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Abstract

In the field of real-time rendering, computer graphics observes a continuously
growing power of visualizing of scenes of continuously growing complexity.
In the past few years, a number of rendering techniques have been developed
that let the quality of the rendered images converge towards photorealism.
Especially in the field of realistic scene illumination, Global Illumination (GI)
techniques represent an important field of research. Previous to this work,
for the first time we have applied a GI algorithm also to point clouds, which
enables us to achieve realistic illumination of diffuse and glossy objects in
real-time.

This thesis elevates the power of visualization of this GI-Renderer to the
next level. For the first time, it implements a realistic, physically based
rendering of mirroring surfaces also for point clouds.

Current real-time approaches addressing curved mirroring surfaces in
polygon scenes either are extremely imprecise or cannot handle each arbi-
trary type of surface. Especially concave surfaces represent a significant
difficulty for current physically based methods. Up to now, physically cor-
rect mirror reflections on complex surfaces can only be produced by offline
algorithms.

We introduce a novel rendering technique called Screen-space curved re-
flections, which enables us to produce physically correct mirror reflections on
arbitrarily complex surfaces. Our method bases on the approach, for each
point in the scene to find the pixel in the framebuffer that contains its re-
flecting surface point. This is achieved by the application of a fast 2D root
finding in a new error function called mirror-space error function. Although
our method raises high demands on the hardware, we are able to render
common scenes at interactive frame rates.





Kurzfassung

Im Bereich des Echtzeitrenderings verzeichnet die Computergraphik eine im-
mer rascher zunehmende Darstellungsfähigkeit für immer größere und kom-
plexere Szenen. In den letzten Jahren haben sich eine Vielzahl an Rendering-
Techniken etabliert, die die Qualität der generierten Bilder in konventionellen
Polygonszenen immer mehr an den Fotorealismus konvergieren lässt. Vor
allem im Teilbereich der realistischen Beleuchtung von Szenen stellen Global-
Illumination (GI) Techniken aktuell ein wichtiges Forschungsgebiet dar. Im
Vorfeld dieser Arbeit haben wir erstmals einen GI-Algorithmus auf riesige
Punktwolkenszenen angewandt, mit dem wir eine realistische Beleuchtung
von diffusen und glänzenden Objekten in Echtzeit erzeugen können.

Die vorliegende Diplomarbeit setzt die Leistungsfähigkeit dieses GI-Ren-
derers auf die nächste Ebene. Sie implementiert erstmals die Darstellung von
Oberflächenspiegelungen auch für Punktwolkenszenen.

Bisherige Echtzeit-Rendering-Techniken für gekrümmte Spiegelungen in
Polygonszenen sind entweder extrem ungenau, oder unterstützen nicht jede
beliebige Art von Oberfläche. Speziell konkav gekrümmte Oberflächen
stellen bei aktuellen physikalisch korrekten Ansätzen ein Problem dar.
Bisher können korrekte Spiegelungen auf komplexeren Oberflächen nur durch
Offline-Algorithmen erzeugt werden.

Wir haben eine neuartige Technik namens Screen-Space Curved Reflec-
tions entwickelt, die es erlaubt, physikalisch korrekte Spiegelungen auf be-
liebig komplexen Oberflächen darzustellen. Die Methode basiert auf dem
Ansatz, für jeden Punkt in der Szene jenen Pixel im Framebuffer zu suchen,
der dessen reflektierenden Oberflächenpunkt enthält. Wir erreichen dies
durch eine effiziente Nullstellensuche in einer von uns eingeführten Fehler-
funktion, der mirror-space error function. Obwohl unsere Methode hohe
Anforderungen an die Hardware stellt, sind wir in der Lage, gängige Szenen
bei interaktiven Bildwiederholungsraten darzustellen.
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Chapter 1

Introduction

In image synthesis, there are several factors by which the quality of a ren-
dered image is measured. First of all, they depend on the demands stated
for the renderer. An overall believable visual impression can as well be an
important target as a clean and artifact-free per-pixel-correctly rendered im-
age. The work in this thesis bases on a renderer that deals with low-quality
geometry: point clouds. Here we face a shift in the demands in relation to
polygon scene renderers. We can hardly claim artifact-free per-pixel-correctly
rendered images, especially when dealing with point splats that are often re-
quired to obtain a dense image of a point cloud object. Thus, in point clouds
we rather pursue to produce generally believable images so far, always trying
to enhance realism in our rendered scenes.

An important aspect of the realistic appearance of objects in computer
graphics as well as in everyday life, are mirror reflections. From the concave
surface reflections on our breakfast coffee spoon over the metal door knobs
on our doors at home, up to the warped projections of exterior buildings and
trees on the curved shape of our car, complex mirror reflections are present
in a wide range of everyday scenes.

In this thesis, we introduce a new method to simulate curved reflections
in large point cloud scenes at interactive frame rates.

The first chapter provides an overview of the scope of the thesis and intro-
duces our point rendering framework Terapoints and the global illumination
renderer this work bases on. Finally, it points out our main contributions
and gives an overview over the structure of this thesis.

1.1 Scope of the work

In this thesis, we introduce a novel technique called Screen-Space Curved
Reflections (SSCR) for applying mirror reflections to an interactive global
illumination renderer for point clouds [Pre10]. Although this thesis focuses
on the implementation of one mirror bounce, the architecture of the method
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is designed to be easily extended to support even multiple mirror bounces by
iterative application of the technique.

We provide an introduction to the idea behind the approach, the methods
and algorithms used, and how it is embedded into the global illumination
rendering system applied to large point cloud scenes. Further, we describe
the implementation of our algorithm in detail and analyze the difficulties of
the method and how they are addressed by our implementation.

1.2 The Terapoints point renderer

The framework for the implementation of this thesis is given by the Tera-
points1 point renderer developed at the Institute for Computer Graphics and
Algorithms at the Vienna University of Technology. This application is spe-
cially designed for instant visualization of huge point clouds, mainly applied
for in-situ visualization of point data gathered from range scanners.

The implementation of this technique is based upon and embedded into
a global illumination rendering system for such point clouds [Pre10].

1.3 Main contributions

The following list points out the main contributions of this thesis.

• We introduce a novel rendering technique called screen-space curved
reflections (SSCR) that allows for interactive, correctly warped envi-
ronment reflections on arbitrarily curved surfaces, without the need for
many-viewpoint approaches, surface tesselations or scene subdivisions.
Basically, the method tries to find the one pixel within a mirroring re-
gion in the frame-buffer, that best reflects a given scene point into the
viewpoint. We achieve this by applying a fast screen-space root find-
ing algorithm in this region, minimizing the deviation of the current
reflection vector to the eye vector of a mirroring surface point.

• We present a new function over a reflective surface, the mirror-space
error function, that determines the error of a scene point’s reflection
vector to the eye-vector in a new affine space called mirror space.

• We show an efficient way to perform 2D root finding in screen space by
approximating the 2D problem by two individual 1D algorithms, that
can be compared to bracketing and bisection. Since the method is just

1 Formerly known as Scanopy : www.cg.tuwien.ac.at/research/projects/Scanopy



1.4. Structure of this thesis 3

approximative, there are cases where our method is not guaranteeing to
actually find an intended root. However, for our task, it still provides
sufficient robustness to produce dense mirror reflections in most cases.

• We provide a new mechanism that enhances former G-Buffer based
global illumination techniques in a way that allows for fast global illu-
mination shading even for multiple-bounced mirrored scene parts of the
image. This is achieved by iterative substitution of mirroring G-Buffer
elements.

1.4 Structure of this thesis

This thesis is structured into the following chapters:

• Chapter 2 gives an overview over the background of this thesis. First
it explains the basics of BRDFs (Bidirectional Reflectance Distribution
Function) by means of Kajiya’s Rendering Equation [Kaj86], especially
focusing on mirror reflections. Further, it evaluates related work and
current state of the art in the field of curved surface mirror reflections,
analyzing the strengths and weaknesses of those methods. Finally, it
describes our current method for global illumination rendering in point
clouds [Pre10], and shows how the work of this thesis can enhance its
power of visual simulation.

• Chapter 3 introduces our new approach, points out its prerequisites
and describes our technique for rendering screen space curved reflec-
tions in point clouds in detail. Additionally, we analyze the limits and
difficulties of our technique and show how it was improved in order to
address those issues.

• Chapter 4 focuses on the details of our implementation, and describes
how the method can be embedded into a given G-Buffer based GI
rendering pipeline by exploiting already given intermediate data.

• Chapter 5 shows the results of our implementation. It gives a detailed
evaluation of the method by analyzing the dependence of image quality
and performance on the scene complexity and the parameters of the
algorithm.

• Chapter 6 summarizes the contents of the thesis and its contributions.
It shortly describes a possible application of our method to polygon
scenes, and finally discusses other future work.





Chapter 2

Background

2.1 The Rendering Equation

One of the most common and challenging tasks in computer graphics is the
realistic illumination of virtual scenes. In general, it is the attempt of simu-
lating and predicting the behavior of light as it propagates through the scene,
originating at the light source and finally reaching the observer’s viewpoint,
being influenced by the interaction with objects’ surfaces and transparent
media on its way.

An idealized and complete description of the process of light propagation
in a scene is given by the Rendering Equation, which was introduced by
James Kajiya in 1986 [Kaj86] . Equation 2.1 shows the hemispherical form,
a common notation of the rendering equation.

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

ρ(p, ωi, ωo)Li(H(p,−ωi), ωi) cos θidωi (2.1)

Basically, the rendering equation formulates the relation between the light
outgoing from a given surface point p and the light incoming from the whole
hemisphere over p with respect to the characteristics of the surface at p.
Figure 2.1 illustrates this concept.

Elements of the equation In the above formulation, the rendering equation
is a function of the surface point p and the direction of outgoing light ωo.
The sum of energy radiating from p into direction ωo is described by the
sum of a) energy emitted by the material and b) energy reflected at p into
that direction. Since the latter means an evaluation of an infinite number
of possible incoming light directions, the reflective part of the equation is
integrated over the whole hemisphere Ω above p.
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Fig. 2.1: Illustration of the light propagation concept as formulated by the ren-
dering equation.

Le(p, ωo) Energy emitting from the surface point p into the
outgoing direction ωo.

ρ(p, ωi, ωo) Function of the surface point p and the incoming
and outgoing light direction ωi) and ωo, that eval-
uates the relative amount of light incident from
ωi) that is reflected into ωi. This function is
called Bidirectional Reflectance Distribution Func-
tion (BRDF) and is discussed in more detail in 2.2.

Li(H(p,−ωi), ωi) Amount of energy incident at p from direction ωi.
The inner function H is a visibility function of p
and ωi, which takes a possible occlusion of p from
the incoming direction into account.

cos θi This factor correctly attenuates the irradiance at
p given by Li, depending on the angle θ of the
incoming light direction. The density of illumina-
tion per unit projected area falls off by the cosine
of θ, resulting in zero irradiance at completely flat
incoming light. Figure 2.2 illustrates this fact.

Evaluation of the rendering equation In computer graphics, simulating
light propagation based upon this rendering equation faces two major prob-
lems.

First, the function Lo is recursive, i.e. the incoming energy Li at p equals
the outgoing energy Lo at some previous surface point p′, which in turn has
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Fig. 2.2: Parallel rays hitting a surface. r represents the intensity of incident
light. With decreasing angle θ, the energy incident on a given area around p is
attenuated.

to be evaluated by Lo at p′′ and so on, meaning that the correct evaluation of
the illumination of p from a single direction would require following back the
incoming light’s way over all of its previous surface reflections, fast diverging
in calculation complexity.

Second, a correct evaluation of the integrand over Ω is rarely possible due
to the infinity of possible incoming light directions within the hemisphere over
p. Thus this integrand can at best be approximated by convenient sampling
of Ω. A broad discussion on these issues is given by [DBB02] and [SK00].

2.2 Bidirectional Reflectance Distribution Functions

Evaluating the rendering equation, the surface properties participating in the
continuous reflection process of light significantly influence both the proper-
ties the light and its amount of energy, thus affecting the visual appearance
of a scene. A comprehensive model for describing the properties of a surface
is given by the Bidirectional Reflectance Distribution Function (BRDF).

The BRDF describes the relative amount of light of a given wavelength
φ incident at some surface point p from an incoming direction ωi) that is
reflected into an outgoing direction ωo) (see Figure 2.3). In its simplest
form, it is a function of 6 degrees of freedom, with the following parameters:

• location of the reflecting surface point p (1 DOF)

• incoming and outgoing light direction ωi and ωo, each given by two
angles in polar coordinates (4 DOF)

• wavelength of the reflected light (1 DOF)

The latter has to be considered since for different materials, different
wavelengths are reflected in a different way, i.e in different directions and
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Fig. 2.3: Schematic illustration of a BRDF, evaluating the amount of energy re-
flected into a given outgoing direction from a given incoming direction, for a given
wavelength φ.

in different intensity. More complex forms of the BRDF can also take light
polarisation, fluorescence or phosphorescence into account, leading to up to
12 degrees of freedom. When modeling the behavior of light interacting with
transparent objects, we have to extend to Bidirectional Scattering Distribu-
tion Functions (BSDFs) respectively to Bidirectional Subsurface Scattering
Distribution Functions (BSSDF), which fully describe both reflection and
transmission of an incident light ray [Vea98].

Characteristics of a BRDF As the name suggests, BRDFs are bidirec-
tional, meaning that for two given directions ωi and ωo, it evaluates the
same reflectance for both forward and backward light propagations, i.e.
ρ(p, ωi, ωo) = ρ(p, ωo, ωi). This characteristic is called Helmholtz Reci-
procity [Nic65].

Another important law for BRDFs is energy conservation, stating that the
amount of reflected energy is always less or equal to the amount of incident
energy, i.e. ρ(p, ωi, ωo) ≤ 1.

A simplified BRDF model In real-time computer graphics, an exact rep-
resentation of this BRDF is often neglected in favor of higher performance.
A widely used simplification model is the approximation of a BRDF by the
weighted combination of some idealized extrema. We can roughly differ be-
tween the following main categories of the BRDF:

• Perfectly diffuse surfaces: Diffuse surfaces are perfect scatterers,
distributing incoming light equally to all directions above the reflective
point’s hemisphere. Their behavior is prominently described by the
Lambertian Law, that sets the intensity of the reflected light in direct
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proportion to the cosine of the incident angle (see Figure 2.4). Diffuse
objects lack any gloss or cues about the environment of the object.

Fig. 2.4: Left: Diffuse reflection and Lambert’s cosine law. Light is scattered
equally to each direction from the surface. Its intensity falls off as the angle of
incident light increases, which is expressed by the cosine of θ. Right: Lambertian
surface (Image courtesy of Andrea Weidlich).

• Glossy surfaces: These surfaces scatter part of the incoming energy
roughly into the direction of the perfect reflection vector, producing
glossy highlights on the surface. This behavior is heuristically described
by e.g. the Phong [Pho75] or the Blinn [Bli77] reflection model, which
adds a specular term to the diffuse reflection model of a surface. The
variance of the specularly reflected directions around the perfect reflec-
tion vector determines the degree of glossiness. The lower the variance,
the glossier a surface appears. With vanishing variance, all light rays
are reflected in direction of the perfect reflection vector, converging
the perfect mirror behavior. The amount of glossiness is normally de-
scribed by an exponent of the cosine of the angle between the actual
reflection direction and the eye direction. Figure 2.5 illustrates the
specular reflection model.

The method of representing each possible BRDF by a combination of
these reflectance types is only a rough approximation. A physically more
plausible BRDF description is given by the Cook-Torrance model [CT81],
consists of a a perfectly diffuse Lambertian and a specular part which is rep-
resented by a microfacet structure. These microfacets are considered as per-
fectly specular reflectors that are randomly oriented according to a Gaussian
distribution function and control the roughness of the surface. Reflectance
attenuation is solely given by the self-shadowing or masking effects that ap-
pear on microscopic level, described by a geometry term.

In the following we will focus on an extremum of specular reflective sur-
faces: perfect mirrors. We will discuss their BRDF and the implications they
have for the rendering equation.
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(a) low Phong exponent (b) high Phong exponent

Fig. 2.5: Left: Specular reflection described by the Phong model. Incoming light is
scattered in direction around the mirror reflection vector. With growing exponent,
the variance decreases and the surface looks glossier. Right: Pure Phong surface
(Image courtesy of Andrea Weidlich).

2.3 Mirror reflections

2.3.1 Simplifying the BRDF

Perfect mirrors represent a special borderline case for a BRDF. Each incom-
ing light ray is reflected exactly by the surface normal based on the simple
reflection function:

ωo(αo, θo) = R(ωi(αi, θi)) =

{
αo = π + αi

θo = θi
(2.2)

Thus, for each outgoing direction ωo at a given surface point p, there is
only exactly one incoming direction ωi contributing energy, while for the rest
of the hemisphere Ω over p, the BRDF evaluates to zero. In this case, the
BRDF can be formulated using a Dirac-delta function [SK00]:

ρ(p, ωi, ωo) = ks
δ(ωRo − ωi)

cos θo
(2.3)

where ks is an energy attenuation factor, ωRo is the mirror reflected direc-
tion of ωo, and θo is the outgoing angle. Inserting this mirror BRDF into the
rendering equation 2.2, leads to the following simplification of the integral
over Ω:
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∫
Ω

ρ(p, ωi, ωo)Li(H(p,−ωi), ωi) cos θidωi

=

∫
Ω

ks
δ(ωRo − ωi)

cos θo
Li(H(p,−ωi), ωi) cos θidωi

= ks
1

cos θo
Li(H(p,−ωRo ), ωRo )cos θi

= ksLi(H(p,−ωRo ), ωRo )

(2.4)

Note that the original attenuation term cos θi is eliminated at the incident
direction ωRo due to the equal incoming and outgoing angles θi and θo.

If we assume mirror surfaces to be wavelength-conserving (meaning they
do not change the color of the reflected light), the evaluation of the ren-
dering equation is reduced to a multiplication of the incoming light with a
weight factor ks, determining which percentage of the incoming light is mir-
ror reflected. For perfect mirrors, without any subsurface characteristics, this
factor is 1, and – neglecting emission – the complete rendering equation can
be written as

Lo(p, ωo) = Li(H(p,−ωRo ), ωRo ) (2.5)

pointing out that the outgoing light from p in direction ωo simply equals
the incoming light at p from the mirrored direction ωRo , under additional
consideration of a possible occlusion of p from ωRo . We see that for perfect
mirrors the difficulties raised by the complexity of the original rendering
equation are reduced by eliminating the integrand over Ω, and with it the
problem of infinite directions ωi and approximation by sampling. Evaluating
mirror reflections, we have to handle two remaining problems:

• Visibility: Computing the outgoing light from p in direction ωo re-
quires visibility information to be taken into account. In other words,
the object that is observed in an mirroring surface at p from direction
ωo is the object, visible from p in direction ωRo .

• Recurrence: In the form of equation (2.5), the rendering equation is
still self-containing, meaning that the evaluation of light propagation
along a given path still requires backtracking of light rays in an iterative
way.
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2.3.2 Mirror reflections on different surface shapes

The properties of a mirroring BRDF reduce the evaluating of a surface’s
reflection behavior to a much easier task than for general BRDFs. Surveying
a mirroring reflection process globally for a whole surface area, we can point
out several observations, depending on the shape of the mirror surface.

For planar and convex mirror surfaces, we make the following observation:
Given a scene point Q and view point E, we can find at most one point on
the surface, that reflects Q into the direction of E. Thus, we have an one-to-
one function mapping of a visible point Q into the viewport window of the
camera. For concave surfaces, multiple mappings are possible, leading to an
one-to-n relation. Figure 2.6 illustrates this difference.

(a) Planar (b) Convex (c) Concave

Fig. 2.6: Reflection mappings on different surface types. For planar and convex
surfaces, a given scene point Q reflects into the viewpoint E in at most one surface
point, while concave surfaces can provide multiple reflection points.

The idea behind our novel SSCR-approach builds upon these observations
and is described in detail in Chapter 3.

2.3.3 Current mirroring methods in real-time rendering

Offline rendering techniques like raytracing and others are known to handle
physically correct mirror reflections very well. In the following we will dis-
cuss current rendering techniques that address mirror reflections, focusing on
methods that run at interactive frame-rates.

Mirror viewpoint

One of the simplest and most straight-forward methods for rendering planar
mirrors is to mirror the viewpoint E and the view direction vector V around
the plane containing the mirror surface and then render the whole scene from
the perspective of this new mirrored viewpoint E ′ [DB97]. The resulting
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viewport image can either be mapped onto the mirror geometry as a texture
when rendering the original viewpoint’s perspective, or be directly rendered
to the viewport of E by transforming the point projected with respect to
E ′ by an additional matrix multiplication. In the latter case, stencil buffers
are often used to avoid mirror shading in parts of the viewport where no
mirroring surface is present. In both cases, a geometrically correct projective
mapping is applied to the scene visible in the mirror. On curved surfaces,
this method is not applicable correctly anymore, since a simple perspective
projection onto a curved surface introduces an error.

Environment Mapping

A simple technique that approximates reflections on curved surfaces and
works fine in real-time is environment mapping [BN76][Gre86]. This method
determines the color of a reflective pixel by a lookup in an environment map
texture. The lookup coordinate is solely calculated by the reflection vector
which is given by the viewpoint and the surface normal of the reflective pixel.
The position of the surface point is neglected in this approach, meaning that
the mapping error increases with the size of the mirroring surface. Gener-
ally, environment mapping can only produce a rough approximation of the
mirroring process. The error vanishes if the mirroring object is very small
and the objects in the scene that are approximated by the environment map
are relatively far away from the mirror.

Fig. 2.7: Torus with view-independent environment mapping. Note that there
are no interreflections on the inside of the torus, both the back inside and the
front outside parts show the same mirror image. (Image courtesy of Heidrich and
Seidel [HS98]).

On more complex surfaces, e.g. composed of several convex and concave
surface patches and probable cuts in the continuity of the surface, environ-
ment mapping is not suitable for believable reflection rendering. Objects that
contain both convex and concave regions can contain self-occluding parts that
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lead to interreflections, not producible by environment maps. A similar prob-
lem is given by surfaces that do not have the topology of a sphere in the first
place. Environment mapping also introduces a recognizable error on such
objects, as seen in Figure 2.7.

Reflection subdivision

In 1998, Ofek and Rappoport introduced a method for rendering reflections
on curved surfaces at interactive frame-rates [OR98]. Their approach maps
a potentially reflected scene object to so called virtual objects. Those virtual
objects represent a correct per-vertex description (i.e. a mesh) of the object’s
mirror image and can easily be rendered to the viewer’s image plane by the
conventional rendering pipeline. In order to compute the virtual object O′ of
a given scene object O, the scene object is tesselated to a mesh of sufficiently
detailed polygon and vertex count. Then each vertex V of O is mapped to
its virtual vertex V ′ reflected on the mirror surface, conserving connectivity
information to reproduce the form of O′.

Fig. 2.8: Left: eye rays are reflected on the mirror surface resulting in the re-
flection vectors Ri (red) that enclose cells Ci. Right: a given scene vertex Q is
transformed to a virtual vertex Q′ by reflection in the cell’s triangle on an tan-
gential plane interpolated between the triangle’s vertices. (Image courtesy of Ofek
and Rappoport [OR98]).

In order to compute the position of the virtual vertex V ′ for a given
scene vertex V , they introduced a space subdivision method called reflection
subdivision. This method subdivides the space around a given mirror surface
by planes spanned between the reflection vectors of the eye vector at each
vertex of the mirror surface mesh. Each of those subdivisions of space is called
Cell. This way, each triangle of the mirror surface mirrors exactly that part
of the scene into the viewpoint that is bounded by the the triangle’s cell. In
order to avoid a facet effect on the mirror surface, the transformation of Q to
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its virtual counterpart Q′ is not simply performed by a mirroring of Q around
the triangle’s plane, rather the actual reflection point of Q in the triangle is
represented in barycentric coordinates of that triangle. Those coordinates
are then used as weights for an interpolation of the tangent plane at that
reflection point with respect to the tangent planes of the triangle’s vertices.
Figure 2.8 illustrates this concept.

The challenging part of this method is finding the right cell (and thus the
right mirror triangle) any given scene pointQ lies in. For convex mirrors, each
point of the space belongs to at most one cell. For concave or mixed-convex
mirrors, they decompose the surface into pure convex and concave parts. To
find the right cell for a given point Q on general convex or concave polygon
reflectors, they proposed an associated approximate acceleration method, the
explosion map. Basically, this map represents a circular image of the reflec-
tor’s triangles that are visible to the viewer. The triangles are spherically
mapped using a virtual sphere with an approximated center and radius that
best describes the surface of the reflector. The mapping is performed in a
way that every possible direction from the center of that sphere is represented
by a map coordinate that lies inside a circle. Every triangle is rendered with
a color corresponding to a unique ID of the reflector’s triangles. Figure 2.9
illustrates such an explosion map for a simple convex polygonal reflector.

When searching the right triangle (respectively the cell) a scene point Q
belongs to, Q is mapped to a lookup coordinate of the explosion map, making
it possible to directly evaluate the ID of the triangle Q belongs to.

Fig. 2.9: Sample explosion map (right) for a polygonal reflector (left). Each reflec-
tor triangle is mapped to a virtual sphere approximating the reflector’s surface.
(Image courtesy of Ofek and Rappoport [OR98]).

Discussion This method achieves interactive frame rates as long as the
number and complexity of the reflecting surfaces is not too high. The method
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works fine especially with specific types of mirror surfaces like linear extru-
sions of planar curves. Arbitrarily convex reflector surfaces can be rendered
well too using the explosion map. Due to their physical and reflective nature,
concave reflectors are more difficult to handle in some situations, since they
introduce mutually intersecting reflection subdivisions. For simplicity this
method handles concave mirrors like convex ones, arguing that the error is
acceptable since in such situations concave reflectors produce chaotic images
anyway.

Since the computation of virtual objects is a mapping of an object’s ver-
tices to their virtual counterparts, only the vertices of an object are mapped
according to the curved surface of the reflector. From there on, conventional
triangle rasterization is executed, meaning that the triangle’s edges do not
correctly map to warped lines on curved reflectors. Therefore, a fine tesse-
lation of the objects in the scene is necessary to achieve a certain degree of
accuracy. Further, since general reflector surfaces are represented by simple
polygon meshes, also those meshes would have to be tesselated in order to
produce results of sufficient detail.

Sample-based cameras

Another, quite similar method for real-time rendering of curved reflections
was given by Popescu et al. in 2006. They proposed sample-based cameras
(SBCs) [PSM06], which are a collection of BSP trees that contain a number
of pinhole cameras at their leaves to approximate the projection on a curved
surface. This method too projects the scene geometry into their mirror image
and then invokes the feed-forward pipeline to render the reflection images,
thus facing the same potential need for tesselation in order to accurately
visualize bent polygon edges on curved mirrors. The second point they have
in common with Ofek’s and Rappoport’s method is that (on non-concave
surfaces) the pinhole cameras too partition the space of their environmental
scene.

This approach first generates a map of rays that are reflected by mirroring
surfaces in the scene visible to the viewer. Depending on the number of
desired mirror bounces, there are first-order, second-order and more such
ray maps for a particular scene. Based upon this ray map, they then build
up a hierarchy of neighboring rays sharing the same reflection history, i.e.
the same reflection path among a number of reflectors. Such a group of
rays is called reflection group and – over several reflection steps – transports
continuously projected scene information to the viewer. This projection is
defined by a reflection group projection function, which is approximated by
several pinhole cameras whose frustum encloses the rays of the reflection
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group. When rendering reflections, a given scene point is handled by the
camera that contains the point in its frustum.

In order to create the SBC for a scene, for each of these reflection groups
a BSP tree of cameras is set up. This BSP tree hierarchically subdivides
the reflected frustum of a reflection group on a curved surface, and contains
cameras at their leaves. The subdivision decomposes the frustum into further
hierarchy levels of the BSP tree as long as the error given by a single camera is
greater than some desired measure of accuracy. Figure 2.10 shows a BSP tree
for an example reflector. In order to project a scene point onto a reflector,
the BSP tree is traversed to find the corresponding camera containing p. For
multiple reflection bounces the first reflection point is projected forward the
same way iteratively.

Fig. 2.10: Example for a SBC. For a convex reflector observed by C, reflection rays
are computed. They then are hierarchically grouped into a BSP tree of certain
depth. At its leaf nodes, simple cameras are attached whose frustums are bounded
by the reflection rays along the binary path to the leaf in the BSP tree. (Image
courtesy of Popescu et al. [PSM06])

Discussion Although this method achieves interactive curved reflections
comparable in accuracy to raytracing, it has some drawbacks. Since their
approach is based on a binary partitioning of space into a number of pinhole
camera frustums, concave reflectors are not supported. For concave reflecting
surfaces, parts of the environment space are contained by many reflection
groups, and their rays do not form a frustum intersecting at a pinhole camera
position anymore. Further, similar to Ofek and Rappoport, they primarily
address mostly continuous reflecting surfaces with not too much complex
geometrical detail.
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2.4 Real-Time Global Illumination in Point Clouds

2.4.1 Background to our GI Renderer

The base for this thesis is given by an earlier work in the Terapoints-Renderer,
namely a real-time global illumination (GI) renderer for point clouds [Pre10].
This GI algorithm distributes Virtual Point Lights (VPLs) in the scene, de-
pending on the type and situation of the light source. VPLs were introduced
by Alexander Keller in his Instant Radiosity technique in 1997 [Kel97]. These
VPLs serve as an approximation of the radiosity of an illuminated surface
region, and are used to calculate the indirect illumination of the scene.

Fig. 2.11: Left: Based on the light source, a number of VPLs is seeded over
the scene. Right: Considering correct visibility for those VPLs, a scene point p
is indirectly illuminated by some of the VPLs’ reflected light, resulting in more
accurate information transported to the eye than using only direct illumination.

In order to use correct visibility information for those VPLs, the GI ren-
derer uses Imperfect Shadow Maps (ISMs), as proposed by Ritschel et al
in 2008 [RGK+08]. ISMs represent a powerful method for fast visibility-
approximation for a high number of VPLs. In principle, such an ISM is a
low resolution shadow map, encoding depth information of the whole hemi-
sphere around a VPL in a paraboloid map [BApS02]. As we have to store one
ISM for each single VPL, all these low-resolution maps are combined in one
huge ISM buffer. The radial depth image represented by an ISM is obtained
by fast splatting of the scene points onto the map, choosing a splat size per-
spectively decreasing with increasing distance between the VPL position and
the position of the splatted point. In fact, while conventional mesh scenes
have to perform separate sampling step in order to obtain point samples
from their polygon objects for ISM splatting, the GI algorithm implemented
in our point cloud renderer exploits the fact that the scene data can be used
for ISM creation “as is”, since it is already represented by points.



2.4. Real-Time Global Illumination in Point Clouds 19

Fig. 2.12: Left: Sample ISM Buffer with an resolution of 256x256 pixels. Right:
combined ISM Buffer containing the ISMs of 64 individual VPLs.

Figure 2.12 shows an example ISM and combined ISM buffer. As Fig-
ure 2.13 points out, VPL visibility is vitally important for GI rendering, as
it adds indirect shadows to a scene, which contributes a great deal of realism
in the result.

Fig. 2.13: Comparison of the appearance of a demo sene without VPL visibility
consideration (left) and with VPL visibility test using ISMs (right) clearly enhanc-
ing the realism by introducing indirect shadows.

Shading is performed per-pixel in screen space, i.e. only for those parts
of the scene that are visible to the viewpoint. However, applying indirect
illumination calculations to every pixel requires various world-space informa-
tion to be available for each single pixel. In fact, the shading system uses a
so called Camera G-Buffer that is rendered once per frame for the current
viewpoint, which has the size of the viewport and containing all data of the
scene surface point associated with that pixel necessary for indirect illumi-
nation calculations. This G-Buffer consists of the following data, which is
partially stored in a compressed way, and distributed over several textures:
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• Material information

– Diffuse reflection color

– Specular reflection factor

– Specular power (shininess)

• Geometry information

– world-space surface normal

– world-space position of the surface point (view-space depth)

Figure 2.14 shows an example for a Camera G-Buffer that is rendered
for a particular GI scene. In Chapter 3 we will reuse the surface normal
information stored in the Camera G-Buffer that was already rendered for a
frame for conventional GI calculations, and setup our novel SSCR-algorithm
on this data.

Fig. 2.14: RGB visualization of the three RGBA-textures of a Camera G-Buffer
for a demo scene in our point cloud GI-Renderer. The left texture contains surface
color, the middle texture surface normals and the right stores linear depth to
reconstruct world-space position. Note that the alpha-channel not visible in this
figure stores further information (shininess and specular intensity of the surface)

When shading each single pixel in the fragment shader, its G-Buffer data
can be looked up, and indirect illumination calculations are performed with
respect to the VPLs which illuminate the surface associated with that pixel.
Each pixel is illuminated only by a subset of the available VPLs. In order to
optimize performance even further, each VPL only illuminates a subset of the
frame buffer pixels by applying interleaved sampling (Keller et al [KH01]).
While executing this procedure, indirect illumination values are accumulated,
resulting in an indirect illumination image of the scene that converges towards
an optimal quality as the number of VPLs are increased. The final image is
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achieved by adding direct illumination to this accumulated image and tone-
mapping the result.

With this method, we are able to achieve GI shading in our point clouds
scenes simulating several indirect light bounces at real-time framerates.
There are some restrictions in the ability of correct illumination simulation
though. As for every many-point illumination technique, our GI implementa-
tion achieves best results in scenes with a high component of diffuse reflecting
surfaces. Specular reflecting objects can be rendered with low error as well,
as long as the specular intensity of a surface material does not become to
high. If so, the discrete VPL sampling can lead to aliasing artifacts in form
of light sparkles appearing in the image (see Figure 2.15). This dues to the
problem of undersampling a radiating area by a finite number of VPLs in
order to approximate its radiance.

Fig. 2.15: Scene rendered with global diffuse intensity 0.5, specular intensity 0.95
and shininess 1000. At the highly glossy surfaces, the distribution of VPLs lead
to the appearance of sparkles.

A simple way to avoid these light sparkle artifacts is to clamp the maxi-
mum light contribution of a VPL, conceding the introduction of a bias. Hašan
et al [HKWB09] address the problem in a more sophisticated way, replacing
VPLs by Virtual Spherical Lights (VSLs). Although their method is not de-
signed for real-time application, they are able to successfully eliminate such
illumination spikes.

2.4.2 Enhancing vizualisation power

In this thesis, we improve the current GI render mode implemented in Tera-
points, by adding perfect reflections (mirror reflections) to our scenes. Mirror
reflections are an omnipresent effect in many real-life scenes. Even though
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people may be confronted with many observations of mirror reflections in
daily life they are not aware of, they are still able to sensibly recognize an
error in an artificially created image where those effects are wrong or miss-
ing. This thesis introduces a novel approach for rendering mirror reflections
at interactive rates, even on highly detailed curved surfaces.

Since our current GI implementation approximates each possible, arbi-
trarily complex surface reflection behavior by reducing them to a weighted
combination of Lambertian-diffuse and Phong-specular reflections, the
method is not able to reproduce perfect mirror reflections properly. We
therefore have to complement our current algorithm by a method that han-
dles such perfect reflections. The following chapter shows, how our novel
technique performs this task.



Chapter 3

Screen-Space Curved Reflections

In this chapter we present our new method, Screen-Space Curved Reflections
(SSCR), which simulates mirroring reflections on almost arbitrarily complex
surfaces at interactive frame rates. The technique is designed for the imple-
mentation in huge point cloud scenes, but not restricted to this geometry
representation, as Chapter 6 describes later on.

3.1 Basic Idea

Our approach pursues the following idea: Given the complete point-cloud
data and an image of an observer’s projected view of a scene containing
mirroring surfaces, we want to find for each scene point the pixel in the
viewport that reflects the point into the eye. Of course, testing each point
in the scene against each pixel in of the viewport is out of the question. In
order to achieve our goal, we build on the following important observation:

Consider a scene containing an eye-point E, a scene point Q and a con-
tinuous mirror surface M . Each point P on the mirror surface M provides

two vectors: an eye-vector
−→
PE and a reflection vector that indicates the re-

flection direction of an incoming light vector
−→
QP . Looking at the change of

orientation of this reflection vector relative to the eye-vector, we observe that
the deviation of this reflection vector from the eye-vector changes continu-
ously while moving the reflection point P over the surface. More precisely,
this deviation shows a different sign based on the position of P relative to
a ideal reflection point R, where the deviation is zero. Figure 3.1 illustrates
this observation for both pure planar and pure convex surfaces. For concave
surfaces this holds too, although they represent a slightly different case.

Based on these considerations, in the following sections we will formulate
a continuous function δ(P ) over a surface, that has the useful characteristic
that it contains the positions of the surface’s reflection points at its roots.
With the availability of such a function, we are able to perform a root finding
in order to determine the surface reflection point for a given scene point. In
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(a) δ(P2) < 0 (b) δ(R) = 0 (c) δ(P1) > 0

(d) δ(P2) < 0 (e) δ(R) = 0 (f) δ(P1) > 0

Fig. 3.1: Illustration of the dependence of the deviation between reflection vector
and eye-vector on the location of some surface point P on planar (upper row) and
convex (lower row) reflectors. The deviation is indicated as angle δ between both
vectors. We observe that the absolute value changes continuously while sweeping
P over the surface, being zero at the reflection point R. The sign of δ(P ) indicates
the relative location of P to R.

SSCR, mirror reflections in point clouds are rendered by executing this root
finding algorithm in screen-space for each point of the scene and splatting
these points onto the framebuffer.

Sections 3.2 and 3.3 introduce the before mentioned function, which is
named mirror-space error function. We will first formulate a new affine
space called mirror-space for better illustration of the function character-
istics. Then we will evaluate the characteristics of this function. First we
will observe its behavior for the three simple major types of surface cur-
vature (planar, convex and concave surfaces), and then for arbitrary, more
complexly curved surfaces.

In Sections 3.4–3.4.1 we will discuss possible ways to find a reflection point
on the three before mentioned simple curvature types. Based on the fact
that a reflection point is always settled at the root of the error function, we
will introduce a fast approximate 2D root finding algorithm that operates in
screen space in order to efficiently produce our point splatted mirror images.

In Section 3.5 we will then extend our view to general, higher-complex
mirror surfaces. In this section we will introduce a method that segments the
mirror surfaces in the framebuffer into a number of regions of homogeneous
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curvature, each being either planar, convex or concave again. After this
segmentation, we are able to distribute the available scene points between
the resulting regions and apply our screen-space root-finding algorithm to
them.

Finally, in Sections 3.6 and 3.7, we will further develop our algorithm.
We will give a solution on the problem of visibility of the mirror images in
SSCR, and discuss several techniques in order to enhance its efficiency and
image quality.

3.2 The mirror space

For a general formulation of the error function in the following section, we de-
fine a new coordinate space called mirror space. Similar to the tangent space,
the mirror space is defined over a point of a surface. While the tangent space
is parameterized by the surface point (u, v) and its normal Nuv, the mirror
space is parameterized by (u, v) and the camera parameters (viewpoint E and
view-coordinate system) of the viewer. The mirror space coordinate system
in a given surface point P is set up in a way that the world-space eye-vector−→
PE coincides with the mirror-space z-axis, and the x-axis of the mirror-space
coordinate system lies coplanar to the x-axis of the view-coordinate system
(see 3.2). Note that the latter is not essential for the nature of this space,
but is chosen for convenience. We will refer to these characteristics later.

Fig. 3.2: Mirror-space coordinate systems of two surface points P1 and P2 on
an oval reflector. The green coordinate system is the view-space system. Each
surface point defines its own mirror-space coordinate system with z-axis pointing
towards the viewpoint E. Note that the mirror-space coordinate system is always
rotated in a way that its x-axis lies coplanar to that of the view-coordinate system,
illustrated by the planes they span.
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3.3 The mirror-space error function

3.3.1 Formulation

Based on the previous observations on the relation between surface point
and reflection deviation illustrated in Figure 3.1, we will now formulate a
continuous function over a homogeneously curved surface that expresses this
deviation for a given scene point Q and eye-point E by a signed error an-
gle. For 1D surfaces, the function evaluates to one error angle, while on 2D
surfaces it provides two angles. We will first observe the 1D case.

To make use of the observations in Figure 3.1, the error angle has to
provide a sign in order to indicate its relative position to the reflection point.
Formulating the error function as the arcus cosine of the dot-product between
the reflection vector and the eye-vector would would be insufficient, since the
dot-product between these two vectors doesn’t preserve their relative position
to each other, thus not providing a sign for the angle.

We therefore first formulate a vector valued function that expresses the
deviation by a difference vector between the reflection vector ρ and the eye-

vector
−→
PE:

~δQE(P ) = ρ(
−→
QP,N)−

−→
PE (3.1)

Equation 3.1 evaluates a world-space vector, by whose length we can
determine the degree of deviation. So far, this vector does not give us any
information about the relative position of the reflection point R in P . We
therefore transform this vector ~δ into mirror space. Since the mirror-space

z-axis coincides with the eye-vector
−→
PE, it separates the vector space in P

in two halves of different error sign. Figure 3.3 illustrates this for the 1D
planar case. Transforming ~δ into mirror space thus yields a vector whose x
component’s sign indicates the relative position of a reflection point R.

After mirror-space transformation of ~δ and substitution of the reflection
function for ρ, we obtain the following formulation:

~δQE(P )M =
−→
QPM − 2NM(NM ·

−→
PEM)−

−→
PEM (3.2)

The superscript M indicates the mirror-space transformation of the vec-
tors. For 1D surfaces, the resulting vector ~δMxz is a 2D vector whose x compo-
nent encodes the relative position information in its sign. We finally calculate
the arcus tangent of ~δMx /

~δMz and obtain a signed error angle for the error along

the x axis. For 2D surfaces, we have a 3D vector ~δMxyz, by which we calculate
two error angles, one for the x and one for the y mirror space direction. This
results in the final formulation of the mirror-space error-function:
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Fig. 3.3: Separation of the surface in two regions of different error sign. At the
reflection point R, the error is zero. From each point P , the direction in which to
find R can be determined by the sign of the error angle.

δ{x|y}(P ) = Φ{x|y}

(−→
QPM − 2NM(NM ·

−→
PEM)−

−→
PEM

)
with Φ{x|y}(~v) = arctan

~v{x|y}
~vz

(3.3)

With Equation 3.3 we now have a continuous error function over a surface
that expresses the deviation of the reflection vector ρ(P ) to the eye-vector
−→
PE for a given surface point P by a signed error angle (in 2D, two signed
error angles). In the following, we will analyze the characteristics of this
function for 1D surfaces. Later we will extend our evaluation to 2D surfaces,
which is the actual interesting case for our 3D scenes.

3.3.2 1D surfaces of basic curvature

We will now analyze the characteristics of the δ function for the three basic
types of curved surfaces (planar, convex and concave) in 1D. We can state
the following properties of the function:

1. On continuous surfaces (containing no edges or trenches), the mirror-
space error function is continuous. This is due to the fact that both

its terms ρ(
−→
QP , N) and

−→
PE are continuous vector valued functions on

such surfaces, and thus their difference is.

2. If the surface contains a reflection point R for a given scene point Q
and viewpoint E, then the function evaluates to zero at that point, i.e.
δ(R) = 0.
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3. The function is axially symmetric in Q and E, meaning that inter-
changing Q and E yields the same value for δ:

δQE(P ) = δEQ(P ) (3.4)

For P = R, this is trivial. Figure 3.4 illustrates this fact for a general
P , Q and E.

Fig. 3.4: Symmetry of the mirror-space error function.

4. Considering only the interval of the surface that is visible to the eye-
point, for homogeneously convex and planar reflectors the function is
strictly monotonic. This is shown by figures 3.1 and 3.5 At concave
surfaces this is not guaranteed anymore, as explained later.

5. From (2) and (4) it follows that for convex and planar reflectors, the sign
of the function value of δ(P ) always changes around R (see Figure 3.3).

Planar and convex surfaces Figure 3.5 plots the δ-function for the planar
and convex surface examples shown in 3.1. It also plots two further functions
α and β, which both are angular difference functions over the reflector surface
parameterized by u. Lets call these two functions inner functions. α is
a function of the difference angle between the surface normal NP and the
reflection vector ρ, while β evaluates the difference angle between NP and
the eye-vector. In these plots, δ is defined by the difference between these
two functions. Note that this formulation of the error function is equivalent
to the previous one. For each function, the local change of the difference
angle is determined by its first derivate. In the convex surface plot, the
slope of the β-function is stronger compared to the planar case, due to the
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(a) planar

(b) convex

Fig. 3.5: Plot of the angular δ-function and its inner functions for the planar and
convex surfaces in Figure 3.1.

fact that the eye-vector deviates more quickly from the surface normal as
the surface bends back (see also Figure 3.1). The α function however stays
approximately the same in comparison to the planar surface. This is due to
the fact that the reflection function ρ changes with the surface normal NP ,
i.e. it too is a function over the surface.

Considering only the surface interval visible to E, in both directions +u
and −u, α and β converge to −π

2
/+ π

2
, and thus δ to −π/+ π. (Evaluating

the function for the convex case over a complete closed surface like a sphere,
there is another hypothetical reflection point R on the for E hidden backside
of the sphere, reflecting an incident vector with angle |θi| > π).
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Since we stated that within this interval in both the planar and the convex
case the function is strictly monotonic, we therefore see that there exists at
most one root for δ in the visible surface interval. This root is the reflection
point R. Further, for both cases the sign of the function value of δ always
changes around R. Thus, R separates the surface M into two regions, one
with positive, the other with negative error.

Concave surfaces Concave reflectors show different characteristics in the
δ-function. Their main difference to planar or convex reflectors is that they
can provide multiple reflection points Ri.

Fig. 3.6: Concave reflector providing three reflection points. The gray-code of each
surface point indicates the mirror-space error (i.e. the absolute value of δ), the
shape indicates its sign.

Figure 3.6 illustrates such a concave surface. Looking at the δ-function for
this reflection, we see that there are three roots (see Figure 3.7). The angular
difference β between eye-vector and surface normal here oscillates around
approximately −π

8
. This is due to the viewpoint E being relatively close to

the surface and the focal point in this example, i.e. the concave reflector
surface and its normal kind of orbit E, resulting in an approximately even
balance between surface normal NP and eye vector E along the surface.The
α-function describing the angular difference between the reflection function ρ
and the surface normal NP also shows a more complex behavior for this setup.
Generally, both curves strongly depend on the location of E (respectively Q,
referring to Equation 3.4) relative to the concave surface.

The setup shown in Figure 3.6 represents the actual difficulty of con-
cave surfaces, namely the case when the concave mirror produces chaotic,
extremely warped images of the environment, where conventional mirror
mapping of a tesselated scene object for subsequent feed-forward render-
ing is not reasonably applicable anymore. [OR98] mention this case. Their
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Fig. 3.7: Function plot of the angular δ-function and its inner functions for the
concave reflector shown in Figure 3.6. (Note: This plot is an approximation given
by a cubic spline through the sample points).

method subdivides the space in front of a concave mirror in three regions:
A) in-between the surface and the focal point, where the mirror enlarges
the image, B) in front of the mirror and its focal point, where the viewer
observes an upside-down image of the scene, and C) the region around the
focal point, where [OR98] state that reflection is “unpredictable and chaotic
anyway”. Therefore, they treat these cases as if dealing with convex surfaces,
settling with any arbitrary result. [PSM06] on the other hand do not support
concave reflectors, thus avoiding this problem altogether.

A maybe more common situation would be the eye-point being further
away, resulting in a flipped mirrored image. In this case, the δ-function
provides only one reflection point, and its curve is more comparable to the
convex case. Therefore, the concave mirror provides a recognizable mirror-
mapping of its environment. Figure 3.8 shows an example point cloud scene
containing a mirroring sphere (convex) and a parabolic mirror (concave)
rendered with GI and our new SSCR algorithm. Note that in comparison to
the sphere, the concave mirror flips the image upside down and left to right.

3.3.3 2D surfaces

In 1D surfaces, the mirror-space error function can exactly determine the
position of a reflection point R (if existing) relative to some surface point
P . On 2D surfaces we deal with a 3D mirror-space coordinate frame. The
difficulty for 2D surfaces is the proper choice of the orientation of the mirror-
space coordinate axes. In a 1D surface, we deal with one root point separating
the surface into points of different error signs. 2D surfaces in contrast are
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Fig. 3.8: Example point cloud scene rendered with GI and our new SSCR algo-
rithm. The mirroring sphere on the left contains a diffuse reflection component,
while the concave surface on the right is a pure mirror. Note that the artifacts at
the borders of the parabolic mirror are the results of discontinuities of the surface
due to front facing point splats.

separated into regions of different error signs by two root lines, one line for
each dimension of the surface parameter space. Each root line separates the
surface in two regions of different error sign. Figure 3.9 shows an example
for the root lines in a 2D surface.

Fig. 3.9: Schematic illustration of the root lines of a 2D mirror-space error-function.
Each line separates the surface with respect to one parameter dimension into two
regions of different error signs, yielding 4 error sections. At the intersection point
of the lines, the error in both surface dimensions is zero, thus there we find a
reflection point.

The actual reflection point R is now located at the intersection point
of these lines. The problem is that the location and orientation is just as
unknown as the location of the root point in the 1D case. In the 2D case, the
mirror-space error function evaluates to two difference angles δx and δy. If we
assume the two root lines of a surface to be approximately aligned with the
mirror-space coordinate axes, we can determine the 2D-direction in which to
look for R by an individual evaluation of the error sign of both the x and the
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y component of δ. In the following development of our algorithm, we will
build on this assumption, admitting that this simplification may not work
best for all surface types. However, we will show that this simplification is
acceptable in order to develop a fast and efficient mirror rendering algorithm.

3.3.4 Complex surfaces

So far, we have discussed the mirror-space error function only for the three
basic types of surface curvature (planar, convex, concave). We stated that
for planar and convex surfaces there is at most one reflection point, while in
some cases concave surfaces can even provide multiple reflection points.

In general, surfaces can show an arbitrarily complex curvature, containing
several surface parts of different curvature. On such surfaces, we can find
multiple reflection points. The error functions of such surfaces can contain
several extrema, and therefore several roots. The mirror-space error function
is not necessarily strictly monotonic anymore. Common surfaces can also
contain edges or trenches, which even breaks the continuity of the mirror-
space error function. Figure 3.10 shows an example of an arbitrarily complex
1D surface and its mirror-space error function.

Fig. 3.10: Example of an arbitrarily complex 1D surface. The reflection vectors
of Q along the surface are indicated by the small direction lines. D represents a
point of discontinuity, I an inflection point of the surface curvature.

In this figure, the surface can be partitioned into different intervals of
one of the aforementioned three basic types of curvature. Planar and convex
intervals can contain at most one reflection point, while concave ones can
also provide multiple. The borders of these partitions are given either by
discontinuity points (D) or inflection points (I) of the surface. Discontinuous
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surface points result in discontinuous steps in the mirror-space error function,
while inflection points represent function extrema.

On 2D surfaces of higher complexity, we can also find several reflection
points. In such cases, the surface contains multiple root lines, and therefore
multiple intersection points of different lines. Figure 3.11 gives an example
for such a surface. In the following, we will discuss, how we can make use of
the function δ in order to find the reflection point on a mirror surface for a
given scene point.

Fig. 3.11: Example of an complex 2D surface containing multiple reflection points,
which are the intersection points of several root lines.

3.4 Finding the reflection point

In this section, we will develop an algorithm for efficiently finding a reflection
point R on a mirror surface. The algorithm is restricted to continuous sur-
faces of homogeneous curvature, i.e. pure planar, convex or concave surfaces.
Later we will show how we manage to render surface reflections on arbitrarily
complex reflectors by partitioning their surface into elementary parts of such
homogeneous curvature.

3.4.1 2D root finding in mirror space

Equation 3.3 defines a mirror-space error function, which gives two signed
error angles δx and δy on the surface in mirror space. Based upon the signs
of these deltas, we can approximately infer the relative direction in which
a reflection point R is located in each mirror-space dimension. As already
mentioned, this assumes the mirror-space coordinate frame to be roughly
aligned to the root lines (i.e., the lines where δx and δy are zero) of a surface.

The actual direction in which to find R on a surface in 2D can therefore
be estimated by following the individual 1D directions indicated by δx and
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δy. Figure 3.12 gives an example of this. In this figure, the point P lies in a
region of positive δx and negative δy. Based on the sign of these two deltas,
we can approximately estimate the direction of R.

Fig. 3.12: Estimation of the 2D root direction by decomposition into an individual
x and y direction, both of which can be determined by the two mirror-space errors
δx and δy. The white lines on the reflector indicate some (arbitrarily chosen) root
lines.

Note that, in order to follow the direction of R on the surface, the mirror-
space coordinate axis is not always aligned in a way that its x and y axis
perfectly match the tangential plane of P . Since the orientation of the z-
axis is independent from the surface normal, but solely determined by the
direction to E, the mirror-space coordinate system of a point P can be rotated
away from this tangential plane, as illustrated in Figure 3.13. However, this
rotation can never exceed 90◦ for both the x and y direction, because in this
case the camera would observe the surface point from its backface. Thus,
this rotation does not affect the direction that has to be chosen based on the
sign of δ. It is therefore valid to choose the direction to go on the surface
(tangent-space), solely upon the delta-vector that is given in mirror-space.

Since the mirror-space error function contains the reflective surface point
at its root, we can perform a root finding in order to converge P to R. What
we want is a fast procedure to find the reflection point within a local surface
area of homogeneous curvature. We therefore need a fast 2D root-finding
algorithm, i.e. an algorithm that finds the point on the surface where both
δx and δy = 0. The algorithm should provide a good success rate (with
respect to possible misses that result from certain simplifications we make
for the benefit of performance).

In the following we will develop an efficient 2D root finding algorithm that
operates in screen space, i.e. directly on the pixels of our framebuffer. Our
algorithm approaches the 2D root finding problem by decomposing it into two
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Fig. 3.13: Relative rotation between mirror-space and tangent-space coordinate
system. τ shows the tangent plane, and NP the surface normal in P . For visible
points, the rotation of the mirror-space coordinate system can never exceed 90◦.

1D root finding tasks, which can be evaluated simultaneously. Originating
from some random start position P on the surface, our algorithm tries to
approach the reflection point R by stepping in a direction that estimates the
direction of R by an individual evaluation of the local mirror-space errors δx
and δy.

First we will evaluate the relation between a reflection point search in
mirror space and in screen space. Afterwards we describe our 2D screen-
space root-finding algorithm and discuss its strengths and weaknesses.

3.4.2 Mapping mirror space to screen space

We have defined the mirror space as always being oriented towards the view-
point and providing a coordinate frame that is x-axis aligned to that of the
view space. Due to this definition, there is a strong correspondence between
mirror space and view space, and thus screen-space. In this section, we will
discuss this relation.

Let M be a continuous mirror surface of homogeneous curvature, i.e. pure
planar, convex or concave, in the view-space system of an observer E. When
perspective-projecting M onto the image-plane of E, the resulting projected
image conserves neighborhood information of each surface point P of M .
Note that for self-occluding concave surfaces, this also holds, because since we
stated that the surface has a homogeneous curvature, its self-occluding part
would only reduce the projected part of the surface visible on the image-plane,
but not produce neighboring viewport-pixels associated with non-neighboring
surface points.

Further, the projection of the mirror-space coordinate system in an arbi-
trary point P has the property that its x-axis lies parallel to the normalized
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device coordinate system of the camera. The latter is due to the definition
of the mirror space given in Section 3.2, aligning its x-axis in world space so
that it lies coplanar to the view-space x-axis (see Figure 3.2).

Since the mirror-space z-axis is always oriented towards the viewpoint
E, its projection defines a single pixel (i.e. it is neutral for x and y in
device coordinates). Examining the projection of the mirror-space y-axis to
the view plane, we see that it generally results in a slightly inclined vertical
line in the viewport. This is due to the tilt of the mirror-space y-axis as
the z-axis vector rotates towards the eye-point when shifting away from the
axial centers of the image plane. This incline though is relatively small for
commonly used view frustums. It is biggest for surface points observed along
the corners of the view plane, and zero on its central horizontal and vertical
axes. Figure 3.14 illustrates the angular tilt of the projected mirror-space
y-axis along the diagonal of the image plane for 90◦, 120◦ and 150◦ vertical
fields-of-views (FOVs). We see that the tilt converges towards a 45◦-rotation.
With increasing FOV, the error extends more and more into the screen center.
The 90◦ FOV most commonly used in computer graphics has an acceptable
maximum tilt of approximately 25◦. Note that this tilt error is independent
of the view plane’s aspect ratio.

Fig. 3.14: Dependence of the projected mirror-space y-axis tilt from the projected
position of the surface point P and the vertical field of view of the camera. The
vertical borders indicate the error regions incorporated by the different FOVs.

Of course, alternatively we also could have defined mirror-space by align-
ing its y-axis coplanar to that of the view-space system, accepting a tilt in
the x-axis projection. But since most commonly used camera models use a
wider horizontal FOV than a vertical one, we would deal with a bigger error
that way.
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We recapitulate the following facts:

• The rotation of the mirror-space coordinate system in relation to the
tangent plane doesn’t affect the determination of the direction to the
reflection point on the surface.

• The projection of a homogeneously curved surface conserves point
neighborhood in pixel-space.

• The projection of the 3d mirror-space coordinate system of a sur-
face point P is nearly a perfectly axis-aligned 2d coordinate system
in screen-space.

Considering these, we can state a strong correlation between (u, v)-space,
mirror-space and screen-space x- and y-directions, as illustrated in Fig-
ure 3.15. This means that while searching a root, stepping into – from the
camera’s point of view – positive x-direction in mirror-space directly cor-
responds to going into positive x-direction in screen-space. Similarly, going
into positive y-direction in mirror-space corresponds to a step into positive
y-direction in screen-space. Note that as already mentioned, this correlation
introduces a minor error due to the slightly warped projection of the mirror-
space coordinate system onto the view-plane. However, we have observed
that this error is not objectionable.

(a) mirror-space direction dir(δ)M (b) screen-space direction dir(δ)S

Fig. 3.15: Illustration of the correspondence between mirror-space direction and
screen-space direction.

Due to this observation, we are now able to perform the root finding on
homogeneously curved surfaces in screen-space, i.e. directly on the pixels of
the viewport image that shows the scene from the perspective of the viewer.
This has several advantages:
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• In screen space, we only find reflection points that are actually visible
to the viewer, without any need for culling like view-frustum, backface
or occlusion culling. Further, we do not waste computation time by
e.g. finding a reflection point in (u, v)-space, then projecting it to the
viewplane and at last recognizing that it didn’t contribute to the image
anyway because it lies on a backface or is overwritten by some other
pixel due to the z-buffer test (visibility-problem).

• In screen-space, we can easily judge the contribution of a mirror surface
to the final image. By observing the pixel count the surface occupies
in the frame-buffer, we are able to correctly assess its importance. We
will see later that SSCR exploits exactly this information to perform an
importance-driven point distribution between mirror surface partitions
in the screen-space.

3.4.3 Fast screen-space root-finding algorithm

We will now present an efficient screen-space root-finding algorithm, which
allows for fast mapping of scene points to their associated reflective mirror
pixel. As discussed earlier, on planar and convex surfaces we know that there
is at most one reflective pixel, while on concave surfaces there might also be
more (if the camera point lies close to the focal point of the surface). We will
therefore first formulate an algorithm which performs the mirror pixel search
on regions of homogeneous curvature. Later we will extend our algorithm in
order to render correct mirror reflections on surfaces of complex curvature.

Given the eye-point E, an arbitrary scene point Q and a raster image I
of the perspective-projected scene containing a mirroring pixel region MS of
homogeneous curvature, we want to find as fast as possible the pixel RS ∈MS

– if it exists – containing the projected reflection point R of the surface. We
do this by a screen-space root finding in the mirror-space error function,
continuously stepping towards RS. To determine the direction of RS in each
step we use two points for mirror-space error comparison in order to estimate
the next step. Since in the beginning we have no clue about the position of
RS, we start with two random seed points P1 and P2 within the pixel region.

At each pixel Pi, we estimate the 2D direction of the root by individually
evaluating the root direction in 1D for both the x and the y dimension of the
screen space (respectively mirror space, respectively the root line orientations
which we assume to be aligned with them). A step in 2D is then performed
by an individual x-step and y-step based upon the two mirror-space errors
δx and δy, at certain step-sizes (see Figure 3.12(b)).
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For each 1D direction i, we determine the direction of the root by com-
paring the signs and absolute values of the errors δi(P1) and δi(P2). At each
step, P2 is offset to a new position P ′2 according to the step direction, and P1

is set to the old position of P2.
We know that we have overstepped the reflection point R if we get dif-

ferent signs for the errors δi(P1) and δi(P2) for in both the x and the y
dimension.

After a step from P1 to P2, in order to determine the next step direction
in 1D we distinguish the following three simple cases based on the errors
δi(P1) and δi(P2):

1. sign(δi(P2)) = sign(δi(P1)) and |δi(P2)| < |δi(P1)|:
P2 still on the same side of the root as P1, but stepped closer to it.

2. sign(δi(P2)) = sign(δi(P1)) and |δi(P2)| >= |δi(P1)|:
P2 still on the same side of the root as P1, but stepped away from it
(or at least, didn’t come closer).

3. sign(δi(P2)) 6= sign(δi(P1)):
P2 stepped onto the other side of the root (change of error sign), thus
the root has to be located somewhere in-between (P2) and (P1).

Figure 3.16 illustrates these cases. If the sign of δi has not changed, and
its absolute value was reduced, we proceed stepping in the current direction.
If we have moved away from the root or passed it, we have to turn around,
i.e. change the direction.

(a) approaching R (b) stepping away from R (c) passing R

Fig. 3.16: Illustration of the three cases for determining the root direction dir(δ)
after a step from P1 to P2. (The values for δP are chosen arbitrarily.)

For both the x and y dimension we use individual step sizes, which relate
to the extension of the pixel region in that dimension. Therefore, a tall (big y)
but narrow (small x) region starts with a bigger y step size and a lower x step
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Algorithm 3.1 Screen-space root finding algorithm

stepsize.xy ← diameter(MS)/2
dir.xy ← (1, 1)
P1 ←<random pixel in MS >
P2 ←<random pixel in MS >
while P1 ∈MS and P2 ∈MS do

δ1 ← mirrorSpaceError(P1, Q,E)
δ2 ← mirrorSpaceError(P2, Q,E)
if distance(P1, P2) < threshold then

if sign(δ1.x) 6= sign(δ2.x) and sign(δ1.y) 6= sign(δ2.y) then
R.x← interpolate(P1.x, P2.x, |δ1.x|/(|δ1.x|+ |δ2.x|))
R.y ← interpolate(P1.y, P2.y, |δ1.y|/(|δ1.y|+ |δ2.y|))
if frontFaced(

−→
RQ,NQ) and frontFaced(

−→
PR,NR) then

return R
end if

end if
return n/a

else
if sign(δ2.x) 6= sign(δ1.x) or |δ2.x| ≥ |δ1.x| then

dir.x← −dir.x
end if
if sign(δ2.x) 6= sign(δ1.x) then

stepsize.x← stepsize.x/2
end if
if sign(δ2.y) 6= sign(δ1.y) or |δ2.y| ≥ |δ1.y| then

dir.y ← −dir.y
end if
if sign(δ2.y) 6= sign(δ1.y) then

stepsize.y ← stepsize.y/2
end if
P1 ← P2

P2 ← P2 + (dir.x ∗ stepsize.x, dir.y ∗ stepsize.y)
end if

end while

size. This way the step sizes can maintain a fast convergence in the longer
dimension, while doing more careful steps in the small one. The initial step
sizes are determined by a parameter of the algorithm, which describes them
as a fraction of the region’s extension in both directions. This fraction is a
value between 0 and 0.5 and can be reduced for regions of difficult shape in
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(a) 1 pixel threshold (b) 2 pixel threshold

(c) 3 pixel threshold (d) 4 pixel threshold

Fig. 3.17: Comparison of the mapping density for different thresholds in the demo
scene in Figure 3.8. With increasing threshold, the success rate of the algorithm
significantly increases, while allowing only an unrecognizable error. Note that for
demonstration we chose a mirror pixel splat size of 1 in this scene.

the framebuffer, where more careful steps are intended. We proceed stepping
by the same step size until we encounter the third of the three cases above,
where we step over the reflection point and change direction. In this case,
we reduce the step size, e.g. halve it. This procedure is performed until

• either P1 and P2 show different δ-signs in both x and y direction, and
their distance reached some certain minimum threshold, or

• the pixel step size fell below 1 pixel

Note that even if there is a reflection point present in the pixel region,
the second case where no reflection point is found can however occur due to
possibly big alignment errors of the root lines, mapping errors from mirror-
space to screen-space and the discreetness of the steps.

In the first case, we were able to narrow down the region in which RS

has to be located to a few pixels. In this case we interpolate the actual pixel
position of RS between P1 and P2 by the absolute values of their mirror-
space deltas in both x and y direction. This approximation is eligible, since
we deal with a small pixel region, and as we see later, we use point-splats to
fill the region that remove this tiny error anyway. The smaller this threshold
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

Fig. 3.18: Illustration of the pixel locations after several iteration steps in the
demo scene in Figure 3.8. (Initial step size: 0.25x bounding-box size)

is chosen, the more exactly is the reflection mapping, but the bigger is the
chance not to find RS anymore, resulting in a sparser point mapping on
the surface. Figure 3.17 compares the mapping density in a demo scene
containing a spherical and parabolic mirror for different thresholds.

Concluding this, we can outline the final screen-space root finding algo-
rithm that is shown in Algorithm 3.1.

Figure 3.18 illustrates the result of this algorithm after several steps.
Starting with random pixel positions in iteration 0, the resulting image more
and more converges towards the final sharp mirror image. Note that after a
few iterations we can already identify the final mirror image.

Enhancing hit rate The objects shown in Figure 3.18 have simple shapes
without holes and with a convenient relation between area and perimeter. In
more common scenes, we can encounter homogeneous surfaces with projec-
tions of arbitrarily difficult shape. The pixel density of the mirror mapping
can significantly decrease for narrow shapes or shapes with holes because of
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(a) 0 attempts (b) 1 attempt

(c) 2 attempts (d) 3 attempts

Fig. 3.19: Enhancement of the mapping density in the demo scene in Figure 3.8.
With increasing maximum number of seed- and step-attempts, the density at the
shapes’ border regions increases. (Initial step size factor: 0.25, Threshold: 4)

the higher risk of stepping out of the mirror region. Further, we can even lose
points directly at the initial seeding step because we can only choose the seed
position as a random point within the region’s screen-space bounding box.
Also, the chosen initial step size matters. Starting with a bigger step size
enables us to reach our reflection point faster, but also increases the possibil-
ity of stepping out of the region. In order to obtain dense mirror mappings
also for complex screen-space shapes, we can enhance our algorithm by the
following two mean:

• At the beginning of our algorithm, we allow several attempts for seeding
our initial points P1 and P2 before discarding them.

• At the end of each iteration, we allow several attempts of stepping to
the next pixel P2, each time decreasing the step size.

Although these enhancements increase the required time for the root find-
ing, we obtain much better results in our images, as shown in Figure 3.19.

Discussion Our algorithm shows similarities to both the bracketing and
the bisection method which are often used for root finding. As long as we
observe the same error sign while stepping, we approach the root point in one
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direction similar to bracketing. After encountering a change in the error sign,
we turn around and proceed with reduced step size, since the root point R
must lie somewhere in-between. Eventually the algorithm can converge after
several of these turn-arounds, continuously narrowing down the region in
which R is located, like a bisection algorithm does (see Figure 3.20).

On the other hand, we know that the root lines of our error function can
project to arbitrarily curved lines, which are not necessarily aligned with the
screen-space axes. Therefore, while narrowing down the borders, a conven-
tional bisection could loose the root point due to exclusion. In contrast, our
algorithm recovers by automatically applying an approaching bracketing-like
step again. Due to these characteristics, we could call our 2D root-finding
algorithm “interleaved bracketing and bisection”.

Figure 3.20 illustrates an example stepping procedure of our algorithm

(a) step 1 (b) step 2

(c) step 3 (d) step 4

Fig. 3.20: Example for a fast convergence of our algorithm on a 2D surface. (Initial
step size: 0.25x region size)
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(a) step 1 (b) step 6

(c) step 13

Fig. 3.21: Example for bad algorithm behavior, ending up in zero step size without
finding the root point. (Initial step size: 0.3x region size)

on a 2D surface. The procedure contains the following steps:

(a) First, two points P1 and P2 are seeded in the surface. The first step is
performed based on their relative error signs. Note that in this example
the initial step size in x and y is 25% of the region extension.

(b) After the first step, we encounter a change of sign in the horizontal
direction (red dot). Thus, the x-direction is inverted, and the x step
size is halved. The step size and direction in y stays the same, as we
have approached the root line in this dimension.

(c) After the second step, we encounter a change of sign in both dimensions
(yellow dot). We turn around and reduce both step sizes.
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(d) At the third step, we have to turn around again. Now, the region in
which the root point is located is already sufficiently narrowed. Alto-
gether, we found the reflection point after four steps.

In this example, we exploit the fact that the root lines are well aligned
with the screen-space axes. This results in good estimations of the root
direction.

However, our algorithm can also show bad convergence for different situa-
tions. Figure 3.21 gives an example for a case where the root lines are rotated
approximately 45◦ in relation to the screen-space axes. We see that for start
conditions similar to Figure 3.20, the algorithm needs many iterations. It
continuously steps around the root point, but never finds it. In the previous
example of fast convergence, the algorithm did a step that changed both er-
ror signs (yellow dots), which allowed for quickly narrowing down the root.
In the case of bad convergence, we see that the trajectory of our stepping
point always crosses only one root line, i.e. changing the direction only for
one screen dimension (red dots). Since the root lines are aligned with the
major step directions rather than the screen-space axes, a step never crosses
the root in a way that changes both error signs. This way, the step size is
continuously reduced to zero where the algorithm breaks (yellow box).

Such cases represent a waste of computation time. They need far more
steps than the fast, successful cases, and do not contribute to the resulting
image. Therefore, we clamp the 2D root finding procedure to a maximum
step size count, which is a parameter of the algorithm.

3.5 Complex mirror geometry

With the given algorithm, we can already render scenes containing several
non-connected mirror surfaces of homogeneous curvature, as long as we know
their screen-space bounding box for the calculation of the initial step sizes.
A naive way to render the scene would be to test each scene point Q against
each homogeneous pixel region MS, considering that a point Q could be pos-
sibly reflected in each of the given region. However, in scenes that contain
highly complex mirroring surfaces resulting in a huge number of homoge-
neously curved regions, computation time would explode. We therefore use
a point distribution approach. In order to render the mirror reflections on
the surfaces in the framebuffer, we pass every point through a vertex shader
program exactly once. This vertex shader assigns it to a certain region, on
which our root finding algorithm is executed. Thus, each scene point is tested
against exactly one region. This is legitimated by the presupposition that we
have on our point cloud scenes, namely that they contain a huge number of
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points. We consider that in our application, common scenes contain at least
several million points. If the whole framebuffer would be occupied by pixels
that show mirroring objects, at common viewport sizes we would have only
about one million pixels on which our points have to be distributed. In more
realistic scenes, the relation between the number of scene points reflected in
a mirror and the number of framebuffer pixels occupied by the mirror is even
bigger.

So far, we have only discussed mirroring surfaces of homogeneous cur-
vature. For these types of surfaces, the mirror-space function has a certain
root, i.e there is at most one reflection point. As we have seen, on concave
surfaces there can already be more than one, even if the surface curvature is
homogeneous.

On more complex surfaces consisting of multiple patches of homogeneous
curvature, the mirror-space error function plot shows a hilly surface, con-
taining multiple valleys of different size containing a reflection point at their
root. Applying our algorithm to such functions as is raises the problem that
it cannot perform a fast root finding anymore. Choosing an arbitrary initial
step size, we always face the risk that it is too big for the local valley our
seed point lies next to. When performing a step from a given P1 to a P2 that
passes several function maxima, the algorithm could jump around on the
function surface uncontrollably. Although this procedure may hit some ac-
tual reflection points from time to time, this method would not be feasible in
general scenes. Since the initial step depends on the size of the homogeneous
region, we cannot choose a globally suitable step size anymore, since we can
encounter different regions of different sizes. We thus would have to reduce
the step size to the size of a pixel in order to ensure not to perform an invalid
step. This however would throw us back to a slow algorithm again, that is
not applicable for real-time rendering anymore. Thus, SSCR implements a
solution to this problem that keeps its ability to perform a fast root finding
by big step sizes.

In each frame, before applying the root finding pass on the scene points
for reflection rendering, we perform a screen-space segmentation pass on the
viewport image. Each segment is then labeled in order to create a buffer
that contains information about the extent of each homogeneously curved
mirror surface patch in the image. We call this buffer labeled homogeneous
curvature map (LHC map). It contains an image of the viewport’s mirror
surfaces where complex surface regions are split into its patches of homoge-
neous curvature. Within those patches, to each of its containing pixels we
assign the unique ID of its homogeneous region. Further, we provide a second
buffer containing the screen-space bounding box coordinates for each of those
homogeneous regions. Figure 3.22 shows a schematic illustration of such an
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(a) scene normal map (b) LHC map

Fig. 3.22: Schematic illustration of an LHC map (right) that is extracted from the
normal map of a scene (left). Each region in the LHC map represents a surface
part with homogeneous curvature, and is given a unique ID that is assigned to each
of its pixels. The distinct IDs are illustrated by a certain color. (Note that while
the normal map is an actual screenshot from our application, the illustration of
the LHC map is just artistic, as are its colors). Bunny and Buddha model courtesy
of Stanford Computer Graphics Laboratory.

LHC map. It shows that complex surfaces like the bunny or the Buddha in
the figure would be decomposed into a big number of homogeneous regions,
while a simple sphere would result in only one region.

With the availability of the LHC map and its bounding boxes, we now
can easily handle complex mirroring surfaces when applying our screen-space
root-finding method. In the vertex shader for reflection calculation, each in-
coming vertex is assigned to one of the homogeneously curved regions in the
scene, and seeded within this region based upon its bounding box informa-
tion. Knowing the ID of the region a point was originally assigned to, we
can now perform our screen-space root finding by stepping through the pixel
region at appropriate step sizes. To test whether the region was left, after
each step iteration we lookup the region ID of the new pixel in the LHC map
and compare it to the original one.

The detailed segmentation and labeling steps that are executed in order
to create this LHC map are described in the following.

3.5.1 Curvature map creation

First, we render a curvature map, which contains the information about
local discontinuities in the curvature of the mirror surfaces associated with
each framebuffer pixel. These discontinuities represent the border of a region
of homogeneous curvature, and can be either of the following:
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• change of curvature (inflection points)

• discontinuous depth step (one curved surface lying behind another)

• edge of mirror surface

The curvature information is extracted from a depth and a normal map
of the viewport image, which are already available as an intermediate re-
sult of our conventional GI rendering pipeline. In the curvature map, each
pixel stores only a qualitative curvature information that is represented by
flags in the curvature map. These flags can indicate one of the three types,
i.e. planar, convex or concave surface curvature. This qualitative curvature
representation is sufficient for our further algorithm.

Both changes of curvature and depth steps are evaluated per pixel on the
depth and the normal map. We test discontinuities in two directions: once
in horizontal and once in vertical screen-space direction. For each pixel, we
compare its linear depth and its surface normal with those of its previous (left
or upper) pixel. Depth discontinuities are determined by a certain threshold
parameter depthStepThreshold, which indicates the maximum depth differ-
ence for two pixels to be interpreted as parts of a continuous surface. Al-
gorithm 3.2 illustrates the determination of a depth step between a current
pixel’s depth d and the depth of the previous pixel d′.

Based on the change of the normal in the respective directions (i.e. the
normal’s x or y component in view space), for each pixel we write its local
curvature, i.e. positive (convex surface), negative (concave surface), or zero
(planar surface), to the curvature map. Figure 3.23 illustrates the curvature
calculation from the surface normals for the convex and the concave case.

Algorithm 3.3 shows the calculation of the both the x and the y curvature
flags for the curvature map pixel c based on the i-th component (x or y) of

(a) ∆Ni > 0 (b) ∆Ni < 0

Fig. 3.23: Per-pixel determination of the curvature by the sign of ∆Ni = Ni−Ni−1
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Algorithm 3.2 Determination of depth discontinuities in direction i

if abs(d− d′) > depthStepThreshold then
setF lag(c,DEPTHSTEPi)

end if

Algorithm 3.3 Curvature extraction in direction i

if abs(ni − n′i) < planarNormalTreshold then
setF lag(c, PLANARi)

else if ni > n′i then
setF lag(c, CONV EXi)

else
setF lag(c, CONCAV Ei)

end if

the normal n of the pixel and the normal n′ of its previous neighbor. The
planarNormalTreshold parameter determines the tolerance for the difference
of two normals in order to be interpreted as planar.

Thus, each pixel Px,y of the curvature map contains the following infor-
mation:

• x curvature from Px−1,y to Px,y (negative, zero or positive)

• y curvature from Px,y−1 to Px,y (negative, zero or positive)

• discontinuous depth step from Px−1,y to Px,y (true or false)

• discontinuous depth step from Px,y−1 to Px,y (true or false)

With the information in the curvature map, we already gained a partition
of the framebuffers’s mirror surface regions by the depth differences. It is not
yet segmented by its inflection points, i.e. we only have a map of per-pixel
curvature signs. Segmentation by change of curvature is performed in the
next step as part of the labeling algorithm.

3.5.2 Homogeneous curvature labeling

After creating the curvature map, we want to label each pixel with the unique
ID of the homogeneous region it belongs to. In comparison to the common
connected component labeling (CCL) task, our problem is a little bit more
complex, since we do not just label independent disconnected regions in a
binary image, but rather have to deal with neighboring components in the
curvature map, and distinguish different regions by their different curvature.
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(a) tracing external
contour

(b) encountering in-
ternal contour

(c) tracing internal
contour

(d) labeling inner
pixels

Fig. 3.24: The four major steps of the contour-tracing based CCL algorithm. If the
scan encounters an external or internal contour of a region, the algorithm starts
tracing the contour and labeling its pixels. This way, the algorithm can always
distinguish between inside blob pixels and pixels belonging to holes in the blob
when labeling. Image courtesy of Chang et al. [CCL04].

Generally, several parallel and sequential CCL approaches have been devel-
oped. SSCR implements an adapted version of the contour-tracing based
CCL algorithm introduced in [CCL04]. This is a sequential algorithm with
a time complexity of O(n). Starting with the top-most scanline, it runs
through each scanline of a binary image. When hitting a foreground pixel
(i.e. the external contour of a blob), it assigns the next label to that pixel
and starts tracing that contour, marking the contour pixels with the same
label. If the scan encounters a hole in the blob, its internal contour is traced
and labeled in a similar way. This way, when processing consecutive scan-
lines, it can easily fill inner pixels of the blob by assigning the label of the
left neighbor, starting with the first labeled contour pixel it encounters on
a scanline and stopping at the next one. Figure 3.24 illustrates the major
steps of this algorithm.

By its nature, the CCL algorithm can assign different labels only to re-
gions that are not connected. However, in our framebuffer, we want to label
different regions of homogeneous curvature, which are connected to one big
mirror surface. Thus, we have to slightly adapt the contour-tracing based
CCL algorithm by [CCL04], and perform some additional processing on our
curvature map in order to be able to apply the algorithm to it. These steps
are described in the following.

1) Smoothing curvature Before we start, we need to smooth the curvature
map. Due to its discrete nature, the curvature map always shows discontin-
uous curvature information along a scanline, especially when operating on
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a framebuffer containing point splats. For example, a continuously convex
surface can contain several planar pixels among the convex ones. This is due
to the rendered point splats that cover several pixels in the G-Buffer, and to
the limited accuracy of the float datatype by which the normals are encoded
that determine the curvature. For such a convex surface, the curvature signs
of a possible curvature map scanline thus could be

0++0+00++-0++-+0 [Input]

The smoothing step simply runs through each scanline horizontally and
vertically, adjusting each pixel with zero curvature to the curvature of the
previous pixel. Since we also have to consider that there could be no curved
pixels at all (planar mirrors), this adaption for zero-pixels is only performed
if the previous pixel already has a curvature. For the scanline above, our
smoothing step would produce the following result:

0++++++++--++-++ [Smoothed]

After this smoothing, we actually have 3 different regions left in this scan-
line. Although this way to count disregards the planar pixel at the beginning
of the scanline, this does not matter as we will see later. Note that there are
however a few issues with this method. For example, it could overwrite an
actual planar region neighboring a convex or concave one. For convex neigh-
bors, this doesn’t matter since the root direction in the mirror-space error
function is the same as for planar mirrors anyway. Otherwise, for concave
neighbors this could result in wrong labeling. However, the smoothing step
mainly has to prepare the noisy, aliased screen-space curvature information
in the curvature buffer for labeling.

2) Suppressing contour pixels In order to apply the CCL algorithm to our
framebuffer containing connected regions which should be labeled differently,
we apply a trick: We temporarily mark all pixels representing border pixels
between different regions as ”suppressed” by a flag in the curvature map.
Based on this flag, the CCL algorithm can determine the border of a region,
i.e. it is able to recognize two regions as disconnectd. This also implies that
these suppressed pixels are not labeled in the following pass. Therefore, we
append an additional pass after labeling, which closes these holes. In order
to suppress the contour pixels, we simply run through each pixel of the image
and mark a given pixel as suppressed if in x or y direction it has

a) a depth-step in relation to the previous pixel,
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b) a different curvature sign than the previous pixel.

After this pass, we have a curvature map that provides a distinct infor-
mation bit for each pixel that represents a border between different homoge-
neously curved surface patches, be it due to depth steps or inflection points.
The scanline from the previous example would now contain suppression flags
S at the following pixels:

S++++++++S-S+S++ [Suppressed]

3) Adapted contour-tracing based labeling In this step, we apply an
adapted version of the contour-tracing based CCL algorithm to the smoothed
curvature map containing suppressed contour pixels. This algorithm assigns
to each surface pixel a unique ID of the homogeneous region it belongs to.
The conventional CCL algorithm takes a binary image as input, and traces
the contour of a blob by differentiating between foreground (blob) pixels (1
bits) and background pixels (0 bits). In principle, our adapted CCL algorithm
works the same. The only difference to our algorithm is that we do not
operate on a binary image where we recognize blob borders as foreground
pixels adjoining a background pixel, but rather process our curvature map
and recognize blob borders as curvature pixels adjoining either a background
pixel (no mirror surface at all) or a suppressed contour pixel that was marked
in the previous step (depth-step or inflection pixel). Therefore, suppressed
pixels are interpreted as background pixels in this step, thus they are not
labeled, though they too belong to the surface regions. After this step, our
example scanline would show the following values:

S11111111S2S3S44 [Labeled]

Note that besides the labeled curvature map, this step produces two other
outputs:

• a buffer containing the bounding box of each homogeneous region, and

• a buffer containing the pixel count of each region.

This information can simply be collected while executing the sequential
CCL algorithm: For each pixel that is labeled with a given label L, we
increase the pixel counter for L in a global counter array. Further, we test
the screen-space coordinates of L against the respective current bounding
box and update the bounding box, if L lies outside. We need the bounding
box information for seeding our points within the regions in screen space
when performing our root finding algorithm. The reason for tracking the
pixel count is explained in Section 3.6.
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4) Labeling of suppressed border pixels After the common labeling pro-
cess is finished, we still have holes in our labeled map where the suppressed
contour pixels are located. In order to fill these holes, we apply a final pass,
which simply assigns to each suppressed pixel the label of its – depending on
availability – rightward or lower mirror pixel. The labeled scanline from our
example now would finally look like the following:

1111111112233444 [Border-filled]

Note that having a single planar pixel after the first step (smoothing)
at the beginning of the scanline does not matter, since it is assigned to its
rightward region’s label anyway.

3.6 Mirror pixel density

As we have already seen, rendering each scene point to a single pixel when
performing the mirror pass does not produce completely dense mirror images
in the framebuffer. Generally, the pixel density achieved by a mirror pass
depends on the following factors:

• Number of points in the scene

• Number and size of homogeneous surface regions in screen space

• Surface complexity (problematic concave cases)

• Shape complexity of the projected regions

• Algorithm parameters (initial step size, threshold, seed and step at-
tempts)

Pixel density is also affected by the fact that we test each scene point
only against one LHC region, as stated earlier. Further, in complex mirror
surfaces we can encounter difficult LHC region shapes that have a high rate
of lost pixels, i.e. very narrow regions or regions containing holes. Figure 3.25
shows an example for the mirror pixel density in a non-trivial scene, rendered
using weighted point distribution, splat size 1 and no pull-push closure. In
this example, we face several difficulty factors. First, the relative pixel space
occupied by mirror surfaces is relatively high. Next, the Stanford Bunny
represents a complex surface that is partitioned into about 200 regions in
this scene. Finally, the torus (without the sphere on it) is recognized as
one single region. However, this region contains a big hole in screen-space,
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Fig. 3.25: Mirror pixel density in a general demo scene containing several mirrors
of different complexity. (Bunny model courtesy of Stanford Computer Graphics
Laboratory)

meaning that seeding and stepping on this region is rather prone to pixel
losses.

Maintaining an overall high mirror pixel density even in complex scenes is
rather difficult. Our SSCR algorithm takes the following measure to improve
the pixel density:

1) Weighted point distribution We already mentioned that testing each
scene point against each LHC region is not an option when trying to main-
tain an adequate performance. Therefore, each pixel is assigned to only one
region. The easiest way to do this is using the running ID of the input point
in a vertex program and perform an equal distribution to the LHC region IDs
by a simple modulo operation. However, this method would assign the same
number of points to very small regions, where many may be dispensable, as
to very large regions, where more points could be required, Thus, our SSCR
algorithm performs a stochastic point distribution based on a weight that
correlates with the number of pixels in a region.

This way, we are able to assign most of the points to those regions, where
they are actually needed. Figure 3.26 compares both equal and weighted
point distribution in our complex demo scene. The figure points out the
benefit.

2) Mirror point splat size The most obvious approach to achieve dense
images is using point splats. When finding a reflective pixel RS in the frame-
buffer for a given scene point Q, we do not only shade RS but rather render a
point splat of certain size that is located at RS. Choosing the right point size
is strongly case-dependent. Reflected objects close to a mirror surface may
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(a) equal point distribution (b) weighted point distribution

Fig. 3.26: Comparison of equal and weighted point distribution for the mirror
buffer of the demo scene in Figure 3.25.

require bigger splat sizes, while using too big screen-space splats for more
distant objects would lead to too coarse mappings.

Our algorithm thus uses a linear falloff between 1 at some maximum
distance visible to the mirror (mirror z-far), and a certain maximum splat size
(distance zero). This is more convenient to gain both high density for close
objects and high detail mappings for far objects. Figure 3.27 compares mirror
mappings of different splat sizes. We see that with increasing splat size, the
mapping gains density, but also looses its sharpness. Note that depending on
what maximum visible mirror distance is chosen, some mirrored point clouds
could still look somehow coarse due to the size warping of mirrored images
on curved reflectors. This issue is addressed later in Section 3.7.

(a) 3 pixel max. splat size (b) 6 pixel max. splat size

Fig. 3.27: Demo scene of Figure 3.25 rendered with different maximum splat sizes.
With increasing splat size, the mirror image starts looking smudgy.
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3) Pull-push closing In order to fill remaining holes in the mirror image,
we apply a pull-push pass to our resulting mirror buffer [SDG+98][MKC08].
In the pull-pass, similar to mip-mapping, the mirror buffer is down-sampled
by a factor of 2 over several iterations, averaging pixel information. In a
consecutive push-pass, the averaged pixel values are passed down the result-
ing image pyramid, filling pixels that contain no information (i.e. holes in
the image). Although this method provides a fast and efficient way to fill
also bigger holes, applying too many iterations can quickly result in visible
artifacts or in pixel fillings where none are intended at all. Thus, depending
on the scene our algorithm only applies zero up to four iterations (meaning
that a given mirror pixel can already influence up to a 16 pixel wide region).

Figure 3.28 shows our demo scene after different numbers of pull-push
iterations. With increasing iteration count, the holes at the bottom of the
torus are filled, which represent missing mirror pixels. Simultaneously, the
pull-push pass wrongly fills the open side of the enclosing Cornell box that
is mirrored at the right end of the torus.

(a) 2 pull-push iterations (b) 4 pull-push iterations

Fig. 3.28: Comparison of the appearance of the demo scene in Figure 3.27(b) (6
pixels max. splat size) after 2 (left) and 4 (right) pull-push iterations.

3.7 Mirror visibility

So far, our algorithm is able to find the reflective pixel for a given scene point
and shade the pixel with the attributes of that point. Until now we have not
considered visibility for the reflecting surface point. Simply splatting all scene
points onto a surface produces a mirror image on which occlusion depends
on the splatting order, not on the depth. We therefore have to account for
visibility in the mirror image.
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The simplest way to handle visibility is to use the z-buffer and enable
depth testing: We can choose a maximum visible depth, i.e. a mirror z-far
value. Then, when transforming a vertex Q to its viewport location that
corresponds to the reflection point R, we can easily calculate the distance
between R and Q, normalize it by our chosen mirror z-far and use this nor-
malized value as depth value for the current vertex.

Although this nearest-point approach is straight forward and produces
correct mirror visibility, it can produce bad mirror image quality due the
following two problems:

1. Using nearest-point, a mirror shaded pixel of the framebuffer can only
reflect the information of one single point in the scene. Considering
curved mirror surfaces, we often encounter a warped mapping of their
environment, i.e enlarged or shrunk mirror images. In such cases, a
single mirror pixel can contain the information of reflected light of a
wider section of the scene. Thus, shading a pixel with the point splat
fragment of the nearest scene point can introduce aliasing artifacts (e.g.
color-flipping while moving the camera or the object).

2. Because of the overlapping point splats on the mirror, mapping detailed
geometry or corners can result in box artifacts. Figure 3.29 shows an
example.

In order to reduce artifacts and avoid visible aliasing effects in our mirror
images, our algorithm accumulates the reflections of several scene points in
each pixel. This way, mapping point splats which carry their reflection infor-
mation to neighboring pixels is not prone to aliasing artifacts anymore, since
it introduces a smoothing over the reflections of neighboring pixels. Further,
image quality of mapped detailed geometry or corners can be improved. De-
tailed geometry may still appear vague, but this way they show a smoothed
shape rather than a bunch of box splats. For example, the appearance of
mapped corners can also be significantly improved, as the accumulation re-
moves step-artifacts as shown in Figure 3.29.

In order to render nice accumulated mirror mappings, using the z-buffer is
not convenient anymore. We have to introduce a two-pass algorithm [RPZ02]
that is capable of accumulating points while still maintaining visibility. In
a consecutive pass, we average the accumulated point attributes to obtain a
final smoothed mirror image.

In the first pass, the mirror reflected points are rendered to a depth
buffer, using the nearest-point method with the z-buffer described above.
The resulting buffer is an image that contains the distance information of
the nearest reflected point for each of its pixels.
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(a) nearest-point mirror map (b) accumulative mirror map

(c) nearest-point mapping in GI (d) accumulative mapping in GI

Fig. 3.29: Comparison between nearest-point mirror mapping (left) and accumu-
lative mapping (right). The upper row shows the points as they are splatted into
the mirror map. The lower row shows the result of each method when applied on
the GI scene. Due to the accumulation, box artifacts that are inherent in point
splats are automatically blurred to smooth surfaces. Note that the accumulation
mapping also produces much better mirror images of the room’s corners.

In the second pass, the mirror image is rendered again, this time acti-
vating one-plus-one blending for the target pixels. In this pass, the output
mirror buffer is shaded by the actual point attributes of the scene points.
Simultaneously, we create a counter buffer that simply sums up the splat
fragments that are shaded to each pixel. The visibility test for a given scene
point Q is now performed by comparing the mirror depth value of Q to the
value stored in the depth map that was rendered in the first pass. Similar
to shadow-mapping [Wil78], we use a certain shadow-offset, by which we
can define a depth range of pixels visible behind the nearest point, i.e. the
number of points that are accepted for accumulation.

The third pass then simply normalizes the value of each pixel in the re-
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sulting framebuffer. It looks up both the pixel’s accumulated point attributes
in the mirror buffer and its number of accumulated fragments in the counter
buffer. The result is an output image containing the point attribute values
normalized by the counter.

3.8 Multiple mirror bounces

In order to calculate first-order mirror reflections, we apply the methods
developed in the previous sections only once. Based upon a normal map of
the scene that is provided by our given GI framework in a Camera G-Buffer,
we create an LHC map which is used to distribute the points in the scene
between the visible homogeneous mirror surface regions. These scene points
are splatted onto the mirror regions and stored in a new buffer, the Mirror
G-Buffer, which contains various information about the scene point, like
position, normal, color, etc. Based upon this Mirror G-Buffer, we are able
to perform a GI shading for the mirrored scene images similar to the normal
scene geometry. The result is blended over the original, diffuse-specular
image.

In order to render higher-order mirror reflections, we can use the 1st-
order Mirror G-Buffer, and execute the complete SSCR algorithm once again.
This time, we use the normal map and the linear depth map as input for the
algorithm, both of which are part of the 1st-order Mirror G-Buffer. Curvature
is now extracted only from mirroring surfaces which are already mirrored in
a visible mirror surface. LHC map creation and Mirror G-Buffer pass are
performed on this – mostly smaller – 2nd-order mirror pixel regions. The GI
shaded result is then once again blended over the current output image.

This process can be executed iteratively, each time adding a further
mirror bounce. However, performance and interactivity are expected to be
immensely affected after a few iterations. Considering that with each mirror
bounce the number of visible n-th order mirror pixels is reduced in the most
cases, it should be sufficient to pass only a subset of the points used in
the previous bounce through the Mirror G-Buffer shader that performs the
root finding on each point. Figure 3.30 illustrates the rendering pipeline for
multiple mirror bounces. Note that although the algorithm is designed to
support multiple mirror bounces, they are not yet realized in our application.
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Fig. 3.30: Schema of the GI rendering pipeline incorporating SSCR rendering two
mirror bounces. The data from the Camera G-Buffer is used as input for the first
mirror bounce. Each subsequent mirror bounce can be performed based upon the
Mirror G-Buffer from the previous bounce.



Chapter 4

Implementation

This chapter takes a closer look at the implementation of the SSCR algorithm
in our point cloud renderer. It revisits the points discussed in the previous
chapter, and describes the steps of the SSCR rendering pipeline in more
detail.

Our algorithm is implemented in C++, using OpenGL 2.1 as graphics
API and CG shader profile 4 for our shader programs.

4.1 Current GI algorithm overview

Lets first have a look at the current global illumination (GI) algorithm. The
theoretical background to our current GI renderer was already given in Sec-
tion 2.4.1. Figure 6 illustrates the rendering pipeline that the GI algorithm
performs to render a frame.

In the first two passes, the points in the scene are rendered to a Cam-
era G-Buffer and a Light G-Buffer. The Camera G-Buffer shows the scene
from the perspective of the camera, the Light G-Buffer from the perspective
of the (spot) light source. Both G-Buffers store various information about
the surface point associated with each of its pixels, like linear depth, surface
normal, diffuse color, etc. A number of virtual point lights (VPLs) are dis-
tributed in the Light G-Buffer, i.e. over the part of the scene visible to the
light source. In the next step, the points in the scene are rendered again in
order to create the combined ISM buffer for the VPLs, which contains their
visibility information necessary for shading. With the VPLs seeded and their
visibility given by the ISM buffer, we then perform an interleaved indirect
illumination shading of the G-Buffer pixels in screen space. If multiple light
bounces are required, the latter three steps are repeated: The VPLs are re-
distributed based upon their current location and visibility, the ISM buffer
is recreated based upon the new VPL locations, and interleaved shading is
performed again, blending the illumination of the new light bounce iteration
with the previous one (accumulative shading).
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Fig. 4.1: Overview of the GI rendering pipeline in our point cloud renderer.

When shading of indirect light bounces is done, the split interleaved buffer
is merged to an image of full viewport size again. This merged image is
then filtered in order to obtain a smooth indirect illumination of the image
throughout the whole image. After adding direct illumination with shadow
mapping, the output image is tonemapped and then written to the back-
buffer.

4.2 SSCR algorithm overview

Figure 4.2 gives an overview over the steps of our SSCR rendering pipeline.
Based upon the Camera G-Buffer provided by our GI framework, we perform
a curvature extraction pass. The result is a qualitative curvature map of the
scene, which is used in the next step for the setup of an Labeled Homogeneous
Curvature Map (LHC map). This map partitions the mirror surfaces in
the G-Buffer into several regions of homogeneous curvature. Along with
this map, we produce the bounding box coordinates and region-size based
weights for the LHC regions. Based on this data we can perform a weighted
distribution of the scene points to the LHC regions in order to create a
Mirror G-Buffer (MGB). This MGB is created in three passes: a depth pass,
a visibility pass and an averaging pass. On the resulting MGB, we perform
a pull-push closing procedure to fill missing mirror pixel values with the
averaged G-Buffer data of its neighboring pixels. Finally, we perform a GI
shading of the mirrored surface points in the MGB, similar to the way it is
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done for the remaining, diffuse and low specular part of the scene.
In the following, we will discuss the implementation-specific details of

each of those steps.

Fig. 4.2: Overview of the SSCR rendering pipeline.

4.3 Curvature extraction

Input buffers: • Camera G-Buffer [normal, specular intensity, shini-
ness] map
• Camera G-Buffer [linear depth] map

Output buffers: • Curvature map (1 channel byte)
Parameters: planarNormalTreshold, depthStepThreshold

In the first step, we create a curvature map from the given Camera G-
Buffer. This curvature map is needed in the consecutive LHC labeling step,
which segments the viewport image and labels its LHC regions.

Curvature extraction is performed in one rendering pass. It renders a
fullscreen quad drawing to a 1-byte single component target texture. Its input
buffers are the normal map and the linear depth map of the Camera G-Buffer,
since those two contain the required world-space normal and position used
for continuous curvature determination. The fragment shader processes each
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pixel of the output buffer, storing the information of curvature continuity in
one byte per pixel. For this it uses the following byte setup (Figure 4.3):

Fig. 4.3: Byte setup of the curvature map. Bits 6 and 7 are not used yet.

These curvature map entries are only rendered for pixels that represent a
mirroring surface region in screen space. The rest of the buffer remains zero,
as cleared before rendering. This way, the curvature map already provides
a viewport segmentation, which is used later in the labeling pass, showing
only mirroring pixels. Pixels representing a mirroring surface are identified
by looking up the SI (specular intensity, i.e. shininess) information stored in
the Camera G-Buffer [normal, SI, SP] texture. The bit flags in the above
byte setup have the following meaning:

xcurv: screen-space x curvature
ycurv: screen-space y curvature
dx: screen-space x depth step
dy: screen-space y depth step

The xcurv and ycurv flags, each occupying two bits, indicate the change
of the x respectively y-component of the view-space normal associated with
a G-Buffer pixel from the previous to the current pixel, in horizontal re-
spectively vertical scanline direction. It stores, whether there is a positive
curvature, a negative curvature or no curvature present relative to the the
previous pixel (i.e. the pixel left or top of the current pixel). This is simply
determined by looking at the sign of the difference between the neighboring
pixel’s x or y components. Figure 3.23 in the previous chapter illustrates
this concept. For both xcurv and ycurv, curvature is encoded in the follwing
way:

bits normal-{x|y} change curvature surface type
00 - - -
01 descending positive concave
10 ascending negative convex
11 invariant zero planar

The dx and dy bits indicate whether there was a depth step from the pre-
vious pixel to the current one, i.e. whether there is a crack in the continuity
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of the surface at this location. We use the depthStepThreshold parameter to
determine the maximum depth two neighboring pixels may have in order to
be interpreted as continuous surface.

When comparing two neighbored pixel’s normals for equality, we have
to be aware of float precision issues. Further, since our G-Buffer image
is rendered by box splatting our point clouds, overlapping splats can lead
to noisy normal maps showing a continuous change in curvature along a
scanline, which it shouldn’t. We therefore use the planarNormalTreshold
parameter, that represents a maximum epsilon tolerance of the difference
between two normal’s x or y components, within which the normals are still
interpreted as equal, i.e. interpreted as planar surface.

4.4 Homogeneous region labeling

Input buffers: • Curvature map
Output buffers: • LHC map (1 channel int32)

• LHC bounding box map (4 channel float32)
• sorted region map (1 channel int32)
• sorted accum. weights map (1 channel float)

In this step, we create the LHC map, a buffer containing a labeled image
of the mirroring surfaces, segmented into regions of homogeneous curvature.
This is performed based on the curvature map that was created in the pre-
vious pass.

In Section 3.5.2, we have already presented our method and necessary
steps for LHC map creation. We perform an adapted version of a contour-
tracing based CCL algorithm [CCL04], which runs at O(n) time complexity,
but therefore is not parallelizable since it performs sequential steps on the
input image. Therefore, we have to perform this task on the CPU.

In the first step, the whole curvature map texture is transfered from
the GPU to the system memory. In order to reduce the data load that
has to be copied, we have limited the pixel format of the curvature map to
its minimum, i.e. 1-channel byte. This single byte stores all information
needed for labeling. After labeling is done, the resulting LHC map has to
be loaded back to the GPU by a new texture initialization. Since with one
byte, our LHC map could only distinguish between 255 different regions, we
use a 1-channel int32 pixel format for our LHC map. However, the fact that
we have to copy the whole curvature and the LHC map between GPU and
system RAM each frame does not represent a performance bottleneck in our
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application (see Chapter 5). In our test scenes, the whole task (including
data transfer) is performed in approximately 10 ms.

4.4.1 LHC map creation steps

We perform the following four steps for LHC map creation (see Section 3.5.2
for a detailed description):

1. Smoothing curvature

2. Suppressing contour pixels

3. Adapted contour-tracing based labeling

4. Labeling of suppressed contour pixels

Steps 1 and 2 operate directly on the curvature map that was copied to
system RAM. They prepare the input buffer for the actual labeling process
in step 3, which writes the labels to a new output buffer. Finally, step 4
post-processes the output buffer to obtain connected LHC regions.

1) Smoothing curvature The smoothing step directly alters the curvature
information stored in the curvature map, according to the description in
Section 3.5.2. We process each scanline and each column of the curvature
map buffer, i.e. once in horizontal direction (smoothing xcurv) and once
in vertical direction (smoothing ycurv). In each direction, each planar pixel
that directly follows a curved one, retrieves the curvature information of that
neighbor. Note that since this is a propagating process, this step already has
to be performed on the CPU.

2) Suppressing contour pixels In the next step, contour pixels in the cur-
vature map are marked as suppressed. Contour pixels indicate a depth step
or a change of curvature and thus a border between homogeneous regions in
x respectively y direction. Later in the labeling step, suppressed pixels are
treated like background pixels, allowing for correct distinction of different
regions and thus for correct labeling. Contour pixels are marked by setting a
flag within the curvature storage byte of a pixel of the curvature map, where
2 bits are still unused. This is the S-flag shown in the extended byte setup
in Figure 4.4.
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3) Adapted contour-tracing based labeling In this step, we process each
scanline of the prepared curvature map according to the contour-tracing
based CCL algorithm of [CCL04], writing pixel labels in the output LHC
buffer. Basically, our adapted version works the same as the original algo-
rithm, showing solely the following three differences:

• We do not distinguish background pixels from foreground pixels in the
original way. When tracing the contour of a region, a background pixel
to that region is either an empty pixel (no mirror region at all) or a
suppressed mirror pixel (looking at the Supressed -flag).

• The original algorithm performs an 8-connected contour tracing, i.e.
originating from some pixel, it can follow the contour by stepping to
each of its 8 surrounding pixels. In contrast to that, we perform a
4-connected contour tracing, since this method is more suited to our
curvature map. This is due to the fact that the region borders, which
are formed by the suppressed contour pixels, provide an 8-connected
contour. Thus, performing an 8-connected contour tracing would step
through these borders and unite different homogeneous regions. Note
that this way, outlying pixels that connect with a region only by one
of its corners are not labeled and thus not recognized as part of the
region. However, such isolated pixels are not suited for our root-finding
algorithm anyway, since we need at least a 2x2 region to compare two
different points.

• For the contour-tracing based CCL algorithm, it is critical to know
whether a given internal or external contour has already been traced.
Therefore, while tracing a contour, the original algorithm marks its
surrounding background pixels in the output buffer that contains the
labels. This method is fine since for the original problem that labels
disconnected regions in a buffer, the background pixels are not used
anyway. In our case however, a pixel being a background pixel for one
region, can be a region pixel for another. Marking surrounding pixels is
therefore not suitable for our problem. Thus, we set our mark directly
at the pixel itself. We therefore use the remaining unused bit in the
curvature map byte setup to store whether a contour pixel was already
processed (P-flag, see Figure 4.4).

4) Labeling suppressed contour pixels In the last step, in order to obtain
fully labeled regions that are not separated anymore, we perform a simple
pass on the LHC map that assigns to each suppressed pixel the label of (a)
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Fig. 4.4: Full byte setup of the curvature map during labeling. The S-bit marks
a pixel as suppressed, the P-bit indicates contour-pixels that have already been
processed.

its right neighbor or (b) its bottom neighbor, depending on the availability
of labels at the neighboring pixels.

4.4.2 Bounding box and weight information

While labeling, each time we assign a region’s label to a pixel, we increase
a counter for the pixel amount and simultaneously adapt the bounding box
information that is tracked for each of the regions. The screen-space corners
of the bounding boxes are stored in an array, and later passed to the GPU
in a 1D-texture that contains one bounding-box per texel by storing the its
4 coordinates in the texel’s RGBA-channels. This 1D texture represents the
LHC bounding box map output buffer.

After finishing the LHC map, we perform two additional calculation steps:
First, we calculate the relative amount of pixels per region, i.e. a fraction
value that can indicates the relative size of an LHC region. These values are
considered do be region weights. Based upon these weights, we perform a
binary insertion-sort algorithm on the region labels, which arranges the labels
in an array beginning with the label of the biggest region (highest weight)
in descending order. The array of sorted labels is also passed to the GPU as
1D-integer-texture (sorted region map). Based upon the order in the sorted
region map, the regions weights are accumulated, as shown in the following
example:

sorted region weights: 0.4, 0.3, 0.2, 0.1
accumulated region weights: 0.4, 0.7, 0.9, 1.0

These accumulated region weights are later used for the weighted point
distribution. Along with the LHC map, the LHC bounding box map and the
sorted region map, these accumulated weights are passed to the GPU in a
further 1D texture, the sorted accum. weights map. In the next section we
will see, how these buffers are used in order to distribute the scene points
among the screen-space mirror regions.
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4.5 Mirror G-Buffer shading

The shading of the Mirror G-Buffer is performed in three steps in order to
maintain mirror visibility while being able to accumulate points in the G-
Buffer:

1. Point splatting depth pass

2. Point splatting visibility pass

3. Averaging pass

The first two steps once pass all points in the scene through a vertex
program that performs our screen-space root-finding algorithm in order to
find the reflective pixels on which to splat the scene points. The first pass
is depth-buffered, and stores only a depth map of the mirrors. The second
pass then uses this depth map for visibility when rendering the actual scene
information to the Mirror G-Buffer. The third pass finally averages the accu-
mulated data to obtain an anti-aliased mirror projection of the environment.

4.5.1 Weighted point distribution

When passing the scene points through our vertex program in both the depth
and the visibility pass, we distribute them among the given LHC regions
based on their accumulated weights.

In order to perform a fast assignment calculation even for a high num-
ber of regions, we take a random value p (between 0 and 1) from a Halton
sample texture and perform a binary search of p in the 1-dimensional sorted
accumulated weights texture. This binary search quickly narrows down the
ordered position of p among the accumulated weights. Due to the setup of
the accumulated weight texture, the texture coordinates the binary search
converges at can be used to look up the associated region label in the sorted
region map. Performing this process on all incoming points in the vertex
shader, we obtain a weighted distribution of the scene points based on the
size of the LHC regions.
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4.5.2 Depth pass

Input buffers: • Camera G-Buffer [normal, SI, SP] map
• Camera G-Buffer [linear depth] map
• LHC map (1 channel int32)
• LHC region info map (4 channel float32)
• sorted LHC map (1 channel int32)
• sorted LHC accum. weights map (1 channel float)

Output buffers: • Mirror G-Buffer depth map
Parameters: seedAttempts, stepAttempts, maxStepIterations, mir-

rorZFar

In this pass, all points are rendered to one render target by a vertex
shader that uses our root-finding algorithm to splat them onto the correct
mirror pixel of the Mirror G-Buffer. We therefore use the seedAttempts,
stepAttempts and maxStepIterations parameters, which control the behavior
of our root finding algorithm.

We make use of a depth buffer in order to render always only the nearest
scene point that is visible in a mirror pixel. For each splatted point, we
calculate its linear depth normalized to a far clipping distance, which is
determined by the mirrorZFar parameter. This depth value is then written
to the output buffer, obtaining a reflective depth map of the scene. Figure 4.5
shows such a depth reflective depth for the mirror scene in Figure 3.8.

(a) GI scene (b) Mirror depth map

Fig. 4.5: Reflective depth map for the mirror surfaces in Figure 3.8.
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4.5.3 Visibility pass

Input buffers: • Camera G-Buffer [normal, SI, SP] map
• Camera G-Buffer [linear depth] map
• LHC map (1 channel int32)
• LHC region info map (4 channel float32)
• sorted LHC map (1 channel int32)
• sorted LHC accum. weights map (1 channel float)
• Mirror G-Buffer depth map

Output buffers: • Accumulated Mirror G-Buffer (3 textures)
• Mirror G-Buffer counter texture

Parameters: seedAttempts, stepAttempts, maxStepIterations, mir-
rorZFar, mirrorSpaceDepthOffset

This pass executes exactly the same point processing algorithm as the
depth pass before. This time, we render to four render target textures:
three textures containing the necessary Mirror G-Buffer information, and one
counter texture that accumulates the number of points splatted to each pixel.
In this pass, depth-buffering is disabled and blending is enabled, since we
want to accumulate several scene points per mirror pixel. For each splatted
point, its normalized linear mirror-space depth is calculated similar to the
depth pass, but this time this depth value is used to perform a shadow
comparison of a splatted point with the depth value stored in the Mirror
G-Buffer depth map. This shadow comparison is performed per pixel in the
fragment shader program and uses the mirrorSpaceDepthOffset parameter as
shadow depth offset.

4.5.4 Averaging pass

Input buffers: • Accumulated Mirror G-Buffer (3 textures)
• Mirror G-Buffer counter texture

Output buffers: • Mirror G-Buffer (3 textures)

To finish Mirror G-Buffer rendering, we perform a final pass to average the
accumulated values in the Mirror G-Buffer, writing to three render targets.
We draw a fullscreen quad using a fragment shader program that looks up
the pixel values in each of the three accumulated Mirror G-Buffer textures,
and averages them by the number of accumulated points stored in the Mirror



74 Chapter 4. Implementation

G-Buffer counter texture.

The result is a Mirror G-Buffer that consists of the following three 4-
channel textures, containing information about the mirror surface point P
and a virtual scene point Q that represents an average of multiple real scene
points which are reflected in P :

MGB texture Datatype Data content

[qDiffuse | qSI] float rgb: diffuse reflection component of Q
a: normed specular intensity of Q

[Normal | SP] float rgb: surface normal of Q
a: normed specular power (shininess) of Q

[qPosW | pSI ] float32 rgb: world-space position of the reflected
surface point Q
a: normed specular intensity of the mirror
surface point P

The first two textures store the surface normal and material information of
the mirrored surface points in the G-Buffer. The last texture stores the world-
space position of the point that is reflected (Q), and the specular intensity of
the mirror point that reflects Q. The latter is used as weight when blending
the mirror image component of a surface over its diffuse image component.

4.6 Pull-push closing

4.6.1 Pull pass

Input buffers: • Mirror G-Buffer (3 textures)
Output buffers: • 1st-4th pull level Mirror G-Buffer (4*3 textures)
Parameters: pullLevels

In our implementation, we create up to 4 pull levels of the textures of the
Mirror G-Buffer. The pullLevels parameter of this pass controls the actual
pull level count (i.e. the actual height of the resulting image pyramid). Each
pull level texture has half the size of the previous one, and each of its pixels
contains an average value of the four pixels lying one level below in this
image pyramid. However, we do not apply ordinary mip-map creation on
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our textures, since we only want to average those pixels of a 2x2 pixel quad
which actually contain information about mirror splatted scene points.

We thus iteratively render a fullscreen quad, each time halving the render
target viewport size. In each iteration we draw to 3 render targets, one for
each Mirror G-Buffer texture.

4.6.2 Push pass

Input buffers: • LHC map
• Mirror G-Buffer (3 textures)
• 1st-4th pull level Mirror G-Buffer (4*3 textures)

Output buffers: Closed Mirror G-Buffer (3 textures)
Parameters: pullLevels

In this pass, pixels that are missing in the Mirror G-Buffer (i.e. containing
no information at mirroring pixels) are filled with the averaged mirror infor-
mation of its pixel neighbors from the higher pull level textures. Note that
this procedure has the drawback that it can also assign point mappings to
mirror surface pixels which actually would not reflect any scene information.
In closed environments, this is problem does not occur.

Restricting the number of pull levels to 4 has a big advantage for the
performance of our push operation. We do not need to perform the push
pass in the same iterative way as the pull pass, i.e changing render targets
and executing drawing several times. Since we deal with at most 5 Mirror
G-Buffers (original G-Buffer plus at most 4 pull levels), each consisting of 3
textures, we do not need more than 16 input texture units for our shader. The
16th texture unit is occupied by the LHC map, which is used to determine
whether an empty pixel in the Mirror G-Buffer actually represents a mirror
pixel lacking reflection information, or just a background pixel that doesn’t
belong to a mirror surface. Since in our OpenGL environment we are able
to use 16 input texture units per shader program, the push pass can be be
performed by a single pass.

4.7 Global Illumination shading

Input buffers: • Closed Mirror G-Buffer (3 textures)
Output buffers: • interleaved indirect illumination accumulation

buffer (3 channel float32)
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After the finished and pull-push closed Mirror G-Buffer was created, it
contains all information that is necessary for GI shading as described in
Section 4.1: First, interleaved indirect illumination shading is applied in
order to accumulate the light incident from the given VPLs in the scene.
Then, this interleaved accumulation buffer is merged and filtered, finally
adding direct illumination.

The sole difference between mirror GI shading and conventional GI shad-
ing of the rest of the scene is that when evaluating the light transport from
a VPL over a surface point Q to the viewpoint E, then E is not the position
of the camera but rather the world-space position of the mirror surface point
P associated with a Mirror G-Buffer pixel at screen coordinates c. Both the
positions of P and Q are gained from the Mirror G-Buffer. P is stored in
its [wpos] texture at c, while Q is obtained by applying the inverse camera
view-projection matrix to the screen-space coordinate c. [Pre10] describes
the indirect illumination shading process in detail.

The final result of the SSCR pipeline is an image showing only the visible
mirror reflections of the global illuminated environment. In a final pass,
this mirror image is blended over our original GI illuminated image. This
blending is weighted by the material properties of the mirror surfaces, i.e by
their Specular Intensity (SI) value that is available in the Camera G-Buffer.
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Results

5.1 Implementation and platform

Our SSCR pipeline was implemented in C++ and OpenGL. It represents an
extension to the GI algorithm for our Terapoints point cloud renderer. Each
rendering pass suitable for parallelization is executed on the GPU, imple-
mented in NVIDIA’s CG shading language. The only task that is performed
on the CPU is the creation of the LHC map, since this pass implements a
fast connected-component labeling algorithm, that runs at cost of O(n), and
is not suited for parallel execution on the GPU.

In the previous chapters, we have introduced and discussed a number
of parameters, which control the behavior of the SSCR pipeline at different
stages, affecting both image quality and performance. In the following, we
will evaluate their influence in detail. Further, we will discuss the dependency
of image quality and performance on the amount, size and complexity of
mirroring surfaces in the scene.

In order to provide a meaningful evaluation on the influence of the SSCR
parameters and the scene complexity on the result, we will observe differ-
ent mirroring objects representing different categories of surface complexity,
under equal conditions in a Cornell box test setup.

All images and performance values are taken respectively observed on a
platform with an Intel Xeon X5550 2.67GHz CPU with 72 GB RAM, and a
GeForce GTX 285 GPU with 1 GB dedicated video RAM.

5.2 Sample renderings

Since we cannot use any previous work on mirror reflections in point clouds
that could be compared to ours, and image quality in mesh scenes is not com-
parable to that in splat-rendered point cloud scenes, we evaluate the influence
of different SSCR parameter values by comparison with sample renderings
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that individually adapt all parameters in order to provide a maximum pos-
sible image quality.

We use five different representative models with a shininess attribute set
to maximum, i.e. exhibiting mirroring surfaces. Our models are placed in
the horizontal and vertical center of a closed stretched Cornell box, which is
lit by a spotlight that is orientated towards the lower right corner of the box.
The camera is placed inside the box near the front vertical wall, containing
the object the center of its view frustum. The models are placed in a distance
to the viewer which avoids that they are directly lit by the spotlight. This is
to ensure an identically illuminated environment. Figure 5.1 illustrates this
setup.

Fig. 5.1: Schematic setup for our test scenes.

The viewport size is 800 x 600 pixels. Our models cover approximately
8-10% of the framebuffer. We render the GI scenes using 256 VPLs and
one indirect light bounce. We do not apply interleaved indirect illumination
shading, i.e. each pixel in the scene is illuminated by each VPL and there is
no merging or filtering of the GI shaded G-Buffer. This slows down perfor-
mance a bit, but on the other hand produces sharp GI shaded mirror images,
allowing us to observe the work of our SSCR algorithm closely. Depending
on the mirror object located in each scene, the total number of scene points
that are used for Mirror G-Buffer splatting lies between 1.5 and 1.8 million
points. The SSCR parameters are chosen for each model individually in order
to achieve an approximated optimum image quality. All performance values
are taken from snapshots of the application, i.e. they are not averaged over
several frames. We use them as suitable representatives of the temporally
coherent global performance achieved in our test scenes.

Figure 5.2 shows our five representative models, and lists the SSCR
parameters by which they were rendered. Max. splat size is the maximum
splat size for splatting points onto the mirror surface, threshold accuracy is
the threshold pixel accuracy for the root-finding reflection point calculation.
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regions: 1
hit rate: 35%
max. splat size: 2
threshold accuracy: 2
pull-push levels: 4
initial step size factor: 0.2
seed/step attempts: 6/6

(a) Sphere

regions: 1
hit rate: 19%
max. splat size: 3
threshold accuracy: 4
pull-push levels: 4
initial step size factor: 0.2
seed/step attempts: 6/6

(b) Parabolic mirror

regions: 12
hit rate: 25%
max. splat size: 3
threshold accuracy: 4
pull-push levels: 4
initial step size factor: 0.2
seed/step attempts: 6/6

(c) Blob

regions: 2
hit rate: 17%
max. splat size: 2
threshold accuracy: 3
pull-push levels: 3
initial step size factor: 0.2
seed/step attempts: 6/6

(d) Torus

regions: 279
hit rate: 11%
max. splat size: 2
threshold accuracy: 2
pull-push levels: 4
initial step size factor: 0.2
seed/step attempts: 6/6

(e) Bunny

Fig. 5.2: Renderings of our five representative mirroring objects. (Bunny model
courtesy of Stanford Computer Graphics Laboratory)
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The hit rate shown for each scene is the percentage of scene points for
which a reflection point was successfully found. Note that this rate is
clamped by nature of this closed Cornell box scene since there are many
points which cannot be reflected by any mirror surface. However, the un-
even hit rates between the models is mainly due to their different complexity.

Sphere Convex object representing the simplest curved mirror surface con-
taining one single homogeneously curved region. The reflections produced
on its surface are similar to those which can be produced on environment
mapped spheres.

Parabolic mirror Concave object that simulates a parabolic mirror surface
like a shaving mirror or a teaspoon. It also consists of only one region of
homogeneous curvature. Characteristic for this surface is that it flips the
mirrored image if far enough away from the viewpoint.

Blob Artistically formed object containing several bumps (convex) and
dents (concave).

Torus Object containing 1-2 regions (based on the viewing angle), though
containing a hole. This object especially challenges the root-finding algo-
rithm due to the chance of stepping into the hole.

Bunny Representative model for highly complex surfaces containing a high
number of very small regions. The main challenge on this surface is to find
reflection points despite the small pixel diameter of its regions. A too high
initial step size could let the algorithm instantly step outside the region,
while a too low initial step size could result in the step size being reduced
to zero before success.

5.3 Overall performance

Figure 5.3 shows the overall performance of our SSCR renderer for our five
scenes, measured in milliseconds of computation time. The left graph shows
the computation time for the complete SSCR pipeline, starting with curva-
ture and LHC map creation (red) and ending with the GI shading of the
scene (orange). In this graph, curvature map and LHC map creation are
combined to one step. A close performance evaluation of these two steps
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Fig. 5.3: Left: Computation time of the SSCR pipeline in milliseconds for our
scenes in sequential order: curvature + LHC map (red), MGB depth pass (green),
MGB accumulation pass (purple) and GI shading pass (orange). Note that before
GI shading, there is also a very short pass for averaging and pull-push closing the
MGB (lightblue). Right: Closeup on the computation time of the curvature map
(blue) and the LHC map (red).

is given by the right graph. Note that besides labeling, the LHC map pass
(red) also incorporates downloading the curvature map from the GPU RAM
to the system memory, and loading back the finished LHC map to the the
GPU again.

Curvature map creation (0,35ms) and GI shading (25ms) are independent
of the scene content, since they are simple per-pixel operations in screen
space. The LHC map computation time is evenly settled between 10 and 12
ms, however showing a slightly higher outlier for the bunny scene. This is due
to the bunny’s high number of regions that have to be labeled by the contour-
tracing-based CCL algorithm. Many small regions require the algorithm to
perform more contour tracing steps. Further, a higher amount of bounding
box information is produced by the labeler which has to be loaded to the
GPU afterwards.

The only rendering pass that varies between the different scenes is the
Mirror G-Buffer (MGB) pass, which also clearly requires most of the com-
putation time (250 up to 300 ms). Note that each of the 1.5M points is
rendered to the Mirror G-Buffer twice, due the two-pass visibility algorithm
that is used for point accumulation in the MGB. However the first pass,
which just renders the points to a depth map (1 render target), needs ap-
proximately only half the time of the second pass, which renders to 4 render
targets (4 MGB textures) and additionally has to perform a texture-lookup
for each fragment (depth-comparison). Thus, relinquishing the smooth mir-
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ror mappings obtained by point splat accumulation, and using the nearest
point method for visibility, would roughly double our frame rates.

The bunny model, showing the highest surface complexity (279 regions),
is rendered fastest, since due to its small regions the root finding converges
more quickly, either finding a reflection pixel or loosing the point by stepping
outside the region. On the other hand, the complexity of the bunny scene
leads to its high point loss rate in comparison to the other objects (see Fig-
ure 5.2). The most time consuming object is proven to be the blob model. It
contains only 12 regions, but still needs 60 ms longer for MGB computation
than the bunny. On the other hand, its pixel hit rate is far below that of the
sphere scene, which is rendered faster than the blob, although it contains the
largest region to search a reflection point within. We can conclude from this
that neither highest scene complexity nor highest region sizes alone are most
performance drawing, but rather a mixture of both factors, like given in the
blob scene, can be most challenging for the algorithm.

In the following, we will evaluate the influence of several SSCR parameters
on image quality and performance based on selected surface types from this
list.

5.4 SSCR parameters

5.4.1 Seed and step attempts

As discussed earlier, the seedAttempts and the stepAttempts parameters have
similar functions. They both reduce the number of points lost when perform-
ing the screen-space root finding. The seedAttempts parameter reduces the
number of points seeded outside the intended region, while the stepAttempts
parameter avoids too much pixels from stepping out of its region.

Figure 5.4 illustrates the point hit rate and the Mirror G-Buffer computa-
tion time in the sphere, torus and bunny scenes for different seed attempts.
With increasing seed attempts, the point hit rate converges towards some
individual maximum for all objects. The same holds for the MGB computa-
tion time, though each additional attempt costs several milliseconds in every
scene. Note that the computation time for the sphere scene increases faster
than for the other scenes. This is an indicator for the overall higher number
of steps in the large screen-space region produced by the sphere. This means
that in the sphere region more points are successfully seeded in relation to
the other scenes. This therefore requires a higher number of steps and thus
computation time, but in the end not contributing progressively more hits.
We can conclude from this that the larger a LHC region is, the less efficient
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Fig. 5.4: Influence of the number of seed attempts on the hit rate (left) and the
MGB computation time (right) in the sphere, torus and bunny scenes. Hit rate
and performance values were measured for 0, 1, 2, 4 and 6 seed attempts, keeping
all other SSCR parameters the same as for the test scenes.

are additionally applied seed attempts. Looking at the step attempts in Fig-
ure 5.5, we also encounter a convergence of the hit rate. In case of the sphere
and the torus, our application even reports a reduction of successful points.
However, this could be caused by a slight imprecision of the performance
tracking in our application. As we see, the biggest improvement is achieved
by the first additional step attempt. After the second attempt, no further
benefit is drawn for simple objects (sphere and torus) while the bunny still
gains additional hits. On the other hand, for the bunny the additional MGB
computation time grows more intensely than for the simpler mirror surfaces.
This is due to the high need for additional steps when dealing with a high
number of small, complexly shaped screen-space regions.

In order to evaluate the effect of these parameters on image quality, we
observe the bunny scene, which is affected the most, and reduce the pull-
push closing iterations to 1. This allows for better observation of the pixel
densities achieved by the additional seed and step attempts. Figure 5.6
simultaneously changes both the seed and the step attempts and shows point
hit rate and the resulting appearance of the bunny. According to the graphs
in Figures 5.4 and 5.5, the greatest benefit for pixel density is drawn by the
first two additional attempts.

5.4.2 Initial root-finding step size

The most significant performance parameter for the root-finding algorithm
is the choice of its initial pixel step size. We have already discussed that
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Fig. 5.5: Influence of the number of step attempts on the hit rate (left) and the
MGB computation time (right) in the sphere, torus and bunny scenes. Hit rate
and performance values were measured for 0, 1, 2 and 4 seed attempts, keeping all
other SSCR the same as for the test scenes.

(a) 0/0: 7.39% (b) 1/1: 4.34% (c) 2/2: 7.87% (d) 3/3: 9.95% (e) 5/5: 12.16%

Fig. 5.6: Image quality of the bunny scene depending on the maximum seed and
step attempts. The shown percentage is the point hit rate achieved with the
respective settings.

this step size is reduced throughout the process, each time we overstep the
reflection point. Generally, the bigger the initial step size is chosen, the less
steps are necessary to find a reflection point in large LHC regions. A too wide
step size increases the risk to lose points by stepping out of the region. On
the other hand, too small step sizes let the algorithm converge much slower,
which reduces performance.

We now want to evaluate the influence of the initial step size on the
general number of steps the algorithm needs to converge. As representative
test setup we limit the number of steps to 10, observing the percentage
of points that have not converged. Note that this implies a reduction of
computation time that does not tell much about the parameter’s influence
on the overall performance. We choose the sphere and the torus scenes for
our test, since these two objects provide large screen-space regions where the



5.4. SSCR parameters 85

influence of the step-size on the necessary steps is recognizable. The torus
represents an interesting counterpart of the sphere. Since its LHC region
contains a hole, the step size is also expected to influence the number of
points lost by stepping into it. Figure 5.8 shows the percentage of scene
points not converging within the first 10 iterations for various initial step
size factors. Note that the initial step size factor represents the initial step
size as fraction of the width of the LHC region in which a point is seeded.

Fig. 5.7: Percentages of points requiring more than 10 steps, based on different
initial step size factors.

For the sphere scene, the figure shows a complex dependence between
initial step size factor and point convergence. Between 0.05 and 0.30, the
number of points not converging after 10 steps decreases with increasing
step size. This matches our expectation that higher initial step sizes lead
to a faster convergence of the root-finding algorithm. However, between
0.30 and 0.50 the step count required for convergence increases again in the
sphere scene. This shows us that the number of necessary steps can also
increase if the step size is too high, because in this case the algorithm has to
perform several zic-zac steps around the reflection point before the step size is
sufficiently reduced down to allow convergence. On the other hand, an initial
step size factor of 0.02 shows an extraordinarily fast convergence behavior,
which doesn’t seem to fit in either of our previous two categories. This is
explained by the fact that a too low initial step size loses the scene point
very quickly by being reduced to zero after the first few step size reductions.

Looking at the torus scene, we observe a completely different, but less
complex dependence on the step size. Increasing the step size almost contin-
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uously increases the number of steps the algorithm needs to converge. This
is due to the fact that the torus – although containing only two LHC regions
– shows a much more complex, higher frequent surface curvature than the
sphere. Thus, for this object smaller step sizes are better suited since they
approach the reflection point more carefully.

In order to evaluate the influence of the initial step size on the overall
performance, we run another test series. This time we do not clamp the
maximum iteration count, but rather let the algorithm step until either a
reflective pixel was found or the pixel was lost. Further, we increase the
screen area occupied by the mirror regions in order to magnify the effect of
this factor on the performance. We use the sphere and the bunny models for
our observations, moving the camera close to the objects to achieve a screen
coverage of approximately 50%. Figure 5.8 shows the resulting performance
graph for several initial step size factors for these scenes.

Fig. 5.8: MGB computation time for different initial step size factors in closeup
scenes of the sphere model (1 LHC region) and the bunny model (775 LHC regions).
Both closeups scenes contain approximately 50% of mirroring viewport pixels.

The closeup sphere scene shows a similar behavior than the normal sphere
scene from the previous step size test. Up to a certain step size factor (in
our case 0.1), the performance for the Mirror G-Buffer rendering is enhanced
when increasing the step size. For step sizes above this critical value, the
computation time evens out around some average value (400 ms). In contrast
to that, performance in the closeup of the bunny scene doesn’t depend much
on the initial step size factor. This is easily explained by the fact that the
bunny model contains a high number of small regions. Despite of the closeup,
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these regions still lead to a fast convergence of the root-finding algorithm.
Generally, comparing both graphs we see that a more detailed mirror surface
provides even better performance than a less complex reflector.

5.4.3 Pull-push iterations

The bunny scene is also best suited for the demonstration of the influence
of the used pull-push levels on the image quality. We observe it under the
same parameters as in the original scene, only varying the pull-push count
(see Figure 5.9).

As we clearly see, image quality respectively mirror pixel density is en-
hanced with every step, while the computation time for the pull-push pass
stays below one millisecond. Therefore, the pull-push closure pass is one of
the most powerful and important parts for quality enhancement in our SSCR
algorithm.

(a) 0 iterations (b) 1 (0.72ms) (c) 2 (0.89ms) (d) 3 (0.92ms) (e) 4 (0.97ms)

Fig. 5.9: Influence of the pull-push iteration count on image quality in the bunny
scene. The bracketed time values show the milliseconds used for the pull-push pass
in each case.

5.5 Screen coverage and viewport size

We now will evaluate the influence of the viewport size and the screen cov-
erage of mirror pixels on the overall performance of the SSCR pipeline. Fig-
ure 5.10 shows the performance graph. We use the bunny scene and observe
it at 640 x 480, 800 x 600 and 1024 x 768 resolution. For each viewport size,
we once capture the bunny at the distance given in the scene, and once at
closeup distance (30% screen-space coverage).

We observe a simple dependence of computation time on both the view-
port size and the screen-coverage. Bigger viewports result in more data to
be loaded between GPU RAM and system RAM for LHC map creation. On
same scenes, they also contain more mirror pixels to be shaded by the GI
framework.
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Fig. 5.10: SSCR computation time dependency of viewport size and screen-
coverage. For each viewport size, the left bars shows the performance for the
far bunny (F, 8% coverage), the right ones show the a closer bunny (C, 30% cov-
erage). For each case the graph also shows the hit rate, and the number or regions
in brackets.

5.6 Scene complexity

So far, we only observed single mirroring objects. We evaluated image quality
and performance of various parameters based on their different characteris-
tics. Let’s now see how multiple mirrors interact with each other in a scene.
In Figure 5.11, we place all our models within one scene next to each other.
All scene points are used once for mirror-splatting, distributing them be-
tween each visible homogeneous mirror region. This way, we automatically
achieve reflections of the mirror objects in each other. Note that so far, we
only reflect the diffuse component of an object on a mirror. Since most of
our models do not contain any diffuse component, their mirror image appears
mostly black. This black mirror-mapping is also visible at self-reflected parts
of the object’s surfaces, i.e at their concave corners (see the blob or the bunny
test renderings).

Following the mirror mapping of the sphere on the parabolic mirror
throughout the image series, we can clearly track its pixel density reduc-
tion as we add more mirrors to the scene. The more mirror regions we add,
the less scene points are assigned to an individual region. This pixel density
problem could be reduced by an additional mirror splatting pass, that again
distributes the scene points over the surfaces, only this time using a different
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(a) MGB 209.14 ms (16.9%) (b) MGB 276,53 ms (14.7%)

(c) MGB 323,93 ms (15.4%) (d) MGB 354,87 ms (14.6%)

Fig. 5.11: Series of snapshots continuously adding mirroring objects of different
geometric characteristics to the scene. The caption of each picture provides the
Mirror G-Buffer computation time and its hit rate.

distribution. The second reason for the bad pixel density of the sphere image
in the parabolic mirror is a low pixel splat size. Increasing the pixel splat
size could condense the mirror image again. On the other hand, a higher
pixel splat size would lead to a coarser, smudgier mirror mapping on more
detailed objects like the bunny. In general, we see that the application of
a global SSCR parameter set on a scene containing different mirror surface
types is not sufficient to obtain a maximum image quality.

This points the way for the future work to be done on this renderer.
To optimize the visual results of our approach, the way to go would be the
implementation of a mechanism that intelligently adjusts the SSCR param-
eters based on screen-space mirror scene descriptors like LHC region count,
bounding box sizes, etc.





Chapter 6

Conclusion

We have introduced a new technique called screen-spaced curved reflections
(SSCR) to render mirror reflections on curved surfaces in large point clouds.
We have shown a way to perform a fast 2D screen-space root finding on a
mirror-space error function, in order to find a reflective pixel for a given scene
point in the viewport.

The algorithm is not carried out completely on the GPU, since we perform
a fast segmentation and a connected-component labeling algorithm for the
framebuffer, which is not parallelizable. Although this requires us to copy
framebuffer data between GPU RAM and system RAM each frame, this
method is still very efficient for our task and does not represent a performance
issue at all. We have seen that the most costly part of our method is mirror
reflection rendering, which required about 350 milliseconds in our test scenes.
The problem is that this part of the rendering pipeline actually is a two-
pass algorithm, which does the time-consuming point splatting twice per
frame, in order to perform visibility tests despite of point accumulation. In
our implementation, each available point in the scene is splatted onto the
mirroring surface pixels of the framebuffer. For our small Cornell box test
scenes, these are already about 1.6 million points, each one stepping through
the framebuffer in order to find its reflection point.

Depending on the number and type of mirror surfaces in the scene, dif-
ferent parameter settings of our algorithm result in a different behavior in
performance and image quality. In most cases, better image quality is paid
with computation time, making it hard to state globally ideal values for these
parameters.

Although our algorithm does not guarantee to produce perfect mirror im-
ages, it provides a geometrically correct approach, which also handles difficult
mirror surfaces like highly detailed surfaces or concave mirrors. In contrast
to polygon scenes, we do not expect to gain photorealistic images from point
splat scenes, rather we try to enhance the overall appearance of the scene
and increase the believability of the images.
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Future Work Although our algorithm is designed for point cloud scenes,
we can think of possible applications to polygon scenes. We have seen that
current polygon-based mirror rendering techniques, which try to exploit the
fast feed-forward pipeline of current GPUs, also require finding a correct mir-
ror mapping for each vertex of the (often pre-tessellated) scene objects before
rasterization. Performing this mapping in screen-space using our SSCR ap-
proach would remove the need for any world-space data structure like sample
based camera BSP trees. It would be an interesting task for the future to
compare our approach introduced in polygon scenes to current techniques.
Looking at current real-time global illumination (GI) approaches for poly-
gon scenes, there are methods that depend on a point sampling of the scene
object’s surfaces. These point samples are used for storing the positions of
virtual point lights in the scene, or for splatting on parabolic maps when cre-
ating imperfect shadow maps. In such scenes, if points are already available
for GI rendering, they could also be used for SSCR computation, though
their number and distribution over the scene would be an issue to evaluate.

Our method is intended to support multiple mirror bounces. We have
shown how these can be achieved by a simple iterative extension of the algo-
rithm, which yet has to be implemented. Another issue to focus on would be
the introduction of an intelligent, adaptive point set selection used for mirror
splatting. Many scenes containing smaller mirror surfaces of low complex-
ity would suffice using only an interleaved subset of the points available in
our scenes, i.e. passing only each 2nd, 3th or 4th point through our vertex
program. Up to now, we simply pass all points in the scene through our ver-
tex program and try to find a reflective pixel for them. Further, we expect
a significant performance gain by applying simple culling techniques to our
scenes in order to reduce the number of unnecessarily processed points in our
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algorithm.
Another interesting work for the future would be the evaluation of other

reflection point finding algorithms. We have shown that we can formulate the
deviation between a reflection vector and the eye-vector as a continuous func-
tion δ over the surface, which contains the reflection points in its roots. We
perform a fast 2D screen-space root-finding algorithm, which approximates
the 2D problem by approaching it by two individual 1D bracketing and bi-
section algorithms in each screen-space direction. However, the problem can
also be formulated as minimum search. There are several optimization algo-
rithms, which could be tested in order to find a minimum in this function,
like conjugate gradient or the simplex method. It would be interesting to
evaluate, whether additionally necessary lookups could be outweighed by a
faster convergence to the reflection point.

Enhancing the power and efficiency of our new method by following these
ideas could be an important way to go in order to reveal even better, more
powerful rendering methods based upon our idea in the future.
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