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Abstract

Medical Image Processing is a growing field in medicine and plays an important
role in medical decision making. Computer-based segmentation of anatomies in
data made by imaging modalities supports clinicians and speeds up their diagnosis
making compared to doing it manually. Computed Tomography (CT) is an imaging
modality for slice-wise three dimensional reconstruction of the human body in the
form of volumetric data which is especially applicable for imaging of bony struc-
tures and so for the vertebral column. Most bony structures, such as vertebrae, are
characterised by complex shape and texture appearances which turns its segmenta-
tion into a difficult task. Model-based segmentation approaches are promising tech-
niques to cope with variations in form and texture of the anatomy of interest. This is
done by incorporating information about shape and texture appearance gained from
an imaging modality in a model. The model can then be applied to segment the ob-
ject of interest in target data, however most of the model-based approaches need a
model intialisation for a fast and reliable segmentation of the object of interest.

This thesis was motivated by novel works on fast anatomical structure localisa-
tion with Markov Random Fields (MRFs) and focuses on the sparse structure lo-
calisation of single vertebrae in CT scans for a subsequent model initialisation of
more sophisticated segmentation algorithms. A MRF based model of appearance,
which employs local information in regions around anatomical landmarks and geo-
metrical information through connections between adjacent landmarks, is built on
volumetric CT datasets of lumbar vertebrae. The MRF based model is built on a 6
landmark configuration in vertebra volumetric data and is additionally matched with
target data. This is done by finding a best fit MRF matching by the Max-sum algo-
rithm among feature points found by a decision tree based feature detection algo-
rithm called probabilistic boosting tree (PBT). Anatomical landmark regions are de-
scribed by vector spin-images and shape index histograms. Adjacency information
is extracted by Delaunay tetrahedralisation where distances and gradient-related
angles describe connections between adjacent regions. The results on single lum-
bar vertebra CT scans show that the MRF approach is applicable on volumetric CT
datasets with an accuracy enough for supporting more sophisticated segmentation
algorithms such as Active Appearance Models (AAMs).





Kurzfassung

Medizinische Bildverarbeitung gewinnt immer mehr an Bedeutung in der Medizin
und spielt eine wichtige Rolle in der medizinischen Entscheidungsfindung. Com-
puterbasierte Segmentierung von Organen in Daten von bildgebenden Modalitä-
ten unterstützt Ärzte und ermöglicht eine schnellere Diagnose als bei manueller
Segmentierung. Computertomographie (CT) ist eine der bildgebenden Modalitä-
ten, die schnittweise eine drei-dimensionale Rekonstruktion des menschlichen Kör-
pers erstellt, welche im Besonderen für die Bildgebung von Knochenstrukturen und
so für die Wirbelsäule geeignet ist. Die meisten Knochenstrukturen, sowie auch
Wirbelkörper, haben eine komplexe Form und Textur. Diese Tatsache macht die
Wirbelkörper-Segmentierung zu einer schwierigen Aufgabe. Modellbasierte Seg-
mentierungsverfahren sind vielversprechende Techniken, um Form- und Texturva-
riationen in einem Modell zu speichern. So ein Modell kann nachträglich verwendet
werden, um Zielobjekte in unbekannten Daten zu erkennen, jedoch benötigen die
meisten modellbasierten Verfahren eine Modell-Initialisierung für eine schnelle und
zuverlässige Segmentierung.

Diese Diplomarbeit wurde durch neue Arbeiten im Bereich grobe Strukturerken-
nung von Organen mit Markov Random Fields (MRF) motiviert und verwendet das
selbe Verfahren für die grobe Strukturerkennung von Wirbelkörpern in CT-Daten
für die anschließende Modell-Initialisierung ausgeklügerterer Segmentierungsver-
fahren. Ein MRF-Modell, das lokale Informationen in Regionen um anatomisch si-
gnifikanten Landmarken und geometrische Informationen durch Verbindungen zwi-
schen benachbarten Landmarken beinhaltet, wird mit Hilfe von volumetrischen CT-
Daten von Lendenwirbelkörper gebildet. Das MRF-Modell basiert auf einer 6-Land-
mark-Konfiguration in Wirbelkörper-Datensätzen und wird durch das Finden einer
bestgeeigneten MRF-Markierung mit dem Max-Sum-Algorithmus innerhalb von vor-
selektierten Merkmalspunkten auf Zielvolumsdaten angepasst, wobei die Merkmal-
spunkte in den Zielvolumsdaten durch den Probabilistic-Boosting-Tree (PBT) Ansatz
selektiert werden. Das Aussehen der anatomischen Landmarkbereiche ist durch
Vector-Spin-Images und Shape-Index-Histogramme gekennzeichnet. Nachbarschafts-
informationen zwischen Landmarken werden mit Hilfe der räumlichen Delaunay-
Triangulierung gewonnen. Distanzen gemeinsam mit Gradienten-orientierten Win-
keln kennzeichnen den geometrischen Aufbau des Modells. Die Resultate zeigen
die Anwendbarkeit des Ansatzes auf volumetrischen CT-Daten mit einer ausreichen-
den Genaugkeit für die Unterstützung ausgeklügelterer Segmentierungsalgorith-
men wie Active Appearance Modelle (AAMs).
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivation

The vertebral column (see figure 1.1) is a very important part of the body

which holds one upright, supports movements and covers the spinal cord.

It consists of complex shaped bony parts called vertebrae (see figure 1.1),

which are connected through soft cushions called intervertebral discs. A ver-

tebra generally consists of a vertebra body and transverse processes with a

spinous process connected to it. The vertebra body consists of dense cortical

bone which encompasses a porous matter called spongious bone.

Diseases of the vertebral column can have serious consequences such

as backpain, one of the most common problems in industrialised countries;

its diagnosis and treatment are crucial steps in medicine. It is stated in the

health referendum of Statistics Austria in 2006/2007 [Aus07] that diseases of

the vertebral column comprise the number one problem area, which means

that one third of the population ages 15 and up, approximately 2.3 million

people, are suffering from these types of diseases. Among these diseases are

disc prolapse, foramen stenosis, spinal cord stenosis, osteoporosis, which

can lead to fractures (see figure 1.1), and tumours. In order to diagnose

these types of diseases, medical imaging modalities provide evidence for

clinicians. Depending on the type of disease different modalities are appro-

priate. This means that as a first step only X-ray radiographs are generated,

and if there is a demand for higher resolution, more sophisticated imaging

modalities such as Computed Tomography (CT) (see figure 1.1) is applied.
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1.1. MOTIVATION

CT reproduces the human body in transversal slices where the three dimen-

sionality of the produced data comes from the construction of multiple slices.

CT is an important method for visualisation of hard tissues, such as bony

structures, and so it is well applicable on the vertebral column, providing

high resolution volumetric data.

Figure 1.1: Axial CT image of a broken second lumbar vertebra (on the left top),
lateral picture of the sixth thoracic vertebra [Lip06] (on the left bottom) and lateral
CT image of the thoracic and lumbar part of the vertebral column (on the right).

Through the remarkable developments of medical imaging in the recent

past a big demand arose for supporting clinicians with computer-aided diag-

nosis (CAD) which increases the accuracy and consistency of radiological di-

agnosis and reduces the image interpretation time. For example, computer-

aided measurements of vertebra height and density can help diagnose os-

teoporosis. Furthermore, segmented organs, such as single vertebrae, can

act as reference for registration tasks in image-guided surgery.
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CHAPTER 1. INTRODUCTION

Segmentation of target anatomies is a difficult task due to the presence of

noise in the imaging process, inhomogeneities of the tissues and the anatom-

ical or pathological variability of target organs. Thus, different appearances

due to variable densities of spongious bone of vertebrae from patient to pa-

tient, variability of thickness of intervertebral discs and diseases such as

osteoporosis turn the segmentation into a difficult task. For these reasons

straight-forward segmentation techniques including thresholding, as well as

edge and region growing based methods are not well-suited here.

Several approaches exist for segmentation of the vertebral column in im-

ages given by different imaging modalities. Hahn and Beth [HB04] tackles

the segmentation problem by searching for separation planes between ver-

tebrae in CT data. Virtual balloons are placed and inflated within the spinal

cord. After inflation, necks can be observed in the vertebra regions, and

the intervertebral disc regions are characterised by swellings. The two re-

gions can be distinguished by calculating Gaussian curvature on the balloon

surface. The separation planes are finally extracted in the swelled balloon

regions where the position of the plane is determined by the centre of grav-

ity of the balloon, and the orientation of the plane is set perpendicular to the

surface of the initial balloon.

In the work of Naegel [Nae07] mathematical morphology operators are

applied for segmentation of vertebrae in CT data. After detecting the region

of interest (ROI), which identifies the rough position of the vertebral column,

a marker image is extracted out of the ROI image with the help of mathe-

matical morphology operators, with each marker identifying a vertebra lo-

cation. Finally, vertebrae are segmented with the help of the marker image

and the gradient image of the ROI image by watershed-based segmentation.

Labelling of vertebrae according to their anatomical names occurs by find-

ing the twelfth thoracic vertebra (T12), which can be recognized by the fact

that it is the last one from the top to the bottom that has ribs connected to it.

Model-based segmentation is an additional promising field of medical

image segmentation which tackles the problem of high variability of target

anatomies by modelling their shape and texture appearance. Model-based

segmentation methods use prior knowledge in the form of a model for iden-

4
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tifying objects in images. A model stands for a collection of features which

describe the shape and appearance of an organ of interest. In order to detect

and to segment organs of interest in volumetric data, the built model has to

be matched with the previously unseen target volume data.

Klinder et al. [KWL+08] uses a model-based segmentation approach on

CT scans and separates the problem into a global model and a local one.

The global model captures the shape of the vertebral column by considering

the spatial constellation of individual vertebrae, and a local model is used to

enhance the segmentation by local deformations after matching the global

model to the target image. The global model is matched with the target im-

age by finding a set of optimal rigid transformations of individual vertebrae,

followed by the local model matching involving local non-rigid free-form de-

formations.

A further model-based approach was presented [RCA06] which uses Ac-

tive Appearance Models (AAMs) to segment vertebrae on X-ray radiographs.

The approach uses a triple sequence of AAMs for matching from the twelfth

thoracic (T12) to the fourth lumbar (L4) vertebrae, which means that the seg-

mentation is accomplished in triplets like T12/L1/L2, L1/L2/L3 and L2/L3/L4.

This approach combines the results of the fitted triplet models, where each

vertebrae is fitted using the triplet sub-model in which it is central.

In order to achieve a fast and reliable segmentation with sophisticated

model-based approaches such as AAMs and Active Shape Models (ASMs),

a coarse initialisation of the model for matching is necessary. Donner et al.

[DML+07], [DMLB07] copes with a sparse model initialisation for sophisti-

cated segmentation steps such as AAMs. Donner et al. [DML+07], [DMLB07]

uses Markov Random Fields (MRFs) for localising the sparse structure of tar-

get anatomies. MRFs model prior contextual information of local regions

around interest points which are dependent on predefined adjacent inter-

est points. The modelled information is extracted from training samples and

is then compared to the same type of information extracted from a target im-

age. The goal is to find a best fit matching of the built model with a target

image based on the similarities between modelled data and target data. The

best fit matching can be found with the help of a MRF solver algorithm.

5



CHAPTER 1. INTRODUCTION

The following sections provide an overview on related works of model

initialisation in addition to the problem statement. MRFs in medical image

processing are also presented, and a short description of the approach pre-

sented in this thesis is delivered. Finally, an overview of the thesis structure

is given.

1.2 Problem Statement

Model-based segmentation methods such as ASMs and AAMs have to cope

with the problem of placing the model with a considerable overlap with the

object of interest on the target image at their search step. The higher the

overlap of the model to the target anatomy the faster and more reliable is

the searching step. For that reason many novel model-based approaches are

accelerated by dividing the segmentation into a rough position localisation

step followed by the model search step [DML+07], [DMLB07], [TBA+09]. An

AAM-based approach was developed for vertebra segmentation so far where

the model search step is very time consuming due to the large search space.

A sparse structure estimation of vertebrae is crucial in order to enhance and

accelerate the AAM model search by delivering initial positions where the

model can be placed on. Speeding up the segmentation of individual verte-

brae is of big interest because the model matching has to be accomplished

on all vertebrae which are present on a given image. Furthermore, physi-

cians could profit from the enhancement and acceleration of automatic ver-

tebra segmentation for the diagnosis of vertebral column related diseases.

1.3 Related Work

1.3.1 Model Initialisation for Segmentation

In order to match an anatomical target with a model, at least a rough es-

timation of the region of interest is needed by doing it either manually or

by specific approaches mentioned below. The model-based segmentation

approaches described here use a rough position estimation by localising a

centre point (centre of gravity) of the target organ. In the work of Ecabert et

al. [EPS+08] a three dimensional implementation of the Generalized Hough

6
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Transform (GHT) is applied for localisation of the heart in a fully automatic

segmentation of the whole heart in three dimensional CT data. GHT encodes

the description of the shape in a reference table which contains vectors point-

ing from the shape boundary to a reference point of the shape. The vectors

are determined by the angles of gradients at boundary points according to a

tangential plane at that point. At the detection step gradient orientations are

measured at each edge point of a target image. Reference positions accord-

ing to the extracted gradient orientations are subsequently extracted with

the help of the reference table. The reference position which was selected

most frequently is finally selected. Local shape variability is learned further-

more by combining the reference tables of several reference shapes. The

GHT-based heart localisation suffers from high computational efforts and has

to be applied after pre-processing steps such as subsampling, thresholding,

smoothing and edge detection by a Sobel filter.

A further technique is used by Zheng et al. [ZBG+08] for heart segmen-

tation, where probabilistic boosting trees (PBTs) are used in order to find

the position and orientation of the heart. The position estimation occurs by

training a classifier of a PBT given positive and negative samples based on

3D Haar wavelet features. The hypothesis whether there is an object centred

at (X, Y, Z) is tested by all points of the target volume by the trained classi-

fier, and the 100 best fits are preserved as candidate locations. After position

estimation the trained position-orientation classifiers are applied in order to

select the best 50 candidates out of the 100 × N candidates where N is the

number of hypotheses about the orientation of the heart. As the next step,

trained classifiers are used to decide on the most appropriate scaling of the

target anatomy model, and the outcome is ranked. The average of the top 100

candidates is the final aggregated estimate.

There are also approaches which localise not only a centre point but a

sparse structure of the target organ. In the work of Roeschies and Winter

[RW08] anatomical landmarks of vertebrae create an undirected graph on

two dimensional axial CT slices. Gabor wavelet transformation allows the

extraction of local texture information on the image and is used to gener-

ate corresponding similarities between the training and the target image.

7
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Besides local texture information the topographic information given by the

graph structure is used for matching. Furthermore, several graphs on sev-

eral training images can form a bunch graph, which can improve the perfor-

mance of the matching by incorporating texture and form variations in the

bunch graph.

Another structure localisation approach is based on sparse MRF appear-

ance models, which were introduced by Donner et. al [DMLB07],[DML+07].

In both papers a MRF framework was used for detecting the structure of hand

bones in radiographs by incorporating local features and the geometrical

configuration of interest points, as well as local features along adjacencies

between them. Gradient Vector Flows (GVF), which detect points of high lo-

cal symmetry, were used for both the description of local appearance at in-

terest points and for the description along connections between neighbour-

ing points. The final mapping between the MRF based model and the target

interest points was made by the Max-sum algorithm [Wer07].

Novel methods present combinations of sparse object localisation tech-

niques and more sophisticated segmentation steps on top of them. Among

these multi-stage techniques is the method presented in [CCS04], where fa-

cial feature locations are approximated by a boosted cascaded classifier. The

detected feature points are evaluated and filtered according to the reliabil-

ities of the local detectors by the method called Pairwise Reinforcement of

Feature Responses (PRFR). The final set of points is refined by Active Appear-

ance Models (AAM). More than that, Tresadern et. al combine a global PCA

based shape model with a MRF model based on local displacements called

cascade of Combined Shape Models (c-CSM) [TBA+09]. The approach uses

a two-stage cascade algorithm which selects obvious points by position, ori-

entation and scale estimation by a MRF in the first step. The second step

refines the result of the first step by finding a larger set of less obvious points

by accepting shape variations of the global model. The approach was tested

on faces and hand radiographs.
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1.3.2 Markov Random Fields in Medical Image Processing

Markov Random Fields (MRFs) represented powerful tools for physicists and

statisticians [Per98] before they were introduced to the image processing

and computer vision community by Geman and Geman in 1984 [GG84]. MRFs

model the a priori probability of image patterns that are contextually de-

pendent. There are lots of MRF application tasks in image processing, such

as image restoration [DKVC98], segmentation and texture analysis, although

this section focuses on examples of medical image processing.

One of the medical applications of MRFs was developed by Held et al.

[HKK+97], where it is applied for segmenting neighbouring tissues in brain

MR images. In this approach, signal inhomogeneities are additionally mod-

elled by an a priori MRF. The segmentation task described in this paper con-

sists of classifying the tissue of every point as gray matter or white matter.

Furthermore, MRFs are used for inhomogeneity correction of the MR images,

which is important, because intensity variations can occur due to inhomo-

geneities of the MR magnetic fields.

Another approach incorporates MRF into the segmentation of the cardiac

cavity in 2D and 3D ultrasound data. Herlin et al. [HBG+84] use MRFs in two

types of models, a spatial model and an extended spatio-temporal model. In

the spatial model the MRF is applied to segment the cavity with target data

where intensity, spatial gradient information and edge information are the

relevant observed features. Solving the MRF labelling problem, where the

result of the labelling is whether a point is inside or outside the cavity, is done

by the Iterated Conditional Mode (ICM) method. The spatio-temporal model

extends the spatial one by altering the energy function according to temporal

properties such as the existence of previously segmented reference images.

Besides using MRFs for segmentation purposes, there are approaches that

try to capture only a sparse appearance of target objects within unknown

volumes. Recently presented papers about sparse structure localisation of

hand bones in radiographs using sparse MRF appearance models were al-

ready mentioned in section 1.3.1 ([DMLB07], [DML+07]). Tresadern et al.

[TBA+09] (presented already in section 1.3.1) made a step forward. They ap-

9
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plied a global PCA based shape model on a MRF based model that initialises

the translation, orientation and scale of the underlying object.

1.4 Approach of the Thesis

The approach presented in this thesis was motivated by Donner et al. [DML+07],

[DMLB07] and focuses on MRF based sparse segmentation of individual ver-

tebrae for model initialisation of more sophisticated segmentation algorithms.

Prior information extracted from local regions around landmarks of ver-

tebra training data and from adjacencies between them are modelled in or-

der to capture the sparse appearance of vertebrae. Landmarks, which are

manually placed in the training data, represent anatomically significant po-

sitions such as the tips of transverse processes of a vertebra, and corners of

the vertebra body. Typical landmark adjacencies are connections between

landmarks of the vertebra body and connections between transverse process

landmarks and vertebra body landmarks. Local information from landmark

regions is modelled by histogram-based local descriptors which use gradi-

ents and curvatures as low-level feature information. Adjacencies between

landmarks are generated by Delaunay tetrahedralisation and additional in-

formation such as distances and angles are extracted and modelled along

them. The model is additionally matched with points called feature points

detected by a probabilistic boosting tree (PBT) based high-level feature ex-

traction algorithm in target data of vertebrae where each feature point is a

candidate for a certain modelled landmark. The sparse structure of verte-

brae in target data is finally found by localising the modelled landmarks on

a target data by finding a best fit configuration of feature points for the mod-

elled landmarks with the help of a MRF solver algorithm. In this thesis the

Max-sum solver [Wer07] was used as a MRF solver.

1.5 Thesis Overview

First of all, the anatomy of the vertebral column and medical imaging tech-

niques are described in Chapter 2. Chapter 3 communicates the methods

which are applied for the MRF based sparse structure localisation of verte-
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brae. In Chapter 4 the configuration of the MRF based sparse structure locali-

sation framework is explained. The results of the MRF based sparse structure

localisation of lumbar vertebrae on CT volume data are presented in Chap-

ter 5. Finally in Chapter 6, a conclusion of the work is provided, and possible

future works are discussed.
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Chapter 2

Medical Background

This section gives an introduction to the anatomy of the vertebral column

and presents its possible anatomical and pathological variations. Imaging

modalities of the vertebral column are also described.

2.1 Vertebral Column

The vertebral column is one of the most important parts of the body; it gives

the body structure and support. On the other hand, it protects the spinal

canal, which consists of bundles of nerves running from the brain to the rest

of the body. The vertebral column is made up of bony parts called vertebrae.

Vertebrae are stacked on each other and are connected with soft cushions

called intervertebral discs, which help to absorb pressure. The vertebral

column can be grouped into three main regions and two additional regions

consisting of special vertebrae that are grown together (see table 2.1 and

figure 2.1).

Term Number of Vertebrae Body Region Abbreviation

Cervical 7 Neck C1 - C7
Thoracic 12 Chest T1 - T12
Lumbar 5 Low Back L1 - L5
Sacrum 5 (fused) Pelvis S1 - S5
Coccyx 3-5 Tailbone None

Table 2.1: Regions of the vertebral column
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Figure 2.1: Vertebral column from the lateral direction (on the left) and vertebral
column from the posterior direction (on the right), [Uni10].

Each region has a different number and different forms of vertebrae. The

forms of the vertebrae depend on the function, so the cervical vertebrae

are smaller than the lumbar ones. Furthermore, the vertebral column has

a double S curvature, which makes it elastic, stable and provides a uniform

distribution of weight. A curvature inward is called lordosis and curvatures

outward represent kyphosis. According to that, the vertebral column is char-

acterised by cervical lordosis, thoracic kyphosis, lumbar lordosis and sacral

kyphosis [Lip06].

2.2 Vertebrae

Vertebrae provide protection for the spinal cord and also bear the weight

put upon the vertebral column. Vertebrae have an outer shell called cortical

bone that is hard and strong. The inside is made of a soft, spongy type of
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bone that is called cancellous bone.

Figure 2.2: The sixth thoracic vertebra from the left lateral direction (on the left) and
the third lumbar vertebra from the axial direction (on the right) [Lip06].

A vertebra consists of a large bony part called vertebra body (label 1 in

figure 2.2) and a round part, which is connected to the vertebra body. Be-

tween the vertebra body and the round part is the inferior vertebral notch

(label 7 in figure 2.2). The round bony part consists of the vertebral foramen

(label 11 in figure 2.2), which covers the spinal canal. The spinous process

(label 5 in figure 2.2) and transverse processes (label 3 and 8 in figure 2.2

where it denotes special transverse processes of lumbar vertebrae called

costal processes) are further extensions of the round bony part. The ribs at-

tach to the vertebrae at the transverse processes by the fovea costalis (label

4 in figure 2.2). Furthermore, two more types of processes exist, the supe-

rior articular processes (label 2 and 9 in figure 2.2) and the inferior articular

processes (label 6 and 10 in figure 2.2), [Lip06].

2.3 Anatomical Variations

Sifting through the vertebral column from the top to the bottom, anatomi-

cal variations (see figure 2.3) can be observed as the shapes of vertebrae

change, and the processes and vertebra bodies become larger (which is

partly due to the fact that the lower parts have to bear more weight than the

upper ones).
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Figure 2.3: Cervical (on the left), thoracic (in the middle) and lumbar vertebrae (on
the right) from axial (top row) and lateral directions (bottom row), [Min10].

In addition to that, irregular variations of the shape of single vertebrae are

also possible. Examples of such irregular variations are wedge-shaped ver-

tebrae, which can be due to hypoplasia of the vertebral body, and vertebra

plana, which stands for plate-like formed vertebrae with a normal vertebral

arch range. More than that, vertebra bodies with concave anterior edges

and fish-formed vertebrae can be also mentioned among the irregular shape

variations of vertebrae. Another occurence of anatomical variation is fused

vertebrae, which is possible either congenitally or can evolve over years and

is characterised by partial or total loss of intervertebral space [RKD06].

2.4 Pathological Variations

Besides anatomical variations scoliosis, osteoporosis, spinal stenosis, frac-

tures, osteophytes and tumours are well-known disease-related variations of

the vertebral column.

Scoliosis is described as the abnormal curvature of the vertebral column

in the frontal plane, which causes rotation and deformation of single verte-

brae. The vertebral column deforms into a C- or S-like shape in the anterior
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plane.

Osteoporosis is a bone disease in which the mineral density of the bones

is reduced. It can lead to an increased risk of bone fractures. The vertebral

column is one part of the body that has a high risk of being affected by os-

teoporosis. Bone spurs may appear on vertebrae, or their size may shrink,

causing vertebral bodies to lose their height.

Osteophytes, tumours, fractures and spinal stenosis cause shape varia-

tions at certain locations of the vertebral column, so these have effect on

single vertebrae. Osteophytes are bony spurs that can grow on any part of

the vertebrae. Spinal stenosis stands for narrowing of the vertebral foramen

in the case of degenerative changes. Tumours and fractures refer to unpre-

dictable changes of the vertebra shape [RKD06].

2.5 Imaging Modalities for the Vertebral Column

The basic imaging modality for the vertebral column is X-ray radiographs,

which are projected from two directions (anterior or posterior side and lat-

eral side). X-ray radiographs are generated by casting X-rays of an X-ray

beam towards the anatomy of interest and by measuring the absorption of

X-rays based on different densities and composition of tissues (see figure 2.4

on the left). Furthermore, 3D imaging modalities such as Computed Tomog-

raphy (CT) and Magnetic Resonance Imaging (MRI) are applied in order to

support diagnosis in the case of special diseases like tumours, fractures or

intervertebral disc degenerations and to overcome occlusions by other or-

gans. CT is an X-ray based method for the generation of images of transver-

sal slices of the underlying anatomy. Three dimensionality of CT is then the

outcome of the sum of the generated transversal slice images (see figure 2.4

on the right). MRI is an imaging technique based on the magnetisation of hy-

drogen atoms in the body. The alignment of the hydrogen nuclei is changed

by magnetising them by the MRI scanner which is defined as their initial po-

sition. The alignment of the magnetisation can be then transformed into a

rotating field by additional radio frequency fields. By switching off the radio

frequency fields, the relaxation times to the initial position typical for dif-

ferent tissues can be measured according to different contrasts on the con-
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structed image [RKD06] (see figure 2.4 in the middle).

Figure 2.4: Coronal ragiograph of the thoracic vertebral column, sagittal MRI and
CT of the lumbar vertebral column (from left to right).

CT and MRI are modalities that produce gray level based images. Whereas

CT is better suited for imaging of bony parts of the body, MRI is mainly used

for the diagnosis of soft tissues of the body. For CT data the resolution of

axial slices generally lies between 0.25 and 2 millimetres and the distance

between slices use to lie in a range from 0.2 to 3 millimetres. MRI uses ar-

bitrary directions for imaging of the vertebral column, sagittal and coronal

slices are used.

Multidetector-Spiral-Computertomographs are recommended because of

several advantages over Single-Slice-Computertomographs in the case of us-

ing CT for the diagnosis of the vertebral column. Spiral-CTs reproduce the

volume with a much higher longitudinal resolution and in shorter periods

than Single-Slice-CTs. CT images are useful for diagnosis of fractures of the

vertebral column, tumours, metastases and canal compressions (i.e. slipped

discs). In case of analysing the vertebral column by MRI, sagittal T1- and

T2-weighted images are reconstructed where T1 and T2 denote two different

types of relaxation times. The T1-weighted images are used for the diagnosis

of bone marrow, and T2-weighted ones are used to evaluate the myelon, the

spinal canal and the discs [RKD06], [HL07].
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Chapter 3

Methods

3.1 Overview

Markov Random Field (MRF) based sparse structure localisation applied to

medical data finds an anatomy of interest by labelling its anatomically sig-

nificant points called landmarks in unknown data called target data. It can

be separated into two major parts, MRF based model building and model

matching (see figure 3.1).

MRF based model building - At the MRF based model building, the

sparse appearance and shape of an anatomy of interest is modelled. The

model represents a graph where its nodes capture the appearance of re-

gions around landmarks, and its connections define adjacencies between

landmarks establishing a geometrical configuration. The nodes of the model

are called objects and the connections compatibilities in this thesis. Appear-

ance information is prepared in the form of local descriptors, and the shape is

reflected by the geometrical configuration which involves distance and angle

information. The model objects are characterised by local descriptors which

are calculated as the average of local descriptors around manually placed

corresponding landmarks in a set of data called training data. Distances

and angles are extracted from a corresponding set of adjacent landmarks

of training data where landmark adjacencies are defined by Delaunay tetra-

hedralisation. Gaussians of distances and angles along adjacencies setup a

geometrical configuration and describe the compatibilities of the model.
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Figure 3.1: MRF Based Structure Localisation involves a high variety of methods
which are visualised by rectangles enclosed in the two major parts of the framework:
MRF based model building and model matching.

MRF based model matching - As a first step, information delivered by

local descriptors is extracted around points with features of interest called

feature points which are detected automatically by a high-level feature ex-

traction algorithm on target data. In addition, information along connections

between the feature points are extracted according to the geometrical con-

figuration of the model. These two types of information are compared to

those of the built model yielding qualities which describe how well feature

points match the model objects and how well the connections between fea-

ture points called edges fit to the compatibilities of the model. The feature

points are called labels in the context of the MRF based model matching be-

cause each of them are possible candidates for labelling the landmarks of

the target anatomy. The goal of the MRF based model matching is to find the

label and edge configuration with the highest overall quality. The label-edge

configuration called labelling with maximal overall quality is finally found by

a MRF solver.
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All of the methods essential for the MRF based model building and match-

ing are described in the following sections of this chapter.

3.2 Markov Random Fields

Markov Random Fields (MRF) are described first as it is the main technique

used in this thesis and its concepts are important for both the MRF based

model building and matching. Thus, MRFs model the qualities resulting from

model matchings with target data. Of interest is a model match with maxi-

mum quality. For finding a maximum quality matching, MRF solvers are ap-

plied. A theoretical explanation of MRFs is delivered and MRF solvers are

presented in the following.

3.2.1 Markov Random Field and the Gibbs Distribution

MRFs [Sta95] represent graphs M = (T,E) where T are the nodes and E

represents adjacencies of the graph. Two nodes represented by objects

are considered as neighbours in presence of an adjacency represented by

a compatibility e ∈ E. Neighbours of an object t ∈ T are denoted by t
′
. A

finite set of discrete random variables X builds a random field where each

variable Xt is assigned to a node t ∈ T . A realisation xt ∈ Lt called la-

bel is assigned to each of them by Xt = xt where Lt corresponds to a dis-

crete set of labels out of the |T |-tuple of labels X = L|T | = L1 × ... × LT .

Connections between labels of adjacent objects are called edges ae ∈ Ae

where adjacencies are defined by compatibilities e ∈ E. The joint probabil-

ity P (X = x) = P (X1 = x1, ..., XT = xT ) defines a configuration where every

random variable has a realisation (see figure 3.2).

X describes a MRF if the local characteristic of a probability measure de-

pends only on the knowledge of neighbouring nodes and the probability

measure is positive:

P (x) > 0, ∀x ∈ X

P (xt|xT−t) = P (xt|xt′ ) .
(3.1)

Formula (3.1) depicts the Markov-property of the random field, which

means that only neighbouring labels have direct interaction with each other.
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Figure 3.2: The MRF graph includes objects t ∈ T and labels. The objects are con-
nected by compatibilities e ∈ E where each compatibility contains edges ae ∈ Ae
connecting labels. A labelling X = x is denoted by thick edges which assigns a
label xt to each object t ∈ T [DMLB07].

A simple example for MRF application is segmentation of images with dark

and bright regions. In this case, intensities of dark and bright regions and in-

tensity differences between the two types of regions could be modelled by a

MRF graph. The intensity information would be modelled by objects and the

intensity difference between them according to a predefined neighbourhood

system (e.g. 4-point-neighbourhood) would provide compatibility informa-

tion of the MRF graph. Applying the graph on target images, each image

point gets a label, dark or bright, assigned under consideration of the mod-

elled intensities and intensity differences along the defined neighbourhood

system.

For establishing a simple way to specify the joint probabilities P (X = x),

the Hammersley-Clifford theorem states that an equivalence can be estab-

lished between the local properties of Markov Random Fields and global
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ones of Gibbs distributions. That way joint probabilities can be represented

by potential functions assigned to sub-configurations of x where appropriate

potential functions can be choosen for desired system behaviours [Sta95].

The equivalence criterion between MRFs and Gibbs distributions can be ex-

plained as follows: An energy U (x) on labellings x ∈ X is defined as

U (x) =
∑
c∈C

Vc (x) (3.2)

where a clique c ∈ C describes a sub-graph of T where every object t ∈ T is

connected to all the other ones and Vc (x) corresponds to the clique potential

which is the prior probability assigned to a sub-configuration xc. Examples

for cliques are single objects, pairs of objects and triples of objects. The

Gibbs measure is defined as

P (x) =
e−U(x)

Z
(3.3)

where

Z =
∑
x∈X

e−U(x) (3.4)

is the partition function. In order to make the relation between Markov Ran-

dom Fields and Gibbs distributions, nearest neighbour Gibbs potentials have

to be defined. By considering arbitrary subsets s ∈ S of T , a potential is a

nearest neighbour Gibbs potential if Vs (x) = 0 only when s is not a clique,

which means that only clique potentials contribute to the energy. Therefore,

it is visible that the nearest neighbour Gibbs measure induced by the near-

est neighbour Gibbs potential builds the necessary equivalence criterion

between Gibbs distributions and Markov Random Fields [KS80].

3.2.2 Solver Algorithms for Markov Random Fields

Of interest is to find a configuration of the MRF which is the most similar to

the priors of a presented model, thus, having a maximal joint distribution. In

this section solver algorithms are introduced for Markov Random Fields that

compute the maximum posteriori estimate (MAP) of the MRF with discrete

variables by

x∗ = arg max
x∈X

P (x) (3.5)
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which is equivalent to finding a configuration of the nearest neighbour Gibbs

distribution with maximal probability [DMLB07]. In equation (3.5) x∗ de-

notes an optimal labelling delivered by the MAP estimate. In the case of

the dark-bright segmentation example of section 3.2.1, the segmentation of

dark-bright regions on a target image can be found by calculation of the MAP

estimate out of all possible labelling probabilities. First, the Max-sum solver

is presented, which finds a solution for the labelling problem by maximising

a sum of bivariate functions of discrete variables. Two other solver algo-

rithms are explained additionally.

3.2.2.1 Max-sum Solver

The Max-sum solver of Schlesinger originally proposed in 1976 [Sch76] is

reviewed by Werner [Wer07] where the (binary) Max-sum problem can be

defined as maximising a sum of unary and binary functions of discrete vari-

ables. Werner [Wer07] describes a linear programming relaxation of the

Max-sum problem, however, the Max-sum problem is solved with the help

of the dual of the linear program as doing that way is more efficient. Fur-

thermore, the final solution is found by formulating a Constraint Satisfaction

Problem (CSP) as the solution has to satisfy unary and binary constraints.

This section provides an overview of the Max-sum problem formulation, de-

scribes the CSP and arc-consistency as a solver for CSPs and explains the

steps for solving the Max-sum problem.

Max-sum problem formulation - As already mentioned before the Max-

sum labelling problem is defined as maximising the unary and binary func-

tion of discrete variables, which is a general NP-hard optimisation problem

[Wer07]. If applied for MAP inference of MRFs the unary and binary functions

correspond to joint probabilities P (X = x). Probabilities P are represented

here by qualities Q which are obtained through comparison of modelled

descriptors to target-extracted ones by dissimilarity measures described in

section 3.5. That way, qualities describe object-to-label (unary) and compatibility-

to-edge (binary) relationships. The quality of a labelling Q (X = x) can be
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formulated as

Q (x|q) =
∑
t∈T

qt (xt) +
∑

(t,t′)∈E

qtt′ (xt, xt′ ) . (3.6)

where each object t ∈ T is assigned a label xt ∈ Lt, and numbers qt (xt),

qtt′ (xt, xt′ ) ∈ R ∪ (−∞). qt (xt) are qualities for the label xt of the object t and

qtt′ (xt, xt′ ) are qualities for an edge between the object twith label xt and the

object t
′

with the label xt′ related to a labelling x ∈ X. Labels not necessarily

corresponding to a labelling x are denoted by x̂ ∈ L. Furthermore, a pen-

cil
(
t, t
′
, x̂
)

is defined as the set of edges from a node (t, x̂) to all nodes of a

neighbouring object t
′

(see figure 3.3).

Figure 3.3: Description of the components of the MRF graph for the Max-sum solver
algorithm [Wer07].

Finding a solution to the labelling problem means maximising the func-

tion (3.6) in order to get an optimal labelling:

LM,L (q) = arg max
x∈X

Q (x|q) . (3.7)

Constraint Satisfaction Problem (CSP) - CSP is explained first as it has

to be formulated and solved in order to find the final solution to the Max-sum

problem.

The CSP is defined as finding a labelling which satisfies given unary and

binary constraints. Thus, a labelling is of interest which passes through some

or all of the given nodes and edges. A CSP can be formulated as
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Figure 3.4: „The arc-consistency algorithm deletes (a) nodes not linked with some
neighbour by any edge, and (b) edges lacking an end node. “[Wer07]

L̄M,L (q̄) =

x ∈ X|
∧
t

q̄t (xt) ∧
∧
{t,t′}

q̄tt′ (xt, xt′ ) = 1

 (3.8)

where q̄t (x̂) , q̄tt′
(
x̂, x̂

′) ∈ {0, 1} are set to 1 or 0 if a node respectively edge

satisfies a given constraint or not (in the case of Max-sum it is the constraint

that node and edge qualities have to be maximal). A CSP is satisfiable if

L̄M,L (q̄) 6= ∅. A satisfiable CSP can be found by terms of local constraints

called arc-consistency (see figure 3.4). A CSP is arc-consistent if

∨
x̂′

q̄tt′
(
x̂, x̂

′
)

= q̄t (x̂) (3.9)

with
{
t, t
′} ∈ E and x̂ ∈ L. Checking a CSP for satisfiability can be done

with an arc-consistency algorithm where a solution to the CSP found by the

arc-consistency algorithm is called the kernel of the CSP [Wer05], [Wer07].

Solving the Max-sum problem - In general, the Max-sum problem can

be solved by linear programming relaxations. A relaxed labelling is defined

as vector %%% with the components %t (x̂) and %tt′
(
x̂, x̂

′)
representing numbers
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assigned to labels and edges satisfying∑
x̂′

%tt′
(
x̂, x̂

′
)

= %t (x̂) ,
{
t, t
′
}
∈ E, x̂, x̂′ ∈ L∑

x̂

%t (x̂) = 1, t ∈ T

%%% ≥ 0.

(3.10)

In the previous sections labellings x ∈ X were mentioned where each ob-

ject t ∈ T gets exactly one label assigned xt ∈ Lt. The formula (3.10)

presents an alternative representation where objects are allowed to be un-

decided which means that multiple labels can be assigned to an object with

different weights. Thus, if %%% in (3.10) denotes a binary vector it represents

a decided labelling and %%% is said to be undecided if it contains non-integer

elements. The set %%% satisfying the conditions in (3.10) is denoted by ΛM,L.

Thus, the relaxed Max-sum problem can be described as the linear program

ΛM,L (q) = arg max
%∈ΛM,L

〈q, %%%〉 (3.11)

In (3.11) the quality of a relaxed labelling is the scalar product of q and %%%

indicated by 〈q, %%%〉. ΛM,L (q) coincides with LM,L (q) if it represents a decided

labelling and delivers the solution to the labelling problem formed by labels

which have values assigned unequal to 0 after the relaxation.

It is inefficient to compute the linear programming relaxation for large

data sets as it is the case in most of the computer vision tasks. The linear pro-

gramming dual of the Max-sum problem can be used for solving the problem

more efficiently by the minimisation

U∗ (q) = min
q′∼q

U
(
q
′
)

(3.12)

of the upper bound

U (q) =
∑
t

max
x̂

qt (x̂) +
∑
{t,t′}

max
x̂,x̂′

qtt′
(
x̂, x̂

′
)

(3.13)

to the Max-sum problem. The minimisation of the upper bound is estab-

lished by equivalent transformations q
′
. An equivalent transformation can be
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formulated as adding a number µ to qt (x̂) and subtracting the same number

from all edges in the pencil
(
t, t
′
, x̂
)
. Equivalent transformations are redefi-

nitions of the problems by leaving Q (x|q) unchanged. However, the upper

bound U (q) is not invariant to equivalent transformations which leads to the

minimisation of the upper bound by equivalent transformations in order to

approach a labelling with maximum quality [Wer07].

Finally, the result to the Max-sum problem is delivered by a satisfiable CSP

on labels and edges with maximal quality delivered by the approximated

minimal upper bound U∗ (q). It is remarked by Werner [Wer05], [Wer07],

that a non-empty kernel of the CSP formed by the labels and edges with

maximal quality is necessary but not sufficient for minimal upper bound of

the problem, which means that the algorithm sometimes might not find the

maximum quality MRF labelling.

3.2.2.2 Further Solver Algorithms

Alternative and novel methods for minimisation of the Markov Random Field

energy have been introduced recently. One of these new methods, called

Iterated Cross Entropy with Partition Strategy (ICEPS), is described in this

section [WC07]. Besides new approaches a well-known method, called Sim-

ulated Annealing, is explained in the application for solving the MAP-MRF

labelling problem. Both methods are based on the maximisation of the MAP

probability as expressed in (3.5), which can be formulated as the minimisa-

tion of the energy function U of the underlying Gibbs distribution [WC07]

by

x∗ = arg min
x∈X

U (x) (3.14)

where U (.) is the energy function from (3.2) and x∗ is the optimal configura-

tion of labels.

Cross Entropy Energy Minimisation - A novel energy minimisation method

was introduced by Wu and Chung [WC07], which is called Iterated Cross En-

tropy with Partition Strategy (ICEPS). This method associates an estimation

problem with the optimisation problem by estimating probabilities for con-

figurations with low energies. The algorithm calculates the estimates for an

optimal configuration based on formula (3.14). It estimates the probability P
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so that the energy of a configuration remains within a threshold ϑ ∈ R with

the following formula

P (U (X) ≤ ϑ) =
∑
x

I{U(x)≤ϑ}p (x; v) (3.15)

where I{event} is an indicator function which is 1 if the event is true and 0 other-

wise. p (.; v) is the probability density function for configurations x ∈ X where

v is its parameter vector which indicates possible configurations by assign-

ing high probabilities to preferable labels. The formula (3.15) estimates the

probability for the situation where the energy of a configuration x ∈ X is

less than a threshold ϑ. The optimisation problem is solved with a multi-level

optimisation approach where sequences of levels ϑ1, ϑ2, ..., ϑL and parameter

vectors v1,v2, ...,vL are generated so that ϑL is close to the optimal energy

ϑ∗ = minx∈X U (x), and vL corresponds to a parameter vector which assigns

high probability density to configurations that correspond to low energies.

Thus, the ICEPS algorithm focuses on high performance configurations with

energy lower than a threshold ϑ and calculates the occurrence of labellings

out of the high performance configuration set. This statistical information

is used to guide subsequent new configuration set generating iterations of

the algorithm. This way, the Cross Entropy between the optimal importance

sampling density and the target density can be minimised [WC07]. Cross

Entropy is embodied by the Kullback-Leibler distance, and the optimal im-

portance sampling density is calculated by focusing on important configura-

tion subsets with low energies.

Simulated Annealing - The well known heuristic technique Simulated

Annealing is used in the context of Markov Random Fields for finding the

MAP estimate of the labelling problem by minimisation of the energy of the

system. In the work of Mohapatra et al. [MNP06] a labelling problem is

solved by the application of a MRF model for color image segmentation. The

goal is to find an optimal pixel labelling for the segmentation of the observed

image where the observed image is assumed to be a degraded version of the

true labels by considering a Gaussian distributed degradation.

Simulated Annealing heats the system with a high temperature Fin and

causes permanent internal energy changes by perturbing the system with
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Gaussian disturbance. The energy U
′

of the perturbed system is calculated

and 4U = U − U
′

is analyzed. If 4U > 0 then the perturbed system is ac-

cepted as a new configuration with a probability of 1, otherwise the new con-

figuration is accepted with a probability exp (4U/F ). The temperature F has

to be decreased in every pass until it decreases to a sufficiently low value.

The energy at this low temperature delivers the MAP estimate and so pro-

duces the final labelling of the system.

3.3 Low- and High-Level Feature Extraction

The low- and high-level feature extraction is an important preparation step

for the MRF based model matching. In order to enhance the matching, the

space of possible candidate points within target data has to be reduced to

points with given characteristics called features. At first, low-level features,

such as Haar-like features [VJ02], gradient magnitudes and curvatures are

extracted. High-level features are learned based on the extracted low-level

ones at predefined points of training data by decision tree based classifica-

tion and can be detected on a target data. Points detected by the high-level

feature extraction algorithm on target data are the feature points. The feature

points detected on a target data are finally the labels of the MRF based model

matching.

3.3.1 Low-Level Feature Extraction

Feature extraction techniques provide interpretation of images at sampled

image locations or predefined regions. Images can be defined in either two

or three dimensions. A two-dimensional (2D) real world image is considered

to be a function of two real variables, for example, I (x, y) with I as the in-

tensity of the image at the real coordinate point (x, y). Intensities of medical

images can be represented by gray scales. A three-dimensional (3D) image

called volume is defined as the function I (x, y, z) at the real coordinate point

(x, y, z). 2D and 3D images are divided into elements called pixels in the

2D case and voxels in the 3D case. Real valued points (x, y) and (x, y, z) are

mapped to certain pixels and voxels depending on the pixel- and voxel-sizes

of the image.
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There are many motivations for using features based on different regions

instead of only intensity information at each image point. Features represent

ad-hoc domain knowledge, and systems based on extracted features operate

faster than point based ones as stated by Viola and Jones [VJ02]. The classi-

fiers of the high-level feature extraction algorithm can be trained based on

multiple low-level features. In the first step low-level features like intensity,

gradient and curvature are extracted and processed locally without any ad-

ditional information like shape or spatial integration. These features can be

incorporated into higher level features where information about shape and

spatial integration are also used [NA08]. This section communicates the low-

level feature extraction methods.

Image Gradients - Gradients are first order differential quantities which

measure how intensities vary in predefined regions around a point and give

the steepest ascent at that point. The gradient of an image I at the point

(x, y, z) is defined as the three-dimensional vector g = ∇I = [Ix, Iy, Iz] =

[ ∂I
∂x
, ∂I
∂y
, ∂I
∂z

] where Ix, Iy, Iz are the partial derivatives of I at the point (x, y, z).

Figure 3.5: 2D Sobel mask templates for mx (on the left), and for my (on the right)
[NA08].

One of the well-known approximation approaches of gradients is comput-

ing masks which are convolved with the underlying volume in order to esti-

mate the first derivatives at each position of the volume. The Sobel operator

(see figure 3.5) is an operator which consists of three masksmx,my,mz where

each of them corresponds to one of the dimensions x, y, z of the volume in or-

der to approximate the partial derivatives along each dimension. The three

partial derivatives Ix, Iy, Iz which set up the gradient vectors in each location

of the volume can be calculated by convolution of the volume with the three
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Figure 3.6: Axial gradient image (on the left) and lateral gradient image of a vertebra
(on the right). Bright to dark intensities encode high to low gradient magnitudes.

masks as follows:

Ix = I ? mx

Iy = I ? my

Iz = I ? mz.

(3.16)

The gradient volume is the result of the application of all three masks on

the intensity function I of the volume where the three gradient components

Ix, Iy, Iz are assigned to each point of the volume. The gradient magnitude is

defined by G =
√
I2
x + I2

y + I2
z as the rate of change at a given point [NA08].

Points with high G are possible raw estimates for edge points where “high”

can be realised as higher than a given threshold. Gradient images of verte-

brae are visible in figure 3.6.

Curvatures - Curvature can be defined mathematically as the rate of change

of the direction of a curve. Thus, considering a point on the curve, then the

curvature is the rate of change of angle ∂ω with respect to arc length ∂S which

can be formulated as κ = ∂ω
∂S

= 2π
2πR

= 1
R

after Roberts [Rob01], where R is

called radius of curvature, which is the radius of the circle having the great-

est contact with the curve, called oscillating circle (see figure 3.7 on the left).

The concept of curvature can be extended into three dimensions by inter-

secting a surface with planes. At the curve resulting from the intersection,

the curvature can be calculated where the most useful ones are those de-
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fined by planes orthogonal to the surface giving the maximum and minimum

curvatures (principal curvatures) [Rob01].

Figure 3.7: Mathematical definition of curvature where the curvature for a particular
point P on a curve is defined as the reciprocal of the radiusR of the oscillating circle
(on the left); picture of the min- and max-curvatures in three dimensions which are
defined at a point P by the intersection of planes orthogonal to the surface (on the
right) [Rob01].

Curvatures are defined as second derivatives of a function. If given a Hes-

sian matrix H by

H =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (3.17)

with Ixx = ∂2I
∂x2 , Ixy = ∂2I

∂x∂y
, ..., Izz = ∂2I

∂z2
second-order partial derivatives of the

image function I (x, y, z), then the largest eigenvalue λ1 with the eigenvec-

tor eee1 of the matrix H corresponds to the first principal curvature κ1 and the

second largest eigenvalue λ2 with eigenvector eee2 of H denotes the second

principal curvature κ2 of an underlying shape. The eigenvectors eee1 and eee2

correspond to orthogonal directions of the two curves with minimal and max-

imal curvature. Images of the two principal curvatures on vertebra volumes

are visible in the figure 3.8.

32



3.3. LOW- AND HIGH-LEVEL FEATURE EXTRACTION

Figure 3.8: κ1-curvatures of a vertebra volume on the left and κ2-curvatures on the
right. Bright to dark intensities encode high to low principal curvatures.

In the work of Kindlmann et al. [KWTM03], an efficient approach is pre-

sented for estimation of the two principal curvatures for each point in volu-

metric data. This approach uses the fact that surface curvatures are defined

by the relationship between small positional changes on the surface and the

resulting changes of surface normals. It uses the gradient vectors g for ap-

proximation of the surface normals and the Hessian matrixH for determining

how the gradient g changes as a function of infinitesimal changes of position

in R3. The gradient can change in length and in direction, however for de-

scribing curvatures only the gradient direction changes are of interest. Thus,

the principal curvatures κ1 and κ2 are extracted from a matrix which isolates

the gradient direction changes from the Hessian matrix H.

Haar-like Features - An image representation called integral image, pro-

posed by Viola and Jones [VJ02], is used in order to calculate Haar-like fea-

tures. Haar-like features calculate sums of intensities within different rect-

angular image regions and compute the differences between the intensity

sums. Two-rectangle, three-rectangle and four-rectangle features can be ap-

plied depending on the number and position of rectangles considered.

The integral image at a point (x, y) which contributes to the sum of inten-
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Figure 3.9: The value of integral image at location 1 is the sum of intensities in region
A. The value at location 2 isA+B, at location 3A+C and at location 4 isA+B+C+D.
The sum within D is equal with 4 + 1 − (2 + 3). (on the left); two- (a and b), three-
(c) and four- (d) rectangle feature examples where the difference between gray and
white rectangles is considered (on the right) [VJ02].

Figure 3.10: Modelling vertebra regions with Haar-like features (axial view). A
transversal process can be represented by dark-bright-dark Haar-like features with
three-cuboid integral volumes.

sities above and to the left of the point can be formulated as

II (x, y) =
∑

x̃≤x,ỹ≤y

I (x̃, ỹ) (3.18)

where II (x, y) denotes the integral image and I (x, y) is the original image.

Haar-like features can be computed efficiently by integral images as any

rectangular intensity sum can be calculated with 4 array references (see fig-

ure 3.9). Equation (3.18) can be applied to the three-dimensional case by ad-

ditionally summing along the z-dimension of a volume. The three-dimensional
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extension of the integral image can be named as integral volume. Through

defining different types of Haar-like features, specific features, such as edges

or lines, can be recognized. For example, transversal processes of a vertebra

can be detected by Haar-like features with an integral volume combination

dark-bright-dark visible on figure 3.10.

3.3.2 High-Level Feature Extraction

After extraction of low-level features at each point of a volume, high-level

features are constructed based on the low-level ones. High-level features

use shape and spatial information specific to a target object and thus reduce

the search space by selecting only points with given high-level features and

that way accelerates the solving of a MAP-MRF labelling problem on a tar-

get volume. There have been many feature detectors presented in the recent

years. Among them are the Harris point, Harris-Laplace region, Harris-Affine

region, Hessian-Affine region and Hessian-Laplace region detectors, which

detect edges and corner like structures [MS05]. However, most of these re-

gion detectors are mainly applied on two dimensional data and their exten-

sion is difficult and/or computationally expensive to three dimensional med-

ical data.

An example is the Difference-of-Gaussian detector for the SIFT descriptor

[Low99], [AKB+08] which detects local scale-space extremas of the image

and is a similar approach to the Hessian-Laplace region detector. To mention

an example, the three dimensional version of SIFT was already applied on

medical CT datasets by Allaire et al. [AKB+08]. It states that in case of a 512×
512×152 voxels CT data the computation time is 182.3 seconds for finding 160

feature points, so it is not well suitable for tasks which need a fast structure

localisation of volumetric CT data [AKB+08].

The feature detection algorithm considered in this thesis is closely related

to decision tree based supervised learning algorithms, where a function y is

modelled by presenting training samples z with given features. The y values

are often from a discrete set {1, ..., K} as these type of learning algorithms

are mostly used for classification and the training samples are feature vectors

with low-level features such as gradient magnitude and principal curvatures
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extracted at predefined points of the volume. Based on the training exam-

ples, the learning algorithm outputs classifiers which can be used to predict

the corresponding y in the target volume (e.g. if the gradient magnitude

of a training example is within a certain interval then it belongs to class 1)

[Die00].

Figure 3.11: „Illustration of PBT on a synthetic dataset of 2000 points. Weak classi-
fiers are likelihood classifiers on features such as position and distance to 2D lines.
The first level of the tree divides the whole set into two parts. The right side mostly
has blue (dark) points since they are away from the rest of the clouds. The tree ex-
pands on the parts where positive and negative samples are tangled.“[Tu05]

Probabilistic boosting tree (PBT) presented by Tu [Tu05] is an efficient

supervised learning technique which sets up a discriminative decision pro-

cess and consists of two steps for interest point detection. These two steps

are learning and testing. The learning step focuses on learning a pattern

of interest represented by a discriminative model p (y|z), where y denotes

classifications given samples z. In order to learn p (y|z) the PBT framework

has to be trained by presenting positive and negative samples z to the frame-
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work, which is done by assigning a class y to each sample z (e.g. in the case

of a binary classification a positive sample denoting foreground belongs to

the class +1 and a negative sample denoting background corresponds to the

class−1). The collection of positive and negative samples are extracted from

training volumes and approximate the statistics of a certain pattern. Based

on the training samples, PBT creates strong classifiers C (z) =
∑J

j=1 αjcj (z),

which combine weak classifiers cj (z) with weights αj on each node of the

tree. Weak classifiers deliver decisions based on single features such as gra-

dient thresholds, curvatures and Haar-like features (explained in the section

3.3.1), whereas strong classifiers merge the weak ones in a way that patterns

of interest can be approximated by p (y|z) as good as possible. The learned

classifier on a node of the tree divides the tree into right and left nodes, which

are then trained recursively.

By testing the PBT framework on a target volume, in the learning step ap-

proximated version p̃ (y|z) of p (y|z) is used in order to classify samples ex-

tracted from a target volume. This is done by calculating conditional proba-

bilities on each node of the tree based on the learned classifier. Left or right

sub-trees are visited depending on the result of comparing the probabilities

P (+1|z) and P (−1|z) with the two possible classes +1 and −1, where the

classes can represent either the underlying feature points are of interest or

not (see figure 3.11).

3.4 Local Descriptors

Local descriptors describe local image regions by capturing the appearance

of these regions and are extracted in both stages, MRF based model build-

ing and matching. Thus, local descriptors establish comparable measures

which are necessary in order to compare local image regions around feature

points delivered by a high-level feature extractor (see section 3.3.2) to those

of the model objects. Furthermore, local descriptors can also describe adja-

cency regions between manually placed landmarks of training volumes and

adjacenct regions defined by feature points on target volumes respectively.

Many types of descriptors are already present in the field of machine vi-

sion, such as distribution based descriptors, which capture characteristics of
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images in the form of histograms like shape context [BMP02], spin-images

[JH99] and the SIFT descriptor [Low99]. Other techniques represent fre-

quency content of images like Gabor filters or compute derivates up to a

given order like local jets [MS05]. Most of the aforementioned descriptors

need special support regions such as local scale-space extremas detected

by Difference-of-Gaussian (DoG) filters in the case of SIFT, mentioned in sec-

tion 3.3.2.

The descriptors discussed in this section are local descriptors of manu-

ally placed landmark and automatically found feature point regions which

do not require special support regions, which is important for the descrip-

tion of arbitrary feature points delivered by the PBT based high-level feature

extraction algorithm (see section 3.3.2).

3.4.1 Vector Spin-Image

Vector spin-images were presented by Xu and Dinh [XD08] as a local de-

scriptor on vector fields like video data, weather phenomena or medical

imaging. The local descriptor of this approach reflects the statistics of the

neighbourhood around arbitrary central points of vector fields. Furthermore,

concepts of two well-known local descriptors, spin-images and shape con-

texts, are incorporated in vector spin-images.

Figure 3.12: The spin-image descriptor is determined by distance α from a central
point and depth β from the central point’s tangent plane [XD08].

The spin-image descriptor (see figure 3.12) was originally used for three-

dimensional shape based object recognition by Johnson and Hebert [JH99].

It considers surface shapes described by a dense collection of 3D points and
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surface normals. In order to create a spin-image for a surface point, the ori-

entation of the selected point has to be captured, which is done by calculat-

ing the normal of the surface at the given point by fitting a tangent plane to

the surface. The spin-image descriptor is characterised by the parameters

α, which is the perpendicular distance to the line defined by the surface nor-

mal at an oriented 3D point called vertex, and β, which is the perpendicular

distance between the surface and the tangent plane. Finally, the spin-image

descriptor is a two-dimensional histogram with dimensions α and β for ver-

tices within a predefined support region, where each vertex in the support

region is binned in the histogram according to the parameters α and β. The

resulting histogram looks like an image where darker regions correspond

to bins with many accumulated points and lighter regions to less frequently

accumulated ones.

Figure 3.13: The shape context descriptor samples edge points of the object (of the
letter "A" in this case) and stores the distribution of edge points related to a given
point in log-polar histogram bins [BMP02].

Shape contexts (see figure 3.13) were firstly presented by Belongie et al.

[BMP02] and are used for shape matching based on corresponding points

on shapes which are to be matched. The distribution of the contour points

of a shape are captured relative to a reference point by creating a histogram

of the vectors pointing to the points of the shape relative to the reference

point. Log-polar histogram bins are used in order to make the descriptor

more sensitive to points which are close to the reference point than those
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which are far away. Matching is finally done by finding the most similar point

to the reference point on the second shape. The two points can be compared

based on dissimilarity of descriptors of both points.

Figure 3.14: The vector spin-image descriptor [XD08] with α as the distance from the
central point and β as the dot product between vectors at the central point and in the
neighbourhood on the left and its application at local regions of vertebra volumes.
The black arrows represent gradients in concentric distance regions (red circles)
around a central point on the right figure.

Vector spin-images use concepts from both the spin-image descriptor and

the shape context descriptor (see figure 3.14). It computes α for the distance

from a central point and β as the dot product of the vector at the central point

and that of the neighbouring point at a given distance and thus represents

a rotation invariant descriptor. Although Xu and Dinh [XD08] consider the

descriptor for arbitrary points in vector fields, this thesis simply uses gra-

dient vectors g instead of vector fields as the support regions of landmarks

contain high edge response. Based on the α and β values, a two-dimensional

histogram is built where the bin values are weighted by the gradient magni-

tudes given by G and a log scale is used for the radius by

ri = exp

{
ln (rmin) +

i

I

(
rmax
rmin

)}
. (3.19)

In (3.19), rmin is the radius of the bin containing the central point, rmax
is the maximum distance of the descriptor and I denotes the total number

of bins where i goes from 1 to I. The histogram bins are finally normalised

by the total weighted number of sample points within the bin’s concentric
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ring, where the gradient magnitudes G are used as a weighting factor. Nor-

malisation is necessary in order to equalise the distribution of the histogram

values. It tackles, for example, incorrect differences between points close to

the boundary (where data is missing) and all other points.

3.4.2 Shape Index Histogram

Shape index is a robust local shape measure originally introduced by Koen-

derink and van Doorn [KvD92]. The shape index is calculated based on the

principal curvatures κ1 and κ2 which denote the maximum and minimum cur-

vature at a given point on the surface. The shape index is defined after Dorai

and Jain [DJ95] by ΓI = 1
2
− 1

π
arctan κ1+κ2

κ1−κ2
with κ1 ≥ κ2. Thus, it represents

a single shape indicator where every shape is described at each point on it

locally by a distinct value ΓI except for the planar shape, where κ1 = κ2 = 0

(see table 3.1).

κ2

κ1 - 0 +
- Peak Ridge Saddle
0 Ridge Flat Valley
+ Saddle Valley Pit

Table 3.1: The principal curvatures describe shapes depending on the interaction
of their values.

The shape index is scale invariant and also invariant to geometric trans-

formations due to the local description characteristics of the principal cur-

vatures [Nas97]. The shape index values which occur in the interval [0, 1]

can be sampled within predefined regions and can be accumulated into a

one-dimensional histogram where the bins represent the interval of possi-

ble shape index values (see figure 3.15). Furthermore, shape index values

can be accumulated into histograms within various distance regions around a

point building a two-dimensional histogram as a result, which yields a similar

descriptor to the shape context descriptor [BMP02].
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Figure 3.15: A shape index histogram of the right transversal process of a vertebra.
The x-axis of the histogram represents the shape index scale and the y-axis is the
proportion of points which have the same shape index. The peak in the middle
corresponds to flat surfaces and the additional two peaks represent the typical shape
of a transverse process.

3.5 Dissimilarity Measures

Dissimilarity Measures are essential at the MRF based model matching for

preparing the probabilities in the form of qualities for solving the MAP-MRF

labelling problem. Qualities are generated by comparing local descriptors

of the model to those of the target volume by dissimilarity measures. In this

section dissimilarity measures for the evaluated local descriptors are intro-

duced.

3.5.1 Euclidean Distance

It is one of the most natural distance measures between two points in the n-

dimensional Euclidean space Rn. Here the distance is measured between

two points A and B with the formula

d(A,B) =

√√√√ n∑
i=1

(Ai −Bi)
2. (3.20)

By measuring histogram differences, the Euclidean distance can be consid-

ered as a bin-to-bin distance where only the difference between correspond-

ing bins are measured in both histograms.
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3.5.2 χ2-Divergence

Another example of a bin-to-bin distance is the χ2-divergence, which is a

statistically relevant distance measure and is based on the χ2-test, where ob-

served distributions are compared to theoretical ones. This type of distance

was proposed by Xu and Dinh [XD08] as a measure for dissimilarity between

vector spin-image histograms. The distance between two histograms H1 and

H2 based on χ2-divergence can be calculated by

χ2
D (H1, H2) =

1

2

N∑
i=1

(H1 [i]−H2 [i])2

H1 [i] +H2 [i]
. (3.21)

3.5.3 Earth Mover’s Distance

The Earth Mover’s Distance is defined by Rubner et al. [RTG00] as a dissi-

malirity distance between signatures, where signatures are S = {sj = (wj,mj)}Nj=1

of sizeN withmj positions andwj weights. Histograms can be defined as spe-

cial versions of signatures with this definition, where histogram values are the

weights wj and bin indices are the positions mj of the signature. The Earth

Mover’s Distance (EMD) is a member of cross-bin distances, which means

that no assumption about alignment of the domains of the histograms has to

be made. Thus, noise and distortions inherent in histograms are considered.

EMD on two signatures H1 = {(pi, ui)}mi=1 and H2 = {(oj, vj)}nj=1 is defined

as a transportation problem where H1 provides the supplies at the locations

ui and H2 the demands at locations vj. EMD represents the minimum work

for adapting the amount of supplies defined by pi to the amount of demands

defined by oj and is calculated by the formula

EMD (H1, H2) = min
K={kij}

∑
i,j kijdij∑
i,j kij

(3.22)

with
∑

j kij ≤ pi,
∑

i kij ≤ oj,
∑

i,j kij = min
{∑

i pi,
∑

j oj

}
and kij ≥ 0 where

kij are called flows which represent the amount of the i-th supply transported

to the j-th demand.
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3.5.4 Diffusion Distance

A recently presented alternative histogram-based distance measure to the

EMD described in the section 3.5.3 is called diffusion distance [LO06]. It

is one of the cross-bin distance measures for histogram-based descriptors

where the difference between two histograms is considered as a temperature

field, and the distance calculation happens based on the diffusion process.

The integration of a norm is used as a dissimilarity measure on the diffusion

field where the continuous diffusion process is discretised by Gaussian pyra-

mids. The diffusion distance can be understood consequently as the sum of

norms over all layers of the Gaussian pyramid. The diffusion distance be-

tween two histograms H1 and H2 is defined as

K̂ (H1, H2) =

∫ f

0

k (|F (xxx, f)|) ∂f (3.23)

where f is a positive constant upper bound of the integral, and k (.) is a

norm that measures the difference of the temperature field F (xxx, f) to zero.

An isolated temperature field is assumed where F (xxx, f) is convolved with a

Gaussian filter ϕ(xxx, f) by F (xxx, f) = F0(xxx) ∗ ϕ(xxx, f) where the natural differ-

ence between the two histograms F0(xxx) = H1(xxx) − H2(xxx) is the initial condi-

tion. The mean of the difference field converges to zero, so F (xxx, f) becomes

zero everywhere by increasing f , which can be interpreted as an equaliza-

tion of H1 and H2 over time. Measuring the process represents dissimilarity.

The Diffusion Distance is stated as a successful application to shape context,

spin-image and multi-dimensional histogram based local descriptors with a

similar accuracy as EMD but a much greater efficiency [LO06].

3.6 Geometrical Configuration

The geometrical configuration is setup at the MRF based model building

stage and defines an adjacency system between landmarks of training vol-

umes by Delaunay tetrahedralisation. Distances and gradient-related an-

gles are additionally extracted along adjacencies, which contribute finally

to model compatibility information. Thus, the geometrical configuration in-
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corporates the Markov-property (see section 3.2.1) into the model and de-

scribes the shape of the anatomy of interest.

3.6.1 Delaunay Tetrahedralisation

Delaunay tetrahedralisation is used to establish a neighbourhood system be-

tween training volume inherent landmarks. In order to understand Delaunay

tetrahedralisation, Voronoi diagrams have to be defined. Delaunay tetrahe-

dralisation is the three-dimensional extension of Delaunay triangulation.

Figure 3.16: Voronoi diagram and Delaunay triangulation in two dimensions (a,b)
and in three dimensions (c,d) [GO04].

A Voronoi diagram of a finite set of points in Rd called sites S partitions

the space into regions, one per site s ∈ S. A region called Voronoi face

for the site s contains points which are closer to s than to any other site in

S. The Delaunay triangulation, the dual of the Voronoi diagram, denotes the

unique triangulation where the circumsphere of every triangle in two dimen-

sions and tetrahedron in three dimensions (where the triangles respectively

tetrahedrons are built by connecting three respectively four sites) contains

no sites s in its inferior [GO04].

3.6.2 Distances of Adjacencies

Euclidean distances are extracted between adjacent landmarks on each train-

ing volume where landmark adjacencies are defined by Delaunay tetrahe-

dralisation (see section 3.6.1). Lastly, the mean of the distances collected
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from corresponding adjacencies of training volumes adds compatiblitiy in-

formation to the MRF based model.

3.6.3 Gradient-Related Angles

Angles between gradient vectors g (described in section 3.3.1) and direc-

tion vectors defined by adjacent landmarks of training volumes build an ad-

ditional model feature to distances mentioned in the previous section. Two

angles are recorded at each compatibility based connectivity between adja-

cent landmarks, with each of them corresponding to an angle between the

direction vector of the landmark connection defined by a compatibility e ∈ E
and the gradient vector at both landmarks of the connection. The angles are

calculated as the arcus cosinus of the dot product between the normalised

gradient vectors and landmark connection direction vectors by the formula

βe = arccos

(
vvvg · vvve
|vvvg||vvve|

)
(3.24)

where vvvg is the normalized gradient vector and vvve is the normalized direction

vector of a landmark connection defined by a compatibility e ∈ E. Gradient-

related angles enable an object-oriented description of the model and so

keeps it rotation invariant as the angle representations are calculated in the

range 0− 180◦.
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Chapter 4

Markov Random Field Based
Sparse Structure Localisation of
Vertebrae

4.1 Overview

Markov Random Field (MRF) based sparse structure localisation of verte-

brae is separated into MRF based model building and model matching (see

section 3.1). The MRF based model building builds a model from the local

appearance of vertebra landmarks (vertebra body and transverse process

landmarks) and from their geometrical configuration (distances and angles

along neighbourhoods). The model is built based on vertebra training data

and is called sparse MRF vertebra model in this thesis as it describes the

shape and texture appearance of vertebrae in a sparse manner (step 1 in

figure 4.1). In the model matching part the sparse MRF vertebra model is

matched with feature points detected by a high-level feature extraction algo-

rithm on a target vertebra volume (step 2 in figure 4.1). An optimal match

is delivered by a MRF solver algorithm (step 3 in figure 4.1). The matched

positions provide a possible initialisation for a sophisticated model based

segmentation method such as AAMs (step 4 in figure 4.1).

This chapter describes the MRF based model building and matching for

the MRF based sparse structure localisation of vertebrae. For both steps the

configuration of selected methods (see chapter 3) is explained.
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Figure 4.1: Overview of the steps of MRF based vertebra structure localisation.

4.2 Sparse MRF Model Building on Vertebrae

Building of a sparse MRF vertebra model is the first step of the MRF frame-

work presented in this thesis. The selected methods for the sparse MRF ver-

tebra model building and their configuration yield a rotation invariant model

which makes the matching independent from the orientation of CT scans and

capable of recognising disease-related rotation of vertebrae (scoliosis). This

section presents, in addition to the application and configuration of the meth-

ods from Chapter 3, CT training data of vertebrae used for building sparse

MRF vertebra models.

4.2.1 Training Data

In order to capture the variability of the appearance of vertebrae, 12 train-

ing volumes from 3 different datasets have been used, where each of them

contains a single vertebrae and parts of the vertebra above and below with a

resolution of 512× 512× 60 and with voxel sizes of 0.25× 0.25× 1 millimetres

(mm) and 0.5 × 0.5 × 1 mm (see figure 4.4). Due to the high anatomical and

pathological variability of single vertebrae described in the sections 2.3 and

2.4, the restriction to a certain part of the vertebral column is necessary in

order to maintain the descriptiveness and limit the variations of the sparse
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MRF vertebra model. That means that every part of the vertebral column

(cervical, thoracic and lumbar part) needs to have its own sparse MRF ver-

tebra model. This thesis focuses on lumbar vertebrae, but the MRF based

vertebra structure localisation framework can be extended to vertebrae of

other parts.

Figure 4.2: Manually placed landmarks on vertebrae from a lateral view on the left
and from an axial view on the right. Landmarks 1-4 delineate the vertebra body and
landmarks 5-6 represent the transverse processes.

Each of the training volumes is annotated manually at corresponding anatom-

ically significant locations called landmarks in order to capture the sparse

structure of it. It is important that each training example contains the same

set of corresponding landmarks in order to achieve consistency and valu-

able description of the underlying anatomy. Within this thesis a configuration

of 6 landmarks was selected for a sparse description of vertebrae as it was

considered sufficient for model initialisation, where 4 landmarks localise the

vertebra body, and additional 2 landmarks localise the transverse processes.

Figure 4.2 shows the 6 landmark positions, which are placed on the top

and bottom of the anterior (point 2 and 4 in figure 4.2) and the posterior

(point 1 and 3 in figure 4.2) sides and on the tips of the left and right trans-

verse processes (point 5 and 6 in figure 4.2). This set of landmarks can de-

scribe not only the raw appearance of vertebrae, but can also be used as

diagnosis related points as stated in [KHB06], where a similar but denser set

of landmarks is positioned on vertebrae for feature extraction purposes (see

figure 4.3). The features used in [KHB06] can denote spinal conditions, pos-
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Figure 4.3: Diagnosis-relevant placement of landmarks on vertebrae. Landmarks are
numbers enclosed in circles, and features extracted from the landmark configuration
are represented by lines with capital letters [KHB06].

terior osteophytes, posterior apophyseal arthropathy, disc space narrowing

and spondylolisthesis in order to diagnose lumbar stenosis (see figure 4.3).

4.2.2 Geometrical Configuration of the Sparse MRF Vertebra Model

One of the main aspects of MRFs is the Markov-property, which defines rela-

tions between adjacent landmarks. Thus, in order to integrate the Markov-

property into the model, Delaunay tetrahedralisation provides adjacency in-

formation to the model. In addition to that, distances and gradient-related

angles along adjacencies integrate additional geometrical information into

the model (see section 3.6).

In the first step of the geometrical configuration construction, landmark

adjacencies are established by Delaunay tetrahedralisation. For doing so,

one of the training volumes is selected to define adjacencies by a Delaunay

tetrahedralisation. Adjacencies derived from the selected training volume

(see figure 4.5) are then established on each of the remaining 11 training

volumes (see figure 4.6).
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Figure 4.4: CT volumetric training data of 12 lumbar vertebrae from lateral and axial
views.

After extracting adjacencies, distances lie with i = 1..12 are calculated be-

tween corresponding landmarks on each of the i training volumes as Eu-

clidean distances. Mean distances l̄e and their standard deviations lσe are

calculated from corresponding distances lie over each of the i training vol-

umes and are stored in the compatibilities e ∈ E of the sparse MRF vertebra

model. Furthermore, each landmark adjacency gets two angles assigned,

βie1 and βie2, which measure the angle between the vector represented by ad-

jacent landmarks and the gradient vector g at landmarks of the training data
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Figure 4.5: Geometrical setup of the sparse MRF vertebra model with Delaunay
tetrahedralisation from the lateral view on the left and from the axial view on the
right.

Figure 4.6: a) Adjacency information is extracted from manually annotated (land-
marks as yellow points) training volumes and builds the model compatibilities. b)
Distances l between adjacent landmarks and gradient-related angles β are extracted
from each training volume based on the Delaunay tetrahedralisation (red lines). c)
Mean distances l̄ and mean angles β̄ are computed from the training volumes for
each compatibility e ∈ E. The black arrows at each landmark represent gradient
vectors.

(see section 3.6.3). The two angles are calculated over corresponding land-

mark adjacencies, and their mean angles β̄e1 and β̄e2 and standard deviations

βσe1, βσe2 are stored in the compatibilities e ∈ E of the model in addition to the

distances (see figure 4.6). Through these parameters the model captures the

underlying structure and represents it in a rotation invariant manner.
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4.2.3 Local Descriptor Configuration of the Sparse MRF Vertebra
Model

Local appearance of regions around vertebra landmarks is represented by

local descriptors. Local descriptors Di
t, i = 1..12 are built in regions around

corresponding landmarks in the i training volumes. For the sparse MRF ver-

tebra models, histogram-based local descriptors are used, which are use-

ful techniques to capture the distribution of appearance- and shape-related

features at local image regions. The histogram-based local descriptors de-

scribed in section 3.4 are applied to MRF based sparse vertebra structure

localisation.

Figure 4.7: a) Local support regions are extracted around landmarks (yellow points)
of the training volumes. b) Local descriptors are constructed within local support
regions with predefined spherical distances. c) Means of the local descriptors D̄t

are computed considering corresponding landmarks on all training volumes which
finally deliver model object t ∈ T information.

Local descriptors Di
t, i = 1..12 are constructed around corresponding land-

marks over all of the i training volumes. Mean D̄t descriptors are recorded

from local descriptors Di
t, i = 1..12 of corresponding landmarks over the i

training volumes [DMLB07] (see figure 4.7). The mean descriptors D̄t de-

scribe finally the objects t ∈ T of the sparse MRF vertebra model. This means

that, for example, local descriptors are constructed around transverse pro-

cess landmarks corresponding to object t1 ∈ T on each training volume, and

the mean of them is finally computed and accounts for the description of the

object t1.
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The local support regions around landmarks are represented by spheri-

cal regions with a diameter of 12 mm. The local descriptors are constructed

within these regions and represent vertebra appearance in a rotation invari-

ant manner. Three types of local descriptors (see section 3.4), vector spin-

images, shape index histograms and gradient-based edge descriptors are

considered for MRF based sparse structure localisation of vertebrae in this

thesis where vector spin-images and shape index histograms describe local

landmark regions and gradient-based edge descriptors extract additional

information along landmark connections.

Vector Spin-Image - Vector spin-images were tested with similar param-

eters as stated in the paper [XD08]. The final configuration of rmin = 2 mm

and rmax = 6 mm with 10× 10 two dimensional histograms was used.

Shape Index Histogram - Shape index histograms were represented by

a one-dimensional histogram with 100 bins, where each bin corresponds to

a quantised shape index from the range [0, 1] to [0, 100], and their values con-

tain the number of shape indices of a certain type in the support region.

Two-dimensional versions of shape index histograms were also tested, where

shape index values are gathered within different spherical distance regions.

For distance calculation the formula (3.19) was used.

Gradient-based Edge Descriptor - It was experimented with extraction

of image gradient information along landmark connections according to the

compatibilities of the model. Gradients g were sampled at 20 positions along

landmark connections as most of the landmark connections run along bor-

ders of the underlying vertebrae. The gradient magnitudes G and orienta-

tions relative to vectors defined by landmark connections were recorded at

the sampled positions. The mean values of the gradient information are cal-

culated at each of the 20 positions considering all training volumes and are

stored in each compatibility e ∈ E.
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4.3 Sparse MRF Vertebra Model Matching with Target
Data

4.3.1 Overview

Given the sparse MRF vertebra model and a target vertebra volume, the best

fit match of the sparse model with the feature points detected by a high-level

feature extraction algorithm is of interest where the feature points are the

possible labels for the model objects. The best fit match, which localises a

target vertebra sparsely, can be found by an MRF solver algorithm. It repre-

sents a feature point configuration with maximal qualities based on the com-

parison of local descriptors and geometrical configuration of the sparse MRF

vertebra model to those of feature points on the target data (see figure 4.8).

Figure 4.8: MRF model matching on target vertebra volumes consists of the steps 1-3
visible in the figure.
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4.3.2 High-Level Feature Extraction in the Vertebra Target Data

The MRF vertebra model is matched on feature points detected by the prob-

abilistic boosting tree (PBT) approach described in section 3.3.2, which is

trained with positive and negative examples of landmarks of the training vol-

umes described in section 4.2.1. Applying the algorithm on a target volume,

feature points can be detected with the help of the trained classifiers.

Figure 4.9: The high-level feature extraction algorithm delivers feature points for
the vertebra body anterior top and bottom part jointly which is also the case with
the top and bottom part of the posterior side. Thus, a rotation invariant matching of
the vertebra body part of the sparse MRF vertebra model around the y-axis of the
vertebra is possible. Additional detection of the left and right transverse processes
jointly enables rotation invariant matching of the whole sparse MRF vertebra model.
[Uni10]

The high-level feature extractor delivers kt feature point candidates called

labels x̂ for each of the |T | = 6 landmarks modelled by the objects of the

sparse MRF vertebra model which yield kt1∗kt2 edges between feature points

that are possible labels for landmarks modelled by the objects t1 and t2.

Thus, each of the landmarks 1-6 in figure 4.2 get clouds of feature points

assigned. However, it has to be remarked that the landmarks 1 and 3 and re-

spectively 2 and 4 on figure 4.2 get the same cloud of feature points assigned.

This is due to the fact that the feature extractor jointly recognizes the vertebra
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body anterior top and bottom part (landmarks 2 and 4 on figure 4.2) which is

also the case with the vertebra body posterior top and bottom part. This be-

haviour allows rotation invariant matching of the vertebra body around the

object oriented y-axis of the vertebra (see figure 4.9). In cases where the

feature extractor delivers feature points for both the left and right transverse

processes (landmarks 5 and 6 on figure 4.2) jointly, the whole sparse MRF

vertebra model matching becomes rotation invariant around the object ori-

ented y-axis of the vertebra. Values for kt are assumed to be up to 600 for

performance reasons within this thesis.

Figure 4.10: Results of the PBT based feature extraction algorithm for the modelled
landmarks of a vertebra where the green dots denote feature points.

As a next step, local descriptors Dx̂ are extracted around each label x̂,

where each label is a possible candidate for the object t ∈ T which models

the landmark for which the PBT based high-level feature extractor delivered

that particular label. That way, each label descriptor is compatible with a

certain object descriptor D̄t.

Furthermore, distances lae and angles βae1 , βae2 are extracted along edges

ae ∈ Ae with ae =
{

(t, x̂) ,
(
t
′
, x̂
′)}

between adjacent labels where adjacency

is defined by the compatibilities e ∈ E of the sparse MRF vertebra model.

4.3.3 Quality Assignment for the Sparse MRF Model Matching

Having available the local descriptor and geometrical configuration informa-

tion from the sparse MRF vertebra model as well as from labels detected by

the high-level feature extraction on target data, qualities for model-to-target

matches can be computed. Qualities indicate approximations for posterior
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probabilities and make assumptions about how likely it is to match the model

on a certain configuration of labels (see section 3.5).

Label qualities qt (x̂) are calculated based on dissimilarity between the lo-

cal descriptors of the model objects D̄t and the feature point descriptors Dx̂

of the target volume. For quality assignment between labels and object de-

scriptors, the shape index histogram and the vector spin-image descriptor

are used in the same configuration as stated in the section 4.2.3. As dis-

similarity measures, the methods in section 3.5 are considered. The local

descriptors, shape index histograms and vector spin-images were generally

tested with the χ2-divergence measure as proposed by Hetzel et al. [HLLS01]

and Xu and Dinh [XD08]. Furthermore, both descriptors were also tested

with the diffusion distance and EMD (see section 3.5), as these measures are

robust to deformations and noise.

Finally, the qualities are obtained by normalising the results based on the

dissimilarity measures by

qt (x̂) = −norm
(
Dx̂ − D̄t

)
(4.1)

where norm (.) means the normalisation by the medians of the labels of each

object t ∈ T in order to be invariant to outliers. Thus, the qualities are nor-

malised to a scale where values have a median of −1 and a maximum of 0

[DMLB07], [DWBL09].

The edge qualities qtt′
(
x̂, x̂

′)
are calculated between the Gaussian distri-

butions of compatibility distances l̄e, lσe and angles β̄e1, βσe1, β̄e2 and βσe2 of the

sparse MRF vertebra model and the corresponding edge distances lae and

angles βae1 and βae2 through the formulas

lq
tt
′ = norm

(
1− exp

(
−
(
lae − l̄e

)
/
(

2 ∗ l̄σe
2
)))

βe1q
tt
′ = exp

(
−
(
βae1 − β̄e1

)
/
(

2 ∗ β̄σe1
2
))

βe2q
tt
′ = exp

(
−
(
βae2 − β̄e2

)
/
(

2 ∗ β̄σe2
2
))

βq
tt
′ = norm

(
1−

(
ω · βe1q

tt
′ + υ · βe2q

tt
′

))
qtt′
(
x̂, x̂

′
)

= −
(
ϕ · lq

tt
′ + γ · βq

tt
′

)
(4.2)
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where the final edge quality qtt′
(
x̂, x̂

′)
is a weighted sum of the distance

qualities and the angle qualities [DWBL09]. The setting ϕ = 1
2

and γ = 1
2

was

used, thus taking the average of the two factors. The same setup is consid-

ered for ω and υ. The function norm (.) here also means the normalisation by

the median, however in this case the range [−1, 0] is considered. Edges with

a lower quality than that of the median are not considered for the MRF match-

ing, which means that edges with lower values than −1 are not considered

for possible candidates of compatibilities and are discarded [DMLB07].

In cases where the gradient-based edge descriptor is used, the formulas

in (4.2) are extended by

Dq
tt
′ = norm (Dae −De) (4.3)

where norm (.) is considered again as the median normalisation function,

where lower edge qualities than −1 are cropped again. The Euclidean dis-

tance was used as a dissimilarity measure between Dae and De (see section

3.5). The overall edge quality measure is modified to

qtt′
(
x̂, x̂

′
)

= −
(
ϕ · lq

tt
′ + γ · βq

tt
′ + η ·Dq

tt
′

)
(4.4)

in this special case where again the average is considered with ϕ = γ = η =
1
3
. In addition to that, more guidance by the distance and the edge descriptor

turned out to be useful, for instance by considering parameter settings such

as ϕ = η = 2
5

and γ = 1
5
.

It can happen that the high-level feature extraction algorithm does not

deliver feature points for the modelled landmarks where the model would

expect candidates. For these special cases artificial points are added manu-

ally which describe the objects of the sparse MRF model where feature point

information is missing in order to maintain the matching activity [DMLB07].

4.3.4 Solving the MAP-MRF labelling problem with the Max-sum
Solver

The Max-sum approach was selected to solve the vertebra MAP-MRF labelling

problem due to its successful application to sparse structure localisation tasks

of the same kind [DMLB07]. The Max-sum solver presented already in the
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section 3.2.2.1 is based on the augmenting DAG approach [Wer07] and solves

the MAP-MRF labelling problem by searching for a label configuration which

maximises the qualities of the label-to-object and edge-to-compatibility match-

ings. The result is a maximum quality labelling with 6 labels where each label

is matched with one of the 6 model objects which describe landmarks on a

target volume. At first, the augmenting DAG approach is explained, followed

by its setup for solving the vertebra labelling problem.

Augmenting DAG Algorithm - The technical report of Werner [Wer05]

describes the augmenting directed acyclic graph (DAG) algorithm for solv-

ing the Max-sum problem by decreasing its upper bound. A DAG is a di-

rected graph with no cycles, where a directed graph is a graph whose edges

have directions. It is acyclic, which means that if following a path by starting

at a vertex v, there are no paths to loop back to v again.

The main idea of the augmenting DAG algorithm is to solve the Max-sum

problem by minimising the problem height with equivalent transformations

(see section 3.2.2.1). For doing so, a special arc-consistency algorithm is

run on maximal nodes and edges as a first step in order to eliminate the

maximal nodes and edges which are not arc-consistent (see section 3.2.2.1).

Pointers to nodes which caused eliminations are stored at each elmininated

node forming a DAG. If all labels of an object are eliminated, the pointers are

backtracked resulting in an augmenting DAG. Along the augmenting DAG

equivalent transformations, which decrease the problem height, are finally

done in order to move towards the optimal solution. A short overview of the

iteration steps of the augmenting DAG algorithm [Wer05] is given here:

1. The first step starts a special arc-consistency algorithm on maximal la-

bels and edges as follows: an auxiliary variable bt (x̂) is set to each label

(t, x̂) as bt (x̂) := ALIV E if (t, x̂) is maximal and bt (x̂) := NONMAX if

(t, x̂) is not maximal. If a pencil
(
t, t
′
, x̂
)

is found with bt (x̂) = ALIV E,

but violating the condition

∃x̂′
[
edge

{
(t, x̂) ,

(
t
′
, x̂
′
)}

maximal, bt′
(
x̂
′
)

= ALIV E
]
, (4.5)

then label (t, x̂) is deleted by setting bt (x̂) := t
′
. This step is repeated
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until no such pencils exist, or an object t∗ is found with bt∗ (x̂) 6= ALIV E

for all x̂ ∈ L. In the former case the augmenting DAG algorithm stops;

in the latter case, it is continued to the second step.

After every iteration of this step, the maximal edges and the variables

bt (x̂) set up a directed acyclic sub-graph D of the graph (T × L, AE). If

t∗ has been found, the augmenting DAG D (t∗) represents a sub-graph

of D.

2. In the second step, the search direction ∆µ of the height decrease with

the condition U
(
qµ+λ∆µ

)
< U (qµ) is found, where qµ states a max-sum

problem after an equivalent transformation (see section 3.2.2.1). The

smallest vector ∆µ is found by traversing the DAG D (t∗) created in the

previous step.

3. In the third step, the length λ of the search step is found by checking

the conditions that no edge becomes positive, the height of no object

is increased and the height of t∗ is decreased. This step is completed

by the equivalent transformation µ = µ + λ∆µ which induces that some

non-maximal nodes and edges will become maximal and some maxi-

mal edges non-maximal. Thus, the DAG is updated and the augmenting

DAG algorithm is continued with the next iteration by going to the first

step.

A threshold parameter θ is introduced to the augmenting DAG algorithm

which should control the height decrease and force taking high enough λ

values in order to be able to terminate in a finite number of iteration steps.

Thus, selecting large θ values the maximality of labels and edges increases

resulting in larger searching steps λ.

Furthermore, it has to be remarked that the augmenting DAG algorithm

can not solve the Max-sum problem always to optimality (already mentioned

in section 3.2.2.1), because an arc-consistent set of labels as a result of the

algorithm is necessary but insufficient for a minimum problem height U (q)

[Wer07], [Wer05]. This means, that the algorithm can terminate with more

than one label per object resulting in an ambiguous matching of the sparse

MRF vertebra model.
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Configuration of the Augmenting DAG Algorithm - The Max-sum aug-

menting DAG algorithm solves the MAP-MRF labelling problem by the func-

tion

L = maxsum (Ω, ρρρ,ΦΦ,Φ, θ) (4.6)

with the following set of parameters:

• Ω is a matrix where each column denotes a vector of indices of neigh-

bouring object pairs t and t
′
which define a compatibility e ∈ E. This in-

formation is extracted from the geometrical configuration of the sparse

MRF vertebra model.

• ρρρ is a vector which has |T | elements. An element ρρρ (t) stores the number

of labels of object t.

• ΦΦ is a matrix which contains the edges ae and their qualities as col-

umn vectors in the form
(
e, (t, x̂) ,

(
t
′
, x̂
′)
, qtt′

(
x̂, x̂

′))
. The edge qualities

qtt′
(
x̂, x̂

′)
contain normalised values in the interval [−1, 0].

• Φ is a vector with
∑
ρρρ elements which contains qualities of each label

qt (x̂) for each object t. Thus, Φ contains a sequence of label qualities

where the first kt1 elements denote the qualities of the first object t1 ∈ T
if it has kt1 feature point candidates. The label qualities qt (x̂) are nor-

malised to having a maximum of 0 and median of −1.

• θ is a tolerance threshold for the relaxation labelling.

The Max-sum algorithm ultimately delivers a MAP configuration of the

MRF in the form of a logical vector L, which has the same setup and size

as the vector Φ, where each position corresponds to those of Φ. The MAP la-

belling result of the algorithm can be found by traversing the logical vector L

consisting of ones and zeros and looking for live labels by seeking for ones.

Through the information in ρρρ and the index of the ones, the corresponding

objects t of the labelling can be found.

The parameter θ is a component which enhances the relaxation by forc-

ing the algorithm to take high enough iteration steps towards the optimal

labelling (see section 3.2.2.1). Thus, with θ > 0 the algorithm terminates in a

finite number of iterations. θ was set to 232 in this thesis.
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4.4 Implementation

The MRF based vertebra sparse structure localisation framework consists of

two major parts, the sparse MRF model builder and the sparse MRF model

matcher.

Sparse MRF Model Builder - It was implemented in Java. Local descrip-

tor information is extracted from landmark regions of the training data, and

distances and gradient-related angles are recorded between adjacent land-

marks on each training volume. The object and compatibility information

of the model represented by mean descriptors, distances and angles calcu-

lated over all training volumes is stored in XML format. The local descrip-

tors presented in section 3.4 were implemented in Java. Adjacency is estab-

lished with the Delaunay tetrahedralisation on a preselected training volume.

For the Delaunay tetrahedralisation, the CGAL [CGA10] implementation was

used.

Sparse MRF Model Matcher - It was implemented in Java. The sparse

MRF model matcher collects object and compatibility information from the

XML file of the sparse MRF model and compares them to label and edge

information extracted from a target vertebra volume by a PBT based feature

extraction technique (see section 3.3.2). The PBT based feature extraction al-

gorithm was provided by VRVis [VRV10] and was implemented in Java. The

comparison between local descriptors of the sparse MRF model and those

of the feature points detected by the PBT based feature extraction algorithm

was done by dissimilarity measures (see section 3.5). The Euclidean dis-

tance, χ2-divergence and Diffusion distance were implemented in Java. For

the Earth Mover’s Distance, a C-implementation by Y. Rubner [Rub99] was

used. For solving the MAP-MRF labelling problem, the augmenting DAG

based Max-sum solver from T. Werner [Wer05] was applied, which was im-

plemented in C [Wer09].
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Chapter 5

Results

5.1 Evaluation Framework

Localisation of the structure of anatomies can be considered as a raw seg-

mentation by labelling characteristic parts of the given anatomy. This section

describes the data based on which the labelling was done. Furthermore, it

is explained which information was used as a reference for the evaluation of

the results.

Data - The evaluation of the sparse MRF vertebra model matching was

done on the 12 lumbar vertebrae training volumes described in section 4.2.1.

Ground Truth - In order to evaluate the results of the labelled data, a

corresponding exact segmentation of the target anatomy is required. This

manual segmentation is called the ground truth, which is prepared by delin-

eating the anatomy through a physician. In a raw segmentation case, a man-

ual labelling of the anatomically significant points is necessary by placing

landmarks at the required locations. The landmark information is extracted

from the annotated training data described in section 4.2.1. The result of

the labelling is evaluated by generating the distance between the matched

labels and the manually placed landmarks.
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5.2 Error Measures

For the evaluation of the sparse segmentation results, the quantitative leave-

one-out method was used for validating the model through the training data.

With the leave-one-out strategy, a volume was chosen as a target volume, and

the model was built on the remaining 11 volumes. Thus, it was tested how

well the sparse MRF vertebra model can describe the data to be matched

if it is left out of the model. The accuracy of the matches was measured by

the distance between landmarks used for building the sparse MRF vertebra

model and the labelled locations. The matching error Dmt was measured as

the average of Euclidean distances between each point of the ground truth

and of the matching result by the formula

Dmt (Λmt,Λgt) =
1

n

n∑
i=1

√
(xmt,i − xgt,i)2 + (ymt,i − ygt,i)2 + (zmt,i − zgt,i)2 (5.1)

where Λmt represents the matched label positions in the target volume

and Λgt stays for landmarks of the ground truth of the target volume. The av-

erage is taken from the results by dividing by n which is 6 here in order to

be able to calculate the error related to all 6 ground truth positions. Average

matching errors Dmt are also calculated separately based on the 4 ground

truth positions of the vertebra body and on the 2 ground truth positions of

the transverse processes. This is done due to the fact that whenever the ver-

tebra body is localised with a good accuracy, it can already be taken as an

appropriate initialisation for a subsequent full segmentation step.

The results were generated with the two local descriptor approaches: one-

dimensional shape index histograms and vector spin-images described in

section 3.4. The geometrical configuration remained the same in both cases

using Euclidean distances and measuring gradient-related angles for the

model-to-target matches. Gradient-based edge descriptors (see section 4.2.3)

were applied in an additional test.
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5.3 Evaluation of the Results

Matching errors with leave-one-out tests on the training volumes are visible

on the figures 5.3, 5.4 and 5.5. High matching errors occurred on the train-

ing volumes 3, 4, 8, 9 and 12, which represent either the 5th lumbar vertebra

(L5) or the 4th lumbar vertebra (L4). Thus, the matching delivered more ac-

curate results on upper lumbar vertebrae (L1-L3) than on vertebrae of lower

regions, such as L4 and L5. The L4 and L5 vertebrae volumes contained bony

structures similar to the tips of transverse processes in the vicinity of their

ground truth landmarks. Thus, the algorithm considered structures such as

the top of the hips as a good fit for these positions resulting in mismatchings.

Figure 5.1: The L5 sparse MRF vertebra model (on the left) and its rotated match-
ing (on the right). For the left and right transverse processes parts of the hip were
matched causing a rotated matching of the vertebra body.

Mismatchings caused also results where rotated variants of the sparse

MRF vertebra model were matched to the target volume. It was possible be-

cause the model represents vertebrae in a rotation invariant manner around

its y-axis (see section 4.3.2). It happened, for example, at L4 vertebrae where

the transverse processes of the subsequent L5 vertebra were close enough

to match the processes on the L5, that a rotation variant of either the ver-

tebra body or the whole model was matched. In cases of rotated vertebra

body matchings the labelling of the upper and lower landmarks described

by model objects of the vertebra body were switched. In cases where the

high-level feature extractor selected feature points for the left and right trans-

verse processes jointly, rotated versions of the whole model could occur.
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This means that in addition to the switched vertebra body upper and lower

regions the left and right transverse processes were also matched the oppo-

site way around. These phenomena are well visible in figure 5.1 and result

histograms 5.3, 5.4 and 5.5.

Figure 5.2: Adding the spinous process as an additional landmark to the sparse MRF
vertebra model.

Furthermore, ambiguous matching results appeared in approximately 15%

of all test cases, which is due to the fact that the augmenting DAG algorithm

had termination states with non-minimal upper bounds (see section 4.3.4).

This means that more than one feature point was matched with some of the

objects of the sparse MRF vertebra model. In these cases the mean of the

selected feature points per object were calculated as a result.

An additional solution for ambiguous matchings is stated by Werner [Wer07]

and Donner et. al [DMLB07] where extra landmarks are added to the model

in order to disambiguate the matching. So adding extra landmarks to the

sparse MRF vertebra model and detecting them on target vertebra volumes

have to be investigated and tested as a future work. A possible model exten-

sion is placing a landmark on the spinous process (see figure 5.2). Adding

extra model landmarks could be also helpful to avoid rotated vertebra match-

ings at L4 and L5 vertebrae.

The MRF framework on both the one-dimensional shape index histograms

and vector spin-images delivered similar results, which is apparent by com-

paring figures 5.3 and 5.4. Testing with one-dimensional shape index his-

tograms resulted in a average matching error of 5.43 mm for the L1-L3 ver-

tebrae and 10.73 mm for the L4-L5 vertebrae. The average matching errors

for vector spin-image matching are 5.52 mm for the L1-L3 vertebrae and 9.51
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Figure 5.3: Average matching errors based on all 6 anatomical landmarks of the
sparse MRF vertebra model (on the top) and average matching errors based on the 4
landmarks of the vertebra body and the 2 landmarks of the transverse processes (on
the bottom) by the leave-one-out test with one-dimensional shape index histograms
applied on the 12 lumbar vertebra training dataset.

mm for the L4-L5 vertebrae.

Finally, it was experimented with additional edge descriptions of the sparse

MRF vertebra model in order to improve the accuracy of the matching results.

In addition to the components of the geometrical configuration of the model
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Figure 5.4: Average matching errors based on all 6 anatomical landmarks of the
sparse MRF vertebra model (on the top) and average matching errors based on the
4 landmarks of the vertebra body and the 2 landmarks of the transverse processes
(on the bottom) by the leave-one-out test with vector spin-images applied on the 12
lumbar vertebra training dataset.

(see section 3.6), descriptors along edges were extracted.

Thus, gradient orientations relative to the landmark adjacency vectors

were sampled at 20 positions and its means were stored in the compatibil-

ities of the sparse MRF vertebra model (see section 4.2.3). At the model
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Figure 5.5: Average matching errors based on all 6 anatomical landmarks of the
sparse MRF vertebra model (on the top) and average matching errors based on the 4
landmarks of the vertebra body and the 2 landmarks of the transverse processes (on
the bottom) by the leave-one-out test with one-dimensional shape index histograms
and gradient-based edge descriptors applied on the 12 lumbar vertebra training
dataset.

matching, the same type of edge descriptors were extracted along edges

between adjacent labels and were compared to the edge descriptors stored

in the compatibilites of the model. Although extracting edge descriptors
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Figure 5.6: MRF matching results by leave-one-out tests using one-dimensional
shape index histograms on the 12 lumbar vertebra CT training data.

increased the computational costs for the matching, it delivered additional

edge quality information and enhanced the results for the L1-L3 vertebrae.

Testing with gradient based edge descriptors and one-dimensional shape

index histograms delivered a average matching error of 4.64 mm for the L1-

L3 vertebrae and 14.55 mm for the L4-L5 vertebrae where the high error for

L4-L5 is due to the high occurrence of rotated vertebra matchings.
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5.4 Hardware and Performance

The tests were conducted on a laptop with an Intel Core 2 Duo Processor with

2.20 GHz and 2 GB RAM. A MRF based sparse vertebra localisation run took

approximately 1 minute with the one-dimensional shape index histogram de-

scriptor and approximately 4 minutes with the vector spin-image descriptors

assuming a maximum of 600 feature point candidates at each landmark mod-

elled by the objects of the sparse MRF vertebra model. Applying gradient-

based edge descriptors increased the matching time to approximately 10

minutes.

5.5 Summary

In this thesis a MRF based framework was used for model initialisation of

sophisticated vertebra-segmentation algorithms such as AAMs. The MRF

framework has been tested with two different local descriptors, with one-

dimensional shape index histograms and with vector spin-images. Shape

index histogram based matching delivered average matching errors of 5.43

mm and vector spin-image matchings had average matching errors of 5.52

mm for the L1-L3 vertebrae. Testing with one-dimensional shape index his-

tograms and gradient-based edge descriptors the average matching errors

could be decreased to 4.64 mm for the L1-L3 vertebrae. The matching perfor-

mance with maximal 600 feature points per landmark was 1 minute for one-

dimensional shape index histogram based matching, 4 minutes for vector

spin-images and approximately 10 minutes with additional gradient-based

edge descriptors. The tests with gradient-based edge descriptors had poor

time performance and its matching accuracy did not differ so much from tests

without these descriptors. Thus, considering local descriptors only around

landmarks but not along edges were enough for a model initialisation (see

figure 5.6).

In summary it can be said that the MRF based sparse structure localisa-

tion with shape index histograms and vector spin-images (but without addi-

tional edge descriptors) of the L1-L3 vertebrae with the aforementioned MRF

based matching accuracy and performance is able to outperform a manual
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initialisation of the model of sophisticated full segmentation approaches. The

MRF based vertebra model initialisation performed not well (average match-

ing errors approximately 10 mm) for the L4-L5 vertebrae because of rotated

vertebra matchings due to the presence of highly similar structures in the

vicinity of ground truth landmarks.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Within this thesis a framework is presented for sparse structure localisation

of vertebrae in CT volumetric data. A three-dimensional sparse model of

vertebrae shape and appearance is built and matched with target vertebra

CT scans where the model-to-target fit is modelled by MRFs. An optimal

model-to-target fit is found by solving the MAP-MRF labelling problem.

Figure 6.1: The matching result of the MRF framework can be used as an initialisation
of more sophisticated segmentation steps such as AAMs.

The sparse model construction involves the selection of local descriptors

for anatomically significant landmarks of vertebrae. Furthermore, an adja-

cency system corresponding to the Markov-property of the MRF graph is set

up by Delaunay tetrahedralisation. Euclidean distances and gradient-related
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angles along adjacencies set up a geometrical configuration of the model.

The built sparse MRF vertebra model is finally matched with candidate loca-

tions, called feature points of the target volume. The matching step assigns

each object of the sparse MRF vertebra model a feature point with the best fit,

taking adjacency relations between them into consideration. Feature points

are delivered by a supervised learning algorithm called probabilistic boost-

ing tree (PBT) in the target data. The MAP-MRF labelling problem is solved

by the Max-sum approach where a maximum posterior configuration of fea-

ture points according to the built sparse MRF vertebra model is delivered.

The sparse MRF vertebra model is built on 12 training volumes of lumbar

vertebrae (see section 4.2.1), and the evaluation is established on the same

dataset by the leave-one-out strategy. The matching error was measured

in millimetres by Euclidean distances between the annotated landmarks at

anatomical positions and the matched labels. The MRF based sparse verte-

bra structure localisation approach resulted for the L1-L3 vertebrae in aver-

age matching errors which could be kept in ranges where it could act as an

initialisation for subsequent segmentation methods such as AAMs (see fig-

ure 6.1). For the L4-L5 vertebrae the MRF approach resulted in high average

matching errors (approximately 10 mm) because of rotated vertebra match-

ings due to the presence of similar anatomical structures (such as the hip) in

the vicinity of the modelled landmarks of L4 and L5 vertebrae.

6.2 Future Work

An important future work is to tackle the problem of ambiguous and rotated

vertebra matchings, such as in the lower lumbar region (L4 - L5), due to the

vicinity of similar bony structures (such as the hips) to the transverse pro-

cesses. One possibility has been already mentioned in section 5.3 (adding

extra landmarks such as the spinous process) which has to be tested and

needs further investigation; alternatives should be considered.

Furthermore, the high-level feature extraction technique is planned to be

enhanced in order to reduce the number of the resulting feature points per

modelled landmark (at the moment it is up to 600). Reducing the number of

feature point candidates can accelerate the MRF based vertebra matching.

77



CHAPTER 6. CONCLUSION AND FUTURE WORK

Enhancing the geometrical configuration is a further point contributing to

the future work which could support the stability of the sparse MRF vertebra

model. Thus, finding the axis of orientation of each vertebra could provide

additional information for the sparse MRF vertebra model and could yield

more stability.

More than that, as the MRF approach consists of a combination of differ-

ent methods according to local descriptors, feature extraction, geometrical

setup and a solver, there is a lot of room for exploring new techniques at each

of the aforementioned fields. First of all, alternative approaches for the ap-

plied MRF solver should be considered to overcome the limitation of the DAG

approach of the Max-sum solver, that it can not always be solved to optimality

(see section 4.3.4).
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