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Abstract

Typical building facades consist of regular structures such as win-
dows arranged in a predominantly grid-like manner. We propose a
method that handles precisely such facades and assumes that there
must be horizontal and vertical repetitions of similar patterns. Us-
ing a Monte Carlo sampling approach, this method is able to seg-
ment repetitive patterns on orthogonal images along the axes even
if the pattern is partially occluded. Additionally, it is very fast and
can be used as a preprocessing step for finer segmentation stages.

CR Categories: I.4.6 [Computing Methodologies]: Image Pro-
cessing And Computer Vision—Segmentation I.4.10 [Computing
Methodologies]: Image Processing And Computer Vision—Image
Representation

Keywords: image processing, image segmentation, image-based
urban reconstruction

1 Introduction

Urban reconstruction is currently undergoing intensive research in
the Computer Graphics and Vision communities. One of the still
challenging tasks is the recognition and reconstruction of facade
details such as windows and ornaments. These are considered key
elements of realistic representations of urban environments. In this
context, the windows of typical buildings can be seen as patterns
that occur multiple times within a rather regular arrangement. Con-
sidering a building’s facade on a frontal and orthogonal image, the
search for the dominant features can be restricted to only the axis-
aligned horizontal and vertical directions.

Our contribution is a method that processes the horizontal and the
vertical directions of a rectified frontal facade image independently
and delivers a grid of axis-aligned splitting lines. These lines delin-
eate image into regions of high horizontal or vertical translational
symmetry. Along these lines, the image can be divided into single
repetitive instances. Our method is robust with respect to noise, dis-
continuities and partial occlusions up to a certain threshold. More-
over, running time is in the order of only a few seconds on main-
stream consumer hardware.

In the next section, we give a brief overview of approaches aiming
at similar goals, while in section 3 we describe the details of our
approach and finally in sections 4 and 5 we present results of our
method.
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Figure 1: The red lines indicate the grid, which has been detected
on the facade. The proposed algorithm is robust to obstacles such
as different illumination or reflections in the windows (best seen in
color).

2 Related Work

Many of the earlier methods are based on multiple views. Wang
et al. [Wang and Hanson 2001] merge multiple views in aerial im-
ages to reduce shadows and occlusion and detect windows in the
blurry results using oriented region growing (ORG). Wang et al.
[Wang and Hanson 2001] also combine multiple views to eliminate
occlusions and use disparity for depth estimation. Then they ap-
ply ORG to segment out the windows and a periodic pattern fixing
algorithm extrapolates the missing windows. Schindler and Bauer
[Schindler and Bauer 2003] detect windows by utilizing depth in-
formation reconstructed from multiple views and infer window ge-
ometry by template matching on the resulting dense point clouds.
Dick et al. [Dick et al. 2004] reconstruct building geometry from
multiple overlapping images and use wavelet decomposition to find
windows that have strong horizontal and vertical features. Tsai et
al. [Tsai et al. 2006] make use of color to detect occlusions from
vegetation and apply morphological processing to detect the regu-
lar structures which they use to repair occluded parts. Brenner and
Ripperda [Brenner and Ripperda 2006] apply RJMCMC to create a
hierarchical model using grammar rules. Their method is based on
both rectified images and laser scan data of facades.

The mentioned methods use either multiple images or images and
laser scan data. Recently some methods have been developed which
need only a single image of a facade. Lee and Nevatia [Lee and
Nevatia 2004] try to find windows based on marginal edge pixel dis-
tributions, which provide hypothesis window templates which are
then tuned towards the image evidence. Alegre and Dellaert [Ale-
gre and Dellaert 2004] proposed a segmentation of facade images
by applying a hierarchical context free grammar. They use Markov
Random Fields to tune parameters of rules for a hierarchical con-
text free grammar modeling the facade. Mayer and Reznik [Mayer



and Reznik 2006] detect windows based on an implicit shape model
that has been trained on template images. Another similar approach
using machine learning and Haar wavelet decomposition has been
proposed by Ali et al. [Ali et al. 2007]. Korah and Rasmussen [Ko-
rah and Rasmussen 2007] employ rectangle detection and MCMC
to find regular grids of windows in a MRF network. Müller et al.
[Müller et al. 2007] generate a hierarchical procedural model from
the image based on translational similarity information measured
by mutual information. While their method requires limited user in-
teraction Van Gool et al. [Van Gool et al. 2007] proposed a method
that uses exactly the same approach for images with little perspec-
tive but is able to reconstruct building facades automatically for im-
ages with strong perspective distortion. Xiao et al. proposes first a
semi-automatic [Xiao et al. 2008] and further an automatic method
[Xiao et al. 2009] for facade reconstruction. Cech and Sara [Cech
and Sara 2008] segment out windows from facades using a MRF
based on the fact that windows are strictly axis aligned in almost all
cases. Musialski et al. [Musialski et al. 2009] uses similar sampling
as our to detect tiles and applies filtering to repair the facade image.

Apart from these highly specialized methods for building recon-
struction there are other related but more general works. Bailey
[Bailey 1997] shows that it is possible to detect repetitive image
patterns by self-filtering in the frequency domain. Hsu et al. [Hsu
et al. 2001] use wavelet decomposition of the autocorrelation sur-
face to detect image regularities. Liu et al. [Liu et al. 2004] detect
crystallographic groups on repetitive image patterns using a domi-
nant peak extraction method from the autocorrelation surface. Tu-
rina et al. [Turina et al. 2001] detect repetitive patterns on planar
surfaces under perspective skew using Hough transforms and appli-
cation of various grouping strategies. Han and Zhu [Han and Zhu
2009] detect regular rectangular structures in photographs of arbi-
trary scenes. Their approach combines bottom-up and top-down
image interpretation by selecting out of many possible detected
candidate rectangles using an attribute grammar. Boiman et al.
[Boiman and Irani 2007] detect irregularities in images and Shecht-
man and Irani [Shechtman and Irani 2007] use a similar approach
to detect local self similarities. From these they generate robust fea-
ture descriptors which they combine to recognizable global ensem-
bles. Furthermore, there exist approaches to detect translational and
another symmetry: i.e. Loy et al. [Loy and Eklundh 2006] aims in
detection of symmetry of particular features in one image and Mitra
and Pauly et al. [Mitra et al. 2006; Pauly et al. 2008] introduces an
approach to detect symmetric structures in 3D geometry.

Our method is comparable to the firstly mentioned group of single-
view approaches which aim at processing a rather specialized task.

3 Recognition of Repeating Patterns

The main idea behind the proposed method is to exploit the in-
herently repetitive nature of almost all facade elements in order to
identify facade tiles, locate them and finally partition the facade
image into tiles. The approach to use only the similarity as seg-
mentation criterion arose from the challenge of segmenting typi-
cal Art Nouveau facades, which are common in many European
cities. Decorated with stucco elements distributed in a relatively
unpredictable manner, such facades are particularly challenging to
model-based feature detection approaches. Moreover, facades of
this category contain many fine grained details and are thus very
difficult to model or reconstruct automatically.

In this work translational symmetries are used to identify repetitive
features and segment the facades into tiles accordingly. The algo-
rithm takes as input a single orthogonalized view of a facade. The

Figure 2: Example of a repetitive pattern in 1D with a highly similar
but not identical instance. Relative differences in signal intensities
between instances of the pattern should not influence the detection
algorithm. An appropriate similarity measure must be applied that
is insensitive to the overall intensity level of the region.

output is an orthogonal grid that defines a segmentation of the fa-
cade image into repetitive tiles. The algorithm itself is subdivided
in the following stages:

Search for dominant repetitive patterns. To identify the relevant
repetitive regions of a facade image (e.g., floors or windows) it is
necessary to search for similar image regions. This is done by com-
paring small image regions on multiple resolutions of the image for
similarity. Because comparing every pair of potentially correspond-
ing image regions is computationally prohibitive,a Monte Carlo im-
portance sampling strategy is applied to collect statistical evidence
about any translational similarities. To extract these relevant pat-
terns out of all the collected evidence the representative offsets are
sorted into a histogram where large patterns result in large peaks.
These are then extracted by Mean Shift clustering [Comaniciu and
Meer 2002]. The result of this stage are offsets in pixels that relate
directly to the prevailing repetitive patterns in the image.

Localization and segmentation of the identified patterns. The
offsets computed in the previous step convey the size of important
repeating patterns but there is no information about their location
in the image. In order to determine these locations the image has
to be sampled regularly to test the image’s similarity response for a
given offset at a given location. Again, efficient randomized multi-
resolution sampling approximates a costly per-pixel analysis of the
image. The computed similarity curves for every offset are the input
to the next stage. Finally the image is partitioned respectively into
regions with and without repetitive patterns. For the regions that
exhibit repetitive patterns, the most dominant pattern is selected and
its offset is taken into account in the splitting process. As a result,
the facade is divided into floors and individual window tiles, which
can be processed by further algorithms.

3.1 Search for dominant repetitive patterns

A closer look at the typical structure of facades helps to understand
which image patterns are relevant for window detection. Most fa-
cades feature many windows of the same size and similar appear-
ance. The arrangement of windows is almost always the same for
the floors of the same facade. Common exceptions to this rule are
usually the first floors which are irregular or different from the oth-
ers. If we consider a sequence of axis-aligned pixels as a function
of the intensities, we notice certain regular repetitions in the signal
(Fig. 2). These repetitions are coherent over multiple adjacent pixel
lines of the image.

A repetitive pattern on a spatial signal is defined in terms of lo-
cal self-similarities in a 1D signal or 2D image. It is characterized
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Figure 3: Without a priori knowledge about the signal, it is not
possible to evaluate the correctness of a split. In this case half of
the first window has been occluded, causing a shift in the start of
the repetitive pattern.

by its offset, the smallest distance to the next most similar recur-
rence of certain distinguishable features in the original sequence of
the pattern. We call this a repetitive instance (see Figure 2). The
same image features that are very important for human vision such
as edges and corners are most important for our repetitive pattern
detection algorithm.

To define the border of a repetitive pattern we assume that the pat-
tern begins at the first distinctive feature (i.e., edge) that is similar to
the signal at the characteristic offset and ends as soon as the signal
starts to differ too much from the original instance. We constrain
the input images to complete pictures of a facade, such that it is im-
possible (except in case of occlusions like in Figure 3) for a pattern
to start in the middle of a window. The bounds of a repetitive pat-
tern are not sharp and have to be defined by a similarity threshold.
With such a threshold, non-repetitive regions can be distinguished
from pattern regions.

A difficult problem for image segmentation based on repetitive pat-
terns is the handling of overlapping patterns. To demonstrate the
problem, consider the facade image in Figure 4. There are two con-
curring segmentations based on either the one pattern’s offset or the
other’s. A solution to this problem, which is adopted in this pa-
per, is to exclude some of the detected patterns according to a priori
knowledge or image area constraints.

Similarity measure. To measure the similarity of image regions
we need a robust operator that is suitable for images of repeated
real-world objects that can exhibit a large range of defects. In order
to compare positions with varying intensities, we compute the nor-
malized cross correlation coefficient (NCC), where we subtract the
mean of the intensities x̄ and ȳ of each patch x and y and normalize
the vectors, respectively:

ncc(x,y) =
(x− x̄)T (y− ȳ)
‖x− x̄‖‖y− ȳ‖

. (1)

where ‖·‖ is the Euclidian Norm. The size of the respective vectors
x and y is equal and is called window size further on.

When measuring local similarities, the window size is an important
parameter to consider with respect to performance and robustness.
The cross correlation of small windows like 3× 3 or 5× 5 pixels
can be computed very fast. Larger window sizes, like 63× 63 or
127×127, are very expensive to compute due to the computational
complexity of cross correlation which is quadratic in the size of the
compared image regions. On the other hand, the quality and robust-
ness of the similarity measure for two image regions increases with
larger windows.

When measuring patterns, the size of the pattern relative to the size
of the measurement window is very important. If it is too small
or too large compared to the measurement window, one will obtain
ambiguous results (Fig. 6). Rather than increasing the patch size
to improve the robustness of the measure, a very efficient way is

Figure 4: Two overlapping repetitive patterns and their correspond-
ing splitting lines. There are often overlapping patterns, especially
in Art Nouveau facades that feature a great deal of decor.

to combine the results of measurements on different scale levels of
an image pyramid. This idea has been successfully used in many
texture synthesis algorithms. It is computed by subsequently scal-
ing the image with the factor s (in our case we use s = 1

2 and cubic
down-sampling):

ς(x,y) =
1

Ns

Ns

∑
k

ncck (x,y) , (2)

where Ns is the number of scales and ncck operates on the k-th scale
of the input image I. The similarity ς results from multiple scale
levels that have been taken at the closest position to the original po-
sition in the unscaled picture and the window size is kept constant,
as shown in Fig. 5. In our empirical tests, we determined that a
good trade-off between speed and robustness is a size of 15× 15
pixels on 3 pyramid levels. This is not completely equivalent to the
multi-sized similarity operator on the original image because it in-
troduces implicit low-pass filtering by down sampling. Even though
it is very robust while being relatively fast compared to using large
similarity windows on the original image. In order to speed up
the computation, an early break stops the evaluation of all pyramid
layers if the similarity value on the higher pyramid level is below
a certain threshold, since in practice most of the compared regions
are not at all similar.

Finally, it is practically independent of the size of the input images
and the size of the patterns. By using a constant window size the

Figure 5: Multiresolution similarity measure.
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Figure 6: Two differently sized similarity windows with highly sim-
ilar matches. a) A correct match with a window size of similar di-
mension with respect to the size of the sampled features. b) An
example of a wrong match with a high similarity value caused by a
too small sampling window.

multi-resolution similarity operator on the image pyramid is highly
efficient compared to using large similarity windows on the original
image.

Monte Carlo sampling. A common approach to dealing with com-
plex or high-dimensional search spaces are Monte Carlo (MC) solu-
tions. Using MC sampling to obtain samples of the data allows for
a low-cost approximation of the expensive deterministic computa-
tion. Instead of computing the similarity for every pair of different
locations, the Monte Carlo algorithm takes a statistical probe of the
similarity at a number of random positions.

Facade elements such as windows, balconies, etc., are characterized
by sharp orthogonal edges and corners. Based on this information
we implement an importance sampling strategy. It is not so impor-
tant to sample image regions without any salient features because
they might not contain any facade elements. Instead we focus on
edges and corners which are better indicators of facade elements.
The implementation of such an edge-based importance sampling
strategy is quite straightforward: an edge image is computed using
Sobel-filtering and Canny edge detection [Canny 1986]. Using this
sampling strategy, the accuracy of the result is significantly higher
than for simple uniformly distributed random position sampling of
the image, while requiring significantly less samples.

Distinguishing important patterns. We propose a sampling pro-
cess to identify large image patterns, which casts a number of ran-
dom samples and sorts the resulting offset into histogram bins if
they meet certain criteria. The resulting histogram represents the
distribution of similar offsets in the image. In order to identify these
patterns and measure their offsets, we propose two different criteria
to judge what is the best matching corresponding region for a given
location: (1) the threshold criterion and (2) the best match crite-
rion. In the following we introduce both criteria in form of their
histogram classification functions h(∆) and point out the respective
pros and cons.

The threshold criterion simply defines a global threshold for the
accepted similarity values. The histogram classification function
h(∆) with threshold criterion for N random samples and threshold t
is given by:

h(∆) =
N

∑
i

{
1 if ς(pi, p∆)> t
0 otherwise. (3)

This function counts how many samples (random pairs of points)
with a given offset ∆ have a multi-resolution similarity value greater
than a fixed threshold t. We have determined empirically that the
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Figure 7: Comparison of histograms resulting from 100k samples
with threshold criterion selection (left) and 1k samples with best
match criterion selection (right). The broad peaks in the left hand
histogram and high peaks of irrelevant offset combinations are signs
of the much higher overall error of the simple threshold criterion.

threshold of 0.8 of normalized cross-correlation operator ensures
that only highly similar matches are counted. By counting only
samples with very high similarity values the variance of the es-
timated distribution of offsets is significantly lower. However, a
quality criterion with a single fixed threshold still counts many im-
precise matches because the sampled offsets are not compared to
each other in any way. Even significant deviations from the perfect
match of two regions may feature insignificantly high similarity val-
ues which might be much higher than the threshold. The problem
arising from this fact is, that the results are noisy and the significant
offsets may be hard to distinguish from the rest (see Fig. 7).

A more accurate criterion for finding the best recurrence of a spot
in the image is the best match criterion. It compares the similarity
values of multiple possible candidate offsets and chooses the best
match. The idea is to draw more than one sample from one random
location, compare them against each other and record only the best
match which is the sample with the highest similarity value.

A definition of the histogram classification function h(∆) imple-
menting the best match criterion for N random samples from a uni-
form distribution is given as:

h(∆) =
N

∑
i

{
1 if ∆ = argmax∆ j ς

(
pi, p∆ j

)
,

0 otherwise,
(4)

where all ∆ j ∈ {D}. The range {D} defines a set of all possible
offsets in the current row or column of the image with respect to
the current sample position.

To sample according to the best match criterion means to count
how many times a given offset ∆ j is the best one in such that its
multi resolution-similarity is higher compared to the similarity of
any other offset at the sample location pi. An offset with a high
number of hits represents a pattern that is more dominant in terms
of recurrence similarity and was found on a large image area.

Extraction of the relevant patterns. Typically, the dominant pat-
terns are represented by a number of very similar offsets forming
peaks in the histogram. These peaks are superimposed with random
noise that might corrupt the results unless an appropriate evaluation
method is used. To reduce the impact of noise, the histogram curve
can be smoothed with a blur operator (i.e. a Gaussian kernel).

In this context it is also important to mention the optimal size of
the filter kernel. While for small images up to one megapixels a
3-pixel filter kernel is sufficient it is certainly not adequate for a 10
megapixel image because it can no longer remove the large-scale
noise. An optimal filter kernel size must therefore be derived from
the size of the input image in order to adapt the filter kernel to the
optimal relative size. In the reference implementation a filter kernel



Figure 8: Original histogram (a) and a smoothed and normalized
histogram (b). In the smoothed histogram some close peaks are
merged together because of oversmoothing. This reduces the num-
ber of concurring extracted peak locations on the one hand but also
degrades precision of the segmentation on the other hand.

size of n = d
50 proved to be useful for most images, where d is

the current image dimension (width or height), depending of the
processing direction. Finally, the peaks are obtained by mean shift
clustering [Comaniciu and Meer 2002].

Post processing of extracted offsets. In many cases the extracted
offsets include doubles, triples and higher multiples of the smallest
offset to the first recurrence. If a pattern is not uniformly spaced
throughout the image, which means that there are differently sized
intervals between the re-occurring regions, it might as well happen
that the extracted offsets contain combinations of those different
offsets (see the annotations in Figure 9 for examples of multiples in
a facade image). A simple but efficient solution to this problem is to
remove all offsets that are close to integer multiples of the smallest
offsets.

3.2 Localization and segmentation

We now know which patterns (given by their representative offset)
are the prevailing ones in the image. Now we want to determine
the location of each distinct repetitive pattern and its extent in the
image.

The Similarity Curve. We again resort to an estimation using ran-
dom sampling. The same multi-resolution similarity measure as
used in the identification step serves as the criterion for the rele-
vance of a specific pattern in a specific region. For every different
offset the sampled data can be seen as a similarity curve containing
the similarity values for every pixel row y or pixel column x in the
image.

A horizontal similarity curve S(x,∆) for an offset ∆ is defined as
follows: the image is sampled at every pixel column x at N random
locations yi. The mean over every pixel row is the value of the
similarity curve at pixel column x (see Figure 10):

S (x,∆) =
1
N

N

∑
i

ς (p(x,yi), p∆(x,yi)) . (5)

The definition of the vertical similarity curve is analogous to the
horizontal curve in that for every image row y N samples xi are
drawn.

The localization of the patterns is done by comparing the similarity
curves for each relevant offset against each other (see Fig. 10 top).
By setting the curves in relation to each other, a decision can be
made which image regions “belongs” to which pattern. Moreover,

Figure 9: Demonstration of a number of possible multiples of off-
sets A and B which might obscure the results of the histogram ex-
traction. Two, three and four times multiples of an offset happen
quite often and can be easily removed by postprocessing.

regions with very low similarity response to all major offsets are
considered to be non-repetitive image regions.

Segmentation. The segmentation algorithm iteratively decides
what is the most dominant offset in the local image region and then
divides the image accordingly. The decision criterion for finding the
most dominant offset of the next region is the accumulative similar-
ity. In other words, the segmentation algorithm integrates over the
similarity curve of every offset from the current position to the off-
set. This means that we need to integrate over a different interval
for every offset. In order to be able to compare these accumulated
similarity values against each other they need to be normalized by
the offset. The offset with the highest normalized accumulated sim-
ilarity wins and the size of the hereby segmented region is the off-
set. The current position advances to the end of this region and the
algorithm enters the next iteration.

The iterative segmentation is defined formally by the position of the
next splitting line Li+1 based on the position of the current splitting
line Li:

Li+1 = Li + argmax
∆

∑
Li+∆ j
x=Li

S(x,∆ j)

∆ j

 , (6)

where ∆ j are the relevant offsets that have been extracted from the
image. L0 is initialized to 0 or to the first row or column that ex-
hibits significant repetitive response on any of the relevant similar-
ity curves.

The highest value of the integral over the offset’s similarity curve
normalized by dividing through the offset is used to decide at which
offset to set the next splitting line, so to say, which offset represents
the following region’s most dominant repetitive pattern best. As
this method cannot account for intervals of non-repetitive nature it
is necessary to identify the image regions where any of the offset’s
similarity curve is below a certain threshold (i.e., 0.3) and apply the
iterative segmentation algorithm to the remaining repetitive regions.

A shortcoming of this segmentation method is the fact that an off-
set ∆ and its non-fractional multiple N∆, with N = 2,3,4, . . . , are
treated as if they would represent completely different patterns,
even if both offsets are occurring due to instances of a single pat-
tern. This results in systematic errors when offsets are fighting with
their multiples. Their similarity is quite equal yielding unstable re-
sults depending on the random numbers used for sampling. A pos-
sible solution is to modify the splitting function in order to slightly
prioritize smaller offsets over larger ones with a weighting factor:

ω(∆ j) = 1−
(

∆ j

min∆
ε

)
, (7)
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Figure 10: Illustration of the iterative segmentation algorithm. For
each iteration and each major offset an integral Fi of the similarity
curve Si is calculated. Since the integration is over a different range
for every offset, the resulting areas are normalized to allow a com-
parison. The offset with the higher normalized area wins the voting
for this iteration. In this example in the first iteration the offset 121
is chosen, in the second iteration the offset 146 is selected, and so
on.

where ε is a small penalty factor such as 0.2. Then the iterative
segmentation function is given by:

Li+1 = Li + argmax
∆

∑
Li+∆ j
x=Li

S(x,∆ j)

∆ j
ω(∆ j)

 . (8)

The weighting function ω prioritizes the smaller offsets and hence
effectively rules out unwanted multiples if their singular offset is
present with a high similarity value. On the other hand, in case that
an offset is the multiple of a smaller offset by accident but the local
image area does not exhibit any smaller pattern then the larger one
would still have a higher similarity value.

4 Performance

Best-match vs. Threshold criterion. Table 11 summarizes hori-
zontal segmentation performance of a facade image with different
resolutions using threshold sampling criterion with a threshold of
0.8 and 50.000 samples. The performance of vertical segmentation
is equivalent to horizontal segmentation.

All timings presented here were recorded on a Intel Dual Core
2.4 GHz computer. The performance comparison shows the lin-
ear complexity of best-match sampling vs. the constant complexity
of threshold sampling with respect to image resolution. It suggests
that the best match criterion is best to be applied for small images
while the threshold criterion is best suited for large images due to its
constant complexity. On the other hand, the results of best-match
criterion are more precise, so best-match sampling is better if high

Performance comparison, time (s)
megapixel best match threshold

0,59 1,53 4,32
1,19 3,41 6,33
2,37 8,49 8,33
4,75 18,15 9,23
9,50 37,39 9,61

Table 1: Running time comparison.
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Figure 11: Performance comparison of the sampling criteria ”best
match” versus ”threshold”. The graph displays the running time of
each sampling strategy as a function of image size.

precision is required, i.e., for images where the distance of different
patterns which should be distinguished is relatively low.

Complexity. For best match sampling the complexity of the
method depends on the number of samples n and the resolution of
the image m in pixels. The algorithmic complexity for best match
sampling is therefor limited by an upper bound of O(nm) while the
complexity of the threshold criterion depends solely from the num-
ber of samples taken. The size of the input image does not signifi-
cantly influence the performance of the threshold criterion method.
The algorithmic complexity for sampling with threshold criterion is
therefore limited by an upper bound of O(n), where n is the num-
ber of samples taken. If the number of samples is considered to be
a fixed constant (because the number of samples does not dynam-
ically change once an appropriate number has been chosen), then
the complexity of “best match” is actually linear O(n) with respect
to image size n and the complexity of the threshold criterion is con-
stant O(1) for increasingly larger images.

Impact of the probe size. The performance of this segmentation
method is not only dependent on the image size but also on the
number of samples taken. Table 2 shows the horizontal segmen-
tation performance of a typical facade image with a resolution of
0.4 megapixels and different numbers of samples. For the threshold
sampling criterion, a threshold of 0.8 was used.

Parallelization. The algorithm is parallelizable in several ways
to leverage of the computational power of contemporary multi-core
processor architectures. For instance, one could divide the work-
load of the sampling stage by the number of processors available p,
so that every thread takes N

p samples individually in order to get a
complete number of N samples. This approach does not require any

Best match criterion Threshold criterion
samples time (s) correct samples time (s) correct

2 0,07 no 50 0,008 no
5 0,2 no 500 0,07 no
10 0,57 yes 1.000 0,12 no
20 0,81 yes 2.000 0,25 yes
40 1,64 yes 5.000 0,71 yes
60 2,19 yes 10.000 1,29 yes
80 3,15 yes 20.000 2,63 yes

100 3,99 yes 50.000 6,59 yes
200 7,01 yes 100.000 12,91 yes
500 18,87 yes
1000 36,67 yes

Table 2: Probe size dependence.



synchronization between the independent processing threads until
the end when the histogram is evaluated. The individual histograms
of each thread can be merged for the extraction of the major offsets.

5 Quality

The precision of the segmentation method presented in this paper is
given by the average deviation from the exact solution on an appro-
priate number of test cases. For this purpose the algorithm has been
tested against a hand-crafted image with exactly spaced instances
of a pattern. The following table lists the average deviation of 50
runs each for both sampling criteria as a percentage of the exact
solution.

The slight fuzziness of the segmentation results are due to the ap-
plied Monte Carlo random sampling. For example, if the windows
on a facade image are spaced by an offset of 300 pixels, then a
2% deviation means that the resulting detected offsets may be off
by 5 pixels. The relative representation of the error as percent of
the exact result has been chosen because the absolute error grows
proportionally with the absolute size of the patterns.

Resolution independence. The current implementation is able
to successfully segment facade images starting from a lower limit
resolution of 100 kilopixels up to extremely large images which
are bound only by the memory capacity of the machine. Due to
the adaptive multi-resolution sampling the segmentation results are
very stable for an image under extremely different resolutions.

All parameters are defined relative to image dimensions. The ad-
vantage of such an approach is that the algorithm automatically
adapts to the resolution of the input image and yields correct re-
sults without tweaking any parameters.

Of course, results are always more precise on high-resolution im-
ages. It may happen, that on low-resolution images not all off-
sets are measured correctly because they are either smaller than
the smallest correlation window in the image pyramid or they are
too close to other offsets and their peaks are merged during his-
togram smoothing. For good results a minimum resolution of one
megapixel is suggested for use of this method, although in certain
cases it has been observed to work quite well with much lower res-
olution images.

Robustness to Gaussian blur. The robustness with respect to typ-
ical image damage is demonstrated by showing the results of tests
against incrementally more blurry and noisy versions of the same
picture. The following table compares the robustness to blurriness
of the best match sampling method with the threshold method.

Under extreme blurring the importance sampling strategy fails and
too few samples are drawn. This is due to the method’s focus on
image discontinuities such as edges and corners. With increasing
blur such image features vanish. Nevertheless, the method can be
considered robust against blurriness.

Robustness to random noise. The following table compares the
robustness of the best-match sampling method against the threshold
method with respect to overlaid random noise.

best-match threshold
average error 1.67% 1.66%

standard deviation 0% 0.35%

Table 3: Precision. See description in the text.

Figure 12: The test images: under Gaussian blur with different radii
(top) and under increasing levels of random noise (bottom).

Obviously the two different sampling methods behave completely
different with random noise applied to the input images. The best-
match sampling criterion is extremely robust and is even under
heavy interference with random noise able to find the regular pat-
tern beneath. Threshold sampling, on the other hand, is quite fragile
with noisy images. This is due to the fixed similarity threshold cri-
terion, which must be fulfilled for each sample in order to be stored
in the histogram. In order to perform well with degrading image
quality and noise, this threshold would need to be adapted dynam-
ically. This would be a possible subject of further improvement.
Figure 13, bottom, demonstrates the robustness of the segmentation
algorithm on a real-world image – the algorithm reliably detects the
repetitive pattern even though it is heavily obscured by blur and ir-
regular vegetation.

6 Conclusions

We proposed a novel method for fast recognition of repetitive pat-
terns along horizontal and vertical axes of the image. The method is
entirely based on the assumption that explicit analysis of the image
content could never lead to a generalized method and that measure-
ment of repetitive similarities is enough to identify and segment
facade elements. As the results show, this approach was successful,
both in a reliable and efficient manner. However, by using only in-
formation on the translational symmetry of a set of random image
locations it is not possible to discriminate certain areas as back-
ground signal and identify others as foreground. In other words,
by not analyzing the content we are not able to identify any con-
crete objects in the image or distinguish them from uninteresting
background noise.

For future work we see room for speed improvements of the Monte
Carlo sampler by applying more sophisticated importance sampling
of the underlying PDF. An additional possible extension is the intro-
duction of a finer similarity measure for windows based on local re-
flective symmetry, which is extensively present on typical facades.

radius best-match correct threshold correct
1 yes yes
2 yes yes
5 yes no

10 no no

Table 4: Robustness to Gaussian blur.



noise (%) best-match correct threshold correct
50 yes yes

100 yes no
200 yes no
400 yes no
600 no no

Table 5: Robustness to random noise.
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Figure 13: Results. The red lines indicate the grid that has been automatically detected on each facade (best seen in color). Note, images
on the bottom demonstrate the robustness of the algorithm on a facade that is obscured by trees and a facade with different reflections in the
windows.


