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Abstract

Around the world most of fires originate from accidentially disposed glowing lit-
ter. These fires could be easily extinguished with the right kind of training and
encouragement. Since many years there are trainings for employees in fire extin-
guishing but these trainings are expensive and inefficient. One way to generate
sufficient training might be virtual reality. Virtual reality is used to train people
around the world in the most complex tools like surgical instruments with success.
The aim of the project was to tie those worlds together.

In this thesis we try to give an overview how to train people using virtual
reality. Furthermore, we explore which technology is needed to create enough
realism to immerse the user. We will discuss how we chose the technologies we
used to create a system for fire extinguishing training. Then we will explain how
we implemented a system based on virtual reality methods. We tried to immerse
the user by tracking, stereo rendering and modern rendering techniques to create a
convincing output. In this system the fire spread and reaction to the extinguishing
agents are calculated in real time. In addidtion, our system provides a powerful
content pipeline to create new scenes for the training on the fly.
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Kurzfassung

Die meisten Feuer auf der Welt entstehen durch unabsichtliches Entsorgen von
noch glühenden Abfällen. Mit der richtigen Ausbildung könnten die meisten Men-
schen solche kleinen Feuer selbst bekämpfen und verhindern. Seit vielen Jahren
gibt es bereits für Mitarbeiter Feuerlöschübungen aber diese sind zumeist teuer
und nicht besonders akkurat. Ein Lösungsansatz wäre Virtual Reality Technolo-
gien einzusetzen für dieses Training. Heutezutage werden schon viele Menschen
mit Virtuellen Technologien trainiert die komplexesten Aufgaben zu erfüllen, wie
zum Beispiel Chirurgen auf feinste Operationsvorgänge. Das Ziel dieser Arbeit
war es diese beiden Welten zu vereinen.

In dieser Diplomarbeit werden wir versuchen einen Überblick darüber zu ge-
ben wie man am besten mit Vituellen Technologien Unterrichtet und Trainiert.
Weiters werden wir Beleuchten welche Vorraussetzungen dieses an die Technolo-
gie setzt um die grösst mögliche Immersion zu erreichen. Ausserdem werden wir
einen Einblick geben wie wir all dieses Wissen benutzt haben um solch ein Sy-
stem in die Realität umzusetzen. Dieses System benutzt Tracking, Stereo Rende-
ring und moderne Rendering Technologien um die grösst mögliche Immersion zu
erreichen. Die Feuerausbreitung und die Reaktion des Feuers auf die Löschmittel
werden hierbei in Echtzeit berechnet. Weiters ist es sehr einfach möglich neue
Szenen für das Trainig mit den von uns entwickelten Werkzeugen zu erstellen.
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Chapter 1

Introduction

The aim of this thesis was to create a system to train users in the handling of
fire extinguishers. The project was developed in cooperation with the VRVis1 in
Vienna. Upon starting on the project we decided to base our training on virtual
reality methods. Crucial to our project development was the question when to use
virtual reality methods and if used, how to apply it properly into the scenario.

Training and learning supported by virtual reality has a long history. Virtual
reality has the ability to immerse the user in situations which either are too dan-
gerous, too expensive or completely out of reach for humans. Thus enabling the
training of scenarios including these environments. A long lasting history of train-
ing in difficult environments has for example the National Aeronautics and Space
Administration (NASA).

1.1 History of virtual reality in the NASA

Most of the environments NASA tries to reach are either not reachable or too
dangerous for humans to explore directly. How to prepare astronauts to walk and
work on the Moon, Mars or even more exotic places like the Venus? Even with-
out trying to send astronauts to these places, roving vehicles are used. Operators
have to understand the characteristics of the ground they are driving on. How can
you obtain such experience, when noone has never seen or touched these grounds?

1 http://www.vrvis.at

http://www.vrvis.at
http://www.vrvis.at


6 Chapter 1. Introduction

NASA has therefore a long history of virtual reality research. It started with
the moon program. Astronauts where sent to areas on earth with similar charac-
teristics of the moon surface like the deserts of Arizona or Nevada. The first shots
of the moons surface from close fly by satellites where intriguing at the beginning.
In 1966, the first unmanned spacecraft Surveyor 1 landed on the moon. Surveyor
1 and its successors Surveyor 2-5 had video cameras that took images from its sur-
roundings and sent those images back to earth. Over the time within the Surveyor
program, 87632 images where taken by the spacecrafts. Those images were used
to pad hemispheres with a photo mosaic inside. These hemispheres are used to
immerse the astronauts in the panorama of the moon. Astronauts summon a feel-
ing for the surrounding on the moon surface. Thus, the first virtual environment
for planetary exploration was created. For mission planning real size models of
the satellite were used. The landscape calculated out of the images of the other
satellites were used to create rocks and ridges around the module. With digital-
ization of all images the technique to create the environments was shifted more
and more towards the computer. Therefore, NASA invested more and more in vi-
sualization of the created images directly on the computer. In the beginning large
screens seemed sufficient and then more and more heavy and big head mounted
displays took their places. In parallel to the moon missions, the eyes of the sci-
entist wandered even further into space toward the Mars. The first images from
satellites in orbit around Mars were put together again in a mosaic onto a sphere.
Like a globe to visualize the layout of the land on mars.

One can see through this long history of virtual reality many facts are already
known. What is possible and what is not. We will try to use all that existing
knowledge and integrate the best ideas of it into our simulation.
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Previous Work

The idea of training and learning using virtual reality has been previously ex-
plored. Many researchers and papers are already published regarding how to best
utilize the unique features of virtual reality for learning and training.

2.1 Learning and training in virtual reality

Before we can explore existing training systems we should examine the basics and
groundworks of learning.

2.1.1 Learing and training fundamentals

Robert Gagne defined learning as ”the process by which human behaviors are
changed within certain identifiable situations” [GBW88]. This means that the
learning process in humans is triggered by interacting in special environments.
Thus, leaving the question what environments are the most stimulating environ-
ments for learning purposes?

Another basic question is, when does learning occur? The answer is quite
easy, basically, every time a sensory nerve is triggered. How do we now trigger
the right sensory inputs to integrate the instructions into the knowledge base of
the trainee.

Still it remains to explore how we learn. David C. Traub sows a simplified
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three step learning process [Tra94].

1. Data acquisition. This comprises classic learning. The consumption of in-
formation and symbols needed for the understanding of patterns and corre-
lation of patterns. This is the main phase of learning, where virtual reality
techniques can be used most effective. By increasing the number of used
sensory channels of the human mind the learning is strongly enforced.

2. Collaborative learning. Learning can be enhanced by social interaction with
other learners or teachers. Hearing the same theory or explanation through
different words or from the viewpoint of someone on the same knowledge
level as the learning person can help to deeper understanding of the topic.
Here virtual reality is not as strongly rooted as in data acquisition but there
are projects trying to use exactly this human behavior in virtual reality to
enhance the learning process.

3. Reflection. The learned information can be deepened and remembered for a
longer time when the information is applied and reflected over a longer time
period. In this point, the applications for virtual reality are limited since the
access to virtual reality to the learner are mostly limited.

According to this model each step needs its own strategies and technologies
to support the learning process. Yet, we begin to understand where and how we
can integrate virtual reality technologies into the learning process to support the
most efficiently. One can see that even with the best technological equipment the
learning process cannot work without human interaction. At last we have to con-
sider the importance of reflection. A point often completely neglected in adult
education.

Another interesting observation of Robert Gagne was that learning can be di-
vided in different types of learning. Each of them again more or less suited for the
application of virtual reality technologies.



2.1. Learning and training in virtual reality 9

1. Verbal information. Gagne puts all common learning into this category.
Verbal information is all information that can be learned by studying and
understanding of information. The knowledge of each person in an infor-
mation learning process increases. This is the common application of mod-
ern learning techniques. In this field, new technology like virtual reality and
interactive learning might be applicable.

2. Intellectual skills. Those are skills like learning of a language or quantifica-
tion. They are best trained by mentored learning and repetition of applica-
tion.

3. Cognitive strategies. A high order learning skill, which includes self struc-
turing of learning and the ability of a person to understand a pattern. Since
these strategies are based upon self reflection, it is one of the hardest skills
to teach. Here a technological approach is hard to find.

4. Attitudes. The change of behavior as taught by a trainer. Currently, the
most powerful training device in this area is television which changes the
behavioral pattern of millions.

5. Motor skills. Physical skills, involving both skeletal and muscular activities.
Those skills are trained best through extreme repetition. Virtual reality is
hard to implement here and can only be used as a support system at the
moment.

Each class has its own characteristics and needs a different approach. Stephen
M. Alessi and Stanley R. Trollop [AT85] did posit six methods of computer sup-
ported learning.

1. Tutorial instruction. Learning through a strong dialog with the Student.

2. Drills: A sequence of questions or tasks repeatedly presented to the student.

3. Simulations: Representation of physical phenomenons.
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4. Instructional games: Motivation for the student through involvement of play
elements.

5. Tests: Drills to test the student.

6. Problem-solving environments: Complex environments and their outcome
are changed through the students input.

Now we have established the basic principles of learning and divided the learn-
ing skills into different classes. Still, several questions remain unsolved: How do
we implement these findings into educational training simulations? How easy is it
for the students to use the systems? And how to integrate the system in the normal
education system?

2.1.2 Educational use of virtual reality

In 1991, Bricken et al. [BB] conducted a study with pupils from the age of five to
eighteen at the Pacific Science Center in Seattle. The research study was embed-
ded into the Technology Academy. The Technology Academy is a summer day
camp where the students have the possibility to explore various scientific fields.
In 1991 they tried for the first time to implement a distinct virtual reality course
in cooperation with the University of Washington Human Interface Technology
Laboratory (HITL). Each week of the course a group of about ten students par-
ticipated in the virtual reality group. The students were guided through the week
by teachers that were not specialized on virtual reality before. The HITL just pro-
vided information, training courses for the teachers and the necessary hard- and
software. The aim of this project was, that the students should create a virtual
world within one week. On the last day of the course they were driven to the
HITL lab to see their world in a virtual reality setup. A head mounted display was
used for the visual output and a data glove for the input.

Throughout the week the students were put together in small groups of two
or three. The students used Swifel3D to create the world they imagined. They
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had to decide on their own, how to divide the work between the groups. The de-
sign and layout of the world was complete open to the students. Interestingly, it
was not that hard for them to get used to the modeling program. However, we
must note that in 1991 modeling was more primitive like spheres and cubes than
polygon modeling which is the standard nowadays. They liked the sense of im-
mersion when using the head mounted display and the Data Glove, even though
the head mounted display was fairly low resolution and the input was far from
intuitive. While one of the students was immersed in the virtual reality setup the
other students could watch what he saw on a normal screen in a higher resolution.
The students watching had a better orientation than the student using the head
mounted display. Most likely, this is because of the low resolution and field of
view of the head mounted display. The analysis of the whole project in the end
was quite simple. Mostly they tested whether the students liked the system and
if they did, whether they would do it again. Surprisingly, many students liked
the system and wanted to work again with virtual reality, even though the system
presented to them was neither very immersive or intuitive to use.

More recently, in 1999 a team of the university of Illinois at Chicago con-
ducted a one and a half year long study in the Abraham Lincoln Elementary
School in Oak Park in Illinois [JMOL01]. The hardware they used was a Immer-
saDesk. The ImmersaDesk is a stereo back-projection screen with build in head
tracking and audio stereo output. The whole project emphasized on two questions.
First, how does virtual reality influence the cognitive process of learning and how
to use this knowledge to develop better teaching systems including virtual reality
techniques. Second, how can virtual reality be incorporated into the class room
without interfering too much with the learning system at the moment. The idea
that multiple representations of one problem can help the student to understand
the problem itself is not a recent idea. The learning of scientific ideas works by
constructing mental models that incorporate those. These models have to support
argumentation, explanations and prediction. Visualization helps to construct such
models. However, construction of such models is not enough. The student has to
coordinate multiple models and their connections. The keys of visualizations for
constructing a mental model of a presented problem are:
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1. Integration. A visualization can provide parallel information, where a tex-
tual description can only provide a sequential description. Thus, supporting
to see connections in the presented problem.

2. Dynamics. Dynamic visualizations can provide information of the system,
over time. Thus, helping to understand how a system evolves.

3. Reification. By showing some specific instances of the problem, a visual-
ization can help to understand the underlying problem.

4. Activity. Interactive visualizations incorporate the basic idea that learning
is facilitated through activity.

5. Immersion. By creating the feeling of experiencing directly the visualiza-
tion, the user experiences the natural capacity to learn through experimen-
tation.

One of the most important goals of scientific teaching is to train the under-
standing of different representations of the same model. One of the most common
mappings in virtual reality is between exocentered and endocentered representa-
tions.

• Time. The different representations differ in time, like a time lapse of a
plaza or the change of mountains in millions of years.

• Transformation. The change of the geometric shape of an object, for exam-
ple, the change of a planets surface depending on its distance to the sun.

• Scale. The same object in different scales, for example, a zoom of the earth
in orbit around the sun to the street map of a city.

• Part-whole. The understanding of a small working piece and how it affects
the whole system, for example, how a piston works and how it affects a
whole car.
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• Form-function. How the shape of an object affects its working. Again a
piston is a good example here. The shape and size of the piston highly
affects greatly the power of the motor.

• Abstraction. The relation between an abstraction and a real object. For
example a blueprint of a building and the real house.

• Interpretation. The relation between a hypothesis and evidence or another
hypothesis.

All these mappings are somehow involved in learning a scientific concept.
Analogy and schema articulation comprise two more mappings important for
learning a scientific concept. The analogy hypothesis states that the mapping of a
new model to an already understood model is easier than learning a new model.
Thus, helping to show relationships between one model and another can really
ease the learning of the new model. The hypothesis that presentation of different
representations of the same model can itself help to understand the underlying
model is a theory but not a proven concept. There are studies which show that
learning with two representations of the same model helps the students to under-
stand the model faster. Anyway, this hypothesis is not accepted as a basic learning
principle by everyone. That two representations can also be irritating for students
showed Ainsworth et al. [ABW97]. The students in this study had a hard time
to map the two models onto one problem and therefor spending more time on the
mapping instead of the understanding of the underlying problem. Furthermore, it
is shown that children and adults have the same problem with the mapping task.
So teachers or trainers are still necessary to explain the mapping between the rep-
resentations to make the transition easier.

Johnson et al. took an ImmersaDesk to an elementary school in Oakpark to
really incorporate the virtual reality equipment right into the school. Using an
ImmersaDesk instead of head mounted displays has the advantage that multiple
users can view the same scene simultaneausly and it is easier and less stressful to
use over a long period of time. They decided to use an own room for the virtual
reality equipment next to a Media Center in the school so, that the pupils could use
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the virtual reality center instead of the Media Center at the same time. This has
the great advantage that the Media Center is as well a nice alternative to normal
learning as the virtual reality is. This makes the comparison of engagement of the
pupils easier.

The conducted research was divided in three separate tracks. A cognitive study
track where they studied the building of mental models from multiple perspec-
tives. The QuickWorlds track, where they tried to augment the existing classroom
material with virtual reality material to give the students a more in depth look
at the same topic. And finally the Virtual Ambients track which focused on the
teaching of scientific methods for research.

The cognitive study track focused on learning and cognitive understanding of
the pupils. The pupils were presented with an asteroid, on which they could walk
around. The air was to give them a feeling of walking around on a small spherical
world. In a dialogue afterwards they tried to enlarge that understanding towards
walking on a sphere the size of the earth. This studies were done first with second
graders and then with first graders. The first graders had the most problems in
working together. When one pupil was immersed and a second pupil watching on
a second screen in an exocentric view, they had difficulties to give directions to
the immersed pupil. That shows that the ability to imagine the view of another is
an ability that can be learned. This will be a future project of the team.

The aim of the QuickWorlds track is to augment the normal lessons for the
pupils with new interactive material. The advantages of virtual reality are that the
fabrication of new digital models to show the students is way cheaper than pro-
ducing a new physical representation and some models would be too big to show
in a classroom. Since this is the most common usage of modern media in class
rooms. And thus the primary target to embed the technology into the classes. In
those one and a half year various examples were created for the teachers to sup-
port their material. From a pumping animated heart to the eruption of St. Helena
they implemented many different scientific models. Introduciong virtual reality
on their behalf was approved by teachers and pupils.
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The third and last track was the Virtual Ambients. Scientific methods seldom
get a course or teaching on its own. Scientific methods like data acquisition can
be best taught in a controlled environment with characteristics already known to
the teacher. In virtual environments teachers have complete control over the en-
vironment and the rules it follows. Also virtual reality environments can show
the pupils environment they could not travel to. They tried this theory on three
different classes from the first grade, the sixth grade and the fourth grade. All
classes were presented with the same environment, a large area the size of several
football fields. It was divided in three by three areas. In the environment several
kinds of plants were growing. Depending of the grade the classes were presented
with a different set of tasks. For the first graders a small team had half an hour
to freely explore the environment and report afterwards all their findings to their
colleagues. They then had to form a plan how to divide and survey the whole
field. Their task was to find how many and which plants are growing in the envi-
ronment. Each of these small groups hat 20 minutes to explore and take notes. In
this time they took turns to take notes and control the virtual reality system. The
six graders where confronted with a more complex task. They had to find out cor-
relations which plants grow together. In the last year they tried a third system with
fourth graders. The task for them was to survey the scene over a longer period of
time and survey the growing habits of the plants.

Throughout the time in the school the team from the University of Illinois[JMOL01]
learned a great deal of information. The pupils had a hard time using the isometric
joystick they provided, which did not surprise us at all. Furthermore, the research
team wondered whether it would be easier to use a normal game pad from a game
console to control for the pupils. Generally, isometric joysticks are not common
in the normal environment of pupils, where as normal game pads are like a natural
interface for pupils that age. Since they already know how to use a game pad to
navigate in a virtual environment the immersive feeling would be greater. Another
more relevant finding was that the pupils tended to get cybersick when looking at
the screen while another pupil was head tracked. The fast uncontrolled change of
perspective was sometimes too much to handle.
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2.2 Emergency training

Now we will focus more on training for extreme situations and emergencies using
virtual reality. For each of these works we can ask the question, what have they
done right and what can we learn from it.

2.2.1 Nuclear Training

First, we will discuss training for first responders to nuclear facilities using 3D
visualization technology [SL05]. The goal of the system Robert L. Sanders et.al.
in 2005 presented was to create a training scenario for first responders at a nu-
clear reactor environment. First responders is a term that describes emergency
personnel that is not highly trained for one purpose who can react and arrive at the
emergency site in the shortest time. Since this personnel is not specially trained
to work in a radioactive environment they have to undergo briefing before they
can enter such facilities. The system should help train personnel stationed around
such facilities in case of emergency. What is most important in such an scenario is
to know what are the critical points inside the facility like the areas where the safe
shut down equipment is contained, how to use geiger counters and other equip-
ment to measure the radiation and to understand the warning symbols throughout
the facility. In addition, they need a brief knowledge about the dangers of direct
radiation and long lasting contamination.

The aim was to create a training system which can be distributed to all person-
nel surrounding the facility. So they created an affordable solution which can be
used on normal computers without any expensive equipment. Their solution was
to use an established game engine to recreate the facility. They used the Unreal
Engine from Epic because it features an easy to use editor and is very flexible
through scripting. Also they coupled the system with a simulator that calculates
the probability of core damage in a nuclear facility.
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The advantages of using a complete game engine like the Unreal Engine are
manifold. First, the development can focus on the content and scripting without
wasting too much time on creating a render engine and content pipeline. A mod-
ern game engine like the Unreal Engine create graphics that are quite realistic
compared to many other competing products, since they are focused on impres-
sive graphics. The Unreal engine had already a system build in to simulate things
like a radiation field. Radiation is one of the most important things that has to be
simulated since it ca not be seen, only measured. In Unreal it is called a ”LavaVol-
ume” but it can easily be exploited so that it can be used as an radiation volume.
Since the engine is scriptable, equipment like a geiger counter can be incorpo-
rated. This geiger counter simple has to ”measure” whether the user is inside the
volume or not. Using this principle they where able to simulate a geiger counter
that is displaying the actual amount of radiation and the affect of the radiation on
the user using the ”health” of the player in Unreal. They discussed the usability
of artificial intelligence to simulate other non players like workers, spectators or
other personnel. The lighting situation is flexible which means the scenario can
be trained in daylight and at night.

Since a nuclear reactor has to be cooled all time, it makes it extremely vulner-
able for attacks. To simulate the failure of multiple systems of the power plant a
Visual Interactive Site Analysis Code (VISNAC) from ORNL is used. It is a Java
based expert system that precalculates the effect of a failure. The system needs a
3D model of the power plant which can be build from CAD drawings or by cus-
tomizing the models which are provided by the system.

As a sample implementation a small experimental reactor was implemented.
The scenario is placed in a small university with a nuclear test facility, see figure
2.1.

With regard to this thesis project we found the idea most applicable. So, in
order to fit our training program into the best suitable and affordable, already ex-
isting, engine we decided tu use a free open source engine that fitted our needs.
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Fig. 2.1: A research nuclear facility as test scenario. From [SL05]

2.2.2 Fire fighter training

Tazama U. St. Julien et.al. developed a training simulation for fire company of-
ficers [SJS03]. A fire officer has to lead a team of four to eight fire man from
the outside of the building. A fire officer has typically years of experience and
was on site in many emergencies. Furthermore, a fire officer has to take classes in
emergency theory and has to undergo practical training.

The idea of using a virtual reality system for training is simple. First, not all
fire companies encounter all kinds of fire, for example, for the Atalanta Fire De-
partment only 3% of all emergencies are fires. Also the onsite training happens
in an heavily controlled environment. This means the fire man does not have to
think about structural integrity of the building. At last the onsite trainings create
a heavy pollution through the smoke of the fires.

The system can be divided into three subsystems. The rendering of the house,
fire and smoke, the fire simulation and the command input.

The command input was a graphical user interface. The commands are con-
trolled on a second computer and sent over TCP/IP to the simulation. At first a
textual command line input was used but since the trainees did not learn all possi-
ble commands it has proven unusable.

For the graphics and firefighter simulation the Simple Virtual Environments
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(SVE) library is used. The fire man are drawn and animated in 3D Studio Max.
The animations are exported in a custom file format. At the moment the fireman
support cutting, chopping, walking, crawling, climbing, pulling and operating a
hose and carrying some tools like axes and ladders, see fig. 2.2. The fire man find
their way through the house using a A* path finding algorithm. The A* algorithm
is a graph based simple but robust way to get the shortest path to a specific node
within that graph.

Fig. 2.2: Firefighters with working tools. From [SJS03]

The fire simulation itself is done off line with the Fire Dynamics Simulator
(FDS) from NIST. It is based on numerical solutions of Navier-Stokes equations
to approximate the flow of hot air and smoke. The fire spread is calculated in one
second intervals. With their system, a 1GHZ based computer it took eight hours
to precompute one minute of data. Each time step of the precomputed data has
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5.3MB with a resolution of 165x80x20 cells. Certainly, this is too much data to
load per second in real time. Since, they did not need all information of the simu-
lation, just 2 out of 5 data samples, they were able to reduce size to roughly 2MB.
Finally they used a run length encoding on the data to get to data sizes between
160KB up to 2MB.

The fire and smoke are rendered using volume rendering techniques. They
used a splatting algorithm as proposed by Jang [JRSF02]. They simply rendered
a screen aligned quad with a gauss texture per volume cell. Depending on the
smoke density they changed the color and opacity of the texture. They use the
same quad and texture for the fire by coloring the texture red, orange and yellow
depending on the temperature of the cell, see figure 2.3. This results in moderate
frame rates between 8 to 15 frames per second.

Since the fire spread is precalculated they have to consider every possible user
interaction and calculate a different scenario for those situations. They propose
that a split in the decision tree every 15 seconds should be enough to give a inter-
active response. Since in our case the simulator has to be completely interactive
this approach was not usable. We decided to use a simplified fire simulation so
that we are able to do all calculations at run-time.

Fig. 2.3: Fire rendering. From [SJS03]
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2.2.3 VIRTUALFIRES

Previous work from the University of Technology in Graz used a simmilar ap-
proach. The framework is called VIRTUALFIRES [Bee06]. VIRTUALFIRES is
focused on real time simulation of fires in tunnels. It presents the tunnel in a full
virtual reality environment in either a CAVE or a HMD. The user is able to navi-
gate trough the tunnel and observe the influence of fire and smoke to visibility and
heat in the tunnel. For user interaction they are using a PDA which is connected
to the simulation through W-LAN.

In contrast to our application, VIRTUALFIRES is using mostly precalculated
fire spread. The precalculation is outsourced to a server cluster in Sweden and
takes considerable time to be done. The fire simulation is based on the Lattice
Boltzmann Equation method (LBE) through the application ICE. The calculation
is done on a 3D grid which is laid into the tunnel. To keep the calculations stable
a minimum of 50 calculations per simulated second have to be done. Only small
variations can be done in real-time like switching fans inside of the tunnel on and
off. But to keep the simulation real-time only a selected area around the fire is
simulated in 3D the rest is simulated in a simplified 1D environment. At the mo-
ment only 60.000 to 70.000 cells can be simulated in real-time. Considering the
scope of an actual tunnel this numbers are small.

(a) Components of VIRTUALFIRES (b) Result of VIRTUALFIRES

Fig. 2.4: Figure a shows a diagram of the components of VIRTUALFIRES. Figure b
shows a result image of VIRTUALFIRES. [Bee06]
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2.3 Medical Applications

2.3.1 Haptic Display for a Virtual Reality Simulator for
flexible Endoscopy

Endoscopy is an increasingly important tool for interventional treatment [KM02].
Endoscopic devices are tubular formed, flexible devices for examination of the di-
gestive system. They are used for colonoscopies and gastroscopies. The tip of the
tube is flexible and can be bent into two orthogonal directions which is operated
by wheels on the head. The tip and the head are connected by a optical link to
examine the colon walls. A endoscope is depicted in figure 2.5.

Fig. 2.5: A endoscope with its three parts tip, tube and head. From [KM02]

Endoscopy is especially well suited for virtual reality training because of its
limited and constrained environment. The team around O. Körner already devel-
oped a virtual training for eye surgery. In an endoscopy scenario forces have to be
applied on the tube and the two wheels to operate the tip of the endoscope and a
bio-mechanical model of the body is needed. Based on that model they simulated
a real time haptic feedback of forces on the wheels and the tube. This setup al-
lows the training of the doctors only by means of this software and hardware setup.

Since force feedback can be handled differently in this situation we have to
distinguish between active and passive force feedback. When inserting the endo-
scope into the body the friction increases over the length of the endoscope thus the
force the doctor has to apply. This can be simply modeled by a brake on the tube
which increases the braking force this is called passive force feedback. Another
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scenario is the bending of the tip when approaching flexures in the colon. Here
the tip has to be bended accordingly. This should also happen if the doctor does
not have his hands on the wheels. This means a motor has to be mounted on the
wheels to turn them accordingly, which is called active force feedback.

Their goal was to build a haptic display for the force feedback. A haptic dis-
play simulates the touch sense in a realistic way. Situations like this, where the
user uses a tool to interact with the simulation are perfectly suited to implement
a haptic display. The forces only have to be applied to the rigid tool and thus be
transferred to the user.

Since the movement of the endoscope is limited the input can be limited to
four degrees of freedom, the translation and rotation of the tube and the bending
of the tip in to local axes.

Force feedback on the tube of the endoscope

The important part for the simulation is the head of the endoscope. As long as
realistic forces and torques are applied to it, the whole simulation seems realistic.
The bending of the tube does not have to be recreated. Since the endoscope can
not be compressed or twisted, it is enough to apply the forces on the tube at one
point inside of the simulator. The solution they found was to mount the tip of
the endoscope on a toothed drive belt and thus creating a direct force transfer be-
tween the actuators and the endoscope, see figure 2.6. The endoscope is threaded
through a tube which is cut open on one side to prevent shifting. A motor is con-
nected to the conveyor belt to create the necessary forces. This takes away the
capability of the tip to bend into the two directions. However, this behavior will
be simulated directly on the wheels of the head, the bending of the tip itself is no
longer necessary.
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Fig. 2.6: Force feedback on the tip of the endoscope. From [KM02]

Force feedback on the tip of the endoscope

The force feedback is directly applied to the navigation wheels, so bending of the
tip is no longer necessary. Since the user does not see the tip, there is no dif-
ference for the user noticeable. The force on the wheels is applied by wires or
twines which are connected to a motor on the other side to avoid the mounting of
the motors inside of the small head, see figure 2.7. Since the force transmission
in the real endoscope works in exactly the same way, the tip is connected with
the wheels by wires, this gives it a realistic feeling. The wires give for example
small forces when the tip touches the wall of the colon which has to be simulated
since this is the best navigation point for the doctor. These wires have the same
response latency and dampening as the real wires in the endoscope, thus creating
a more realistic simulation.

Haptic rendering

To create a convincing simulation of forces on the endoscope a bio-mechanical
simulation of the colon is needed. There are two approaches, a physical model
which uses physical and mechanical laws to simulate the forces on the tube and
descriptive modeling which uses free parameters which are used to create the
desired behaviour of the endoscope.

In a previous work A. Poon [Poo91] uses a bio-mechanical model to simulate



2.3. Medical Applications 25

Fig. 2.7: Force feedback on the wheels of the endoscope. From [KM02]

the behavior of an endoscope in the colon. He uses an implicit function to simu-
late the behavior of the endoscope. He is evaluating every collision point of the
colon with the endoscope to calculate the resulting forces. This leads to a very
time consuming calculation. The algorithm presented in the work of Körner is
also using a descriptive model for real time purposes, but in contrast to the work
of Poon they use only the collisions of the tip with the colon for collision response
and for the rest of the endoscope they use an analytical model of the colon.

Collision detection and response

In normal collision detection and response algorithms the algorithm reacts at the
moment, when two objects already penetrate each other and sets them apart again.
In contrast, we are now interested in a real object which position can not be
changed from one calculation to the next. So we have to distinguish between
the calculated position of the endoscope and the real physical position. They used
the god-object-algorithm from C. Zilles [ZS95] to determine the surface contact
point.
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Translational repulsive force on the tube

The translational repulsive force on the tube cumulates from two forces. Forces
are applied first from the collision of the tip with the walls of the colon and second
the dynamic repulsive friction forces of the colon on the tube of the endoscope.

Most of the friction occurs in the bends of the colon because of the stiffness
of the tube. So the bending of the endoscope is a measure of the friction of the
endoscope in the colon. The bending of the endoscope can be estimated with the
bendings of the colon since it has to follow its curvature.

Torque on the navigation wheels

A repulsive torque on the navigation wheels can occur out of two reasons. First,
it can happen because of the collision of the tip with the colon wall or second as
an indication of a strong bending of the tube. The second reason mostly happens
shortly before the tube forms a loop.

When the tube forms an abrupt bending the outer wire which connects the tip
with the navigation wheels applies a torque on the tip and the navigation wheels,
see figure 2.8. The bending of the colon is already known so the torques can be
applied accordingly.

Fig. 2.8: An acute bending of the tube causes a torque on the navigation wheels. From
[KM02]
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Implementation

In the final implementation they used the same polygonal mesh for the visual and
haptic representation.

They decided to use brush-less motors for the actuation because they do not
overheat in stand still and holding positions. Their system provides an update rate
of over 100Hz which is sufficient for a realistic experience.

2.3.2 Haptics in Minimally Invasive Surgical Simulation
and Training

Minimal invasive surgery (MIS) has changed the routines in operation theaters
around the world [BDK+04]. Instead of big incisions the surgeon only makes
three small incisions where a camera and two tools are inserted. Through this
procedure the infection risk can be minimized and the healing process is shorter.
The disadvantage is the loss of direct haptic feeling for the surgeon. Since the
touch of an organ is the second most important indication for the surgeon after
the color and texture. When using the tools in minimal invasive surgery the sense
of touch is diminished so the surgeon need a lot more training to understand the
more subtle changes of tissue. In addition, the surgeon has a very limited field of
view through the camera that gets inserted into the body of the patient in contrast
to an open surgery.

Since the field of minimal invasive surgery is one of the most important fields
in surgery at the moment and training possibilities are limited much research has
been conducted for virtual training systems. Both scientific research as well as
commercial projects are on going to find a better and easier way to train those
scenarios.
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Integration of force-reflecting robotic devices

Since it is not possible with the technology available today to develop a training
system for a complete surgery they focused on part tasks of the whole procedure.
They started by replacing the already used mechanical surgical testbeds by a com-
puter driven haptic display. By this they hope to reduce the number of needed
kinds of testbeds and create a more realistic experience for the surgeon.

Fig. 2.9: The minimal invasive surgery simulator used by C. Basdogan2004 et.al. From
[BDK+04]

The system is composed of a high-end personal computer with a powerful
graphics card and a box with laprascopic tools. The laprascopic tools are con-
nected to a force feedback device on their distal ends. The whole mechanical
system is hidden inside a box.

Haptic rendering for simulation of tool-tissue interactions

The purpose of the haptic rendering algorithms is to reflect all tissue collisions in
forces on the tools. To create realistic interaction the tools were divided in two
distinct kinds of tools based on their functionality, see figure 2.10. Tool group A
which are long thin probes to puncture tissue and tool group B for gripping and
cutting.

To proof the concept they implemented a tool for each group. For the group
A they implemented a simple probe and for group B they implemented a forceps.
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Fig. 2.10: The tool groups for lapracopic devices. From [BDK+04]

For the rendering part of the real-time simulation they displayed virtual represen-
tations of the tools to give the user a visual clue of the positioning of the tools.
For the haptic rendering of the tool interactions they implemented a ray rendering
algorithm which is based on connected line segments. This is a superior approach
toward haptic rendering against most of the already used point based approaches.

They also simulated the interaction of the laprascopic tools with surgical ma-
terial like a catheter. For this they used a combination of ray based and point based
collision detection. They used this to implement the task of a catheter insertion.

Deformable objects

The support of deformable objects to realize soft body tissue like organs is one of
the most important factors in realizing a surgery simulator. A deformable body
simulation has to give a stable force response, calculate and display smooth de-
formations and handle the boundary conditions that have to be met.

At the moment there are two contrary approaches towards organ deforma-
tion models, particle based methods and finite elements methods. The team of
C. Basdogan mostly focused on the development of finite element methods and a
mesh-free modeling concept. The finite element methods are based on differential
equations which model the behavior of the tissue. Those differential equations
are then numerically solved per time step. Even though finite element methods
are computationally more demanding, they seem more promising for the develop-
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ment of soft organ models.

One of the big advantages of the finite element methods is, that they only re-
quire few parameters to physically work and these parameters can be measured on
real life tissue. Also the problem of multi layered and anisotropic elasticity can
be modeled easier in finite element methods.

Mesh-based finite-element modeling techniques

The complexity of the calculations needed for the finite element method rises with
the size of the mesh and the degrees of freedom needed for the simulation. Even
though there are already many implementations of finite element methods none
of them are suitable for simulating large scale models in real-time. To reduce the
workload, they only use the most significant vibration modes of the organs for the
simulation.

Mesh-free techniques

A good solution a for problem like remeshing after a surgical cut in finite element
methods is to use a numerical method that does not rely on a mesh. The method
of finite spheres is such a mesh free method [DKS01]. Instead of using a regular
mesh, this method uses a scattered set of points or nodes. Each node has an equa-
tion that is non zero around the center of the node which is used as the distance
field, see figure 2.11.

Fig. 2.11: A regular mesh with its distance function a) vs. a mesh less method b). From
[BDK+04]
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As well as the normal finite element method MFS uses a Galerkin formulation
to generate the discretized version of the differential equations. So the MFT is a
generalized form of the mesh based finite element method.

Haptic recording of tissue properties

Haptic data of tissue (eg. organs) can be obtained by two different approaches.
Parameters like density or geometrical form need to be recorded. Either the user
holds a tool which is equipped with sensors r a computer controlls a robotic arm
which holds a probe. The main problem is the acquisition of living tissue since
the density and texture changes rapidly after death.

Playing back haptic stimuli for training

A generally agreed important topic within professionals and researchers is train-
ing and performance assessment in minimal invasive surgery. Up until now it was
not easy to find quantifiable standardized parameters of the skills of a surgeon.
This system could be used to find and standardize such parameters.

One of the parameters which can be used to quantify the process is the force
profile which is used to move the tools. Those force profiles have already been
recorded and used to quantify the skill level of a surgeon using a Markov model.
The studies showed that the force profile varies greatly between a skilled and a
novice user.

The play back of pre-recorded haptic stimuli could be used for further med-
ical training. The force feedback equipped simulator could be used to guide the
trainee on a pre-recorded trajectory to show the best possible procedure. A good
way to implement such a training would be to use a force that pulls the user back
to the trajectory whenever he leaves the perfect line of incision and return the user
back to it.
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When using a needle inside of the epidural space, haptics are greatly important
to find the correct trajectory towards the target. To train this procedure C. Basdo-
gan et.al. implemented two techniques. First the time depended where the user
was presented with a prerecorded trajectory of a skilled user and had to follow
exactly that trajectory in the same speed and time as the professional. When the
trainee used the same trajectory and speed as the skilled user the trainee felt the
same forces and torques as the skilled surgeon. When he left the pre-recorded path
or used another speed he was pulled back to the pre-recorded path with a force.
The other technique was time independent. Here the user only had to stay on the
same trajectory. When he is on the same trajectory he again felt the same forces
and torques as the skilled surgeon. When leaving the trajectory he was pulled
back into it with forces.



Chapter 3

Concept Design

In this chapter we focus on what can be learned from the previous work and how
we implemented it into our system. We try to evaluate the usefulness of a virtual
fire extinguishing training and who should be trained with.

3.1 Previous System

The reasoning behind developing such a system was, that the company we devel-
oped the system for was already using a previous one with quite a success, even
though the system was in some way simpler than ours. It featured a magnetic
tracker to track the extinguisher, which is very coarse in such dimensions and
does not provide a really exact measurement of direction and position. Another
limitation of the system was that the fire was only simulated and displayed in 2D.
The simulation environment was an image of a scene and the fire was an overlaid
video. The visual feedback of the extinguishing was done by showing a green
reticle on the screen where you are spraying. There was no choice of different
agents. But exactly this is a key element in fire extinguishing. If the wrong agent
is chosen it can either result in a bad extinguishing performance or in the worst
case in rapid boost of fire spread.

All this factors resulted in a reduced feeling of immersion. Another quite im-
portant factor that is missing here, is that you have to extinguish a fire from front
to back, from bottom to top. This could not be implemented in 2D, also the ex-
tinguishing of fire behind a ledge was not possible. Those are the reasons why
we implemented a complete 3D simulation. Obstructing the view of the user via
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smoke was another key point we implemented. This adds another layer of realism
to the simulation.

3.2 Real fire training

Common fire extinguishing training takes place on big parking lots or similar.
There the trainees are confronted with a small fire. This fire is either a small pan
filled with petrol or a bucket that is fueled from below with gas like a stove. In
this scenario fire can neither spread nor create enough smoke to really obstruct the
view, see figure 3.1.

Fig. 3.1: A typical real fire training

Generally, learning capacity within such trainings is rather limited. Most im-
portantly, trainees learn how to physically handle the fire extinguisher. In those
scenarios, you train the correct handling of the extinguisher and the hand eye co-
ordination but not how to approach a real fire.

Some extinguishers have to be prepared before they can actually release their
agent. Furthermore, the extinguishers are heavier than most of the trainees ex-
pect. Another important factor is that the trainer can influence the training at any
time. If we want to provide a comparable and better system we should at least
be able to train the same facts and exercises that are trainable from this scenario.
We came up with the idea of using real digitally tracked extinguishers. To en-
sure some kind of realism we filled the extinguishers to simulate the weight of the



3.3. Target group 35

agents inside of the extinguishers. We implemented the buttons and valves that
have to be operated before the extinguishers are ready. The physical production
of these prototypes was done by the TGM1 in Vienna, see figure 3.2. The TGM is
a technical school which includes a department for fire safety. In the final version
those extinguishers contain a small laptop to send the release signals to the tracker
system and to generate a sound. This sound can be configured to be different for
the various agents. The trainer can interact anytime with the simulation through
an user interface that runs on a dedicated screen.

Fig. 3.2: The extinguishers we used for the simulation.

3.3 Target group

Next we had to think about who we wanted to train. The target group decided on
were non professionals. So we did not have to simulate whole burning buildings,

1 http://www.tgm.ac.at/

http://www.tgm.ac.at/
http://www.tgm.ac.at/
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since in that case a non professional should evacuate the building as fast as pos-
sible. Also we did not have to simulate change in the physical state of the scene
like collapsing cupboards. Which means we wanted to train localized fires in a
controlled environment. Examples for that are burning litter bins or deep fryers.
Scenarios like these should be the key point of our training simulation. Non pro-
fessionals have mostly never used an extinguisher before. So they do not know
that there are valves or buttons which have to be pressed before the extinguisher
is usable. Also many never realized that extinguishing of an oil fire with water
is dangerous because the fire would rapidly spread throughout the scenario in an
explosion. Another problem a trainee could encounter when trying to extinguish
a fire would be that the agent of the extinguisher runs low or out. This scenario is
also included in our simulation, each extinguisher is filled with a specific amount
of agent and over the time the pressure of the extinguisher falls, affecting the
throwing distance of the agent until in the end no agent is left anymore.

3.4 Medical Training as good example

Apart from the NASA (as mentioned in chapter 1.1) various specialities train with
virtual reality. Due to the sometimes risky procedures medicine comprises a field,
worth looking at, especially minimal incision surgery. Here we can observe some
interesting facts. In this seldom area where augmented reality really started to
create a hold. It is already widely used to train young medical personnel. The big
advantage of such devices is that complex incisions can be trained without risking
the life of patients, as shown in chapters 2.3.1 and 2.3.2. In addition, each training
session can be repeated under the same conditions. Some conditions like specific
kinds of cancer are not very common, so training of that exact kind of surgery is
hard to do without such a system. Another advantage of a virtual training is the
replayability. Watching yourself after the training performing the task from vari-
ous viewpoints can help to understand the mistakes taken while doing the training.

As in the real fire training, a physical interface is used in those medical train-
ings. There is no direct hand interaction with the simulation and the interaction
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is a one to one mapping between the real world and the simulation. This physical
interaction layer makes it easier to create a force feedback. In our case the force
feedback is simply the weight of the extinguisher. If there is a small lag from the
tracking and the simulation it is less recognizable when using a physical device to
interact with the simulation. We concluded that it is important to insert a physical
layer between the user and the simulation. As in chapter 3.2, we see that the usage
of a real extinguisher as input device is a good idea. Another observable fact is
that in medical engineering they also have to deal with high risk scenarios. When
a surgeon fails the patient can be harmed or, in a worst case scenario, die. This
is quite similar to our situation. Since training with real fire can be dangerous.
Simulating the fire extinguishing virtually makes it way more save. Comparable
to the medical applications costs can be lowered since no gasoline or gas is used
and the extinguishers do not have to be refilled after each use.

3.5 Repeatability and replayability

Two important facts for the success of a training system are its replayability and
the repeatability. Repeatability means that the same fire should always spread in
the same way, so that the same scenario can be trained a couple of times. Repeti-
tion has a much higher learning effect than training a lot of different scenarios in
a sequence as shown in chapter 2.1.1. We implemented discrete time steps in the
simulation to ensure the same fire spread each time.

By replaying the trainees actions and pointing out what he has done right or
wrong the learning factor is also greatly increased. That is the reason we planned
a replay system from the beginning, so that all actions done by the user and the re-
action of the fire can be reviewed. We implemented recording and replay features
in all subsystems of the simulation to be able to replay a sequence again. This
includes the user position and viewing angle and for the extinguisher position,
orientation and state. The state of the extinguisher consists of the agent which is
filled into the extinguisher and whether the user triggers the release of the agent.
Also the state of the simulation gets stored, including the simulation grid and the
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action objects.

3.6 Tracking System

To track the interaction of the user we used an optical infrared tracking system
from A.R.T. GmbH2. Ideally it uses four cameras to track markers in six degrees
of freedom. We use the tracker to track the position and orientation of the extin-
guisher nozzle. Also we are tracking the position of the user to set the view in
the simulation accordingly. For this the user wears glasses with markers. This
enhances the immersion and gives the user the ability to look at the scene from
various perspectives.

Fig. 3.3: An infrared tracking camera. Image from A.R.T. GmbH

Infrared tracking systems are based on cameras which only sense images in the
infrared spectrum, that is accomplished by filters, see figure 3.3. Each camera has
a flash that creates bursts of infrared light to find objects that are retro reflective.
Since the view and physical parameters of the cameras are known it is possible to
calculate the three dimensional position of such a retro reflective ball when more
than one camera image is given, see figure 3.4. In a preparation step the cameras
have to be calibrated. To measure the orientation of an object in space more than
one retro reflective ball is needed. They are set in a specific arrangement that is
unique for each object that has to be tracked. From the position of those balls it is

2 http://www.ar-tracking.de/ARTtrack2.52.0.html

http://www.ar-tracking.de/ARTtrack2.52.0.html
http://www.ar-tracking.de/ARTtrack2.52.0.html
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possible to calculate the orientation of the object. A disadvantage of such systems
is that the cameras need an unobstructed sight of the retro reflective balls to track
the user. But since normally only one or two persons stand in front of the screen
and holding the extinguishers in front of them, occlusion is not a real problem in
this case.

Fig. 3.4: The infrared markers used.

3.7 Display System

We decided to use stereo projection to increase the immersive effect and give the
user a better feeling for the scenario. Also it is easier to aim into the third dimen-
sion when you can really see it. At first we used a dual projection system with
circular polarized glasses. For this system two projectors are equipped with two
circularly polarized filters to filter either clockwise or counter clockwise turning
light, see figure 3.5. Both projectors have to project on the same area, thus requir-
ing a calibration to align both images. Every viewer has to wear special glasses
to filter out the opposite image. So the left glass has to filter out the image for the
right eye and vice versa. The advantages of this system are that it can be viewed by
many people at the same time and that those glasses are very cheap compared to
the active glasses mentioned below. The big disadvantage of this system was the
bad transportability, the system had to be calibrated after each relocation. Since
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the system is planned to be used on the road that was close to unusable. So we
replaced the projectors by another system from Projectiondesign1. The new sys-
tem is based on active stereo, here the images for the left and the right eye are
shown in rapid succession. The user has to wear active glasses, which means the
glasses are switching from opaque to transparent to block the incoming light. This
has the advantage that no calibration of the projector is necessary and the setup
is build up quite fast. In addition, the channel separation is better than in circular
polarization filters, thus achieving a better image quality. Also this projector had
the advantage that it features two independent video inputs, which simplified the
the switch to the new system.

Fig. 3.5: Two projectors for stereo projection.

3.8 Software decisions

As we learned from 2.2.1 it is not necessary to build your own rendering engine.
In contrary, it takes a massive effort to build an engine to realize the same visual
quality as a commercial rendering engine. Another advantage of using an engine
is the reusability. If someone continues the development, just a fast introduction

1 http://www.projectiondesign.com

http://www.projectiondesign.com
http://www.projectiondesign.com
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Fig. 3.6: The active stereo projector used. Images from Projectiondesign

into the simulation is necessary. The needed knowledge for the graphics engine
is freely available in the Internet. Since our budget did not include license an
commercial engine like the Unreal Engine we decided upon an open source en-
gine which can be used for free. Some of us already had good experiences with
the Ogre3D Engine1 and no other engine seemed better suited, so we started the
development with it.

For the simulation itself we had to think about a representation of the scene
that is in some way accomplishable in real time. In the beginning we where think-
ing about using the vertices of the models as sparse simulation points which are
storing the local temperature. But since the simulation would get really complex
in such a scenario and the heat transfer over the air to the next object would be
considerably hard to implement we decided to use a regular grid to store the sim-
ulation data.

To further enhance the simulation speed we are using an octree to simulate
only those cells which are actively participating in the simulation. It has proven
that in most cases a grid size of 64x64x64 is enough to simulate a convincing fire
in our limited training volume.

1 http://www.ogre3d.org

http://www.ogre3d.org
http://www.ogre3d.org
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3.9 Modeling

The concept for the on-the-road trainings is to recreate a scene from the working
place of the trainees. This involves a two step process to get the the scene into the
simulation. In the first step we use a photometric system to create a 3D mesh out
of many photos taken at the scene. We use a commercially available complete so-
lution for this step. The model is then loaded into a custom built 3D editor where
the user can edit each object and set its material which is later used for the simu-
lation. If the trainer encounters a material needed for the simulation which is not
already included he can simply add it by writing a small configuration file with
the burning characteristics of the new material. Also things like ignition points
and special objects like oil pans or spray cans can be placed in this editor.

3.10 Collaborative training

We also wanted to include collaborative training into our simulation. Which
means the training of the interaction of multiple trainees. When trying to ex-
tinguish a fire with two persons new challenges for the trainees arise. They have
to coordinate their approach and their actions to extinguish the fire. It is more
useful when they try to extinguish the fire from two different sides. It can also
be a problem that the agent of one user completely obstructs the view of the sec-
ond user, this can happen easily when using powder as agent. The decision on
the new projector supported this approach as it was able to switch to a non stereo
mode which presents the two alternating images to the two users instead of the
two eyes, which results in the possibility to give the two users a different point of
view. Thus, we were able to implement head tracking for two persons.
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Implementation

The simulation was implemented in C++ using the Ogre3D rendering engine as
middle ware. Ogre3D was chosen because it is an open and free rendering envi-
ronment which can be extended with plugins and new features. Ogre3D features
already a simple but powerful content tool chain. This tool chain enabled us to
start directly at the simulation without wasting too much time on considering and
tweaking our own rendering and content pipeline. The simulation now supports
loading of ogre scene files through our own defined scene format which contains
the simulation material information of the simulation cells. The scene setup and
simulation control is done in a dedicated user interface. I did not emphasize on
the user interface in this project, i just implemented an interface already existing
for this interaction.

This chapter is divided into four parts. First we will describe how the basic
structure of our system works. Next we explore the implementation of the vir-
tual reality setup. After this we take a look at the simulation of fire spread and
extinguishing including how we implemented special cases like exploding oil or
electricity in action objects. Finally, we take a quick look into the software engi-
neering basics we used to implement our methods.

4.1 Basic Structure

Our system consists of three main components. One component for the simulation
of fire spread, extinguishing, smoke propagation and handling of special objects
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like oil explosions. Also we need a component to render the scene as plausible as
possible. And the last component is for input which has to handle the tracker data
of the head of the user, the tracker data of the extinguishers and the input signals
of the extinguishers themselves.

All the components are controlled centrally from the FireSimApp class. This
class is implemented as a singleton to give all components access to all other com-
ponents (See chapter 4.4.1). This class also directly holds the SceneManager. The
SceneManager is a class from the Ogre3D engine. It holds the scene of 3D objects
and particle systems. A scene in Ogre is build up as a scene graph. Each node
in the graph has its own transformations and can hold graphic representations of
objects.
The simulation is controlled by the FireSimManager class. This class holds the
simulation representation of the scene in an octree in the FireOctree class, it han-
dles the representation of the extinguishers and the update of the simulation and
visual representation. It initializes and starts the physical simulation of the agents.
The agents simulation itself is handled in its own singleton in the physXHandler
class. The basic structure is represented in figure 4.1

+getFrameListener() : FrameListener
+getSettingsMap() : map<String, float>
+getFireSimManager() : FireSimManager

FireSimApp

+frameStarted()

FireSimFrameListener

FrameListener

+getFireOctree() : FireOctree
+update()

FireSimManager

+getRoot() : FireNode
+Update()

FireOctree

+getChild() : FireNode
+getFireElement() : FireElement
+Update()

FireNode

+Update()
+CoolDown()

FireElement

implemented as Singleton

physXHandler

implemented as Singleton

+Update()
+Extinguish()

ActionObject

+Update()
+Extinguish()

OilObject

+Update()
+Extinguish()

SprayCan

+AddFirePos()
+RemoveFirePos()
+SetSmokeVisibility()
+updateRoomSmoke()
+updateWind()

FireManager

1

0...n

0...1

1

11

1

8

Fig. 4.1: Class diagram
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4.2 Virtual Reality

4.2.1 Stereo Projection

As mentioned in chapter 3.7 we decided to use stereo projection for the presenta-
tion. Since Ogre3D does not support stereo projection out of the box we had to
implement it. This gave us the opportunity to get an inside look of the engine and
its mechanics, so we decided to start at this point.

Our stereo setup in Ogre3D happens in three steps. First, two windows are
created, this is already fully supported by Ogre3D. Those windows are then set to
full screen on each of the screens.

Now for each eye a specific camera with its own view and projection matrix
is created. For these cameras a special perspective matrix is needed, we used
the offaxis matrix from [Spl03]. This camera model is derived from the simplest
camera model the offaxis model, here the cameras are simply set apart with the
same offset as the eyes on the user. The problem with this method is that it is
very unnatural for the eyes and the brain to focus in such a way. This method is
shown in figure 4.2(a). The first step to enhance the viewing experience is to tilt
the cameras towards each other, this is shown in figure 4.2(b). As the final step
the projection itself is changed, so that the projection planes of both cameras are
parallel. It is the basis of our offaxis model, see figure 4.2(c).

(a) A simple offset matrix (b) The toe in method (c) The offaxis cameras used

This offaxis matrix is given by equation 4.1a. Where n is the nearplane, f the
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farplane, r (4.1b) and l (4.1c) the right an left border of the nearplane and t (4.1d)
and b (4.1e) the top and bottom border of the nearplane. The top and bottom of
the nearplane are for the left and the right eye the same. The left and right borders
are calculated differently for both eyes. In the equations for the borders xe, ye and
ze are the coordinates of the eye point in the real world. xs and ys are the size of
the screen and n is again the distance to the near plane.


2∗n
r−l

0 r+l
r−l

0

0 2∗n
t−b

t+b
t−b

0

0 0 −(f+n)
f−n

−2∗n∗f
f−n

0 0 −1 0

 (4.1a)

r =
xe − ys ∗ −n

2 ∗ ze

(4.1b)

l =
xe + ys ∗ −n

2 ∗ ze

(4.1c)

t =
ye − ys ∗ −n

2 ∗ ze

(4.1d)

b =
ye + ys ∗ −n

2 ∗ ze

(4.1e)

The offset between the left end the right eye is set to 0.61cm, this is anatomi-
cally the average distance between human eyes. Those cameras are then also set
apart in the virtual world by the same offset. The cameras are connected together
in a scene graph node, so that they can easily be moved together.

In the last step two Viewports are created, one for each window. Viewports
are the targets which Ogre3D uses to draw to.

On the hardware side we were using two projectors with circular polarized fil-
ters and a polarization conserving screen in the beginning. The final solution is an
active stereo system with shutter glasses because it is easier to transport and needs
no calibration of the projectors against each other. The new projector also had two
video inputs. Which meant, we did not have to change the output from our system.
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4.2.2 Tracking

For tracking we are using OpenTracker [RS01]. OpenTracker is a virtual real-
ity input library which is freely configurable through XML scripts. The data is
processed on a tracker server and then sent to the simulation client over a net-
work. The tracking hardware consists of two infrared cameras which are produc-
ing flashes in the infrared spectrum to light up retro reflective balls. Those balls
are grouped together in an unique way to identify different objects. Each user
has those markers on their glasses for head tracking and each fire extinguisher has
their own set on the nozzle. Within the software of the simulation the code is quite
simple. We created an interface to the OpenTracker library which only reveals the
position and rotation of these objects.

4.3 Simulation

The simulation is based on a fixed update rate and is integrated in the update
and render cycle of the engine. The whole simulation is encapsuled in the class
FireSimManager. This class again contains an octree to store the state of the sim-
ulation and a class to control the display of fire and smoke, the FireManager. The
FireSimManager also holds the extinguishers which are handling the tracking of
the extinguisher position and the release of the agent. The Player class is also
contained in the FireSimManager class, this class is primarily responsible for the
tracking of the user and setting up the display, see chapter 4.2.1.

4.3.1 Fire spread simulation

The core of the simulation is an octree. From now on we will distinguish between
nodes and cells. Nodes are the nodes of the octree and cells are contained in the
leaves of the octree and used for the simulation itself. The octree can be found in
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the class FireOctree, the nodes in the FireNode class and the cells in the FireEle-
ment class.

The loading of the scene happens in two steps. First the octree is build with all
cells set to non flammable. The scene file contains the description of all flammable
cells with their material and burn parameters. So in the course of loading the scene
all cells which are flammable are automatically set to their material. The loading
is implemented in the FireSimManager class.

Each cell can switch between different states. Those states are disabled, active
and burning. Burning cells are waking surrounding cells and set them to update.
Cells in the update state start to heat up. The rate in which they are increasing
their temperature depends on the heating power of the cell itself. The calculation
of the heating power is based on the heating power of the surrounding cells, see
figure 4.2. So in the first simulation cycle just the cells surrounding the burning
cells receive a heating power. Then in each update cycle this heating power can be
transfered to the surrounding cells. It takes a couple of update cycles to distribute
the heating power, but since we update each thirty milliseconds this lag is not con-
ceivable. The heating power inside of a cell is calculated by a simple formula, see
equation 4.2.

e =

n∑
i=1

ei

n
− ti ∗ tf

1 + n−1
2

(4.2)

Where e is the transfered heating power, ei is the heating power of the sur-
rounding cells (6-connected), n is the number of active cells in the neighborhood,
ti and tf are two scriptable parameters representing the maximum heating power
and a falloff. Burning cells have a constant scriptable heating power which is
the same as ti. Cells which do not contain flammable material, like air never get
a constant heating power. Those cells can only transfer their remaining heating
power to the surrounding cells. It is repeated until the heating power is consumed
through the falloff parameter, thus limiting the influence of a burning cell. Based
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Fig. 4.2: Heat Distribution, where the red arrows represent the first, the orange the second,
the yellow the third and the green the fourth step of the distribution.
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on this heating power each cell increases its heat based on a simple formula, see
equation 4.3. Where tempi+1 is the temperature to calculate at the actual simula-
tion step, tempi is the temperature of the cell in the previous simulation step, m is
a material parameter to control the temperature increase on a material level, ti is
the heating power of the cell, w is a wind factor (see chapter 4.3.2) and size a fac-
tor to account for different simulation grid sizes. Figure 4.3 shows the simulation
where green cells are burning cells and blue cells are just updating. Cells which
are disabled are not shown to create a more useful insight.

tempi+1 = tempi + t ∗ m ∗ ti + w

size
(4.3)

Fig. 4.3: A screenshot of the fire spread in the simulation. Green cells represent burning
cells, blue cells are just updating.

The temperature of the cells is decreased each cycle to simulate the cool down
process through the surroundings. Again this decrease is scriptable. Disabled
cells are not updated at all. The status of a cell is propagated upwards through the
nodes of the octree. In the case all child nodes of a node are disabled, the node
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itself is not updated too. This way we are able to speed up the whole update cycle.

4.3.2 Wind

The whole simulation can be influenced by wind. The wind is a simple vector
pointing into the direction of the wind and the length of the vector representing
its strength. We implemented the influence of the wind quite simply. When a cell
gets activated we store the direction from which the cell got ignited. In the update
steps we multiply the temperature increase with a wind factor. This wind factor is
just the dot product of the wind and the direction of ignition. So, when the wind
blows in the same direction as the fire spread the cells heat up faster, thus ignite
sooner. This creates a realistic simulation of wind.

4.3.3 Fire extinguishing

The fire extinguishing agents emitted by the extinguishers are based on nVidia
PhysX1 fluids. PhysX fluids are interconnected points which act together like a
fluid. In the end, it is a physically plausible particle effect. We exploit exactly that
behavior and use the particles to simulate the extinguishing. The PhysX particle is
again wrapped in another particle system. We use the plugin ParticleUniverse for
that since the normal particle systems in Ogre do not support PhysX as simulation.
ParticleUniverse brings PhysX simulation out of the box and also has a very flex-
ible scripting interface. We use depth impostors [USK05] to render the particles.
Depth impostors is a simple effect where you first render the complete scene but
only store the depth into the fragments. When rendering the particles you simply
compare the depth of the particle with the rendered depth and fade the particles
close to a surface by the simple formula 4.4. Where alpha is the resulting trans-
parency of the fragment, depths the depth of the scene at that fragment, depthp

the depth of the particle and invParticleDepth is the depth of the particle itself.
In this way you can simply get rid of the billboard intersections of the particles

1 http://www.nvidia.com/object/physx_new.html

http://www.nvidia.com/object/physx_new.html
http://www.nvidia.com/object/physx_new.html
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and thus create a more volumetric effect, see figure 4.4.

alpha = saturate(depths − depthp) ∗ invParticleDepth ∗ 0.5 (4.4)

Fig. 4.4: Agents rendered with the depth impostors effect

ParticleUniverse manages all of our particle systems, including those of smoke
and fire. An example of such a ParticleUniverse script can be found in listing 7.4.
The specific parameters for the simulation such as the reaction to different materi-
als or the evaporation rate can be controlled through agent configuration files, see
listing 7.2. When the user presses the button on the real extinguisher a signal is
broadcast through the OpenTracker library and triggered in the simulation loop.
When triggered, the extinguishers add particles at the position of the nozzle of
the extinguisher and the direction it is pointing, which is again acquired through
OpenTracker.

The fluid simulation is then done in PhysX. The PhysX simulation also runs
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with a fixed time step. The time steps for the PhysX simulation are the same as the
time steps of the simulation, which is set in a central configuration file. If a nVidia
Geforce 8600 or higher is installed, PhysX uses the graphics card to process the
fluid simulation. When calculated without the support of the graphics card, fluids
take a large amount of processing power and the frame rate drops considerably.
In each update of the simulation the particle data is fetched from the graphics
card. We then loop over all particles of all agents. Each particle which intersects
an active cell cools down the cell. Depending on the cell material and the agent
the particle is part of the temperature drain varies. For example water will not
cool down a cell which material is set to oil. In the contrary the cell will explode
and ignite other cells, but this behavior is modeled by action objects which are
explained later. Each particle has its own parameters like the evaporation of the
particle which has again impact on the cooling of the node. The temperature drain
is calculated by the formula 4.5. Where t is the temperature drain in the cell, ta

is the scriptable temperature drain of the specific agent, pmass is the mass of the
particle which decreases over time to simulate evaporation, ar is the agent reac-
tion to the material, scale is a global value that can be set to control the difficulty
of the simulation and time is the time since the last update of the simulation. The
parameter ar is scriptable through the material scripts. For each combination of
material and agent this parameter varies.

t = ta ∗ pmass ∗ ar ∗ scale ∗ time (4.5)

When the temperature of a burning cell drops below its flammable temperature
point, the cells state is set to update again. If all burning cells are extinguished, no
cell can add heating power to the system, so all cells start to cool down on their
own until they reach a certain scriptable low temperature. When this temperature
is reached the cell is set to disabled and and will not get updated any more. The
other implemented reaction to agents is the drop in oxygen. If CO2 or powder hits
a surface it will not cool down the cell as much as others like water. The main
extinguishing factor in this case is the diminishing of oxygen. Again how much
oxygen is drained out of a cell is scriptable in the agent files. When the oxygen
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in a burning cell drops below a certain scriptable point the cell is again switched
to updating. While a cell is in the updating or burning state, oxygen is constantly
added to the cells.

4.3.4 Action Objects

In addition, to be more flexible and create more interactivity we added action ob-
jects. All action objects are derived from the base class ActionObject. This class
provides the method Update, which is called in every update cycle of the simula-
tion and the method Extinguish, which is called when an agent particle intersects
the action object, see listing 7.5. Extinguish is called with the point of intersec-
tion with the particle and the agent of the particle. Also Replay and Pause have
to be implemented to support the replay feature for training. For example we im-
plemented a OilExplosion object which should add another particle system for an
explosion and ignite various points in the scene. At first a simple class OilEx-
plosion is added with the two methods Update and Extinguish. In Extinguish the
particle is checked whether it intersects with one of the containing cells. if one of
the cells is indeed of the material oil, the cell is set to be exploding. In the next
update cycle an explosion is added to the FireManager and ignited. This explo-
sion is a special explosion based on PhysX which creates flares. When these flares
hit a surface, they ignite the position of the impact if it is flammable, see figure 4.5.

4.3.5 Parameter Loading

Materials and agents are stored in configuration files, see listing 7.1 - 7.2. On
the start up of Ogre3D all resource file directories are searched for parseable files.
The directories which should be parsed are defined in the ’resources.cfg’ file in the
application root directory. We defined our own files for materials, agents, scenes
and action objects. Each class like the FireMaterial class is responsible for parsing
its own script files. Those script files contain all parameters needed to make the
system expandable at a later state. If a new agent should be added later on, all the



4.4. Design Patterns 55

Fig. 4.5: An explosion caused by extinguishing burning oil with water.

user has to do is to create a new agent script file containing all extinguishing char-
acteristics and the ParticleUniverse script that should be used for the simulation
and representation of the agent.

4.4 Design Patterns

4.4.1 Singleton

Our whole project is controlled centrally from the class FireSimApp. This class
implements a singleton [GHJV95]. A singleton ensures that a class can only be
instantiated once. Thus providing the interface to access its methods and public
members from one well-known access point. All settings and parameters used
for the simulation are stored in this class, thus providing it throughout the whole
system.

A singleton is implemented by creating a static instance of the class itself and
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overriding its constructor in a way to just return that static member or, if it is not
instantiated, create it. In this way you insure that just one instance of the imple-
mented class can be instantiated at any given moment.

We use this mainly to store all our parameters for the simulation in a central
point. Also it provides access to the FireSimManager from all points at all time.
The FireSimManager is the central point where all simulation steps are cumu-
lated. The FireSimManager contains the FireManager which provides access to
all particle systems to simulate fire and smoke. Input through OpenTracker is also
accessible throughout the whole project through the singleton pattern.

Another point where we implemented the singleton pattern is the physXHan-
dler class. This class is responsible for the physical simulation of the extinguishing
agents. It has to provide the render system the position of the particles it controls.

4.4.2 Factory method

We use a factory method to create the action objects for more flexibility in the
system. For a more detailed description of action objects see 4.3.4. The idea in
using a factory method was to create a possibility to easily extend the simulation.
The class ActionObjectFactory contains the factory. All objects created by the
factory are subclasses of the ActionObject class. By calling the static GetObject
method of the ActionObjectFactory class with the desired action objects name as
a string, it creates an instance of the object. In this specific factory we also pass a
vector of cells which should react to the simulation.
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Results

Finally, in this section we present the system in toto and additional discussion.
The first image shows the whole system used by a trainee, see figure 5.1

Fig. 5.1: The system used by a trainee

The realistic rendering of smoke decreases the visibility in the scene. To
achieve a realistic look of the scene we implemented various particle effects, this
increases the immersion and training effect. This is shown in figure 5.2.

To demonstrate the fire spread we show a series of images depicting a specific
set of time, see figure 5.3

The complete content creation tool chain enables us the create many interest-
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Fig. 5.2: Realistic smoke to increase the immersion

Fig. 5.3: Fire spread in a scene over time

ing scenarios to learn from, some of them are shown in figure 5.4, 5.5 and 5.6.

The easy configuration of the fire extinguishing agents allows us to include
many different agents. At the moment, we have implemented water which on the
one hand reacts on on the other oil and extinguishes the fire mostly by decreasing
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Fig. 5.4: A heating central as training scenario

Fig. 5.5: A small kitchen with a burning deep fryer
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Fig. 5.6: A chemical laboratory to train the handling of burning chemicals

the temperature, this is shown in figure 5.7. We also implemented CO2 which
is the opposite of water, it does not decrease the temperature a lot but drains the
oxygen and thus suffocates the fire, shown in figure 5.8. Powder is a particularly
problematic agent, since it can be easily blown away by wind. This agent is shown
in figure 5.9. Finally, we also have a foam agent which is not evaporating like
water and therefore stays even after the user has stopped the agent, shown in
figure 5.10.

As mentioned before reactions of certain agents to materials can be modeled
by action objects. For example, we show here what happens when the trainee
extinguishes burning oil with water, see figure 5.11. Another example is shown in
figure 5.12, here the trainee starts to extinguish even though the electricity in the
kitchen is still on.

Our system already proved useful for collaborative training, a typical scenario
is shown in figure 5.13. Here two extinguishers with different agents are used to
extinguish a fire in a kitchen. As mentioned before, the deep fryer should not be
extinguished with a water extinguisher, a small explosion would start fire around



61

Fig. 5.7: Water as extinguishing agent

Fig. 5.8: CO2 as extinguishing agent
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Fig. 5.9: Powder as extinguishing agent

Fig. 5.10: Foam as extinguishing agent
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Fig. 5.11: Extinguishing oil with water

Fig. 5.12: Extinguishing while electricity is still on
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the fryer.

Fig. 5.13: Collaboration training

The user interface to control the simulation is shown in the following figures.
In figure5.14 the setup screen is shown. Here the trainer can choose which scene
should be loaded, where the fire should start and whether the the fire would already
burn for a while. Also the trainer can configure here what extinguishers are used
in the simulation. In figure 5.15 we show the user interface while the simulation
runs. Here general information about the state of the simulation is shown, like the
time since the fire started and the simulation can be paused and stopped from here.
On the last part of the simulation, as shown in figure 5.16, the trainer can rewind
the simulation and review the training with the trainee.

In the end we give an example how a complete training of a trainee could look
like in table 5.1.
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Fig. 5.14: The user interface to setup the scene.

Fig. 5.15: The user interface to control the running simulation.

Fig. 5.16: The user interface to review the training.
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The trainer sets up the scene, including the point where the fire starts and the
extinguishers to use.

The trainer starts the simulation. The fire starts to spread from the ignition point.

The trainee tries to extinguish the fire. Note how the pressure of the extinguisher
is dropping in the trainers view.
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The trainee has successfully extinguished the fire.

The trainer rewinds the scene and reviews the extinguishing process together
with the trainee.

Tab. 5.1: An overview of a typical training scenario
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Summary

First, we gave an overview over the state of the art in training with virtual reality.
We started with a glance into the learning and training fundamentals which are
needed to create a learning effect for the user of the system. In this section we
learned how to engage the user in interactions and create an immersive environ-
ment.

Then we show common learning examples from a school. This school used
virtual environments to present the pupils with repeatable and interesting chal-
lenges in environments the pupils would not be able to explore otherwise. Due to
the experience of this school we were able to come up with the right environment
to train.

Afterwards we looked at two simulations for emergency training. For emer-
gency training one of the most important things to grasp is the urgency of the
situation and how to react accordingly. Exactly this situation was explored with
a simulation in a nuclear facility to train the arriving emergency personnel about
the evaluation of the danger in this situation. The advantages of using a full ren-
der engine instead of a self build engine was therefore most applicable. Another
emergency training system we discussed was a fire fighting training simulator. It
is mainly used to train the leader of a fire squad how to use the man power in his
control most efficiently.

At last we looked at medical examples. Here we learned from a minimal inci-
sion system and a colonoscopy system, that a virtual reality system always works
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better if you have a physical interaction layer between the user and the simulation
itself.

We then gave an overview how the decision process worked that brought us
to our implementation. We had to think about how training works at the moment,
and how we could improve from there on. We evaluated what we can learn from
the medical examples since in medical science virtual reality is already widely
used. We discussed the importance of repeatablility and replayablility. Then, the
target group needed to be established. Since there was already a proven system
for virtual fire extinguishing we integrated the basic ideas as applicable best to our
system. Then, we had to decide which tracking system and presentation system
should be used. We decided upon an infra red tracker system and a stereo pro-
jection system to accomplish the best possible immersion. We also had to decide,
whether we wanted to build upon an existing graphics engine or to build our own.
We decided to use the freely available open source engine Ogre3D because of its
practicability and availability. In order to obtain the users attention we incorpo-
rated a photometric system to model workplace scenarios from the place of the
trainees. Last, we had the idea to implement a method for collaborative training.

We then gave an overview how our system works internally, how we imple-
mented the fire spread simulation and the extinguishing simulation without loos-
ing the ability to operate in real time. Another point of this thesis is how to acquire
the tracker data for the users. Also we have shown how we implemented all these
features into the Ogre3D engine.

In the end we show some results from the implementation.
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Appendix

7.1 Example Files

Listing 7.1: Material file
[MaterialConstants]
Name=std
FlameTemp=600.0
Flamable=true
TempCurve=0.4
SmokeCurve=1.0
SmokeColour=0.75 0.60 0.45
SmokeSystem=woodSmokeSystem
FireSystem=videoFireSystem
FireSystemNum=3
MaxFireTemp=900.0
[Agents]
Water=1.0
Foam=1.0
CO2=1.0
Powder=1.0

Listing 7.2: Agent file
[AgentConstants]
Name=Water
TempDrain=10000.0
OxygenDrain=200.0
Evaporation=2.0
ParticleSize=0.2
WindScale=100.0

#restParticlesPerMeter - particle per linear meter resolution,
#measured when the fluid is in its rest state (relaxed).
restParticlesPerMeter=3.0

#restDensity - target density for the fluid (water is about 1000).
restDensity=1000.0

#kernelRadiusMultiplier - sphere radius of influence for particle interaction.
kernelRadiusMultiplier=2.3
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#stiffness - stiffness of the particle interaction related to the pressure.
stiffness=50.0

#viscosity - defines the fluid’s viscous behavior.
viscosity=10.0

#damping - velocity damping constant, globally applied to each particle.
damping=0.1

#packetSizeMultiplier - parallelization of the fluid.
packetSizeMultiplier=16.0
motionLimitMultiplier=4.0
surfaceTension=100.0

restitutionForStaticShapes=0.005
dynamicFrictionForStaticShapes=0.1
collisionResponseCoefficient=0.5
collisionDistanceMultiplier=1.05

twoWayInteraction=false

gravity=true
#externalAcceleration - acceleration, applied to all particles at all timesteps.
#simulationMethod - defines whether or not particle interactions are
#considered in the simulation.
particleInteraction=2

Listing 7.3: Action object file
[ActionObjectSettings]
Class=OilObject

Listing 7.4: Particle universe script file
// ---------------- Begin: Water system with PhysX --------------------
system WaterSystem
{

technique physX
{

material ParticleUniverse/Water
default_particle_width 1
default_particle_height 1
position 0 0 0
visual_particle_quota 8000
renderer Billboard
{

sorting true
render_queue_group 70

}

// Emission of smoke particles
emitter Box
{

position 0 0 -2
emission_rate 400
circle_em_radius 0.25
circle_em_random true
circle_em_normal 0 0 -1
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sphere_surface_em_radius 0.25
box_em_width 0.2
box_em_height 0.2
box_em_depth 4

all_particle_dimensions dyn_random
{

min 0.5
max 1

}

angle 4
direction 0 0 -1
velocity dyn_random
{

min 170
max 180

}
time_to_live dyn_random
{

min 3
max 4

}
}

extern PhysX PhysX {}

affector TextureRotator
{

tex_rot_use_own_rotation true
tex_rot_rotation dyn_random
{

min 0
max 360

}
tex_rot_speed 0

}

affector Scale
{

xyz_scale dyn_curved_linear
{

control_point 0 2
control_point 0.25 0
control_point 1 -1

}
}

affector Colour
{

colour_aff_time_colour 0 1 1 1 0.025
colour_aff_time_colour 0.01 1 1 1 0.75
colour_aff_time_colour 0.25 1 1 1 0.5
colour_aff_time_colour 0.5 1 1 1 0.1
colour_aff_time_colour 1 1 1 1 0

}
}

}
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Listing 7.5: Action object header
#pragma once
#include "ParticleUniverseSystemManager.h"
#include "ExampleApplication.h"
#include "Settings.h"
#include "Recorder.h"

struct ActionCell
{

int id;
Vector3 position;

};

typedef vector<ActionCell>::iterator ActionCellsIterator;

class Agent;

class ActionObject
{
public:

ActionObject(void);
virtual ˜ActionObject(void);
virtual void Update(RecordedFrame* rf);
virtual void Init(Settings settings, vector<ActionCell> &cells);
virtual void Replay(RecordedFrame* rf);
virtual void Extinguish(Vector3 pos, Ogre::String agentType);
virtual void Pause(bool pause);
virtual void Reset();

protected:
Vector3 mPosition;
vector<ActionCell> mCells;

};
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