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Abstract. This paper describes a new method for matching line seg-
ments between two images in order to compute the relative camera pose.
This approach improves the camera pose for images lacking stable point
features but where straight line segments are available. The line match-
ing algorithm is divided into two stages: At first, scale-invariant feature
points along the lines are matched incorporating a one-dimensional ho-
mography. Then, corresponding line segments are selected based on the
quality of the estimated homography and epipolar constraints. Based on
two line segment correspondences the relative orientation between two
images can be calculated.

1 Introduction

Matching features between two images is an important task in 3D computer
vision, e.g. for camera parameter estimation, image retrieval or classification.
Local, viewpoint invariant region descriptors are used for these tasks in many
applications. They are independently extracted in input images and similar de-
scriptors are selected as putative feature correspondences. Region descriptors are
very robust for many scenes, but areas with distinctive textures are required [1].
In this paper we create correspondences between line segments instead of regions.
This approach improves the results for scenes which contain few stable 2D fea-
tures as caused by large homogeneous surfaces, but instead contain straight lines,
e.g. urban scenes or interior rooms. The search space for corresponding features
is decreased to salient line segments which in turn increases the distinctiveness
of the feature descriptors.

Our algorithm matches the intensity profiles along line segments by matching
distinctive feature points within these profiles. Corresponding feature points lo-
cated along straight lines are correlated by a one-dimensional homography. This
homography establishes an important constraint on the set of correspondending
points. The similarity between two line segments is computed by comparing in-
tensity values in the line profiles based on the estimated 1D homography. The
final line segment correspondences are selected according to reprojection errors
from a robust estimation of the camera parameters for the input images.

The advantage of our algorithm is that it doesn’t rely on two-dimensional
extremal features which may be sparse in some scenes. Splitting the problem
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into a two-step approach reduces the dimensionality of the search space for
correspondences. This has the advantage that there are fewer possibilities for
corresponding points and the RANSAC estimator is more likely to find the best
consistent matches.

The remainder of this papers is organized as follows. Section 2 describes the
extraction of stable feature points along salient image lines. Section 3 presents
how feature points are matched and how point correspondences are used for
matching lines and estimating the relative orientation between two input images.
Experimental results of our algorithm are presented in Section 4.

1.1 Related Work

Camera Pose Estimation A widely used approach for computing the relative
pose of two cameras is the usage of locally invariant region descriptors [1-3]. Such
region descriptors are invariant to a varying range of affine transformations in
order to compare them in images from different viewpoints. Additionally, many
descriptors are invariant to lighting changes. The detection of feature points in
this paper is based on the localization of SiFT-features [2], but the generation
of the scale space and the detection of extrema is reduced from three to two
dimensions.

The relative camera pose is calculated in a similar approach as follows [4]: A
set of feature points is extracted in both images and putative correspondences
are detected by local descriptor matching. RANSAC [5] is used for a robust cal-
culation of the camera parameters despite wrongly matched feature points. In
each iteration of the RANSAC loop a minimum set of points needed for orient-
ing the cameras is selected (5 points for calibrated cameras [6]). All other point
correspondences are classified as inliers or outliers according to the estimated
fundamental matrix. The camera parameters which returned the highest num-
ber of inliers are selected and all inliers are used for a final optimization of the
parameters with a least squares solution.

Line Matching The goal of line matching algorithms is to find corresponding
line segments between two or more images. Schmid and Zisserman [7] use known
epipolar geometry for establishing point-to-point matches along line segments.
Cross-correlation scores are computed for all point correspondences and their
average is used as value for the line similarity. Cross correlation is adapted to
large camera movements by approximating the areas next to line segments by
planes and finding the best fitting homographies. This approach cannot be used
for the camera orientation problem because camera parameters would have to
be known in advance.

Bay et al. [8] combine color information and topological relations for matching
line segments. An initial set of potential line matches is created by comparing the
color histograms of stripes next to the line segments. As these line descriptors are
not very distinctive, it is necessary to filter wrong matches based on topological
relations. The topological filter takes three line segments or a combination of
line segments and points and compares their sidedness in both images.
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Meltzer and Soattao [9] match arbitrary edges across images instead of straight
line segments with a similar approach to ours. They select key points at extremal
values in the Laplacian of Gaussian along the edge. The feature descriptors for
these points are based on gradient histograms similar to SIFT-points. The fea-
ture points are matched with a dynamic programming approach that uses the
ordering constraint, i.e. corresponding feature points appear in the same order
since projective transformations are order preserving. This constraint is used
implicitly in our algorithm because a 1D homography maintains the order of
points.

1D Point Correspondences Scale-space features in 1D signals have been
used in other applications. Briggs et al.[10] match scale-space features in one-
dimensional panoramic views. The images are taken by an omnidirectional cam-
era used for robot navigation. A simple feature descriptor based on the value
and curvature in the DoG-space is used for matching points which is sufficient
for small camera baselines. The features are matched by circular dynamic pro-
gramming, which exploits the fact that corresponding features in the circular
images have to appear in the same order.

Xie and Beigi [11] use a similar approach for describing 1D sensor signals
measured from human activities. The feature descriptors include the neighboring
extremal positions of a key point. Corresponding points are found by nearest-
neighbor matching.

2 Feature Extraction

In this section we describe how scale-invariant features along salient line seg-
ments are extracted from an image. The first step is to detect lines or line
segments in an image, for which standard methods can be used. The next step
is to create one-dimensional intensity profiles along the extracted lines. Finally,
the scale spaces of these profiles are used to detect stable feature points.

2.1 Line Extraction

Although extracting lines from an image is not the main aspect of this paper, we
want to depict some details about the line segments we use for matching. We use
images that have been undistorted in a preprocessing step in order to contain
straight lines. The parameters for undistortion can be computed together with
the intrinsic camera calibration. For uncalibrated cameras, it is possible to use
other undistortion methods, e.g. with a line-based approach [12].

Architectural scenes often contain collinear line segments, e.g. along horizon-
tally or vertically aligned windows. Collinear line segments which correspond
to the same 3D line in world space induce the same homography on a 1D line
camera when they are matched to lines in another image. Therefore it is useful
to extract lines across the whole image to get more robust homographies and
point matches. On the other hand, parts of the line not corresponding to edge
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features in the image should not contribute to the matching process, because
it is possible that they are occluded by other objects. For this reason, we use
one line segment for all collinear segments and apply weights according to the
underlying image edge.

We use a Canny edge detector for producing an edge image and then apply
a Hough transform for detecting straight lines. We sample the image along the
lines with a fixed step size of one pixel and compute a weight for each sample
point. The weights are based on the image gradients and denote the probability
that a sample point is part of an image edge. The calculation of weights is defined
in Equation 1 where g; is the gradient at the sample point ¢ and n is the normal
of the line. The cosine of the angle between the gradient and the line normal is
used to exclude sample points where another edge crosses the current line.
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For efficiency, low-weighted parts at the ends of a line segment are cut off
and not used in subsequent operations. The rest of the line is kept for detecting
and matching feature points. The weights are used for decreasing the impact of
matched feature points at sample points with no underlying image edge.

2.2 1D Line Profiles

Straight lines can occur at edges within an object or at the border of an ob-
ject. In the first case both sides of a line are quite stable with respect to each
other. However, in the second case the images are only consistent on the side of
the object, whereas the background changes with the viewpoint due to paral-
lax. Therefore we investigate the two sides of the line separately during feature
detection and matching.

For each side of a line, the image is sampled with the same step size as the
weights in Section 2.1. In order to get a more descriptive representation we do
not sample a single line but a rectangular extension of the line by a width w into
the respective direction. This sampled rectangle is collapsed into a 1D profile by
averaging the intensity values for more efficient subsequent computations.

An important parameter is the width w. It has to be large enough to contain
distinctive information, i.e. it has to contain image parts next to the edge itself.
Otherwise it is not possible to distinguish between noise and image features. If it
is too large, on the other hand, multiple features may be collapsed and the one-
dimensional profile is very smooth. Furthermore, the corresponding image parts
next to a line segment may have differing widths in the case of large projective
distortion. We used a profile width of 40 pixels in our experiments, but this
parameter clearly depends on image resolution and scene contents.
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Fig. 1. Generation of Gaussian and DoG scale space for 3 scales per octave.

2.3 Scale Space Analysis

For each line profile a Gaussian scale-space is created in a similar manner as for
two-dimensional SiFT-features [10,2]. The one-dimensional signal I(z) is con-
volved with a Gaussian filter G(z,0) over a range of different scales o

1 2 o2
S(z,0) = G(x,0) * I(x), with G(z,0) = ——e % /(77 2
(#.0) = G(z.0) +1(x), with G(x,0) = —— e
Stable feature points are located at extrema in the difference-of-Gaussian
(DoG) scale-space D(z,0). The difference-of-Gaussian is an approximation of
the Lapacian of Gaussian and can be computed as the difference of two nearby
Gaussian scales separated by a constant factor k:

D(z,0) = S(z,ko) — S(z,0) (3)

The creation of the scale space is implemented efficiently with multiple oc-
taves where the profile is resized to half of its resolution for each subsequent
octave. The scale factor o of neighbored scales is separated by a constant factor
k = 21/ where s is the number of scales per octave. This means that the scale
factor o is doubled within one octave. In each octave s + 3 Gaussian scales are
created in order to use s DoG scales for extremal value detection. The scale
space creation is depicted in Figure 1 and an example can be seen in Figure 2.

Potential feature points are extracted at positions where the value in the
DoG-space is higher or lower than its eight surrounding values. The exact po-
sition of an extremum is determined by fitting a quadratic function using the
Taylor expansion of the scale-space D(x, o) [13]. The DoG-value at the extremum
is used to reject unstable extrema with low contrast. Extrema with small curva-
ture are also rejected as unstable. Similar to Briggs et al. [10] we calculate the
curvature as the geometric mean of the second derivatives ¢ = 01/|ddys|. The
multiplication with o is necessary to get a scale-invariant curvature value.

3 Feature Matching

Feature matching is split into two parts: The first part matches feature points
between two image lines. The second part searches for corresponding lines based
on the feature point correspondences and epipolar constraints.
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Fig. 2. From top to bottom: sampled rectangle next to a line segment, collapsed profile,
Gaussian scale space with 6 octaves and 5 scales per octave, DoG scale space, extrema
(white and black dots) in DoG scale space, accepted feature points with refined posi-
tions in DoG scale space.

As the orientation of the line segments is unknown, it is necessary to match
each side of a line to both sides of the second line. In addition, the feature point
descriptors themselves have to be invariant to the orientation of the underlying
line. If a large number of line segments have to be matched or if time efficiency is
important, it may be better to orientate all line segments such that the brighter
profile is on the left side of the line [8]. The number of comparisons is reduced
from four to two and the descriptor does not have to be changed. This approach
fails if a line segment is located at the boundary of an object and the background
contains large intensity changes.

3.1 Feature Point Descriptor

During feature point matching corresponding points between two line profiles
should be detected. Therefore, we need a matching score that is a good estimate
of the probability that two scale space features correspond to the same physical
point in the world. Extrema of different types, i.e. minima and maxima, cannot
correspond to the same object and a matching score of zero is assigned to these
pairs.

Local properties used by Briggs et al.[10] were not discriminative enough
in our experiments. Especially in the case of repetitive patterns, e.g. multiple
windows of a building along a line, it was not possible to distinguish between
correct and wrong correspondences.

We include the neighborhood of a feature point in order to increase the
stability of the descriptor. Although the neighborhood can be quite different in
case of large projective distortions or occlusions, it is a good description for many
cases. The Gaussian scale space is sampled at neighboring points to the left and
right of the feature point. The step size between sample points is based on the
scale of the feature point in order to get a scale-invariant feature descriptor.



Pose Estimation using Line Correspondences and 1D Homographies 7

The matching score between two features is computed based on the sum of
squared distances between corresponding neighboring samples. The matching
scores allow to narrow down the set of potential feature matches, but it is still
not discriminative enough to extract valid matches directly.

3.2 1D Homographies

Figure 3 shows the projection of a line in 3D space onto two images. The relation
between the corresponding image lines lg and 1; is not altered by rotations of
the cameras around the 3D line L. We rotate one camera such that the 3D line L
and the image lines 1p and 1; are located in one plane. With this transformation
the point matching problem is reduced to 1D cameras and it can be easily seen
that corresponding points on the image lines are correlated by a one-dimensional
homography. The 2 x 2-matrix H maps homogeneous points x; on the first image
line to the corresponding points x; on the second image line:

x; = Hx; (4)

This one-dimensional homography provides an important constraint on the
set of corresponding points provided that two line segments belong to the same
straight line in 3D space. The constraint that corresponding points appear in
the same order is implicitly satisfied by the homography if the line segment is in
front of both cameras. A minimum of three points is needed for the calculation
of the homography, e.g. with the direct linear transformation (DLT) algorithm
[14].

We use RANSAC [5] for the robust estimation of the homography. An initial
set of potential point matches is generated by taking the N best correspondences
for each feature point based on the feature descriptor presented in Section 3.1.
In each iteration of the RANSAC loop three potential point matches are selected
for the computation of a 1D homography. All other point correspondences are
classified as inliers or outliers according to their symmetric transfer error e based
on the absolute difference d (Equation 5).

e=d(x,H 'x')* + d(x', Hx)? (5)

Finally, the resulting homography is optimized to all inliers and additional
inliers from the other point matches are sought. Figure 4 shows an example for
point correspondences between two line profiles and the associated homography.

A pair of corresponding lines has to fulfill two constraints in order to be
accepted as line match. The first constraint is a minimum number of matched
feature points. The second constraint tests how well the line profiles fit to the
estimated 1D homography. Densely sampled points on the first line are trans-
formed to their corresponding coordinate in the second line and vice versa. The
sum of squared distances between the intensity values in the line profiles at cor-
responding sample points is used to measure the quality of the homography. The
squared distances are multiplied by the weights obtained from the edge response
in Section 2.1. The weighting is necessary to avoid contributions from image
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Fig. 3. Transformation from 2D-cameras to 1D-cameras. A 3D line segment L is pro-
jected onto two images with camera centers Cy and C. The cameras are rotated such
that L, lo and [, are located in a plane. In the right image can be seen that a 1D
homography maps all points on line lp to their corresponding points on the second line
l1.

parts not belonging to the same 3D line, e.g. because the line is occluded by
another object.

3.3 Camera Orientation

In the previous section a set of line matches together with point matches along
these lines have been extracted. The point matches obey a one-dimensional ho-
mography, but the line matches do not fulfill any epipolar constraints yet. It
is possible that there are wrongly matched line segments and that one line is
matched to multiple lines in the other image.

Consistent line matches are extracted by computing the relative pose between
the two images. In the calibrated case, two matched line segments together
with their 1D homographies are required to compute the relative pose. We use
the five-point-algorithm [6], for which three points are taken from the first line
correspondence and two points from the second.

As there is usually only a rather small set of line matches, all potential line
matches can be evaluated exhaustively. Of course a RANSAC approach could be
used again to speed up computations if necessary. The relative camera orienta-
tion is computed for a pair of line matches. For all line matches 3D points are
triangulated based on the estimated camera parameters for all point correspon-
dences along the line segments. Line matches are classified as inliers respectively
outliers depending on the reprojection errors of these 3D points. Additionally,
it is evaluated if the 3D points are located on a three-dimensional line. In order
to avoid degenerate cases, a line can only be classified as inlier once, although
it might appear in multiple line matches. After evaluating all test cases, the
relative orientation that led to most inliers is selected.
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(a) Matched points and fitted 1D homography. Any point on one profile
can be mapped to the other profile by the estimated homography.
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(b) Part of the matched feature points shown in DoG-scale space.

Fig. 4. Feature point matches between two line profiles.

4 Experiments

We report results on four different example scenes. All images were taken with a

9

Canon EOS 5D Mark II and have a resolution of 5616 x 3744 pixels. The scale
spaces were created with four octaves and four scales per octave. The feature
descriptors were created with 80 neighboring sample points.

The images of the first example show the facade of a house (Figure 5). Ten line
segments were extracted in each images, from which correspondences between
five line profiles were found initially. Four of these initial matches were the left

and right profile of one corresponding line. The relative camera pose approved

four line matches and 365 point matches.
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Fig. 5. Facade scene: 365 point correspondences in four lines. Matching lines are dis-
played with the same color, unmatched lines are shown in white. The final point cor-
respondences are visualized as black rings. Note that some lines are collapsed because
they are located very near to each other.

Fig. 6. Building scene: 52 point correspondences in two lines.

Figure 6 shows the pictures of another building. The initial line matching
created three line correspondences which were all validated with 52 point cor-
respondences by camera pose estimation. The problems in this scene are that
there are many similar lines and that there are different occlusions from different
viewpoints.

Figure 7 shows an interior scene. Ten line segments were extracted in both
images. Two line correspondences and 41 point correspondences were validated
by camera pose estimation from ten initial line profile matches.

The results for an urban scene can be seen in Figure 8. Ten line segments were
extracted in both images, from which two line correspondence and 28 point cor-
respondences were found and validated. This example shows that the algorithm
is capable of matching lines at different scales.

5 Conclusion and Outlook

We have presented a new method for matching points located on line segments.
The application of a one-dimensional homography allows to compute globally
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Fig. 7. Interior scene: 41 point correspondences in two lines.

Fig. 8. Urban scene: 28 point corrrespondences in two lines.

consistent point correspondences along the line segments. The set of correspond-
ing points can be used together with a dense matching score for detecting corre-
sponding line segments between the images. The set of potential line segments
is evaluated based on the robust calculation of the relative pose.

We showed that the dimensionality of feature matching can be reduced by
splitting it into point matching along line segments and line matching using
epipolar constraints. The advantage of our algorithm is that feature points can
be found although only a few distinctive 2D features are present in the images,
provided that straight lines can be extracted.

For future work, we would like to use the estimated 1D homographies directly
for calculating the relative pose between the input images. Two line correspon-
dences and the associated 1D homographies could be used for estimating an
initial solution to the camera pose problem. Another improvement of the al-
gorithm will be a pre-selection of potential line matches before corresponding
feature points are matched. This initial matching should be based on a simple
line descriptor, e.g. a color histogram, and will increase the time efficiency of the
algorithm.



12 I. Reisner-Kollmann, A. Reichinger, W. Purgathofer
References
1. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE

10.

11.

12.

13.

14.

Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 1615-1630

Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91-110

Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from
maximally stable extremal regions. In: British Machine Vision Conference. (2002)
384-393

Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections
in 3d. In: SIGGRAPH Conference Proceedings. (2006) 835-846

. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM 24 (1981) 381-395

Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE
Pattern Analysis and Machine Intelligence 26 (2004) 756-770

Schmid, C., Zisserman, A.: Automatic line matching across views. In: Proceedings
of the 1997 Conference on Computer Vision and Pattern Recognition. (1997) 666—
672

Bay, H., Ferrari, V., Van Gool, L.: Wide-baseline stereo matching with line seg-
ments. In: Proceedings of the 2005 Conference on Computer Vision and Pattern
Recognition. (2005) 329-336

Meltzer, J., Soatto, S.: Edge descriptors for robust wide-baseline correspondence.
In: Proceedings of the 2008 Conference on Computer Vision and Pattern Recogni-
tion. (2008) 1-8

Briggs, A.J., Detweiler, C., Li, Y., Mullen, P.C., Scharstein, D.: Matching scale-
space features in 1d panoramas. Computer Vision and Image Understanding 103
(2006) 184-195

Xie, J., Beigi, M.S.: A scale-invariant local descriptor for event recognition in
1d sensor signals. In: Proceedings of the 2009 IEEE International Conference on
Multimedia and Expo, Piscataway, NJ, USA, IEEE Press (2009) 1226-1229
Thorméhlen, T., Broszio, H., Wassermann, I.: Robust line-based calibration of lens
distortion from a single view. In: Proceedings of MIRAGE 2003. (2003) 105-112
Brown, M., Lowe, D.: Invariant features from interest point groups. In: British
Machine Vision Conference. (2002) 656-665

Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. 2nd
edn. Cambridge University Press, ISBN: 0521540518 (2004)



