of structures
within the volume. (a) Edge detection is applied to a slice of the volume. (b) Enhancement
of image structures imposing the edges onto the original slice of the volume. (c) DVR where
the edge values are used to enhance the boundaries of whole structures within the volume.

(a) shows edge detection being applied to a volume slice that is filtered using a

7× 7× 1 Gaussian blur. In Figure 7.3 (b) these edges are superimposed on the

original volume slice. Superimposing the edges onto the volume slice highlights

the most prominent boundaries of the image structures. Figure 7.3(c) shows a DVR

of the entire EM data set using a 1D transfer function in combination with the

highlighted edges.

7.2 Results - Picking

We start this section by evaluating the startup time of the HVR Framework when

picking is used. The startup time consists of the time needed to construct the volume

66

CHAPTER 7. RESULTS AND EVALUATION 67

Dimensions
(WxHxD)

Bricks
Total

Volume
Pyramid
Generation

Histogram
Processing
Time

Total
Startup
Time

FPS

256×256×159 21632 1.448s 62.832s 64.280s 30
21632 1.448s 0.002s 1.450s 30

1000x750x159 240000 7.256s 725.338s 732.594s 17
240000 7.256s 0.023s 7.279s 17

512x512x164 89232 6.811s 257.848s 264.659s 21
89232 6.811s 0.006s 6.817s 21

Table 7.2: Total startup time for data sets. Every odd row shows the startup time when the
multiresolution histograms have to be calculated. Every even row shows the startup time
when they can be loaded from local memory. The columns from left to right represent the
dimensions of the test data set showing width, height, depth and size, the total amount of
bricks and thus the total amount of multiresolution histograms, the generation time of the
volume pyramid, the generation time of all multiresolution histograms, the total startup
time and the frame rate.

pyramid and the time needed to calculate the multiresolution histograms for all the

bricks in the volume. Table 7.2 shows the startup times of different volumes at

different dimensions, when they are loaded into the HVR Framework for the first

time. At this point, the multiresolution histograms are not yet stored locally and have

to be computed. Note that the volume generation time as well as the multiresolution

histogram generation time depend on the volume size. The average calculation

time of a single multiresolution histogram is 3ms. The greater part of this time

is used for copying data between GPU and CPU. This is necessary since the VE

module is implemented on the CPU thus needs the multiresolution histograms to be

present for the CPU as well. Depending on the number of bricks, 3ms calculation

time can lead to minutes of startup time. The caching-algorithm mentioned in

Subsection 6.2.2.3 reduces the time to setup the multiresolution histograms from

several seconds to milliseconds. Table 7.2 also shows the startup times of volumes

where the histograms can be loaded from a local cache instead of being calculated.

This caching method achieves a speedup of up to 100 times. In the remainder

of this section, we present the qualitative results of the multiresolution histogram

picking method. We provide screen shots for comparison and address certain issues

with this method. The noise and artifact reduction capability of our VE module is

demonstrated in Figure 7.4. Figure 7.4 (a) shows an unprocessed EM data set with a

size of 1000×750×159 voxels. Noise and artifacts make it difficult do distinguish

between relevant and irrelevant structures of the volume. Especially the artifacts

67

CHAPTER 7. RESULTS AND EVALUATION 68

in the top left corner of this image are easily mistaken for the myelin sheaths of

axons. Figure 7.4 (b) demonstrates the noise and artifact removal capability of

our VE module. Although the myelin sheaths of the axons are thinned out, these

axons are still visible and traceable while noise and artifacts have been removed.

It can however not be guaranteed, that only non relevant data have been removed.

There were ten bricks picked directly from the DVR of the EM data set to achieve

this. Figure 7.5 shows the influence that picking of multiple bricks with a low

accuracy-threshold has on the DVR of an EM data set. The lower the accuracy

threshold, the lower the probability of considering two bricks a match. Picking

more bricks increases this probability while avoiding the incorporation of unwanted

structures to the final rendering. The left column in Figure 7.5 shows one picked

brick for the entire EM data set. The right column shows the same EM data set but

with three picked bricks. Figures 7.5 (a)(b) show the selection of bricks in the fully

opaque EM data set. Figures 7.5 (c)(d) show the rendering of this selection when

its visibility is inverted. Figures 7.5(e)(f) shows DVRs of Figures 7.5(c)(d) using

a transfer function to enhance the axon’s boundary to sub-voxel accuracy. When

we started investigating multiresolution histogram picking, we hoped that with one

click into the EM data set all structures that we considered to be similar will remain

visible while all the others disappear. This desired behavior of our VE module is

partially achieved when picking prominent structures with large regions (close to

the size of a brick) of uniform intensities. As it can be seen in Figures 7.5 and 7.4,

multiresolution histogram picking is best suited for finding prominent structures

with strong features, like nearly black myelin sheaths of axons in an otherwise

grayish volume. When it comes to smaller, less uniform structures like cells with

no myelin sheaths, the VE module returns fewer matching bricks. This is not due to

the lack of accuracy of the algorithm but the contrary. Multiresolution histograms

encode the intensities within the brick. In order to be considered as a matching pair,

two bricks have to have a similar composition. Dividing the volume into equally

sized bricks introduces the problem that correlating structures of the volume end up

in different bricks. However, for knowing which structures correlate, we would need

presegmented data. This would be in direct conflict with our goal of providing an out

of core solution for our noise reduction problem. Parts of the same structure ending

up in different bricks decreases the probability of finding two similar bricks in EM

data sets. Increasing the distance-threshold increases the probability of finding

bricks but also introduces false matches. As an alternative to increasing the distance

threshold, more bricks can be picked with a lower threshold. This results in a greater

68

CHAPTER 7. RESULTS AND EVALUATION 69

probability of finding matching bricks without decreased accuracy. Noise removal,

however, can become a tiresome task. Some false matches do not result from the

threshold being chosen too high but from wrong user expectations. When picking is

used on a fully opaque volume, only parts of a brick are visible. The underlying

composition of the bricks are occlude to the user. When, for example, picking a

brick that appears to be black, it may as well be black and white. Therefore, when

the user picks such a seemingly black brick, he might be surprised when almost

white bricks are considered a match.

As a consequence of the limitations our VE module encountered with EM data sets,

we investigated its use for less complex data sets like an MR data set of a human

head. Figure 7.6 shows the results of this investigation. We used our algorithm

to peel away the skull and skin from the head in this MR data set to uncover the

brain. We chose this task because brain and skin tissue have similar intensities

which makes this operation difficult with standard 1D transfer function design.

Although our algorithm performed the desired task, evaluating the usefulness of our

results has to be done by domain experts and lies beyond the scope of this thesis.

In general, multiresolution histogram picking cuts out prominent structures of a

volume. When used together with DVR, the volume appears cleaner and less noisy.

Because of wrong matches and wrong user expectations, important structures may

be thinned out or get lost. Figure 7.7 shows a comparison between the VE module

and the filtering module. Figure 7.7 (a) shows a DVR of an EM data set being

preprocessed with a Gaussian filter with filter size 3×3×3. Figure 7.7 (b) shows

a DVR of the same EM data set being preprocessed using our VE module. This

image was achieved using 6 picked bricks. The same transfer function was used for

both images. The advantage of multiresolution histogram picking lies in the fact

that it can provide a significant data-reduction. This is why we consider it to be

suitable as a preprocessing step before automated or semi-automated segmentation

since less data needs to be processed.

69

CHAPTER 7. RESULTS AND EVALUATION 70

Figure 7.4: Demonstration of noise and artifact reduction capability of picking. Image
(a) shows the original unprocessed DVR of an EM data set. (b) demonstrates the result
achieved with our picking algorithm. Although the axons in (b) are thinned out, they are
still traceable while noise and artifacts have been removed.

70

CHAPTER 7. RESULTS AND EVALUATION 71

Figure 7.5: Influence of picking multiple bricks with a low accuracy threshold. Left column:
One picked brick for the entire EM data set. Right column: Three picked bricks. (a)(b)
Selection of the bricks in the fully opaque EM data set. (c)(d) Rendering of the selection by
inverting visible and non-visible bricks. (e)(f) DVRs of (c)(d).

71

CHAPTER 7. RESULTS AND EVALUATION 72

Figure 7.6: Picking algorithm used on an MR data set of a human head to uncover the
brain from the surrounding skull and skin. (a) DVR of the unprocessed MR data set. (b)
Uncovered brain by using our picking algorithm.

Figure 7.7: Comparison between filtering module (a) and VE module (b). (a) DVR obtained
by filtering an EM data set with a 3×3×3 Gaussian filter. (b) Visualization after picking 6
bricks to select the axon. The same transfer function was used for both images.

72

Chapter 8

Summary

Try as hard as we may for perfection, the net result of our labors

is an amazing variety of imperfectness. We are surprised at our own

versatility in being able to fail in so many different ways.

-Samuel McChord Crothers

Connectomics is an emerging area of neuroscience that is concerned with under-

standing the neural algorithms embedded in the neural circuits of the brain by

tracking neurons and studying their connections. The most prominent feature to

track in neurons are the myelin sheaths of their axons which possess a very low

density to support the processing of electrical signals. Myelin sheaths enclose

the axon and are larger and thicker then regular cell membranes. Their size and

uniform area of low density makes these myelin sheaths suited for tracking. From

all the available scanning technologies only electron microscopy (EM) can provide

sufficient scanning resolutions in order to identify neural processes [JBH+09]. EM

data sets are of three-dimensional nature and could therefore be considered ideal

for DVR [DCH88]. Researchers however rely on 2D slices to track the neural con-

nections [JBH+09]. The reasons not to use DVR for rendering neural connections

are the huge data set sizes of EM data sets (up to the terabyte scale), and the fact

that EM data sets suffer from bad signal-to-noise ratio and artifacts introduced to

the data set during the sectioning and digital reconstruction process of the scanned

specimen. The noise and the artifacts present in EM data sets complicate DVR of

these data sets because the noise, the artifacts, and the myelin sheaths of the axons

73

CHAPTER 8. SUMMARY 74

we want to track have the same intensities. DVR in combination with 1D transfer

functions is not suited for visualizing these axons because 1D transfer functions

can not distinguish noise and artifacts from actual data when they share a common

intensity. In the scope of this thesis we investigated two approaches on removing

noise and artifacts from EM data sets so that DVR in combination with 1D transfer

functions can be used to visualize axons in neural tissue. The main goal of this

thesis was to develop extensions to the HVR framework that generally allow noise

and artifact reduction on volumetric data sets and which can be used to increase the

visual quality of DVRs of EM data sets. To accomplish this goal we investigated

two different approaches for noise- and artifact reduction.

The first approach we investigated was to see whether smoothing the EM data set is

suitable for achieving noise- and artifact reduction. For this reason we developed

an interactive, on-the-fly filtering framework that allows a user to filter even very

large volume data set with 3D filter kernels. For comparison, we implemented

an average filter, a Gaussian filter and a bilateral filter. The extent of each filter

kernel are adjustable by the user. We wanted the users to interactively explore

and compare different filter types and filter kernels. Instead of pre-filtering the

data set and providing only this pre-filtered data set for exploration, we filter each

data set on-the-fly with the filter types and kernel sizes chosen by the user. To

perform this task at interactive frame rates, our filtering framework uses NVIDIA’s

CUDA, a general purpose GPU computing API to perform the filtering operations in

parallel on the GPU. Besides choosing filter type and kernel size and adjusting the

transfer-function, the user does not have to control the visibility of certain structures

in the data set. To allow the user to be more selective when it comes to the visibility

of certain structures within neural tissue, the second approach we investigated is

a user driven one. The result of this investigation is our Volume Exploration (VE)

framework that allows a user to define for himself, which structures in an EM data

set he considers to be noise, artifacts or of interest to him. To account for the large

number of possible structures within an EM data set, we divide the data set into

small equally-sized bricks (e.g. 10×10×10 voxels), which can be selected and

compared to each other. These bricks are selected by clicking on the DVR of the

EM data set. Thus, only bricks that are not fully occluded by others can be selected.

By selecting a brick, the user indicates that he wants bricks with similar structures

to be found in the EM data set. When a brick is selected, all other bricks from

the EM data set are compared to the selected one and if considered similar, the

74

CHAPTER 8. SUMMARY 75

respective bricks are marked as such. This procedure is repeatable. Every time a

brick is selected, similar bricks are marked from the EM data set and are added

to the final selection. Depending on the users preferences, the marked bricks can

either be interpreted to be uninteresting areas of the volume and being blended out,

or they can be seen as interesting areas and all other bricks are blended out. We

use multiresolution histograms to compare one brick to another. Multiresolution

histograms are formed by computing one intensity histogram for each resolution

step of the image pyramid of an image. In terms of our bricks, the multiresolution

histograms are computed using 5 decreasing resolution steps of a brick and instead

of an image-pyramid, we use the volume-pyramid of the respective brick. There is

exactly one multiresolution histogram for each brick. We consider multiresolution

histograms ideal for finding similar bricks because they do not only encode the

statistical intensity distribution in a brick but, due to the inclusion of multiple

resolution levels, they encode spatial information as well. The distance between

two multiresolution histograms is calculated by the L1 distance between the two

feature vectors that are formed by combining cumulative histograms of consecutive

intensity histograms. This distance represents the similarity of two multiresolution

histograms and by comparing it to a user set similarity threshold, a brick is either

marked as similar or dismissed.

8.1 Conclusion

Within the scope of this thesis we have come to the conclusion, that both methods

we investigated are suitable for removing noise and artifacts in EM data sets. Both

techniques achieve interactive frame rates. The multiresolution histogram matching

method however needs more startup time than the filtering method when executed

the first time on a data set. It also needs more disk space when storing the mul-

tiresolution histograms. The filtering method, on the other hand, has a lower frame

rate because the EM data set is filtered on-the-fly for each frame. In terms of noise

and artifact reduction, the results of smoothing an EM data set using our filtering

framework depend on filter type and filter kernel size. The larger the filter kernel,

the more noise is removed but relevant details smaller than the filter kernel vanish

as well. The larger the filter kernel, the blurrier the borders of the myelin sheaths

of the axons get, but we can adjust the kernel size to match the resolution of the

data. This results in a perceivable increase in size when observing a blurred axon

75

CHAPTER 8. SUMMARY 76

in a DVR. This effect can be opposed by changing the filter type or adjusting the

transfer-function. Bilateral filters aim at preserving borders while blurring uniform

areas of an image. This leads to the observation that average- and Gaussian filter

produce a stronger noise reduction in the data set while the bilateral filtering on

the other hand reaches a smaller level of noise reduction but keeps the borders of

the myelin sheaths intact. The main problem with our on-the-fly filtering approach

occurs when a volume is filtered that even with our block-cache barely fits in the

memory of the graphics card. Since our filtering approach needs to store the visible

and filtered bricks in the memory of the graphics card as well, it can run out of

memory. As a consequence to that case, not all visible bricks are filtered.

The multiresolution histogram matching technique is characterized by the high ac-

curacy of the matching algorithm. High accuracy in this case means that, depending

on the similarity threshold, only very similar bricks are marked after picking. When

picking prominent structures with uniform intensities or strong contrasts within a

brick the chance of finding similar bricks is higher than when picking a structure

with noise or many different intensities. Finding similar bricks in plain tissue data

that does not contain any axons is aggravated by the fact that the EM data set is

divided into equally sized bricks which do not consider any structural information

of the EM data set when being formed. The EM data set and thus the structures

within it are divided randomly which makes finding similar bricks even harder.

Another aspect we want to address in this conclusion is the issue that users do not

always see all sides of a brick before picking because the bricks may be occluded

by neighboring ones. This may lead to a user expecting a result that is not met by

the actual result of the matching algorithm. The main problem with our VE module

results from the issues stated above. Our matching algorithm finds bricks with

similar intensity distributions which can be located anywhere within the volume. It

is not guaranteed that the bricks marked as similar by the matching algorithm are

the bricks the user had in mind when selecting a certain brick. Despite this issues,

the multiresolution histogram matching method is suitable for extracting the myelin

sheaths of the axons from noisy EM data sets which increases the visual quality of

the DVR of the EM data set.

76

CHAPTER 8. SUMMARY 77

8.2 Future Work

We see the potential for the usage of multiresolution histogram matching going

further than selecting prominent and uniform structures in EM data sets. The

sensitivity of this method to small intensity and structural changes in any data

set makes it capable of matching small and subtle structures. To achieve this,

the issues of this technique presented in this thesis have to be addressed. When

multiresolution histogram picking is used together with user input to select and find

certain structures of a volume, one will have to address the issue of getting less

matches then desired or expected. The solution presented in this thesis, namely to

increase the similarity threshold, works for prominent and uniform structures in a

data set. Increasing this intensity threshold to find small structures or subtle changes

in intensity results in false matches. To provide the user with confidence in using our

VE framework, it has to be ensured that the matches a user gets correspond to his

expectations. This can either be done by increasing the number of positive matches

while decreasing false ones, or by eliminating the reasons for wrong expectations.

Since wrong user expectations in the context of our VE framework mostly occur

due to the lack of visible information on a bricks 3D structure, a way has to be

found to show the 3D structure of a brick that goes beyond simply displaying the

multiresolution histogram. To increase the number of positive matches while at

the same time maintaining a low similarity threshold, we propose to investigate the

effects a flexible, user-defined brick-size has on the number of matches. Extending

the idea of user defined brick sizes, the location and size of picked bricks should

be arbitrary as well. This way, the user can fully enclose the structures he wants

to be found. This improvement however requires a possibility to match structures

of different brick sizes against each other. To improve the rendering quality and

simplify the usage of our ray caster when rendering the results of the multiresolution

histogram matching, we want to investigate how our histograms can be used to

simplify the transfer function design like it was proposed by Lundström et al.

[LLY05, LYL+06].

77

Acknowledgments

A lie is just a great story that someone ruined with the truth!

- Barney Stinson

I dedicate this thesis to my parents who encouraged and unconditionally supported

me throughout my educational career. Without this support, finally completing this

thesis and my studies would have been a great deal harder. I also would like to

thank my brother Daniel for putting up with my continuously brabbeling over my

thesis and for providing the occasional kick in the a** ;). Id further like to thank my

good friend Ray for proof reading my thesis.

Special thanks to Johanna Beyer and the Team from the VRVIS Vienna for their

supervision, ideas and motivation throughout this thesis. I’d further like to thank

them for proof reading and for providing final suggestions for the final versions of

this thesis.

Further, I thank Eduard Gröller, the Meister, for making this thesis possible and

finally the TU Vienna for providing excellent studying conditions throughout the

whole master program.

i

Bibliography

[AAR04] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in

images via a sparse, part-based representation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(11):1475–1490, 2004.

[AHP04] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local

binary patterns. Lecture Notes in Computer Science, pages 469–481,

2004.

[BD06] K.L. Briggman and W. Denk. Towards neural circuit reconstruction

with volume electron microscopy techniques. Current opinion in

neurobiology, 16(5):562–570, 2006.

[BFH+04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,

and P. Hanrahan. Brook for GPUs: stream computing on graphics

hardware. In International Conference on Computer Graphics and

Interactive Techniques: ACM SIGGRAPH 2004 Papers: Los Angeles,

California, pages 777–786, 2004.

[BHMF08] J. Beyer, M. Hadwiger, T. Möller, and L. Fritz. Smooth Mixed-

Resolution GPU Volume Rendering. In IEEE/EG International Sym-

posium on Volume and Point-Based Graphics, pages 163–170, 2008.

[BIP99] C. Bajaj, I. Ihm, and S. Park. Making 3D textures practical. In

Proceedings of Pacific Graphics 99, pages 259–268, 1999.

[Bro92] L.G. Brown. A survey of image registration techniques. ACM com-

puting surveys (CSUR), 24(4):376, 1992.

[BS98] V. Braitenberg and A. Schuez. Cortex: statistics and geometry of

neuronal connectivity. Springer Berlin, 1998.

iii

[Car84] M. Carlotto. Texture classification based on hypothesis testing ap-

proach. In Proc. Intl Japanese Conf. Pattern Recognition, pages 93–96,

1984.

[CSW+85] M. Chalfie, JE Sulston, JG White, E. Southgate, JN Thomson, and

S. Brenner. The neural circuit for touch sensitivity in Caenorhabditis

elegans. Journal of Neuroscience, 5(4):956–964, 1985.

[DCH88] R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In

Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, pages 65–74. ACM New York, NY, USA,

1988.

[DD02] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-

dynamic-range images. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages 257–266.

ACM, 2002.

[DPVN08] T. Deselaers, R. Paredes, E. Vidal, and H. Ney. Learning Weighted

Distances for Relevance Feedback in Image Retrieval. In Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on,

pages 1–4, 2008.

[EEH+00] K. Engel, T. Ertl, P. Hastreiter, B. Tomandl, and K. Eberhardt. Combin-

ing local and remote visualization techniques for interactive volume

rendering in medical applications. In Proceedings of the IEEE Vi-

sualization’00, pages 449–452. IEEE Computer Society Press Los

Alamitos, CA, USA, 2000.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading. In Proceedings

of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics

hardware, pages 9–16. ACM New York, NY, USA, 2001.

[FH99] A. Frangakis and R. Hegerl. Nonlinear anisotropic diffusion in three-

dimensional electron microscopy. Scale-Space Theories in Computer

Vision, pages 386–397, 1999.

[FH01] A.S. Frangakis and R. Hegerl. Noise reduction in electron tomographic

reconstructions using nonlinear anisotropic diffusion. Journal of

structural biology, 135(3):239–250, 2001.

[Fia02] J.C. Fiala. Three-dimensional structure of synapses in the brain and

on the web. In 2002 World Congress on Computational Intelligence.

May, pages 12–17, 2002.

[FM08] J. Fung and S. Mann. Using graphics devices in reverse: GPU-based

Image Processing and Computer Vision. In 2008 IEEE International

Conference on Multimedia and Expo, pages 9–12, 2008.

[Fuk90] K. Fukunaga. Introduction to statistical pattern recognition. Academic

Press, 1990.

[FVDFH95] J.D. Foley, A. Van Dam, S.K. Feiner, and J.F. Hughes. Computer

graphics: principles and practice. Addison-Wesley Professional,

1995.

[GNE+03] J. Goldstein, D.E. Newbury, P. Echlin, C.E. Lyman, D.C. Joy, E. Lif-

shin, LC Sawyer, and J.R. Michael. Scanning electron microscopy

and X-ray microanalysis. Plenum Pub Corp, 2003.

[Had04] Markus Hadwiger. High-Quality Visualization and Filtering of Tex-

tures and Segmented Volume Data on Consumer Graphics Hardware.

PhD thesis, Institute of Computer Graphics and Algorithms, Vienna

University of Technology, 2004.

[Har05] M. Harris. GPGPU: General-purpose computation on GPUs. In

Presentation at the Game Developers Conference, 2005.

[HGN01a] E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar. Histogram

preserving image transformations. International Journal of Computer

Vision, 45(1):5–23, 2001.

[HGN01b] E. Hadjidemetriou, MD Grossberg, and SK Nayar. Spatial infor-

mation in multiresolution histograms. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, volume 1.

IEEE Computer Society; 1999, 2001.

[HGN04] E. Hadjidemetriou, M.D. Grossberg, and S.K. Nayar. Multiresolu-

tion histograms and their use for recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, pages 831–847, 2004.

[Hum77] R. Hummel. Image enhancement by histogram transformation. Com-

puter graphics and image processing, 6(2):184–195, 1977.

[JBH+09] W.K. Jeong, J. Beyer, M. Hadwiger, A. Vazquez, H. Pfister, and R.T.

Whitaker. Scalable and Interactive Segmentation and Visualization

of Neural Processes in EM Datasets. volume 15, pages 1505–1514.

IEEE Visualization, 2009.

[JHK+99] P.T. Johnson, E.J. Halpern, B.S. Kuszyk, D.G. Heath, R.J. Wechsler,

L.N. Nazarian, G.A. Gardiner, D.C. Levin, and E.K. Fishman. Renal

Artery Stenosis: CT Angiography Comparison of Real-time Volume-

rendering and Maximum Intensity Projection Algorithms1. Radiology,

211(2):337, 1999.

[KLK+97] Y.T. Kim, M.H. Lee, H.I. Ko, D.I. Song, W.J. Hwang, B.Y. Ye, S. Kim,

Y. Kim, K. Yim, and H. Chung. Contrast enhancement using bright-

ness preserving bi-histogram equalization. IEEE Transactions on

Consumer Electronics, 43(1):1–8, 1997.

[KVH84] J.T. Kajiya and B.P. Von Herzen. Ray tracing volume densities. ACM

SIGGRAPH Computer Graphics, 18(3):165–174, 1984.

[KW03] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In Proceedings of the 14th IEEE Visualization 2003,

pages 287–292. IEEE Computer Society, 2003.

[Lev90] M. Levoy. Volume rendering. IEEE Computer graphics and Applica-

tions, 10(2):33–40, 1990.

[LL94] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp

factorization of the viewing transformation. In Proceedings of the 21st

annual conference on Computer graphics and interactive techniques.

ACM, 1994.

[LLY05] C. Lundström, P. Ljung, and A. Ynnerman. Extending and simplifying

transfer function design in medical volume rendering using local

histograms. Proceedings of Eurographics/IEEE VGTC Symposium on

Visualization, pages 263–270, 2005.

[LVB+93] M. Lades, J.C. Vorbrueggen, J.M. Buhmann, J. Lange, C. Malsburg,

R.P. Wuertz, and W. Konen. Distortion invariant object recognition

in the dynamic link architecture. IEEE Transactions on computers,

42(3):300–311, 1993.

[LW03] X. Liu and D.L. Wang. Texture classification using spectral histograms.

IEEE Transactions on Image Processing, 12(6):661–670, 2003.

[LYL+06] C. Lundström, A. Ynnerman, P. Ljung, A. Persson, and H. Knutsson.

The alpha-histogram: Using spatial coherence to enhance histograms

and transfer function design. In Proceedings Eurographics/IEEE-

VGTC Symposium on Visualization, pages 227–234, 2006.

[Mar02] K.A.C. Martin. Microcircuits in visual cortex. Current opinion in

neurobiology, 12(4):418–425, 2002.

[Max95] N. Max. Optical models for direct volume rendering. IEEE Transac-

tions on Visualization and Computer Graphics, 1(2):99–108, 1995.

[MHB+00] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A

practical evaluation of popular volume rendering algorithms. In Pro-

ceedings of the 2000 IEEE symposium on Volume visualization, pages

81–90, 2000.

[MRB+08] A. Maximo, S. Ribeiro, C. Bentes, A. Oliveira, and R. Farias. Memory

efficient gpu-based ray casting for unstructured volume rendering. In

IEEE/EG Int. Symp. Volume and Point-Based Graph, pages 55–62,

2008.

[MS00] S. Michael and J. Sammon. Practical Algorithms for Image Analysis,

2000.

[MV98] J.B.A. Maintz and M.A. Viergever. A survey of medical image regis-

tration. Medical image analysis, 2(1):1–36, 1998.

[NVI10a] Corporation NVIDIA. Nvidia cuda compute unified device architec-

ture, programming guide 2.0, 2010.

[NVI10b] Corporation NVIDIA. Nvidia cuda technical training, volume 1, 2010.

[OABB85] J.M. Ogden, E.H. Adelson, J.R. Bergen, and P.J. Burt. Pyramid-based

computer graphics. RCA Engineer, 30(5):4–15, 1985.

[OLG+07] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E.

Lefohn, and T.J. Purcell. A survey of general-purpose computation on

graphics hardware. In Computer Graphics Forum, volume 26, pages

80–113, 2007.

[OPM02] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution Gray-

Scale and Rotation Invariant Texture Classification with Local Binary

Patterns. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 24(7):971, 2002.

[Opp02] R. Oppermann. User interface design. Handbook on information

technologies for education and training, pages 233–248, 2002.

[Pit00] I. Pitas. Digital image processing algorithms and applications. Wiley-

interscience, 2000.

[Qur05] Shehrzad Qureshi. Embedded Image Processing on the TMS320C6000

DSP: Examples in Code Composer Studio and MATLAB. Springer,

2005.

[RH99] T. Randen and J.H. Husoy. Filtering for texture classification: A com-

parative study. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(4):291–310, 1999.

[Rip08] B.D. Ripley. Pattern recognition and neural networks. Cambridge

Univ Press, 2008.

[RMB+07] S. Ribeiro, A. Maximo, C. Bentes, A. Oliveira, and R. Farias. Memory-

aware and efficient ray-casting algorithm. In Computer Graphics and

Image Processing, 2007. SIBGRAPI 2007. XX Brazilian Symposium

on, pages 147–154, 2007.

[RPSC99] H. Ray, H. Pfister, D. Silver, and T.A. Cook. Ray casting architectures

for volume visualization. IEEE Transactions on Visualization and

Computer Graphics, 5(3):210–223, 1999.

[Rus06] John C. Russ. The Image Processing Handbook, Sixth Edition. CRC

Press, 2006.

[RV06] D. Ruijters and A. Vilanova. Optimizing GPU volume rendering.

Journal of WSCG, 14:9–16, 2006.

[SB91] S. Sarkar and K.L. Boyer. On optimal infinite impulse response edge

detection filters. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(11):1154–1171, 1991.

[Sch05] H. Scharsach. Advanced GPU raycasting. Proceedings of CESCG,

pages 67–76, 2005.

[SOS00] M. Seul, L. O’Gorman, and M.J. Sammon. Practical algorithms for

image analysis: description, examples, and code. Cambridge Univ

Press, 2000.

[SPHC02] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-

cally characterizing large scale program behavior. ACM SIGARCH

Computer Architecture News, 30(5):45–57, 2002.

[STR05] O. Sporns, G. Tononi, and K. Rolf. The Human Connectome: A

Structural Description of the Human Brain. PLoS Computational

Biology, 1(4), 2005.

[TM98] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color

images. In Proceedings of the Sixth International Conference on

Computer Vision, volume 846, 1998.

[TP86] V. Torre and T. Poggio. On edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(2):147–163, 1986.

[Umb05] Scott E Umbaugh. Computer Imaging: Digital Image Analysis and

Processing. CRC Press, 2005.

[VVYV98] L.J. Van Vliet, I.T. Young, and P.W. Verbeek. Recursive Gaussian

derivative filters. In International Conference on Pattern Recognition,

volume 14, pages 509–514, 1998.

[WC09] D.B. Williams and C.B. Carter. Transmission electron microscopy: a

textbook for materials science. Springer Verlag, 2009.

[Wil83] L. Williams. Pyramidal parametrics. In Proceedings of the 10th

annual conference on Computer graphics and interactive techniques,

pages 1–11. ACM New York, NY, USA, 1983.

[WM98] F.M. Waltz and J.W.V. Miller. An efficient algorithm for Gaussian

blur using finite-state machines. In SPIE Conf. on Machine Vision

Systems for Inspection and Metrology VII, 1998.

[WVW94] O. Wilson, A. VanGelder, and J. Wilhelms. Direct Volume Rendering

via 3D Textures. 1994.

[ZB09] G. Zachmann and D. Bartz. Visual computing for medical diagnosis

and treatment. Computers & Graphics, 33:554–565, 2009.

[ZvBG01] M. Zwicker, J. van Baar, and M. Gross. EWA volume splatting. In

Proceedings of IEEE Visualization’01, pages 29–36. IEEE Computer

Society Washington, DC, USA, 2001.

	Deckblatt.pdf
	da
	Introduction
	Motivation
	Goals
	Organization

	Fundamentals
	Volume Rendering
	Image Processing
	Noise Reduction
	Histograms

	Electron Microscopy
	Basic Types of Electron Microscopes
	3D Data Set Generation

	GPGPU
	Why GPGPU
	CUDA

	Related Work
	Noise Reduction in Volumetric Data Sets
	Texture and Structure Matching
	GPGPU Ray Casting

	Overview over the used Volume Rendering Framework
	Caching Large Datasets
	CUDA Ray Caster of the HVR Framework

	Filtering Module - Noise Reduction by Filtering
	Average Blur
	Gaussian Blur
	Bilateral Filtering
	Implementation

	Volume Exploration Module - Data Reduction by Picking
	Structure Recognition in Theory
	Implementation
	Construction of Volume Pyramid
	Class Layout
	VE_Histogram
	VE_MultiHistogram
	VE_MultiHistogramManager

	User Interface and Usage

	Results and Evaluation
	Results - Filtering
	Results - Picking

	Summary
	Conclusion
	Future Work

	Acknowledgments
	Bibliography

