
Dissertation

Direct Artist Control for Procedural Content

Generation of Urban Environments

ausgeführt
zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von
Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer,

Institut für Computergraphik und Algorithmen E186,
eingereicht

an der Technischen Universität Wien,
Fakultät für Technische Naturwissenschaften und Informatik,

von
Dipl.Ing. Bakk.techn. Markus Lipp,

Matrikelnummer 0125260,
Schönbrunnerstrasse 152/2/5,
A-1120 Wien, Österreich,

geboren am 15. Oktober 1981 in Füssen

Wien, 18. Oktober 2010.

Direct Artist Control for
Procedural Content Generation of

Urban Environments

Markus Lipp

Abstract

Creating 3D digital assets of urban environments is a challenging task, requir-
ing a significant amount of manual labor. To automate parts of this process,
many procedural modeling methods to automatically create buildings, plants
or entire cities were introduced. The main advantage of such methods com-
pared to manual methods is the ability to create large amounts of assets using
just a few parameters as input data.

However, the main disadvantage is the difficulty to control or predict the
output of such methods. Direct controllability is especially important for
artists enabling them to model the output to their vision or requirements.
Therefore, the main goal of this thesis is combining the direct control provided
by manual methods with the power of procedural modeling.

To achieve this, several new methods and paradigms bringing direct and
visual artist control to procedural generation of urban environments are
contributed in this thesis. These include a method enabling a visual design
process for building grammars, as well as methods providing direct artist
control for architecture generation algorithms. To model whole cities, we
introduce a layering system for urban layouts based on graph cut, contributing
the ability to perform direct and persistent changes to a procedurally generated
city. Additionally, the concept of anchored assignments is introduced, enabling
direct control of parameter distributions on cities. Finally, as real-time
performance of generation algorithms is paramount if they are to be used in
a production setting, we introduce an algorithm able to parallelize the work
of L-system generation to thousands of processors.

Kurzfassung

Die Erstellung von digitalen 3D Inhalten für virtuelle Städte ist eine große
Herausforderung und beinhaltet viel manuelle Arbeit. Deshalb wurden viele
prozedurale Methoden zur automatischen Erstellung von Gebäuden, Pflanzen
oder kompletten Städten vorgestellt. Der große Vorteil solcher Methoden ist
die Möglichkeit, anhand von wenigen Parametern als Eingabedaten große
Mengen von digitalen Inhalten zu erstellen.

Allerdings haben diese Methoden auch einen großen Nachteil: Im Vergleich
zu manuellen Methoden sind die resultierenden Inhalte schwer vorherzuse-
hen oder zu beeinflussen. Die Möglichkeit, direkte Beeinflussung auf das
Resultat auszuüben, ist besonders für Designer wichtig, damit diese ihre
Vision oder Anforderungen umsetzen können. Deshalb ist das Hauptziel
dieser Dissertation, die direkte Beeinflussbarkeit manueller Methoden mit der
Leistungsfähigkeit prozeduralen Modellierens zu kombinieren.

Um direkte und visuelle Beeinflussung von prozeduralen Methoden zur
Erstellung von virtuellen Städten zu ermöglichen, führen wir mehrere neue
Methoden und Paradigmen ein. Zuerst stellen wir eine Methode zum visuellen
Design von Grammatiken für Architekturerstellung vor, des weiteren werden
Methoden zur direkten Beeinflussung von Methoden zur Architekturgener-
ierung dargelegt. Um ganze Städte zu modellieren, stellen wir ein System
basierend auf mehreren Ebenen von Stadtteilen unter Benutzung des Graph-
cut Algorithmus vor. Dies ermöglicht direkte Beeinflussung von prozedural
erstellten Städten. Des weiteren wird ein Konzept zur direkten Definition
von Parametern für Städte vorgestellt. Da interaktive Geschwindigkeit von
prozeduralen Algorithmen nötig ist wenn diese in einem Projekt eingesetzt
werden sollen, stellen wir auch einen Algorithmus zur Parallelisierung von
L-Systemen auf über tausend Prozessoren vor.

Contents

1 Introduction 1
1.1 Procedural Modeling . 2
1.2 Artist Control for Procedural Modling 4

1.2.1 Importance of artist control 5
1.2.2 Types of Artist Control 5
1.2.3 Visual Interfaces for Artist Control 6

1.3 Real-Time Performance . 7
1.4 Dissertation thesis . 8
1.5 Contributions . 8
1.6 Overview . 9

2 Related Work 11
2.1 Plants . 11
2.2 Architecture . 15

2.2.1 Shape grammars . 15
2.2.2 Split grammars . 17
2.2.3 Alternative approaches 19

2.3 Urban Layouts . 24
2.3.1 Control through global input change 24
2.3.2 Control through incremental editing 27

2.4 Parallelizing L-Systems . 30

3 Direct Artist Control for Procedural Architecture 35
3.1 Visual Editing Concepts . 37
3.2 Instance Locators for Local Control 41

3.2.1 Selections . 42
3.2.2 Direct Modifications and Persistence 45

3.3 Interactive Visual Editor for Grammars 48
3.3.1 Building Editor . 49
3.3.2 Rule Editor . 50

3.4 Implementation and Results 54
3.5 Comparison to Related Work 58
3.6 Conclusion and Future Work 59

4 Direct Artist Control for Procedural City Layouts 61
4.1 Transformations of Urban Layouts 64

4.1.1 Definition of Urban Layouts 64
4.1.2 Non-Topological Transform 65
4.1.3 Flexible Merging using Graphcut 68
4.1.4 Hard Topological Merge 71

4.2 Editing Operations Using Layers and Layout Transformations 72
4.2.1 Layers . 72
4.2.2 Basic Editing Operations 73
4.2.3 Further Examples of Direct Artistic Control Using Lay-

ers and Merging . 74
4.3 Persistent Anchored Assignments 76

4.3.1 Definition of Anchored Assignments 76
4.3.2 Usage of Anchored Assignments 76

4.4 Results and Discussion . 78
4.5 Discussion . 79
4.6 Conclusion . 80

5 Parallel Generation of Multiple L-Systems 83
5.1 Analysis of Parallelism in L-System 85

5.1.1 Derivation . 85
5.1.2 Interpretation . 85
5.1.3 Multiple L-Systems . 86

5.2 Parallel Derivation . 86
5.2.1 Efficient L-system Representations 87
5.2.2 Derivation . 88

5.3 Parallel Interpretation . 90
5.3.1 Non-Branching Module Strings 90
5.3.2 Branching Module Strings 91

5.4 Multiple L-systems . 94
5.4.1 Representation of Multiple L-systems 94
5.4.2 Derivation of Multiple L-systems 95
5.4.3 Interpretation of Multiple L-systems 96

5.5 Results . 96
5.6 Discussion . 101
5.7 Conclusion . 102

6 Summary 105
6.1 Research Outlook . 107

List of Figures 109

List of Tables 117

Bibliography 119

Curriculum vitae 125

1
Introduction

Virtual models of urban environments, consisting of streets, buildings and
plants, are required in many applications. For example, they can be used
in movies or computer games for entertainment purposes. Here, convincing
virtual models of cities are often required for special effects or interactive
environments. For movies, it is especially important that the models are of
high visual quality. Another application is urban planing : Visualizing planned
buildings or districts using virtual models can help in decision making during
an urban planing process, allowing an estimation of the impact of planned
buildings on the cityscape. Finally, they can be used for cultural heritage
applications. Virtual models of historic cities can be used for education and
for gaining insight into long gone cultures. In Figure 1.1 those applications
are illustrated.

Figure 1.1: Applications of virtual urban models. Left: In this urban planning
scenario, the impact of the planned red building on the cityscape can be evaluated.
Middle: Futuristic city created for a computer game. Right: A virtual model of
Pompeii for cultural heritage applications. Images generated with Procedural Inc.
Cityengine [Pro10].

Creating such virtual models is a challenging task. A traditional approach
is to manually model the numerous virtual objects occurring in an urban
environment, using polygonal modeling tools like Autodesk MayaTM. One

CHAPTER 1. INTRODUCTION

strength of this approach is the full controllability an artist has over every
aspect in the city, as essentially everything is hand crafted. The obvious
disadvantage is the huge amount of time, resources and manpower required
for creating whole cities.

One reason why this is such a costly process is that reusing assets for
different objects in a city can only be performed on a low level, by copying or
instancing parts of a model. In traditional tools, there is no way to extract
higher level aspects of objects in order to reuse them in a different part of the
city. Also, as objects are successively modeled, it is difficult to make small
changes to a city layout after the buildings were created. For example, when
a street is moved, the buildings need to be manually updated.

Therefore, the main idea to reduce the costs of modeling urban environ-
ments is to use procedural modeling techniques, which are able to automatically
generate models out of a higher level description, and can regenerate objects
after parameter changes. We will look at such methods in the next section.

1.1 Procedural Modeling

To automate parts of the urban environment modeling process, many pro-
cedural modeling techniques were introduced. Based on the underlying
methodology, these techniques can be roughly classified into three groups:

• Grammar based: Given a set of rules, a start symbol and parameters,
the start symbol is iteratively replaced with other symbols based on the
rules.

• Simulation based: Here, the idea is to simulate a natural growth or
urban development process using an abstract model of the process.

• Example based: The main idea is to employ parts of databases, e.g.
geographic information systems (GIS), or images as examples for content
generation. This data can either be exploited by extracting parame-
ters for a grammar- or simulation-based method, or more directly by
combining multiple smaller parts of this data to create new content.

All these methods share a general input, procedural generation and output
model, as illustrated in Figure 1.2. This underlying concept accounts for
the main strength of procedural generation: Out of a relatively small set of
input data, procedural generation can automatically create large amounts of
output. Essentially, the input data is a high-level description of the models
to be generated. Also, changes to the input data followed by a regeneration
are simple and inexpensive.

2

1.1. PROCEDURAL MODELING

input procedural generation output

rules, parameters

parameter distributions

example database

rule application

simulation

example combinations

Figure 1.2: Conceptual overview of procedural methods: A possibly iterative
procedural generation algorithm creates output assets from input data.

Object types Apart from the underlying methodology, procedural algo-
rithms can also be classified by the types of virtual objects they are able to
create. There is no one-to-one mapping between those classifications, as some
methods have been applied to different object types.

We will now explain the main types occurring in an urban environment:
For plants mainly grammar-based approaches, such as L-systems are employed.
To generate buildings and general architecture, grammar-based approaches
and example-based approaches using images were introduced. A wide variety
of methods have been applied to create urban layouts, which we define as street
networks with parcels and parameter distributions. The methods include
simulation-based approaches using urban development models, example-based
approaches using GIS data, and grammar-based approaches using L-systems.

Of course there are much more object types, for example landscapes or
textures. In order to limit the scope of this thesis to a reasonable area, we
assume these objects already exist.

Procedural modeling pipeline Now that we introduced the methods
and object types, the question arises how the methods can work together
to create a complete virtual urban environment. The main idea is to use a
pipeline, chaining together the different methods. This has been proposed by
Pascal and Müller [PM01]. We will now provide a conceptual introduction to
their pipeline, a more detailed explanation will be given in Section 2.3.1.

(1) A landscape combined with parameter distributions of desired building
types and properties is provided by the artist. (2) A procedural street
generation algorithm creates a street network using provided parameters
and the distributions from step 1. (3) Parcels are extracted from the street
network. (4) Finally, for every parcel and every street, a specific procedural
algorithm for geometry generation is employed. The algorithm can create
street geometry, generate and distribute plants, or create buildings. It takes

3

CHAPTER 1. INTRODUCTION

Figure 1.3: Conceptual procedural pipeline for urban envrionment generation.
Starting from a landscape, initially the street network, then the parcels, and finally
the buildings, plants and streets are created.

the parameters provided in step 1 as well as the street or parcel geometry as
input. The complete pipeline is visualized in Figure 1.3.

1.2 Artist Control for Procedural Modling

Until now, we only mentioned the advantages and possibilities of procedural
methods. However, those methods also have one significant challenge: Where
and how can artists control the method to generate an output that corresponds
to their vision or requirements? For manual modeling, direct control of the
output is always provided. If we want to combine the direct control of manual
modeling with the power of procedural modeling, we have to look at solutions
to bring direct control to procedural methods. This is the main goal of this
thesis. In previous work this has often been neglected, as the emphasis was
more on the generation algorithms.

Let us first look at why direct control so important for the application
areas mentioned in the beginning. Then we will examine the potential types
of artist control, including direct control. Finally, possible visual interfaces
for artist control will be explained.

4

1.2. ARTIST CONTROL FOR PROCEDURAL MODLING

1.2.1 Importance of artist control

For movies and computer games, there is always a specific vision of a director
or designer how the result should look like. While procedural algorithms can
quickly create large amounts of content, there can be the desire to directly
control details of this output to exactly correspond to this vision. When we
talked with artists from a game company about procedural methods, they
said it is imperative for them to have direct control if they are to employ
procedural methods.

For urban planing, the ability to perform interactive modifications of
planned areas can be a powerful tool in order to explore new ideas or alterna-
tive designs. Those modifications need to be direct in order to convey the
architect’s vision.

In cultural heritage applications, it is important to be able to incorporate
new findings directly into the virtual model. Also, a scientist should be able
to incorporate domain knowledge not encoded into the procedural algorithm
into the model.

1.2.2 Types of Artist Control

Essentially, there are three ways an artist can control procedural content
creation, as visualized in Figure 1.4. (1) The artist can change the input
data, for example by modifying some rules. This has a global effect, as all
subsequently generated assets will use this new input, and only provides
indirect control over the output. (2) The generation process can be steered
locally, for example by specifying a population distribution of a city. This is
still an indirect approach. Additionally, local steering does not ensure that
the effect on the output is also local. For example reducing population density
locally could cause the generation algorithm to remove a large highway that
was present before. However, it is possible to design algorithms that ensure
local steering has local effect, therefore we classify local steering as having
both local and global effect. (3) The artist can directly and locally change
the output. As this provides the maximum control, we will focus our thesis
on this type. Let us look at direct changes in more detail.

Direct control While modifying the output directly provides maximum
control, there is one significant challenge, best explained with an example
illustrated in Figure 1.5: Suppose the artist directly changed one window of a
building. Afterwards the artist may decide to change one input parameter of
the procedural generation, for example the width of the windows. To account
for this global change, the building has to be deleted and regenerated, as

5

CHAPTER 1. INTRODUCTION

input procedural
generation output

steering
generation

changing
input

modifying
output

indirect control direct control

global effect local effect

possible
interactions:

classification:

Figure 1.4: Classification of possible interactions in a procedural generation
system.

changing the window width may change the amount of windows. However,
during regeneration the system does not have any knowledge of the modified
window, as this is not encoded in the input. Therefore the direct modification
is lost.

In most cases this is probably not what an artist intended: The system
should be able to retain direct local changes even when a global change is
performed afterwards. This would combine the data amplification power
of procedural modeling with the direct control provided by standard 3d
modeling tools. Most previous work only focuses on indirect and global control.
Therefore, one goal of this thesis is to find solutions to allow persistent direct
control in procedural algorithms.

1.2.3 Visual Interfaces for Artist Control

Apart from the question where to apply artist control, it is also important to
look at how those control possibilities are presented to the artist.

Input In grammar-based approaches, mostly a text-based definition of
the rules is used as input. This can be unintuitive for an artist, a visual
representation of the rules would be preferable. Therefore one goal of our
work is to find a visual system for grammar creation. For simulation- and
example-based approaches the visual representation of the input is easier. For
instance, in an example-based approach the examples can simply be rendered.

Steering generation Instead of text-based descriptions, visual control
structures are more suited to steer the generation. Different visual controls
have been introduced in the context of L-systems, as will be pointed out

6

1.3. REAL-TIME PERFORMANCE

input generation

(2) direct local change

(1) generate

(3) change input

(4) regenerate

input 2 generation

local change lost!

Figure 1.5: Illustration of the persistence problem. The artist interactions are
numbered. After an input change the previous local change is lost.

in the related work section. Also, parameter distributions for cities can be
represented as color coded images.

Modifying output One way to modify the output is to use traditional
tools like Autodesk MayaTM. However, instead of the low-level geometry
editing that such tools provide, it would be beneficial to have high level
editing operators tailored to the specific problem domain. For example, when
editing buildings it should be possible to use drag and drop operations to
change a window type. When editing urban layouts, tools to move complete
streets would be beneficial. We introduce such tools in Chapter and 3 and 4.

1.3 Real-Time Performance

To truly exploit the power of procedural modeling combined with direct
control, it is imperative that direct changes can be performed interactively in
real-time. Local or global changes should immediately reflect on the rendered
result. Therefore, another goal of this thesis is speeding up existing procedural
algorithms to make real-time interactions feasible.

As it would be impossible to cover performance improvements for all
procedural methods in the scope of this thesis, we will just focus on accelerating
L-system based approaches. We see this as a first step towards accelerating
other grammar based approaches as well.

7

CHAPTER 1. INTRODUCTION

1.4 Dissertation thesis

This work focuses on providing direct artist control for procedural content
creation methods of urban environments.

The main thesis of this work is that it is possible to add persistent
direct control to procedural methods, and that the resulting meth-
ods enable novel ways of visual interaction. Further we claim that
it is possible to achieve real-time performance for such methods
using parallelization and other techniques.

We will underline this statement by introducing several methods for direct
control, and by presenting feedback to those methods from artists of a game
company. Further, we will provide performance evaluations of our methods
and introduce a method specifically targeted at parallelizing L-systems.

1.5 Contributions

First, we introduce a visual interface for grammar creation as well as a direct
control solution for architecture generation. Then, we introduce direct control
solutions for city generation. Finally, we introduce a parallel algorithm for
fast generation of multiple L-systems.

Direct Control for Procedural Architecture We introduce a real-time
interactive visual editing paradigm for shape grammars, allowing the creation
of rulebases from scratch without text file editing. In previous work, shape-
grammar based procedural techniques were successfully applied to the creation
of architectural models. However, those methods are text based, and may
therefore be difficult to use for artists with little computer science background.
Therefore the goal was to enable a visual workflow combining the power of
shape grammars with traditional modeling techniques. We extend previous
shape grammar approaches by providing direct and persistent local control
over the generated instances, avoiding the combinatorial explosion of grammar
rules for modifications that should not affect all instances. The resulting visual
editor is flexible: All elements of a complex state-of-the-art grammar can be
created and modified visually. The results [LWW08] have been published in:

• Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual
editing of grammars for procedural architecture. ACM Transactions on
Graphics, 27(3):102:1-10, 2008. Article No. 102.

8

1.6. OVERVIEW

Direct Artist Control for Procedural City Layouts We present new
solutions for the interactive modeling of city layouts that combine the power of
procedural modeling with the flexibility of manual modeling. Procedural mod-
eling enables us to quickly generate large city layouts, while manual modeling
allows us to hand-craft every aspect of a city. We introduce transformation
and merging operators for both topology preserving and topology changing
transformations based on graph cuts. In combination with a layering system,
this allows intuitive manipulation of urban layouts using operations such as
drag and drop, translation, rotation etc. In contrast to previous work, these
operations always generate valid, i.e., intersection-free layouts. Furthermore,
anchored assignments make sure that modifications are persistent even if the
whole urban layout is regenerated, for example following a global parameter
change in the procedural definition. The results are currently under review.

Parallel generation of multiple L-systems We introduce a solution to
compute L-systems on parallel architectures like GPUs and multi-core CPUs.
Our solution can split the derivation of the L-system as well as the interpre-
tation and geometry generation into thousands of threads running in parallel.
We introduce a highly parallel algorithm for L-system evaluation that works
on arbitrary L-systems, including parametric productions, context sensitive
productions, stochastic production selection, and productions with side effects.
This algorithm is further extended to allow evaluation of multiple independent
L-systems in parallel. In contrast to previous work, we directly interpret
the productions defined in plain-text, without requiring any compilation or
transformation step (e.g., into shaders). Our algorithm is efficient in the sense
that it requires no explicit inter-thread communication or atomic operations,
and is thus completely lock free.

The results [LWW10] have been published in:

• Markus Lipp, Peter Wonka, and Michael Wimmer. Parallel genera-
tion of multiple l-systems. Computers Graphics, 34(5):585-593, 2010.
CAD/GRAPHICS 2009; Extended papers from the 2009 Sketch-Based
Interfaces and Modeling conference; Vision Modeling Visualization.

1.6 Overview

The remainder of this thesis is structured as follows: In Chapter 2 the related
work for procedural content creation and parallelizing of L-systems is presented.
Chapter 3 focuses on direct visual control for procedural architecture. In
Chapter 4 a method for city-wide direct control of streets and parcels using

9

CHAPTER 1. INTRODUCTION

a layering system is presented. Chapter 5 details algorithms for parallel
generation of L-systems. A summary of the thesis is provided in Chapter 6.

10

2
Related Work

In this chapter we summarize the related work of our research. First, methods
for procedural generation with corresponding concepts for artistic control are
introduced. Section 2.1 focuses on plants, Section 2.2 on architecture and
Section 2.3 on urban layouts. Then, methods for parallelizing L-systems will
be shown in Section 2.4.

An extensive review of procedural urban modeling methods can be found
in a recent survey paper by Vanegas et al. [VAW+10]. While we cover a
similar area, our focus is on visual artist control.

2.1 Plants

Plants are mainly generated using L-systems. L-systems were introduced by
Prusinkiewicz and Lindenmayer [PL96]. While they are mainly employed
to generate plants, they were also used to generate buildings [PM01]. One
example plant is shown in Figure 2.1.

We will now provide an overview of the formalism as introduced by
Prusinkiewicz and Lindenmayer [PL96]: Parametric L-systems operate on
parametric words, which are strings of modules consisting of letters with
associated actual parameters. An L-system consists of a parametric word ω
called the axiom, and a set of productions describing how the current word is
transformed. A production consists of a letter possibly combined with formal
parameters, called the predecessor and a successor. The successor consists of
a list of letters, where each letter can have multiple arithmetic expressions
containing formal parameters. Formal parameters can be global or local to
one production rule. The real-valued actual parameters appearing in the
words are calculated from the arithmetic expressions of formal parameters.
The predecessor can also consist of several letters, in which case the L-system
is called context sensitive [PL96].

In the following example, F , A, and B are the letters defining modules,

CHAPTER 2. RELATED WORK

Figure 2.1: An example 3D plant generated using L-systems. Image courtesy of
Prusinkiewicz and Lindenmayer [PL96].

gi are global parameters, l is a local parameter, and the arrow separates the
predecessor from successor:

F (l)→ A(l ∗ g1)[B(l + g2)]

To actually generate geometry, two distinct phases are performed: A
derivation phase generating a string of modules, and an interpretation phase
in which the string of modules is interpreted in order to generate geometry.

Derivation The derivation starts from the axiom. For every module con-
tained in the axiom, a matching production is searched. A production matches
a module m if the letter of the predecessor matches the module letter, and
the number of actual parameters in the module equals the number of formal
parameters in the production. We then apply the matching production to the
module: First, for every module in the successor, we calculate the actual real-
valued parameters from the arithmetic expression of the formal parameters.
Then we rewrite the module m with the modules of the successor. One itera-
tion consists in rewriting all modules in the string in parallel using matching
productions [PL96]. A user-defined amount of iterations is performed in order
to get the final string of modules.

Interpretation The interpretation is performed serially from the start of
the string, performing modifications of a turtle state based on predefined turtle
commands associated with specific letters [PL96]. The turtle state represents
the position and orientation of a virtual turtle. This state can be represented

12

2.1. PLANTS

with a 4x4 matrix. The turtle commands associated to letters modify the
turtle state, for example ’F’ moves the turtle forward while drawing a line, or
’+’ rotates the turtle. Most of these turtle commands can also be expressed
by a 4x4 matrix. A notable exception are the commands ’[’ and ’]’, which
push and pop the turtle state on a stack, allowing the creation of branching
(also called bracketed) L-systems [PL96].

Artist control for L-systems Several extensions were proposed to L-
systems, mainly applicable to plants: Prusinkiewicz et al. [PMM94] show how
to restrict the growth process of plants to a user-defined volume by introducing
pruning, enabling the creation of synthetic topiaries. An example output is
shown in Figure 2.2. To achieve this, a query module is introduced. After
each derivation step this module allows querying the position or orientation of
the turtle. This information can be used for intersection tests with a bounding
object.

Figure 2.2: Synthetic topiaries created using pruning to a bounding box. Image
courtesy of Prusinkiewicz et al. [PMM94].

To actually create plants reacting to pruning, the authors specify an
L-system using this module. When collisions are found, context sensitive
rules are employed to send signals to higher level branches, allowing them to
adapt to the collision by bending. This collision response was later extended
to simulate plants interacting with their environment, competing for natural
resources, using so-called open L-systems [MP96].

Later, the idea of the query module was generalized by introducing a

13

CHAPTER 2. RELATED WORK

function module [PMKL01]. This module allows querying an arbitrary, user-
defined function during interpretation, using the relative turtle position as
parameter. By modifying the functions, an artist can influence the shape of
plants, as shown in Figure 2.3. Boudon et al. [BPF+03] combined bounding
shapes and function modules, and introduced a multiscale representation of
plants in order to minimize the total number of parameters needed to specify
a plant.

Figure 2.3: Using function modules, the relative turtle position can be used to
query a user-defined function. This allows direct control of plant shapes. Image
courtesy of Prusinkiewicz et al. [PMKL01].

L-systems were also used to create street layouts, using so-called extended
L-systems [PM01]. They will be introduced in in Section 2.3.1.

Visual modeling of L-system rules To help artists in creating L-system
rules, which are generally text-based, a visual system to model grammars
was proposed by Lintermann and Deussen [LD99]. They introduced visual
components specifically targeted at plant modeling, for example leafs and
branches, that can be connected in a graph. Those components are very
specific to plants and can not be used to model other objects like buildings.
One example graph is shown in Figure 2.5.

Analysis Both the query and function module share the same general
concept to enable artistic control, as visualized in Figure 2.4: First, the
grammar rules need to be specifically crafted using those modules. Rewriting
an existing L-system to use those modules is a non-trivial task, which is the
main drawback of those methods. Second, a control structure external to
the L-system is specified and queried during the derivation by the modules.
Third, to influence the plant, the artist does not directly control the resulting

14

2.2. ARCHITECTURE

plant, instead the control structures are modified and the plant reacts as
specified in the rules.

To sum it up, the main disadvantage is that the query modules need to be
tightly integrated into the grammar, additionally the control is still indirect.
In our work we try to alleviate this by enabling direct control without query
modules, as will be shown in Section 3.

grammar L-system
derivation plant

(1) specifically
crafted rules

(2) external
control structure

(3) artist control:
modify control
structure

query

Figure 2.4: Conceptual view of artistic control for L-systems.

creates tree

distributes components on sphere

creates leaves

Figure 2.5: Components can be connected by an artist to create plants. Image
courtesy of Lintermann and Deussen [LD99], annotations added.

2.2 Architecture

In this section we will introduce concepts for procedural generation of archi-
tecture, starting from early shape grammars, continuing with split grammars
and finally providing details on alternative approaches.

2.2.1 Shape grammars

Shape grammar were pioneered by Stiny and Gips [SG72, Sti80]. In contrast
to L-systems, shape grammars operate on lines and points instead of symbols.

15

CHAPTER 2. RELATED WORK

Let us provide a condensed version of the definitions by Stiny [Sti80]. We left
out details like labeled and parametric shapes.

A shape is an arrangement of lines. Shape s1 is a subshape of shape
s2 (denoted s1 ≤ s2) when every line of s1 is also in s2. A Euclidean
transformation of shape s is denoted as τ(s). Shape s1 is geometrically similar
to shape s2 if there is a transformation τ such that τ(s1) = s2.

A shape grammar consists of a set of shapes S, a set of shape rules R of
the form α → β|α ∈ S+, β ∈ S∗ and an initial shape s ∈ S+. A shape rule
α→ β applies to a shape γ when there is a transformation τ |τ(α) ≤ β. The
shape produced by applying α→ β to γ is (γ − τ(α)) + τ(β), where + and
− represent Boolean union respectively Boolean difference. New shapes are
generated by iteratively applying shape rules starting from the initial shapes.
For better understanding, an example shape grammar is shown in Figure 2.6.

rule 1 rule 1 rule 2

rule 1:

rule 2:
initial shape:

possible generation:

Figure 2.6: Two shape rules and a possible outcome of the generation are illustrated
here. The points represent labels. Note that this grammar can create an infinite
amount of generation results. Figure based on illustration from Stiny [Sti80].

Implementation challenges One major challenge when implementing a
shape grammar interpreter is finding a transformation τ |τ(α) ≤ β, called the
subshape problem [Cha89]. This is essentially a pattern matching problem:
For every rule, transformations of α have to be searched in the current shape.
This is computationally very expensive, and recently it was even proven that
the parametric subshape recognition problem is NP-hard [YKG09]. To sim-
plify the subshape problem, set grammars were introduced [Sti82]. Essentially,
instead of working directly on lines, set grammars combine multiple lines to a
set, reducing the search space for rule applications. Most existing implemen-
tations circumnavigate the general subshape problem either by restricting
the grammar to set grammars or other restrictions such as only supporting

16

2.2. ARCHITECTURE

rotations of 90 degrees [Cha89]. To our knowledge, currently there exists no
automatic 3d shape grammar interpreter without such restrictions.

Another challenge is emergent behavior of shape grammars. This essen-
tially refers to the possibility of obtaining surprising results not intended by
the artist [Cha89]. On the one hand, this could be interpreted as a strength
of shape grammars, as emergence can lead to creative new results. On the
other hand, emergence hinders direct artist control, as unintended results are
possible.

Applications Many shape grammars have been proposed for various appli-
cations. These include paintings [SG72], Palladian houses [SM78], Mughul
gardens [SM80] (shown in Figure 2.7) or mass housing [Dua05].

It is important to note that those grammars were not targeted at the
creation of visually convincing models for movies or computer games (including
textures or ornaments), instead accurate ground plans were produced.

Figure 2.7: Mughul garden created using shape grammars. Image courtesy of
Stiny and Mitchell [SM80].

2.2.2 Split grammars

The first method to actually generate visually convincing models with high
geometric façade detail was Instant Architecture [WWSR03]. This method
introduced split grammars, which are based on set grammars. The basic
formalism is similar to set grammars, however there are some important con-
tributions: (a) They introduce a split command, defined as the decomposition
of a basic shapes into other shapes. (b) A parameter matching system is
introduced to find applicable rules. This simplifies the sub-shape problem. (c)
A control grammar is introduced to provide control over spatial distributions,

17

CHAPTER 2. RELATED WORK

essentially circumnavigating the emergence problem. An example derivation
is shown in Figure 2.8

Figure 2.8: Example derivation of a split grammar. Image courtesy of Wonka et
al. [WWSR03].

A main advantage of split grammars is that facades with high detail can
be generated using a very simple language. The main disadvantage is that
the control is very indirect for an artist: The parameters for the matching
system have to be carefully set, and a fine-tuned control grammar is vital to
get the desired result.

CGA shape To improve on split grammars, CGA shape was introduced
[MWH+06], extending split grammars in the following ways: They were the
first to actually define the syntax of split commands. They introduced the
component split, which allows reducing the dimensionality of the current
scope. Additionally, mass modeling was introduced to create more complex
buildings shells. Finally, the control grammar and attribute matching were
removed, every rule has a probability instead. CGA shape is the basis for the
commercial CityEngine [Pro10], and has inspired much subsequent work. Let
us therefore provide a condensed definition of CGA shape:

A shape consists of a symbol, geometry and attributes. Attributes include
an oriented bounding box, called the scope. Production rules replace one
shape with other shapes. The production process starts with an arbitrary
configuration of shapes, called the axiom. Iteratively, shapes are replaced
according to rules.

There are scope transformation rules for translation, rotation, scaling.
Also push and pop of the scope on a stack is supported. The basic split rule
splits the current scope along a specified axis with user-defined split widths.
The shapes placed on the split positions are also user defined. A component
split allows to split into shapes of lesser dimensions.

18

2.2. ARCHITECTURE

Mass models can be created either by extruding building lots, or importing
3d geometry. In order to prevent occlusions of facade features, tests querying
for occlusions can be employed in rules. An example output is shown in
Figure 2.9.

Figure 2.9: City created using 190 CGA shape rules. Image courtesy of Müller et
al. [MWH+06].

CGA shape is considered state-of-the-art for procedural building genera-
tion. However, it has two disadvantages: First, the rules are completely text
based, making input definition unintuitive for an artist. Second, no persistent
direct control of the output is supported. We will provide solutions to both
problems in this thesis.

2.2.3 Alternative approaches

Here we will introduce methods that are not directly grammar based, but
still enable some kind of visual artist control for procedural architecture
generation.

Image based approaches Müller et al. introduced a method able to
extract a 3d model and shape grammar rules from a single rectified image of
a facade [MZWG07]: (1) Symmetry detection is used to create an irreducible
facade (IF) image. An IF is a summary of the facade, with all symmetries of
building tiles removed. (2) An edge detection algorithm then subdivides the

19

CHAPTER 2. RELATED WORK

IF into floors and tiles. (3) By expanding the IF again to the full facade, the
subdivison is known for the full facade. (4) Each tile is further subdivided
into windows and ornaments, first locally, then the local results are globally
synchronized. (5) Predefined 3d meshes of windows and ornaments are
automatically matched to the subdivided elements. (6) The output thus far
does not have depth information. A user can manually add it. Finally, shape
grammar rules are automatically extracted from the subdivision tree. An
example is shon in Figure 2.10.

Figure 2.10: 3d facade extracted from a single image. The extracted shape allows
flexible resizing of the output. Image courtesy of Müller et al. [MZWG07].

For the previously introduced method, images need to be free of occluding
objects such as traffic lights and wires. Musialski et al. therefore introduced
a method to automatically remove those occluders by exploiting symmetries
in the facades [MWR+09].

Xiao et al. introduced a method taking multiple images of the facade as
input [XFT+08]. They claim that the approach from Müller et al. [MZWG07]
only works well for repetitive facades. Their results show also irregular facades,
as shown in Figure 2.11. However, they do not extract shape grammars for
the facades, so resizing is not possible. The general algorithm works as
follows, most steps also allow require the user to perform fine-tuning: (1)
Structure from motion is used to calculate a 3d point cloud of the facades.
(2) Assuming the facade is a flat rectangle, the images are projected onto the
facade. Occluded pixels in an image are detected and replaced with pixels
from other images. (3) The facade is subdivided. (4) Finally, depth values are
calculated from the point cloud. Xiao et al. further extended their algorithm
to enable geometry generation for areas of cities [XFZ+09].

Generative modeling Havemann introduced the Generative Modeling
Language (GML) [Hav05], a concise definition was provided by Berndt et
al. [BFH05]. GML is a is stack-based programming language, similar to

20

2.2. ARCHITECTURE

Figure 2.11: 3d facades extracted from multiple images. On the right, an irregular
facade is shown. Image courtesy of Xiao et al. [XFT+08].

PostScript. An example output is shown in Figure 2.12. The GML interpreter
is very simple, but relies on a large library of operators. All functionality of
the GML comes from the operators, organized in several libraries [BFH05].
Probably the most important is the CBRep library providing access to the
combined BRep (CBRep) meshes introduced in their paper. CBPrep is a
multiresolution data structure, operating on input meshes by subdividing
their faces [BFH05].

Advantages of GML include the compact size for model representation
and the possibility to specify semantic level of detail. As a disadvantage, the
indirect geometry specification is probably unintuitive for an artist.

Figure 2.12: Gothic windows created using GML. Image courtesy of Berndt et al.
[BFH05].

Functional Modeling Paoluzzi et al. introduced PLASM (acronym for
“the Programming LAnguage for Solid Modeling”) [PPV95]. In contrast to
GML it is based on a functional language instead of a stack-based one. Any
PLASM function can produce infinitely different geometric models with some
common structure, based on parameters [PPV95]. Because PLASM is based

21

CHAPTER 2. RELATED WORK

on a functional language, different PLASM functions can be easily combined.
By using Boolean operations, the result of all combinations can be guaranteed
to be geometrically valid. Originally, modeling in PLASM was completely
text-based. A newer paper introduces a mapping of PLASM functions to
visual symbols [MBP05]. An example is shown in Figure 2.13. While this may
make definitions PLASM programs easier, it is still a very indirect method of
geometry specification.

Figure 2.13: One the top, an excerpt of visual symbols representing a functional
language is shown. On the bottom, a wing profile created using such a language is
shown. Image courtesy of Milicchio et al. [MBP05].

Similarly to GML, the advantage of PLASM is a very compact representa-
tion of parametrized models. Further advantages include modularity due to
the functional approach. As a disadvantage, simmilar to GML, the indirect
specification of 3d objects using a programming language can be unintuitive.

Visual modeling language Conceptually similar to the previously intro-
duced visual language for PLASM, Ganster and Klein [GK07] introduced
visual symbols for procedural modeling. Instead of a functional language, the
underlying language is procedural. Multiple visual symbols are introduced
and can be connected in a graph. The connection edges define the order
of operations. Symbols include functionality for texture loading, geometry
creatuion (spheres, cylinders, tree stems), transformation, and flow control
(for, while). An artist can visually connect the symbols to create simple
trees, buildings and landscapes, as shown in Figure 2.14. Advantages of
this approach include applicability to a variety of modeling subjects. As the
visual language is essentially a mapping of low-level programming structures
to symbols, the graphs for simple scenes can become large and difficult to

22

2.2. ARCHITECTURE

manage, for example the landscape generated in Figure 2.14 contains 32
symbols with 8 interleaved for loops.

Figure 2.14: On the top, graphs for tree generation, roof point calculation and
roof geometry generation are shown. On the bottom results obtained using such
graphs are shown. Image courtesy of Ganster and Klein [BFH05].

Building interiors Until now we only introduced methods that are mainly
targeted at creating the facades of architecture. However, there is also work
specifically targeted at interior generation. One method for persistent building
interior generation was discussed by Hahn et al. [HBW06]. Their main goal
is to enable real-time generation by only creating the immediately needed
parts using a lazy generation scheme. Also, persistent direct changes by an
artist are supported by storing the change together with a hash value of the
position in an external database. The main disadvantage of their method is
the restriction of geometry representations to oriented bounding boxes.

23

CHAPTER 2. RELATED WORK

2.3 Urban Layouts

Now that we introduced plant and architecture generation, we can look at
methods creating whole urban layouts containing those objects. We define
urban layouts as the combination of streets, parcels and arbitrary parameter
distributions over those elements describing various aspects such as wealth or
building types of the city. Using parameters, we can also identify the objects
to be placed on parcels, for example arbitrary buildings or plants.

There is substantial work on the procedural generation of urban layouts.
Early methods provide artist control mainly by changing global parameters
or input data followed by a regeneration of the city. Those methods will be
introduced in Section 2.3.1. Later methods also introduce direct and local
control to some degree using incremental editing operations. They will be
explained in Section 2.3.2.

A general overview of the issues when combining manual editing and
procedural generation of virtual worlds is provided by Smelik et al. [STdKB10].
They discuss various manual editing operations an artist could desire and
classify them according to their granularity from coarse to fine. Coarse
includes rough sketching of the virtual world, while fine deals with modifying
single objects. They discuss the open issue of preserving manual changes, but
do not provide a new solution to tackle this problem.

2.3.1 Control through global input change

Parish and Müller introduced the first method for procedural generation of
urban layouts [PM01]. They introduce a pipeline for city generation, shown
in Figure 2.15. A generalization of this pipeline (roads-blocks-allotments-
buildings) is the basis for most recent work [VAW+10].

As input, their system uses global parameters such as the main city
center or desired street patterns. Local steering is possible using parameter
distributions encoded in artist created image maps. Parameters include
elevation, population density, zoning (residential, commercial,...), water areas
and others. The authors introduce an extended L-system for street generation,
able to respond to global goals such as desired road patterns, and local
constraints to ensure the generated roads are valid, for example they are
not inside a water area. After streets are generated, blocks surrounded by
streets are extracted and subdivided into lots. Finally, building geometry is
generated using a simple L-system. Artist control of their system is indirect
and consists of changing global input parameters or parameter distributions.
Small changes in the parameter distributions can have a large effect on the
output.

24

2.3. URBAN LAYOUTS

Figure 2.15: Pipeline for procedural city generation. Image courtesy of Parish
and Müller [PM01].

Direct, low-level editing The street graph network generated by a proce-
dural model can also be edited using traditional interactive editing operations,
such as moving vertices (intersections), adding edges (street segments), and
deleting edges of the graph. These operations are orthogonal to the actual
generation algorithm, and are thus used by most procedural systems. However,
the important unanswered problem is how to maintain persistence of such
direct edits when global changes are performed. Further, direct edits can
result in an invalid layout, for example when streets intersect with parcels.
We will provide solutions to those problems in Chapter 4.

Extensions Much subsequent work focuses on parts of the general pipeline
described above. Lechner et al. introduce an algorithm for automatic land-use
zoning using agent-based simulation [LWWF03]. Glass et. al introduced an
algorithm creating street patterns similar to informal, unstructured settle-
ments [GMB06]. An algorithm to simulate virtual humans in procedural
cities was proposed by Silveira and Musse [dSM06].

Tensor fields Chen et al. introduced a street modeling technique based
on tensor fields [CEW+08]. Their key insight is that hyperstreamlines of a
two-dimensional tensor field share a pattern similar to a street network. To
exploit this, they introduce design operations to model a tensor field, and show
how to extract streets from such a field. To actually model a street network,
an artist creates an initial tensor field, representing the input for the street
generation. Subsequent refinements of the tensor field reflect indirectly on the

25

CHAPTER 2. RELATED WORK

generated street network, as shown in Figure 2.16. While direct modifications
are not supported, this approach provides a more intuitive control of the
output compared to L-systems for street generation.

Figure 2.16: Modeling sequence of streets using tensor fields. (1) Initial landscape
(2) Tensor field modeled using intractive tools (3) Streets generated from tensor
field (4) Refinements of tensor field (5) New output (6) Further refinements. Image
courtesy of Chen et al.[CEW+08].

Hybrid approach Kelly and McCabe [KM07] proposed a mixture of man-
ual and procedural techniques: Major roads are created manually, while the
minor roads enclosed by main roads are created procedurally. This way, the
road generation parameters can be distributed in a more fine-grained manner.
To help creating the major roads, tools for interactive placement of roads on
varying terrain were introduced.

Analysis All the methods presented in this section allow local steering of the
generation though locally varying parameters, for example by editing images
representing parameter distributions. However, the procedural regeneration
after an input change results in (potentially drastic) global changes, even
in parts of the model that are distant from the local edit of the parameters.
These global changes are difficult to anticipate and control for a designer for
a lack of direct control, and prevent any form of direct control mechanisms
such as modifying individual streets or lots.

26

2.3. URBAN LAYOUTS

2.3.2 Control through incremental editing

Simulation Based Weber et al. introduced algorithms for interactive
city simulation creating a full 3d geometric city model [WMWG09]. Their
algorithm works incrementally using time steps. Starting from an initial
city, the following steps are performed for each iteration: (1) New streets
are planned by stochastically expanding existing streets. Only when a traffic
demand model decides that there is enough traffic on the street, it is actually
built. (2) When streets enclose a new quarter, a land use simulation is
performed for this quarter. (3) Minor streets are generated for new quarters,
creating new blocks. (4) New blocks are subdivided to parcels, and buildings
are generated. A few possible iterations are shown in Figure 2.17.

After each iteration, the user can change global parameters like the position
of the city center or street patterns. Also direct modifications of the street
graph are supported.

Figure 2.17: Several iterations of an interactive city simulation over time. Image
courtesy of Weber et al. [WMWG09].

Another simulation-based method was introduced by Vanegas et al. [VABW09].
Their key idea is to tightly couple grid-based simulation of behavioral param-
eters like population and jobs with geometrical modeling of roads, parcels
and buildings. This is done by representing the parameters in a dynamic
system, and using an iterative approach: (1) An artist can modify or constrain
behavioral parameters using a visual paint-brush style tool. The artist can
also directly modify geometrical attributes, for example by creating new
highways. (2) After each modification, a dynamic system attempts to create
an equilibrium between the behavioral parameters and the geometric aspects
of the city. For example, when a new highway is added, the algorithm au-
tomatically redistributes the population along the highway. An example is
shown in Figure 2.18.

There is also considerable amount of previous work focused on behavioral
simulation of cities without geometrical details. We consider this out of scope
for this thesis, as geometrical content is needed for many applications in

27

CHAPTER 2. RELATED WORK

Figure 2.18: Coupling of behavioral parameters with geometric urban layout: A
new highway is added and the population is automatically redistributed. Image
courtesy of Vanegas et al. [VABW09].

computer graphics such as movies or games. Please refer to Vanegas et al.
[VAW+10] for an overview.

Example-based method Aliaga et al. introduced an example-based ap-
proach for urban layout modeling [AVB08]. Their key idea is to encode
the properties of a street network as attributes of street intersection points.
These statistical attributes can be extracted from GIS data. A random walk
algorithm using those attributes is then employed to connect intersections,
creating a random street graph that has the same statistical properties as the
example data. Blocks are extracted from this graph and parcels are generated
in those blocks using an algorithm based on Voronoi diagrams.

To provide artist control, three synthesis operations are introduced: Join,
blend and expand. They allow incrementally combining graphs generated
from different example sets. Essentially, they work by placing intersection
points based on different examples next to or over an already existing street
graph, and the random walk algorithm connects them with new streets. An
example output is shown in Figure 2.19.

Further incremental editing operations were introduced by Aliaga et al.
in a different paper [ABVA08]. They include moving of a block, cutting and
pasting of whole areas and non-linear transformations of whole cities. The
main contribution of their work is a constraint solver that minimizes the
distortions introduced by an editing operation in the surrounding areas.

Analysis Conceptually, all referenced papers in this section use incremental
or iterative editing as basis for artist control. The prerequisite for incremental
editing is a procedural generation algorithm able to incorporate a previous
output, as visualized in Figure 2.20. Note that simply swapping the output
with the input after one iteration is not possible, as input and output are
of different type. For instance, in the example-based approach, the input

28

2.3. URBAN LAYOUTS

Figure 2.19: Blue and red areas represent street networks generated from different
example data. Using a join and blend operation, they can be connected seamlessly.
Image courtesy of Aliaga et al.[AVB08].

consists of statistical properties of the examples, while the output is an urban
layout.

input A generation output 1

incorporate
previous outputinput B generation output 2

...

output 1a

direct
control

Figure 2.20: Conceptual view of incremental editing as a basis for artist control.

The advantages of such methods is that inputs can be changed for each
incremental step, and that artists can successively model the output to
correspond to their vision. Also direct changes after each iteration are
possible. As a major disadvantage, persistence of incremental changes after
a global change is not supported. For example, if an artist makes changes
to “input A” in Figure 2.20 after “output 2” was created, there is no obvious
way to reflect those changes in “output 2”.

Further, even though more fine grained control over the generation is pos-
sible compared to complete global regeneration, the output of one incremental
step can still be difficult to anticipate for an artist, as the involved stochastic
processes do not necessarily reflect the intentions of the artist.

29

CHAPTER 2. RELATED WORK

2.4 Parallelizing L-Systems

For all the methods introduced thus far it is imperative that they are capable
of real-time performance if they are to be used in an interactive modeling
environment. Therefore we will now look at performance improvements for
some procedural methods. As there are vast amount of procedural methods,
we restrict ourselves to L-system based ones. We see this as a first step
towards accelerating other methods as well.

The main acceleration idea is to calculate the L-system generation in
parallel. In the remainder of this section, we will first introduce methods
capable of parallel L-system generation. Then we will introduce basic par-
allel processing primitives used in our work. Finally, an API for parallel
computations on a graphics card will be introduced.

Parallel L-systems Lacz and Hart showed how to use manually written
vertex and pixel shaders combined with a render-to-texture loop to compute
L-systems [LH04]. Their results (Figure 2.21) show that this is applicable to
simple trees. This concept was later extended using automatically generated
geometry shaders [Mag09][MK10]. Both methods require a shader compilation
step for the productions, and do not support context-sensitive L-systems
[MK10]. Further a transformation step of every production’s successor to a
set of successors is needed to allow independent parallel executions in a shader.
For example, the production L → aLf [+L]Lf [−L]L is transformed to the
set L→ aL, af + L, afL, aff − L, aff − L, affL [LH04]. This is only valid
if the successor of L does not have any effect on the traversal state, which is
not generally the case.

Baele and Warzee provides details on how to generate and render seamless
branch geometry on the GPU [BW05]. In their approach, the L-system
derivation and interpretation is done serially on the CPU, and a shader
creates the final branch geometry. We consider this method to be orthogonal
to L-system parallelization, as it does not parallelize the derivation and
interpretation. An example is shown in Figure 2.22.

An algorithm utilizing multiple processors (the results show up to 8 CPUs)
with distributed memory, communicating using the Message Passing Interface
(MPI) was introduced [YHL+07]. In their algorithm, the derivation of the
L-system is performed using two binary trees, a Growth-State Tree (GST)
and a Growth-Manner Tree (GMT). To actually render the system, the
GST is interpreted as a scene graph. In order to get global scene-graph
transformation matrices needed for rendering in the individual threads, the
matrices are serially transfered from one process to the next. As the memory

30

2.4. PARALLELIZING L-SYSTEMS

Figure 2.21: This tree was generated on the GPU. Image courtesy of Lacz and
Hart [LH04].

Figure 2.22: Seamless branches generated on the GPU. Image courtesy of Baele
and Warzee [BW05].

is distributed between processors, special care is taken to transfer memory
between processors in order to enable context searching. In CUDA as well as
on multi-core CPUs we have a shared global memory, eliminating the need
for memory transfers in context-sensitive systems.

Parallel primitives In Section 5 we will extensively use the parallel scan
primitive in our algorithms. This primitive is the basis for most parallel
algorithms. Given an ordered set of values [a0, a1, . . . , an] and an associative
operator ◦ with the identity element I, an exclusive scan operation will result
in the ordered set [I, a0, a0 ◦a1, . . . , a0 ◦a1 ◦ . . .◦an−1]. A very efficient parallel
algorithm based on hierarchies exists for those operations [SHZO07]. If the
operator is the addition, this results in a set of values si with si =

∑i−1
j=0 aj.

An example is shown in Figure 2.23.

31

CHAPTER 2. RELATED WORK

parallel scan using addition as operator

9 6 6 9 6 6 5

0 9 15 21 30 36 42

Figure 2.23: Parallel scan using addition.

The main advantage of the scan primitive is its capability to compute
seemingly serial operations very efficiently on highly parallel hardware, since
subsequences can be processed independently due to associativity. Unless
noted otherwise, we always refer to an exclusive scan on integral values using
the addition operator when we use the term scan in this thesis.

Parallel computation in CUDA In order to access the parallel com-
puting capabilities of GPUs, we employ the NVIDIA CUDA data-parallel
programming framework [COR07]. CUDA abstracts the cores with SIMD
functionality of a GPU into a hierarchy of threads and blocks, as shown in
Figure 2.24.

Recent work shows how to map computations having a highly dynamic
nature to CUDA. Most notably, algorithms to efficiently implement work-
load balancing using a compactation step were introduced in the context of
KD-trees [ZHWG08], Reyes-style subdivision [PO08] and bounding volume
hierarchy construction [LGS+09]. Generalized stream compaction was pre-
sented by Billeter et al. [BOA09]. In the context of tessellating parametric
surfaces, scan operations were used in order to scatter dynamically generated
vertices to a VBO [SS09]. We employ both work-load balancing and vertex
scattering in our work.

32

2.4. PARALLELIZING L-SYSTEMS

Figure 2.24: CUDA hierarchy: multiple threads are organized into blocks. Each
GPU core can run one block a time, while multiple blocks are scheduled automatically
on different cores. Image courtesy of NVidia [COR07].

33

3
Direct Artist Control for Procedural

Architecture

Figure 3.1: Screenshots from our real-time editor for grammar-based procedural
architecture. Left: Visual editing of grammar rules. Middle left: Direct dragging
of the red ground-plan vertex and modifying the height with a slider creates the
building on the middle right. While dragging, the building is updated instantly.
Right: Editing is possible at multiple levels, here the high-level shell of a building is
modified.

In the thesis introduction (Section 1), we mentioned the problems of per-
sistent direct control, the importance of a visual interface for input definition,
as well as real-time performance. In this chapter we will provide solutions for
those problems specifically targeted at building generation. In Figure 3.1 a
few examples of the resulting system are shown. The results of this chapter
were published under the following reference: [LWW08].

Let us first explain the mentioned problems in the context of building
generation: The current approach to 3D modeling of buildings is to manually
create 3D geometry using tools like Autodesk Maya or 3ds Max TM. This
process is time consuming, tedious and repetitive, but allows the artist full
control over every aspect of the final 3D model. Recently, grammar-based
procedural modeling has shown promising results, for example for architectural
modeling [WWSR03, MWH+06]. However, these approaches allow only

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

indirect control over the final model by changing the underlying grammar, or
global control by changing some parameters. When more fine-grained control
over individual buildings is needed, a tedious change grammar-regenerate- ...
cycle is required until the desired output is achieved. Furthermore, current
procedural modeling systems are mostly text based and therefore impractical
for the intended users, i.e., artists and technical artists.

In this chapter, we aim to take the next step in procedural modeling by
combining the full generative power of design grammars with the ease of use
and flexibility of 3D modeling systems. This is achieved by introducing visual
editing, with direct local control of all aspects of the grammar.

Direct Visual Editing While text-based production systems are very pow-
erful, end users require a visual frontend to be able to use them productively.
It is important to provide both a visual rule editor to create and modify the
individual rules of the grammar and immediately see the consequences for
the generated models, as well as a visual model editor which allows modifying
the instances generated by the rule derivation process.

Local Modifications Assume the artist wants to assign a different texture,
different window width or different ornamentation rule to a specific window
on a facade. In a current text-based procedural modeling system, the artist
would have to write several new rules to identify the floor and column of the
window and add the modification. In a visual editor, the desired workflow is
that the artist simply selects the desired window and chooses a new texture,
rule or window width. To make this happen, we need to solve the problem
how to allow local modifications to variables, rule selection and geometry,
without having to change the underlying grammar.

Semantic and Geometric Selection Local modification should often be
applied to several elements, not just one. For example, all windows in a
specific floor or column should have a changed appearance. We therefore
need to provide mechanisms to select elements based on semantic attributes
like facade number, floor or column, which are not limited by the derivation
hierarchy. These should be paired with standard tools known from 3D
modeling like selection rectangles etc.

Persistence Local modifications are in a sense more volatile than actual
grammar rules. Assume, for example, that a specific window on a facade of
a building is modified. If the next modification is to change the height of
the building, the whole instance has to be regenerated from the grammar

36

3.1. VISUAL EDITING CONCEPTS

rules. In order not to lose the previous modification, any modification has to
be stored persistently – this is especially difficult when the structure of the
grammar changes.

Main Contribution The main contribution of this chapter is to enable
a visual editing workflow for grammar-based modeling by providing the
aforementioned functionalities. In particular, we introduce a set of visual
operators for both rule and building editing, and introduce the concept of
exact and semantic locators, which will be used to allow local modifications
and semantic selections, as well as to solve the persistence problem. Local
modifications are a true extension of the expressive power of design grammars,
and bring procedural modeling a step closer to a workflow acceptable to
artists.

The remainder of the chapter is structured as follows: At first we provide
a description of our visual editing concepts in Section 3.1. Section 3.2 gives
details and discusses how we use exact and semantic locators, while Section
3.3 discusses the visual building and rule editors. In Section 3.4 the workflow
and performance is evaluated, and implementation details are provided. In
Section 3.5 a discussion is provided comparing our method to previous work.

3.1 Visual Editing Concepts

In this section we provide an overview of design grammars and the problems
that occur during visual editing, and our concepts to solve them.

The main concept of a design grammar as used for example for architecture
is based on a shape grammar utilizing a rulebase, as already introduced in
Section 2.2. In this chapter we loosely follow the notation of CGA shape as
introduced by Müller et al. [MWH+06], while the concepts work for other
grammars as well. We will now briefly repeat the most important concepts of
CGA shape:

Starting from an initial axiom shape (for example a ground plan), rules are
applied, replacing shapes with other shapes. A rule has a labeled shape on the
left hand side, called predecessor, and one or multiple shapes and commands
on the right hand side, called successor. Commands are macros creating new
shapes or commands. Three commands were introduced in [MWH+06]: Split
of the current shape into multiple shapes, repeat of one shape multiple times
and component split creating new shapes on components (e.g. faces or edges)
of the current shape. Every rule application creates a new configuration
Ci of shapes. During a rule application, a hierarchy of shapes is generated
corresponding to a particular instance created by the grammar, by inserting

37

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

the successor shapes as children of the predecessor shape. This production
process is executed until only terminal shapes are left. An example rulebase
is visualized in Figure 3.2, from this rulebase the instance and associated
shape hierarchy in Figure 3.3 are automatically generated.

Rulebase 1: Generated facade:

Necessary rulebase changes:

} Variations

(remain the same)

Legend:

Shape

Split X/Y

Terminal
shapes

Repeat X/Y

Commands:

a b
b c

d
e

c d
c e

b

a

g

b
g

c e b

b c d e

a b

Figure 3.2: The rulebase on the top has two possible windows, enabling variations
during generation. An example output is shown on the top right. If we want to
specify the window type to be used for the encircled window, we have to manually
rewrite rules in order to set the window. The necessary rulebase changes are shown
at the bottom, creating the new rendering. We found this rewriting to be tedious
and error prone, even when just one variation is controlled.

The power of design grammars lies in their capability to produce variations.
This means that each instance created by the grammar will look different. The
following mechanisms are available to introduce variation in design grammars:

1. multiple possible production rules for a shape (chosen stochastically)

2. parameters (e.g., window width) chosen according to variables set by
the user (in a text file)

3. random parameter assignments in rules

Note that all these mechanisms are global in nature, i.e., they are typically
only chosen once for a whole instance. If a shape that uses a particular
variable appears in several nodes in the shape hierarchy, there is no way to
assign different values to the different nodes. Instead, for each node that
should differ from the rest, a set of new rules have to be introduced which

38

3.1. VISUAL EDITING CONCEPTS

expose the desired variability via new variables, as shown in Figure 3.2. This
is tedious and quickly leads to an explosion of the rulebase.

Direct Control of Variation In this chapter, we propose a new paradigm
for rule-based modeling: direct local control of the shape hierarchy, shown in
Figure 3.3.

...

drag and dropa

b b b b

c
d

c
d

c
d

c
d

≡
...

a

b b b b

c
d

c
e

c
d

c
d

Figure 3.3: On the left, the automatically generated shape hierarchy corresponding
to the facade in Figure 3.2 is shown. Only the second floor is visualized, in order
to increase readability. Utilizing direct control, the user can drag and drop the
desired window on the rendered facade, automatically changing the underlying shape
hierarchy, as seen on the left. No manual rewriting is necessary for the user.

At first, we provide tools to directly modify the shape hierarchy of an
instance via so-called locators, which are stored externally to the grammar,
thus decoupling local modifications from the grammar. Direct changes are
important to create an artist-controlled unique look for a specific instance.
In particular, we introduce the following operators which can act locally on
any level of the shape hierarchy:

1. modify the variables used in a particular node in the shape hierarchy

2. select the production rule applied to a shape (selected from multiple
possibilities given by the grammar, or even arbitrary rules)

3. pin random choices

4. directly set the geometry and textures used in a particular terminal
shape

Note that the items selected in 2 to 4 can be (automatically) expressed
as variables and are therefore special cases of 1. While these operators may
seem to be straightforward to implement, actually they are not. Since these
direct modifications need to be provided in a visual editor, we have identified
two major problems:

39

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

Selection Problem Every variable is used in at least one, but typically
in several nodes in the shape hierarchy. For example, the window width is
a variable that can be set once for a building and is used in every window
tile. Obvious ways to influence the window width are to set one width for
all windows (the default), or to set the width of some windows individually.
However, the most common required action will be to change the variable
for a certain subset of nodes in which the variable is used. One solution is
to provide hierarchical assignments, i.e., a variable can be assigned a value
at any node in the hierarchy. However, that is often not sufficient. We also
require semantic assignments, for example, selection of all windows in a floor,
or all windows in a column. Both subset selection methods are shown in
Figure 3.4.

Hierarchical
selection

Semantic selection, property „column“

... ...

a

b b b b

c
d

c
d

c
d

c
d

...

c
d

c
d

c
d

c
d

Figure 3.4: Using hierarchical selections, all shapes underlying a specific shape in
the shape hierarchy are selected. Semantic selections allow selecting multiple shapes
that share common semantic properties. Please note that it is impossible to select a
whole column just by using one hierarchical selection in this shape hierarchy, as
there is no rule that directly represents a whole column.

Persistence Problem Most modifications mi, 1 ≤ i ≤ 4, require the
instance along with its shape hierarchy to be regenerated from the grammar
rules. However, as shown in Figure 3.5, this will obliterate any previous
modification to the instance. Therefore, any modification needs to be stored
persistently. However, rebuilding the shape hierarchy could lead to a different
hierarchy, so an important problem to solve is how to apply a modification to
a different shape hierarchy.

We solve both of these problems using semantic annotations which can
easily be specified in the visual editor, and provide some heuristics how to
set these annotations automatically. We define two types of instance locators:
exact instance locators and semantic instance locators. An exact locator
stores the exact location of a shape in the shape hierarchy. This is essentially
done by storing all information occurring along the path from the shape to
the axiom. Using an exact instance locator we can unambiguously locate

40

3.2. INSTANCE LOCATORS FOR LOCAL CONTROL

Rulebase

...

generate
Hierarchy Instance

Modified Hierarchy
a

b b b b
...

Direct Control
regenerate

Does not regenerate
modified version!

Regenerates
unmodified
version!

1

23

≡
a

b b b b
...

≡

a b
b c

Figure 3.5: A persistence problem occurs when we at first generate a shape
hierarchy from the rulebase, and then modify this hierarchy utilizing direct control.
When we need to perform a regeneration (for example because the house height has
changed) the unmodified version is generated, thus all direct modifications are lost.

shapes, and thus retain selections after a regeneration. However, this does
not allow semantic selections based for example on floor and column numbers.
We therefore introduce semantic tags that can be attached to structural
commands in the shape hierarchy (e.g., split and repeat commands).

Visual Rule Editing Finally, we provide an intuitive user interface for
editing the grammar in a visual editor. We have identified the following
important operations, which will be further explored in Section 3.3:

• graphical assignment of numeric values (i.e., dragging split planes)

• multiple views on a rule: rendering, visualization of commands and
structural overview

• focus and context visualization of rules

3.2 Instance Locators for Local Control

Three problems emerge when we want to enable local control. At first, we have
to describe how we select shapes in the hierarchy. Secondly, we must define
how to apply modifications to those selections. Thirdly, those modifications
have to be persistent. We will describe solutions to those problems in this
section, which rely mainly on the concept of instance locators.

41

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

3.2.1 Selections

There are three types of selections we want to provide: Selection of a single
shape in the hierarchy, hierarchical selections and semantic selections. Essen-
tially a selection works as follows: (1) The user clicks on the 3D rendering.
Using intersection tests, we calculate which shape in the shape hierarchy the
user has clicked on. (2) For this shape an exact instance locator or a semantic
instance locator is calculated and stored in loc. (3) To actually highlight all
selections in the rendering, we use the locator loc by comparing it to the
(temporarily created) locator of each shape in the hierarchy, and highlight all
matches. Let us now define instance locators in more detail:

Exact Instance Locator The selection of a single shape in the shape
hierarchy is specified the following way: For every shape or command in the
hierarchy graph, we sequentially number every outgoing edge from left to
right starting from 1. An example numbering is shown in Figure 3.6. In order
to specify one shape s, the unique path p from the axiom to s is determined.
We walk along this path, and write every shape, command and edge number
we encounter into an ordered tuple. We call this tuple exact instance locator,
as it allows us to uniquely specify a single shape instance. The resulting exact
instance locators for Figure 3.6 are shown in Table 3.1. Note that it would
theoretically suffice to use edge numbers only, but we also include shapes in
the locator to be able to check whether the locator is valid after a hierarchy
change.

A hierarchical selection is simply a selection of a single shape that is an
internal node of the shape hierarchy, and therefore can also be expressed with
an exact instance locator.

Semantic Instance Locator Using just the shape hierarchy and exact
locators, there are two problems:

1. We cannot select shapes based on semantic attributes, for example 2nd
column on the 3rd row.

2. We cannot perform semantic queries in the form select all shapes in the
2nd column.

Those problems are caused by the lack of semantic information in the
shape hierarchy. We therefore introduce semantic tags that can be attached
to split or repeat commands. For example, in Figure 3.7 the semantic tags
floor and column are attached to rules. The tag facade can be used to
differentiate facades. Actually defining semantic tags is very easy for the user:

42

3.2. INSTANCE LOCATORS FOR LOCAL CONTROL

a

b b

c

d d

e e

1 2

 2 3 2 3

1 1

1

1
14

4

2

2

1 3
1 1

1 2 1 1
1 2

1 1
1

2 3 1
2

3

1 2 1 2

1

Hierarchy 1:

Hierarchy 2:

Semantic tags for :C

Semantic tags for :
{1} {2,1} {2,2} {3}

{1} {2} {3} {4}

C

F

C

F
F

F

C

C

CC

=Scale

Figure 3.6: Hierarchy 1 corresponds to the rulebase in Figure 3.7, hierarchy 2 is a
more complex example. Red circles around shapes represent corresponding selections.
Edges are sequentially numbered. Over the bottom rendering, the semantic tags
and corresponding absolute values of columns are shown. Please note that while the
renderings are quite similar, the underlying graphs are significantly different.

a
b b

bF C
Rulebase 1:

Figure 3.7: We introduce semantic tags attachable to commands, represented here
as F for floor and C for column.

In our rule editor, a simple drag and drop operation of a tag on a command
applies the tag. This has to be performed only once when defining rules,
everything else is done automatically. Please note that in Figure 3.6 (bottom)
not every vertical (X)-split has the tag column applied, in this way the user
can specify what is considered a unique column and what not.

Automated semantic tagging is possible by using the following heuristic:
The user specifies threshold fm for the height of multiple floors and fs for
the height of one floor. Y-Splits/Repeats where the scope height is above fm
are automatically tagged as floor, directly succeeding shapes or commands
having a scope height below fs are excluded from this tagging. Analogously
X-Splits/Repeats are tagged as column using the width as threshold. All
component splits having a height above a threshold are tagged as facade.

A semantic instance locator for shape s can now be constructed from a
hierarchy graph the following way: At first, we construct the unique path

43

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

p from the axiom to s. We walk along this path, and when we encounter a
tagged command, the assignment tag = edgenumber is added to the locator.
edgenumber is the sequential numbering of the edge to the next shape already
introduced for exact instance locators. It is important to note that tags can
occur multiple times in the locator. By using the sequential edge number, we
exploit the spatial ordering split and repeat rules provide. Example semantic
instance locators for the encircled shapes in Figure 3.6 are shown in Table 3.1.
We can improve the granularity of semantic locators by additionally saving
the symbol of shape s.

Marked S. Exact Instance Locator
Hierarchy 1 {a, 1, Sy, 2, b, 1, Sx, 3}
Hierarchy 2 {c, 1, Sx, 2, Scale, 1, Sy, 2, e, 1, Sx, 2, Sx, 2}

Marked S. Semantic Instance Locator
Hierarchy 1 (F = 2, C = 3)
Hierarchy 2 (C = 2, F = 2, C = 2)

Table 3.1: Exact and semantic instance locators for the encircled shapes in Figure
3.6 are shown here. Sx, Sy represent a Split X/Y command, Scale a scale command.

Using semantic instance locators it is easy to solve the previously men-
tioned problems:

1. We can perform selections based on semantic attributes simply by
specifying a semantic locator, and searching for shapes with matching
locators.

2. Selections of whole columns are done by ignoring the floor tags during
selection searching. For entire floor selection this works analogously.

Semantic assignments are assignments applied to shapes having a specific
semantic tag. Please note that semantic assignments can be flexibly combined
with hierarchical assignments, by attaching semantic assignments to internal
nodes of the hierarchy graph.

Exact instance locators are used by the rule editor to specify selections in
the GUI. Both exact and semantic locators can be used in the building editor.

Anchor Points We can construct locators relative to an anchor point.
Possible Anchor points are either left, right, or center in horizontal direction
and bottom, top, or center in vertical direction. Per default the closest anchor
point is chosen (with priority on the borders for equal distance to the center),

44

3.2. INSTANCE LOCATORS FOR LOCAL CONTROL

because that proved to be most intuitive in our experience. Additionally, the
user has the option to modify an anchor point. The actual generation of
anchored locators is straightforward: Instead of tag = edgenumber we use
tag = numEdges − edgenumber for locators anchored to right or top, and
tag = numEdges/2− edgenumber for locators anchored to the center. For
example, using anchored locators it is very easy to specify a selection that
should always contain the center column.

3.2.2 Direct Modifications and Persistence

Using a selection specified in an instance locator, we can specify where a
modification should be performed. The next step is to define what should
actually be modified. As we already mentioned in Section 3.1, all local
modifications (node variables, rule to use, random choices, geometry and
textures) can be expressed as variable assignments, thus a variable assignment
describes what to modify.

Using both a locator locm and a variable assignment vm, a modification
is exactly specified. In order to allow hierarchical assignments, all variable
assignments have the following properties: The assignment extends its scope
to the underlying subtree, thereby modifying the value of variables used in
any rule application of this subtree. Subsequent assignment on lower levels
override assignments on higher levels, thus providing local control for every
shape. An example assignment is shown in Figure 3.8.

The key to persistence is that instead of applying vm to the current
hierarchy, we save locm and vm externally. Of course we can save multiple
modifications externally, thus preserving previous modifications.

The actual application of vm is carried out in the following way: First
we delete the current shape hierarchy, and start the production process from
the axiom (configuration C0). Now, every time we insert a shape s into a
configuration Cn, we create an instance locator locs for s. When locm = locs,
we attach the variable assignment vm to s. Note that in a longer editing
session, some variables can be assigned different values using the same locator.
In this case later assignments override previous ones.

Transformations between Hierarchies Semantic locators are normally
quite robust with respect to modifications in the visual editor, like changes
of the floor plan, modifications of variables etc. However, sometimes the
hierarchy changes in a way that a semantic locator does not fit the hierarchy
anymore. This can happen when the rulebase is edited in the rule editor, or
when substantial changes are made to the choices of productions in higher
levels in the shape hierarchy. Still, we want to give the user the possibility to

45

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

awindowWidth=2 (Default value)
windowWidth=3

windowWidth=4
4 3 3 2 2 2

Figure 3.8: On every shape we can assign values to variables. Assignments
extend their scope to all underlying shapes. Assignments on lower levels over-
ride assignments on higher levels. Numbers below windows show the values of
windowWidth.

recover modifications and apply them to the new hierarchy by transforming
the locator. Please note that such an algorithm can also be used to transfer
modifications from one building to another.

We classify semantic locators into three categories: (a) valid, (b) struc-
turally invalid and (c) semantically invalid. Valid locators correspond to a
path in the current shape hierarchy. A locator locm is structurally invalid
when a prefix of locm matches the locator locs of some shape s in the shape
hierarchy, but the edgenumber following the prefix is greater than the number
of outgoing edges of s. This usually happens when resizing scopes, causing
subtrees attached to repeat commands to disappear. Finally, semantically
invalid locators are those that are not valid or structurally invalid, i.e., they
do not fit the current shape hierarchy at all.

In general, artists prefer direct control over heuristics that run automat-
ically. Therefore, in order to deal with invalid locators, we offer the user a
command to transform semantically invalid locators to the current hierarchy.
In our implementation a list of locators is offered, color coded according to
their category. By selecting a semantically invalid locator from this list and
confirming with a button, this locator can be automatically transformed to
the new hierarchy using the algorithm described in the following. Note that
it does not make sense to transform structurally invalid locators since they
often become valid again due to further operations (resizing, ...).

In the following we describe how to transform a semantically invalid
locator using so-called sequential orderings for semantic tags. Optionally, all
calculations can be restricted to the subtree of the shape hierarchy that does
not include a possibly matching prefix in order to preserve the maximum
semantic context. The idea is to assign one ordering value per tag to every
shape, regardless of how often the tag appears in the semantic locator. The
ordering value depends on the spatial directions of the tags encountered along
the way, since we typically have tags “split” by other tags. When externally
saving semantic locators, we also save the corresponding ordering values.

46

3.2. INSTANCE LOCATORS FOR LOCAL CONTROL

Example sequential ordering directions are shown in Figure 3.9 (top).
Using this sequential ordering, a transformation of a semantic locator loc
is done the following way: We compare the ordering values (instead of the
edge numbers) of this locator with the ordering values of the other hierarchy.
When a match is found at shape s, the transformed semantic locator is locs.

C

F
F

C C

F

Legend:
Visit node: save
value (line 17)
Reset value (line 11)
Set to max value
of subtrees (line 16)
Increase ordering
value (line 09)

0 0

1 2 3 1 2

4 4

(0,1)

(0,0)

(1,1)(2,1)

(1,0)(2,0)(3,0)

(4,1)

(4,0)

C , F

+

+

+ +
+ +

+

+

C
F

Sequential
ordering directions

maxmax
max

max

R R
R

R

Start End

Figure 3.9: Example for ordering value calculation. The rendering corresponds
to the hierarchy graph. To increase readability, we only show elements having a
tag attached in the graph, as other elements do not influence the algorithm. Using
a blue line we illustrate the traversal of the algorithm during calculation of tag
C, while orange circles highlight important events occurring during the traversal.
The resulting sequential numbering is overlaid in the rendering. Line numbers
correspond to Figure 3.10.

The algorithm to calculate ordering values for a tag currentTag and each
node in the shape hierarchy is illustrated as pseudo code in Figure 3.10 and
works as follows: A modified post-order traversal of all nodes is performed,
and after each visited subtree it is decided if the ordering value seqValue

should be increased. Basically a node node associated with currentTag

increases seqValue by one if currentTag does not occur in the last visited
subtree. There are two possibilities if a different tag otherTag is associated
with node: (1) That tag is ignored for the calculation of seqValue. (2) The
tag is defined to be a “semantic splitter”, i.e., seqValue is calculated in each
of the subtrees of the tag independently. The overall increase of seqValue is
determined by the maximum increase in any of the subtrees. For example,
floors and columns are mutual semantic splitters, thus preventing a column tag
to be counted on multiple floors. Semantic splitters for arbitrary tags can be
defined in a table, but usually correspond to tags associated to splits/repeats

47

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

in alternating coordinate axes.

currentTag = ...; ordValue=0; //Init values
01:CalcAbs(node) {
02: isSplitter = Is tag attached to node semantic
 splitter of currentTag?
02: hasCurrentTag = Is tag attached to node equal currentTag?
03: previousOrd= ordValue; //Save current ordering value
04: int maximum= 0;
05: for all children of node {
06: Postorder traversal: recurse into CalcAbs(child)
07: //After subtree was visited:
08: if (hasCurrentTag&(currentTag not found in subtree))
09: ordValue++; //Increase ordering count!
10: if (isSplitter) { //Special handling of splitters
11: ordValue= previousOrd; //Restore previous ordValue
12: maximum= max(ordValue, maximum);
13: }
14: }
15: if (isSplitter)
16: ordValue= maximum; //Set to maximum subtree count
17: node.tag.ordValue= ordValue; //VISIT node: save value
18:}

Figure 3.10: Pseudocode for ordering value calculation. Essentially this is a
modified postorder traversal with special measures to increase the count of the
ordering value after each subtree was visited. Lines that handle arbitrary nesting of
tags are marked orange, lines that actually increase the ordering value are yellow.

Please note that this algorithm exploits structural information created by
split/repeat commands, not actual world-space positions of shapes. Therefore,
when scope translation commands occur in lower-level shapes, it may produce
incorrect sequential orderings—in the worst case this can lead to modifications
being transferred to shifted positions. To prevent this, world-space positions
would have to be considered for shapes with translation commands, for
example by casting a ray along the ordering direction to determine the
world-space ordering.

3.3 Interactive Visual Editor for Grammars

We will now explore how the introduced concepts fit together creating a new
visual editing paradigm for grammars. Inspired by the observation of direct
versus indirect control, we have separate windows for a building editor and a
rule editor in our GUI, seen in Figure 3.11. The rule editor provides indirect
control, allowing the creation of rulebases from scratch, and the building
editor provides direct variation control to the artist. All windows can run
concurrently, and are linked in several ways: It is possible to edit a rule, and
show the effects of this edit on a building. Further drag and drop functionality
is provided between the windows, allowing for example direct application of
textures.

48

3.3. INTERACTIVE VISUAL EDITOR FOR GRAMMARS

(a)

(b)
(c)

Figure 3.11: Three windows make up our GUI: (a) A building editor enables
direct variation control on buildings (b) Rulebases can be visually created from
scratch in the rule editor, providing indirect control (c) Textures and meshes are
stored in the library editor.

3.3.1 Building Editor

In our building editor shown in Figure 3.12, we want to allow direct variation
control to configurations, without changing the rulebase. In order to specify
the position of a variation, we need to enable selections of shapes at first.
This is done using picking in the 3D rendering: A user can click on a shape,
we internally create an instance locator for this shape. In order to specify
hierarchical selections we provide a button to move the selection up one level
in the hierarchy. Semantic selections can be specified by using checkboxes for
”On Whole Row”, ”On Whole Column” or ”On All Facades” in the menu.

To actually perform modifications on selections, we expose controls for
variable aspects: Sliders are automatically created for every parameter occur-
ring in the current selection. The user can now locally adjust those parameters,
implicitly creating a variable assignment attached to the current selection.
In order to specify a production rule to be used, the user can drag and drop
a specific production from a rule library on the selection. Modifications of
textures and meshes are performed by drag and drop from a texture or mesh
library. Persistence is maintained as previously described: We store the
instance locator together with the modification to be performed externally.

49

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

(a)

(b)

(c)

(d)

Figure 3.12: Interactive building editor providing direct variation control. (a)
Menu with various rendering and derivation controls (b) Real-Time rendering of
result. Currently a floor is selected. (c) List of all building instances (d) All
parameters occurring in the currently selected shape.

An example showing hierarchical selections and modifications is shown in
Figure 3.13. Hierarchical selections allow artists to specify the granularity of
their direct modifications.

3.3.2 Rule Editor

We implemented a rule editor based on the language elements of CGA shape
[MWH+06], all of which are visually editable, and we can create rulebases
from scratch. Three views on the currently edited rule make this possible:

First, a 3D rendering of the derivation overlaid with a visualization of
shapes and commands provides direct visual feedback, seen in Figure 3.14(b).
Second, a treeview displaying all rules occurring in the current derivation
allows easy navigation and provides an overview, as seen in Figure 3.14(c).

50

3.3. INTERACTIVE VISUAL EDITOR FOR GRAMMARS

(1) (2)

(3)

Figure 3.13: Sequence showing hierarchical modifications. (1) A shape represent-
ing a floor is selected. (2) The parameter windowHeight is modified - all shapes
on lower levels are automatically modified (3) Selecting a specific shape allows
overriding the parameter on a lower level.

Finally, all parameters of the currently selected shape or command are
automatically mapped to standard GUI elements like sliders and checkboxes,
seen in Figure 3.14(d). This way, all elements that are not visualized can be
edited. An example workflow using this editor is shown in Section 3.4. Let
us now describe those concepts in greater detail:

3D Visualization In order to edit rules and commands in a rendering, they
have to be visualized. Split and repeat commands are visualized by rendering
their dividing planes. We use a plane with a rounded rectangular hole in the
middle (achieved with alpha tests) to reduce occlusion issues. Depth cues by
reducing brightness for distant objects are employed to make distinctions of
different visualized commands easier. Currently selected shapes or commands
are highlighted with a surrounding transparent box. An example visualization
can be seen in Figure 3.14 (b). We also experimented with visualizations of
other aspects, like relationships and nesting of rules. However, we felt that a
linked tree-view, as explained later, is more suitable for those aspects.

Visual 3D Editing Utilizing the visualization we allow direct editing: The
user can pick a visualized element (for example a dividing plane), and drag
the element around. When multiple choices are possible, a context menu
allows specific selections. Internally, this works as follows: When a dividing
plane is picked, we construct a perpendicular helper polygon going through
the intersection location of the picking ray, as seen in Figure 3.15. We need
this polygon to restrict the possible mouse positions and to fix the depth z
of the intersection – without this polygon we experienced oscillations of the
dividing plane during editing. The helper polygon is stored until a new plane

51

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

(a)

(b)
(c)

(d)

Split
Commands

Repeat
Commands
Component Split

Snap Lines
Geometry

Shape
Interm. Shape Help

Extrusion Help
Variable Assignment

Scope
Commands

{
{

{

Figure 3.14: Interactive Rule Editor. (a) Tool palette allows creation of new
commands and rules (button descriptions were added to the screen shot) (b) Real-
time rendering of result and visualization (c) Linked tree-view. Yellow puzzle icons
represent predecessor shapes, blue/green puzzle icons represent shapes occurring in
a successor. (d) Parameters are automatically mapped to GUI elements.

is picked.

When the user moves the mouse cursor, we intersect the picking ray
with the helper polygon, yielding an intersection point pi. Now we have
to recalculate the parameters of the command containing the picked plane,
meeting the following condition: After regeneration of the edited rule, the
dividing plane has to intersect the helper polygon on the intersection point pi.

For repeat commands, this calculation is trivial: A dot product of (pi−po)
with the repeat axis vector v, divided by the number of the modified plane,
yields the new value for the repeat with. Split commands are more difficult, be-
cause split sizes can be defined relative or absolute [MWH+06]. We recalculate
the parameters as follows: At first, the desired sizes di are calculated, this is
trivially done using dot products and subtractions. Then we need to calculate
split size parameters si that generate sizes di. Absolute sizes sabsi are simply
set to di. Relative sizes sreli are set to di · (

∑
srelold)/(scopesize−

∑
sabs)

with srelold being the relative sizes before the mouse movement.

When variables are involved in the parameters, we simply add an offset to

52

3.3. INTERACTIVE VISUAL EDITOR FOR GRAMMARS

Figure 3.15: Geometry during picking and direct dividing plane movements.

this variable (e.g. var gets var + 0.3), so no variables are lost during visual
editing.

Linked Views Additionally to the visualization we created a treeview dis-
playing all rules, shapes and commands occurring in the current derivation, as
seen in Figure 3.14 (c). This treeview is linked with the visual representations:
Selections in the treeview automatically select an element in the derivation
and the other way round. It is important to note that we have a (1 : n) map-
ping here: One element in the treeview may correspond to n elements in the
derivation, because multiple instances are possible. Therefore, when selecting
an element in the treeview, just the first occurring element in the derivation
is selected. Additional features of the tree-view include searching for shapes,
and support for drag and drop to copy or move shapes. During evaluation, we
found the treeview to be better suitable in representing relationships of rules,
while the rendered result is more aimed at adjusting specific commands.

Focus and Context When editing high-level rules, for example to model
building shells, visualization and rendering of lower level rules may be dis-
tracting. Therefore we implemented focusing based on the amount of levels
between the edited shape ue and other shapes u: We can set the amount of
displayed levels i with a slider. Only shapes where the path between ue and

53

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

u contains at most i shapes are displayed. For other shapes, either a proxy
geometry (to represent the context) or nothing at all is rendered. An example
for focusing is seen in Figure 3.1 on the right. Focusing can be separately
controlled for rule rendering and visualization.

Parameter View Not all parameters of commands or shapes are mapped
to visualizations. In order to enable visual editing of those parameters, they
are automatically mapped to standard GUI elements, as seen in Figure 3.14(d).
When variables occur in numerical parameters, slider adjustments simply add
an offset to the variable.

UV Mapping Control An element missing from previous design grammars
is direct control for UV texture coordinate mapping – this is very important
for artists. Therefore, we introduce a new UV mapping command: It can be
inserted into any rule, and defines a parameterized UV mapping, for example
a box UV mapping with parameters tiling and offset. All shapes underlying
this command in the shape hierarchy can automatically use this mapping.

Completeness of Editing Utilizing the described methods, all CGA shape
concepts are visually editable: Snap lines can be inserted into a rule utilizing
the tool bar buttons seen in Figure 3.14(a). They are visualized in the 3D
rendering. The properties of the snap line are editable with standard GUI
widgets in the parameter view. Scope modifications (translation, rotation,
scale, push, pop) are also inserted using tool bar buttons, and can then
either be modified using standard 3D manipulators (e.g. Arc rotate) in
the 3D view or by modifying sliders. When a rule is selected, a text field
in the parameter view allows entering arbitrary conditions using variables
and Boolean operators. As occlusions are also defined as conditions (using
automatically initialized variables like isShapeOccluded), they can be defined
analogously.

3.4 Implementation and Results

Modeling Workflow As our main contributions enable complete visual
editing of building grammars, we will now show a case study creating a
building grammar from scratch. In Figure 3.16 the necessary steps to create
a simple building in 3.5 minutes are laid out (please refer to the video for a
real-time capture of the entire session). (1) A few empty rules are created
and named. (2) Selecting a rule and clicking on the split icons allows easy
splitting of shapes. (3) Drag and drop allows easy definitions of shapes to be

54

3.4. IMPLEMENTATION AND RESULTS

used as in the split command. (4) Adding terminal shapes allows geometry
addition. Textures are dragged from a texture library. Cut and paste of
shapes allows fast setting of the wall tiles. (5) Direct dragging of split planes
is possible in the 3D view. When CTRL is pressed during dragging, the planes
are distributed symmetrically. Extrusion of the window can be done with
one mouse click. (6) Selecting the high-level rule house, adding a component
split with a simple click and adding a repeat command creates the building
shell. Please note that both top-down and bottom-up modeling approaches
can be easily combined with our method. (7) Repeat commands are added
to distribute windows. (8) The winwall rule is dragged into the repeat
command. (9) Simple (but automatically adapting) roofs can be added as a
terminal shape.

Starting from this simple building, we were able to create the more complex
building seen in Figure 3.12, which has many ornamentation details, in an
additional 10 minutes.

Usability Our method allows visual editing without resorting to text files.
The only necessary textual entries are naming of new rules and parameters.
Drag and drop is used in many places, simplifying rule creation. For example
the simple building in Figure 3.16 corresponds to around 55 lines of CGA shape
code. We therefore feel that this method substantially simplifies modeling of
grammar-based architecture.

In order to actually evaluate the usability, we introduced artists from our
industry partner to our tool. After a short introduction we asked them to
create a building, and document the difficulties arising during modeling. As
an advantage of our method, they found visual editing of split rules to be
much more intuitive than textual editing. Especially the feature to mirror
split sizes during editing by pressing a specific key was considered to be very
useful.

Two identified shortcomings stem directly from the rule-based nature of
CGA shape: First, the dependency between rules is not clearly visible. This
can make it hard to understand the rules created by a different artist. The
artists proposed to use a node-based display of rules in order to alleviate this.
We will incorporate this in future work. Second, artists commented that they
would be very exited about alternatives to rule editing by editing buildings
using a philosophy of modeling by example.

A number of suggestions was related to software engineering issues and
the best way on how to incorporate the software in the existing modeling
pipeline. Concerning the expressivity of CGA shape, the artists suggested
to add more control to the high-level building shape, mainly by allowing

55

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.16: Example workflow using our rule editor. Creating this simple building
required 3.5 minutes. These are screenshots from an recorded user interaction.
The screenshots were cropped to magnify important details. A description of the
individual screenshots is provided in Section 3.4. In approximately additional 10
minutes we were able to create the building seen in Figure 3.12 which has many
ornamentation details.

56

3.4. IMPLEMENTATION AND RESULTS

0 200000 400000
0

20
40
60
80

100
120

Creation
Rendering
Creation +
Rendering

Triangles

m
s

pe
r I

te
ra

tio
n

Figure 3.17: Milliseconds per iteration versus triangles for various modes.

arbitrary ground-plans unique to every floor.

Performance One important aspect of a visual editing system that was
not mentioned so far is response time. Our visual editor frequently needs to
regenerate a whole instance from the rulebase, for example whenever a variable
is changed or a constraint like the floorplan is modified through continuous
dragging. Thus the performance of the grammar system is as important as the
rendering performance itself. Previous work has reported building generations
times in the order of a few seconds, which is far too low for interactive (i.e.,
¿ 20 updates per second) manipulation. In our implementation, we used
several optimizations to ensure interactive generation and rendering times,
including custom memory manager, lists, sorting algorithm and random
number generator. For the occlusion test required in [MWH+06] to prevent
intersections of shapes, we employed the hardware-accelerated algorithm
proposed in [Kno03]. This is a combination of stencil buffering and hardware
occlusion queries, where a building is interpreted as a shadow volume, and
the z-Pass algorithm is used to search for shapes intersecting this volume.
This is significantly faster than the octree-based method originally proposed.

In Figure 3.17 we can see that interactive performance for rendering is
achieved for all tested buildings even on a relatively slow PC with Athlon XP
2600 CPU, 1024 MB RAM, and Geforce 6600 graphics card. In combination,
creation and rendering is still interactive for a building with about 200,000
triangles. Figure 3.17 also shows that the performance scales linearly with the
building complexity. This is beneficial, as a linear scaling provides a cushion
for more complex buildings. For this test, the building in Figure 3.1 on the
middle right was varied using a global height parameter.

Limitations We tried to experiment with tree modeling with reasonable
success. We believe that our current implementation is mainly suitable for
buildings, but we intend to experiment with a larger class of objects in future
work. We expect that we would have to extend the rule set, but we believe

57

CHAPTER 3. DIRECT ARTIST CONTROL FOR PROCEDURAL
ARCHITECTURE

that many fundamental principles of visual editing of grammars could be
reused. Some restrictions in our current implementation stem from choosing
CGA shape as underlying production system: CGA shape has no direct
support for curved surfaces, making bridges or complex mechanical shapes
hard to generate. However, when CGA shape is extended to support these
concepts, our approach should be able to handle them seamlessly.

3.5 Comparison to Related Work

In the context of L-systems, positional information was used by querying
functions depending on the current turtle position [PMKL01]. This allows
determining high-level shapes of plants. Currently such functionality is not
present in CGA shape, although it would be interesting to explore how this
could be applicable to control high-level façade structures in future work. Also,
methods to graphically model plants were introduced: In [LD99] components
specifically targeted at plant modeling are connected in a graph. As those
components are very specific to plants, this system can not be directly used for
architecture. In [BPF+03] a multiscale representation of plants is used in order
to minimize the total number of parameters needed in order to specify a plant.
Their system does not always maintain persistence of plant modifications,
for example when the branch density is increased, modifications to specific
branches can get lost [BPF+03]. The persistence problem for parametric
modeling was described in [Sha02, HJA02, Hav05], and it was pointed out
that there is no general solution known at this time [Sha02]. Our solution to
the persistence problem is specifically targeted at production systems, not
parametric modeling in general. We achieve this by exploiting the production
hierarchy and semantic informations.

Two methods were proposed that allow creation of procedural architecture
without text editing: First, an image-based approach to create CGA shape
grammars [MZWG07], which allows creating rules from building images.
Our approach could be well employed to visually enhance or correct the
deduced rulebase. Further, a framework for procedural modeling using a visual
language was introduced [GK07]. Essentially, a mapping of programming
constructs to visual symbols is performed. Those symbols can be combined
visually. In contrast to our approach, no grammar or rulebase is used.
Therefore we think this approach is orthogonal to ours and could be combined:
The visual language could create some building parts, while our method could
visually handle everything rule and grammar related.

A similar argument holds for other techniques not based on grammars:
[Hav05] introduces modeling using a stack-based programming language.

58

3.6. CONCLUSION AND FUTURE WORK

[BBJ+01] was shown to be applicable to building parts. Persistent building
interior generation was discussed in [HBW06].

3.6 Conclusion and Future Work

We present the first real-time visual editing system that allows an artist to
visually create a rulebase for shape grammars from scratch. Furthermore, we
extend previous shape grammar approaches by providing direct local artist
control over the generated instances, avoiding combinatorial explosion of
grammar rules for modifications that should not affect all instances. This
effectively combines the power of procedural modeling techniques and standard
3D modeling tools. We have described the selection and persistence problem,
and provided a solution using so-called instance locators.

While our framework enables real-time editing of individual buildings,
there are still some open problems if those buildings should be used in a
real-time game. These include: (1) Automatic LOD generation: In order
to render large scale scenes, low-detail versions of the building should be
created automatically, assisted by the grammar structure. (2) Mesh cleanup:
At the moment, the mesh may contain T-Vertices and coplanar polygons,
which needs to be resolved for real-time rendering applications. For our visual
editor, the next logical step is to extend the concept to whole cities, not just
individual building instances, as we will show in the next chapter.

59

4
Direct Artist Control for Procedural

City Layouts

Figure 4.1: This figure illustrates possible urban transformations using our method.
From left to right: (1) The initial urban layout. (2) The layout is transformed
using a rotation with a soft influence radius, and a red color assignment with a soft
border region is added. (3) A different city center is merged into the layout. (4)
A height assignment is modified. Note that during all those steps, the color and
height of the two distinct buildings on the bottom stayed persistent, because they
had individual assignments.

In the previous chapter, we provided solutions for persistent direct artist
control and visual editing for building generation. However, those solutions
are not directly applicable to urban layouts, mainly because they do not have
a strict hierarchy like buildings. This makes the usage of the introduced
locators difficult.

Therefore we will now introduce novel solutions for this problem targeted
at urban layouts. A few examples of this solution are show in Figure 4.1. The
results of this chapter are currently under review for a conference publication.

Let us now explain the problems of visual and direct artist control in the
context of city modeling: Procedural city modeling is a rapidly evolving field
in computer graphics, with applications to urban planning, design reviews,
game design and others. Procedural techniques are often based on grammars
and parameters, which makes it difficult to achieve exactly the desired outputs.
City layouts are responsible for the overall aspect of an urban model and for

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

controlling all the other parts of a procedural city generation system, and
therefore it is paramount that the user has a powerful control mechanism for
this step.

Current urban layouting systems [WMWG09, Pro10] offer only limited
editing possibilities once an urban layout has been produced procedurally.
While it is possible to drag individual nodes in the street graph, the result-
ing urban layout has intersections and is therefore not valid anymore (see
Figure 4.2). To make the layout valid requires expensive manual operations
like filling the gaps, reconnecting the streetgraph when an element is deleted,
making space for new elements, etc. Even worse, if the underlying procedural
description changes, the whole layout has to be regenerated from scratch,
losing all manual customizations since they are not persistent. More complex
operations like consistently merging different layouts, possibly from different
sources (procedural or manual), are practically impossible.

Figure 4.2: This figure illustrates how, using traditional urban layouting tools,
a simple translation transforms a valid layout (left) into an invalid one with
intersections (right).

In this chapter we present an interactive city modeling system that is
built on persistent editing operations that remain in the space of valid urban
layouts. The system combines procedural edits, local manual edits, higher
level manual edits, as shown in Figure 4.1, It is designed to meet the following
research challenges:

Direct control and editing of procedural layouts. Ideally, to modify an urban
layout, designers would like to use simple and intuitive editing operations,
like semantic selection of elements, drag and drop, insertion and deletion of
elements etc. Most importantly, these operations should again produce a
valid urban layout. They need to handle changes in topology, and should be
designed to have local influence only. In particular, they should be reversible,
so that the original appearance of a city part is restored when an inserted
element gets dragged to another location (this is also called circular editing).
An example of such an operation supported by our method is shown in Figure

62

4.3.

Figure 4.3: The orange street is moved and rotated. The underlying parcels update
accordingly. When the street is moved or rotated back, the original layout is regained
again, providing circular editing capabilities.

Combining urban layouts. One of the most frequent problems that occurs
in urban modeling is to consistently merge urban layouts at different levels.
Examples include inserting a (manually modeled) parking lot, a park, a whole
street, a whole block (like a shopping mall) or even a whole quarter into
an existing city layout. Consistent merging capabilities allow designers to
reuse components or to model components separately. There is currently
no solution to merge urban layouts automatically. One such merge process
possible with our system is shown in Figure 4.4.

Figure 4.4: Content from a different source, highlighted in orange, is inserted
into the layout and moved, scaled and rotated. Full circular editing is supported.

Persistence. Changes applied by the user should survive local and global
editing operations. Urban layouting drives the whole city generation, like
parameter assignments, distribution of landmarks etc., so these assignments
need to survive modifications of the urban layout. Modifications to an already
customized urban layout belong to the most expensive design operations for
example in level design.

63

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

Main contributions In order to meet the research challenges previously
listed, this chapter introduces a new set of editing operations that transform
one valid urban layout into another valid one. Full circular editing capabilities
like drag and drop, insertion, deletion etc., with arbitrary topological changes
are provided. The operations are based on the combination of a layering system
in the spirit of image manipulation programs, and a novel merging algorithm
that consistently merges urban layouts based on graph cuts. We also extend
the locator concept introduced in previous work to achieve persistent anchored
assignments, linked to elements in an urban layout, allowing modifications to
survive global procedural modifications. These methods are implemented in a
city modeling system that combines the power and convenience of procedural
street generation with the flexibility and direct artistic control of a traditional
content creation system.

4.1 Transformations of Urban Layouts

The main problem to solve in a city modeling system is how to transform
a valid urban layout into another one, as illustrated in Figure 4.2. For this
we introduce three basic transformation operators and show how they can
express most direct urban layout editing operations.

4.1.1 Definition of Urban Layouts

An urban layout U consists of a street network and parcels, as shown in Figure
4.5. The street network is given as an undirected planar graph G = (V,E)
with nodes V and edges E. We also refer to the nodes as crossings and the
edges as streets (note that for simplicity we do not distinguish between street
segments and streets). A parcel p ∈ P is a possibly concave, simple polygon
with at least 3 vertices. When referring to either a street, a crossing or a
parcel we use the term element.

A face of an embedded planar graph is a cycle that surrounds a region
that contains no edge. We call the faces of the planar graph G the blocks B
of an urban layout. The faces obtained when ignoring all minor streets are
called quarters.

Street network and parcels are connected through a binary ownership
relation O ⊆ P × B between parcels and blocks: Every parcel p that is
completely inside a block b is owned by this block, and (p, b) ∈ O. A parcel is
owned by at most one block. Parcels without an owner are called free parcels,
while the others are called enclosed parcels. Given an urban layout, O can be

64

4.1. TRANSFORMATIONS OF URBAN LAYOUTS

Figure 4.5: The basic building blocks for urban layouts.

calculated by first finding all blocks and then performing containment tests
of all parcels with those blocks.

Crossings, streets and parcels can have an arbitrary amount of key-value
pairs attached, we refer to them as tags. The tags of every street must at
least contain the key streetType with the value of either minor or major

to discern between minor and major streets (other streettypes like highway
would also be possible).

The definition of urban layouts so far does not ensure that such layouts
make sense. It allows streets intersecting without crossings, parcels intersecting
streets etc. In order to restrict editing operations to “useful” urban layouts,
we define an urban layout U as being valid if (1) there are no intersections
between streets and (2) parcels do not intersect streets or other parcels. We
denote such a layout with U .

In the following, we define three operations on valid urban layouts U ,
i.e., the result will again be a valid urban layout. The first operation is the
non-topological transform T . The second operation is a flexible binary merge
operation Mf (Ua, U b) based on graph cut, which produces a new valid urban
layout from two input layouts. The third operation Mh(Ua, U b) is a special
case of the flexible merge. In Section 4.2 we will then describe how most
direct editing operations can be expressed using T , Mf , Mh and a layering
system.

4.1.2 Non-Topological Transform

Many editing operations are small changes to an existing layout. For example,
the user drags one node, denoted v, in the streetgraph by a small amount,
represented by the affine transformation A. As a small transformation we
define one that does not change the topology of the streetgraph (i.e., the
dragged street does not intersect a new street). For such small transformations,
the user expects the layout to remain valid (i.e., the parcels in adjacent blocks

65

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

move with the changed street), and that these changes have as few side effects
as possible.

Therefore we introduce the non-topological transform T (U,A,W), where
A is an affine transformation and W contains a weight wv ∈ [0, 1] for every
node in v ∈ U . In the previously mentioned example of a dragged node v, A
would be a translation and the weights would be 1 for v and 0 for the other
nodes. T (U,A,W) ensures that after applying A the layout is still valid, and
works as follows:

(1) Every node v ∈ V is transformed using v1 = (vA)wv + v(1.0 − wv).
This creates a potentially invalid layout U1. (2) We test U1 for street to
street intersections, to ensure that there are no topological changes. If
there are intersections, T (U,A,W) simply returns the original layout U ,
essentially ignoring the transformation A. (3) If there are no street to street
intersections, we update the parcels in U1 to ensure there are no street to
parcel intersections. This creates a valid layout U2, which is then returned.
Note that concurrently to our work, the newest release of the commercial
Cityengine [Pro10] implemented some kind of automatic parcel updating,
however they did not publish any details on how they achieve this, so we
can not provide a comparison to their method. Our method of updating the
parcels has several steps:

Figure 4.6: The orange street was moved. Left: Smooth transformation of parcels,
exhibiting some distortions. Right: Local parcel regeneration.

Finding affected parcels All parcels contained in blocks adjacent to
transformed streets need to be updated. The algorithm goes through all
blocks and checks whether any of the vertices v contained in the cycle defining
the block has a non-zero weight wv. In turn, all affected parcels contained
in those blocks are found using the parcel ownership relation O. We denote
blocks before applying the transformation A as b and after applying A as b1.

66

4.1. TRANSFORMATIONS OF URBAN LAYOUTS

(a) (b) (c) (d)

Figure 4.7: Application of graph cut to city layouts. (a) Creation of shared graph.
Green: Ua, red: U b, orange dots: intersections, white/black dots: constraint arcs.
(b) The blue line represents a possible cut. White and black dots now represent the
graph coloring. (c) Deletion of streets with nodes in wrong partition. (d) Mending
of holes by including certain streets of Ua.

Parcel update It is desirable to update parcels in a “smooth” way. How-
ever, larger deformations require adding or removing parcels. We therefore
provide two mechanisms for parcel updates: a smooth transform that geomet-
rically distorts the parcels to fit the new block, and local regeneration, which
procedurally recreates the parcels in the block. The differences are shown in
Figure 4.6. We decide on a per-block basis which mechanism to employ: When
either the area of the corresponding block or the angles enclosed between
connected block edges change more than user-defined thresholds, the parcels
of this block are regenerated, otherwise they are transformed smoothly.

Smooth transform We first calculate the mean value coordinates [HF06]
of every vertex of every affected parcel with respect to its untransformed
owner block b. Using those coordinates, we recalculate all vertex positions
with respect to the transformed block b1. This method retains the original
parcel layout, but may lead to distortions.

Local regeneration If the distortion through a smooth transform becomes
too large, it is better to regenerate affected parcels: First, all parcels originally
belonging to b are deleted. The new parcel boundary is obtained by shrink-
ing b1 in order to accommodate for the distance of the parcels to the road.
Shrinking arbitrary polygons is a non-trivial problem, and we employ the
skeleton-based algorithm found in CGAL [Cac09]. Finally, parcels are gener-
ated procedurally in the new parcel boundary using the method introduced
by Weber et al. [WMWG09].

Regeneration has the advantage that even for larger transformations,
correctly sized parcels are generated. As a disadvantage, the original parcel
layout of the block is destroyed, as the newly generated parcels may not match
the deleted ones. However, customizations to parcels can still be preserved
using anchored assignments as described in Section 4.3.

67

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

4.1.3 Flexible Merging using Graphcut

Editing operations that change the topology of the street network are much
harder to realize than topology-preserving ones. An important contribution
of this chapter is that we express these edits using sequences of operations
that involve merging two different urban layouts, as will be discussed in
Section 4.2. As a simple example, an arbitrary translation of a street can be
done by moving the street to a separate layout, translate the street there,
and merging the temporary layout back. More involved operations require
the merging of whole city parts with user-defined priority maps.

As the heart of these operations, we introduce a flexible binary merge
operator Mf(Ua, U b) that is designed to merge two urban layouts Ua and
U b, producing a new valid urban layout. Similar to alpha mattes in image
processing, we allow the artist to flexibly assign priorities to elements in the
layouts.

Unlike image mattes, the priority cannot be incorporated through a simple
compositing operation of regular images. Instead, in this section, we show a
compositing algorithm on urban layouts that is computed using graph cuts.

Let us first review graph cuts [FF62]: Consider a graph G = (V,E), a
source s ∈ V , a sink t ∈ V and a capacity ce associated with every edge e ∈ E.
Then an s-t graph cut partitions the vertices into two subsets S and T with
s ∈ S and t ∈ T . The cut-set includes all edges whose vertices are in different
partitions. The cut is minimal if the sum of all edge capacities in the cut set
is minimal.

In image processing, a graph cut is often employed to merge different
images [KSE+03] when blending is not desirable. The question now is how to
cast the merging of two urban layouts Ua and U b into a graph cut problem.
The general idea is to work on the street networks of the layouts, and interpret
the user priorities as capacities for the graph cut.

However, there is an additional challenge: In order to calculate a graph
cut, a single shared graph needs to be constructed from the two source layouts.
In image processing this is straight forward, as the different images share a
common pixel grid which defines a shared graph. There is no obvious shared
graph for the city layouts Ua and U b. Further challenges are the creation of
source and sink nodes, and the reconnection of the two partitions. The whole
procedure works as follows, and is illustrated in Figure 4.7:

(1) Assign priorities (2) Create a shared graph. (3) Automatically create
a source and a sink, and create constraint arcs to them. (4) Search for a
minimal s-t cut. (5) Delete streets that are in the wrong partition, and
reconnect partitions. (6) Update the corresponding parcels.

68

4.1. TRANSFORMATIONS OF URBAN LAYOUTS

Assign priorities Numerical priority assignments to nodes are done using
anchored assignments as shown in Section 4.3, giving two separate priority
distributions for Ua and U b. Each street samples the corresponding priority
distribution at its midpoint to obtain its capacity ce to be used for the graph
cut.

Creation of a shared graph We need to bring Ua and U b into a common
shared graph G in order to apply the graph cut algorithm: First, every street
from Ua is copied to the shared graph G. Then, an intersection test of every
street in U b with the streets in G is performed (coincident streets are deleted).
A new crossing is created at every intersection, and the streets involved in
the intersection are rerouted along those new crossings. We call those new
crossings intersection nodes Ni. During insertions we add a tag to every street
indicating its original layer. An example shared graph is shown in Figure
4.7(a). To provide better numerical stability we remove all dead end streets.

Source and sink connections We create a source node corresponding
to layer Ua, and a sink node for layer U b. While source and sink do not
have a position in space, it is crucial which nodes are connected to source
and sink: The minimal cut should be located in the region where Ua and
U b overlap. If it was outside, large holes would occur after step 5 in the
algorithm (see grey lines in Figure 4.8 for such cuts). Therefore, analogously
to image merging [KSE+03], the borders of the overlapping region need to
be constrained to belong to one of the partitions, preventing the cut to go
through the border. This is done by connecting each border node to source
or sink using a constraint arc, e.g., an edge with a high capacity, which
essentially forces the node to be in the source or sink partition after the cut.

Figure 4.8: Visualization of constraint arcs: White and black dots represent
necessary constraint arcs to the source and sink respectively. Left: Overlapping
region. Right: Red graph is completely contained in the green graph. Grey lines are
examples of cuts that we want to prevent.

This is simple for regular images, but for irregular street networks we

69

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

need to employ a more involved algorithm to find border nodes: (1) Find
potential border edges, which connect one node a from Ua or b from U b with
an intersection node from Ni. All nodes a and b are potential border nodes.
(2) Remove all potential border nodes a that are inside a block of U b, and all
nodes b inside a block of Ua. This removes all nodes that can not be a border
because they are located inside a block of the other graph. (3) All remaining
nodes are border nodes. An example set of border nodes is shown in Figure
4.8 (left).

There is one special case, shown in Figure 4.8 (right), that this algorithm
does not handle: When the graph Ua is completely inside the graph U b, no
border nodes will be found for Ua. To still constrain some nodes of Ua, we use
the following heuristic: The nodes of the edges with the n highest priorities
are constrained. We found n = 5 to be sufficient in our test cases.

Computing minimal cut The algorithm of Edmonds and Karp [EK72] is
used to solve for the maximum flow and respectively the minimum cut. The
result is a coloring of the graph where white nodes correspond to the source
partition and black nodes to the sink partition, as shown in Figure 4.7(b).

Deletion of streets and reconnection Now we delete all streets whose
nodes are not in the correct partitions. Ua nodes should be in the white
partition, U b nodes in the black one. This separates the graph as seen in
Figure 4.7(c). In order to mend the created holes, we first add back all streets
of Ua that have at least one correct node, shown as orange lines in Figure
4.7(d). This may still leave some holes. Therefore we start a depth first search
at each border street of Ua and add back all encountered Ua streets until a
street would enter a block of U b. All streets added back this way are shown
in magenta in Figure 4.7(d).

Incorporation of parcels To correctly handle parcels, the following prepa-
ration steps are performed before the shared graph is created: First, all free
parcels are enclosed with streets. This is necessary because the merging only
considers the streets. Then, all blocks Ba, Bb and ownership relationships
Oa, Ob of the layouts Ua and U b are calculated.

Using those relations, adding the parcels back after the graph cut is done
as follows: First we find all blocks of the graph cut result. Then, for every
block that contains only streets of one layer, the parcels that were previously
defined for this block are found using the ownership relation and are added.
The parcels for all the other blocks are procedurally regenerated.

70

4.1. TRANSFORMATIONS OF URBAN LAYOUTS

4.1.4 Hard Topological Merge

One important special case of the flexible merge Mf (Ua, U b) occurs when the
priorities of U b are much higher than the priorities of Ua: All the elements of
U b will be present in the result. This has two advantages: First, having all
the elements of U b retained may be the desired result when an artist merges
a small but important element into a city. Second, we can significantly speed
up this special case, as we will show in this section.

Let us therefore introduce the hard topological merge operator Mh(Ua, U b),
with the property that all elements of U b are present in the result. The main
idea to speed this up is that we already know where the minimal graph cut
should be: All streets of Ua that intersect the concave hull of any connected
component of U b must be in the cut set. This ensures that the cut is just
outside of U b.

As we know where the cut should be, we do not need to perform a graph
cut. But there is another chance for improving performance: In the first step
of the flexible merging, a shared graph is created by intersecting every street
of U b with the streets of Ua. However, as we know that no street of Ua should
protrude into a concave hull of U b, we can simply intersect those concave
hulls with Ua, reducing the amount of intersection tests. This simplifies the
algorithm to the following:

(1) Insert all elements of U b into the result. (2) Find the concave hulls of
connected components. (3) Clip all elements of Ua against the concave hulls,
and insert the clipped result. (4) Incorporate the parcels.

Step 1 is trivial, and step 4 is the same as in the flexible merge, therefore
only steps 2 and 3 will be explained now.

Finding and clipping against the concave hulls When clipping against
a concave hull, numerical problems can occur when the hull contains streets
that do not enclose any block. Therefore we find those non-enclosing streets
and handle them separately. An example classification is shown in Figure 4.9.

Finding the hulls and the non-enclosing streets can be done using the block
list Bb and the ownership relation Ob. All streets that are not a border of any
block are non-enclosing streets. All streets that are a border of exactly one
non-empty block are part of a concave hull without dead-ends. All concave
hulls can now be found by using the block finding algorithm while ignoring
all streets that are not part of the concave hull.

The actual clipping is trivial: For the non-enclosing streets, line intersec-
tions are performed and new crossings are inserted at intersections. The con-
cave hulls, on the other hand, are interpreted as polygons and a line-polygon
clipping algorithm is employed, inserting new crossings at intersections on

71

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

concave hulls
without dead ends

non-enclosing
streets

Figure 4.9: Streets are classified into hull and non-enclosing streets for numerically
stable clipping.

the border.

4.2 Editing Operations Using Layers and Layout
Transformations

In this section we introduce our layering concept and explain how most editing
operations can be mapped to a combination of layers and the operators
introduced above. All operations result in valid urban layouts.

4.2.1 Layers

Layering is well known in commercial image processing tools like Adobe R©

Photoshop
TM

, where it is used to arrange, merge or protect content. For urban
layouts the merging process to get one final result from multiple layers is much
more involved. While in image processing merging can be trivially done using
blending with transparency values, in urban layouts streets or parcels may
intersect elements in a different layer, making a rerouting or deletion of streets
necessary. For this complex operation we use the operator Mf or Mh described
above, allowing the artist to specify priority distributions on layers similar to
alpha mattes in image processing tools. Note that while the commercially
available Cityengine [Pro10] supports defining content on multiple layers, they
do not provide any means of merging layers or guaranteeing valid layouts.

Layer definition A layer L consists of one urban layout, i.e., a street net-
work and parcels. A scene can have a finite number of layers (L1, L2, . . . , Ln).
What is finally displayed, exported, etc., in an interactive editing system is a
merged layer Lm which is iteratively defined using Lm = Ln and continues

72

4.2. EDITING OPERATIONS USING LAYERS AND LAYOUT
TRANSFORMATIONS

with Lm = Mf(Ln−i, Lm), i = 1 . . . n− 1, until all layers are included. This
definition ensures that elements in layers with a higher number precede ele-
ments on lower layers. If an artist wants to reduce the amount of layers, two
layers can be collapsed to one combined layer using Mf or Mh.

4.2.2 Basic Editing Operations

The basic editing workflow involves selecting elements in an urban layout and
transforming them.

Simple, soft and semantic selections Selections of elements are repre-
sented as a weight ∈ [0, 1] for every element. A user can select single elements
or a region using mouse clicks. This sets the weights for all selected elements
to 1 and the other ones to 0. We also provide a soft-selection tool: When the
user clicks on a city part, the weights of every city element are set according
to the distance to the mouse position. Selections can also be semantic: when
a single street is selected, the selection can automatically be extended to
the continuation of this street. At both end nodes of the street s we look at
all connected streets sc that share the same street type. Then we calculate
the angles αc between the incoming street s and the outgoing streets sc.
When |180◦ − αc| is higher than a user defined threshold, the street sc is not
considered further. We set the weight of street sc with the smallest value of
|180◦ − αc| to 1, and repeat the whole process recursively until no further
streets can be added. The result is visualized in Figure 4.10.

Figure 4.10: Semantic street selection: First, one street is selected, as shown in
orange on the left. The continuation, shown on the right, is then automatically
found by walking along the streets and comparing angles.

Geometric transformations Affine transformations, denoted as A, like
translation, rotation and scaling can be applied to a selection. When the
artist does not want topological changes to occur, this can be represented as

73

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

a non-topological transformation T (U,A,W) of an urban layout as discussed
in Section 4.1.2, where W represents the selection weights.

Topological changes If the artist wants to have topological changes while
still retaining cyclic editing capabilities, we allow this using the following
flexible and generic way: The artist can delete the selected elements in La

and insert them into a new layer Lb, and apply the transformations to Lb.
Now an arbitrary amount of cyclic editing operations can be performed in Lb,
as shown in Figure 4.3 and 4.4, without modifying La (except for the initial
deletion of the selected elements). Through the layering system, they will be
merged at the new position with the current layout, always giving a valid
urban layout as result.

Figure 4.11: Layering: An existing urban layout in layer L0 is merged with a
street on layer L1 and with a park on layer L2 resulting in the merged layer Lm.

Insertion Inserting a new element (street, parcel, ...) works by placing it
on a new layer Lo. Through the definition of the layering system, Lo will be
automatically merged with the existing layers to give a merged result Lm.
The element can also be transformed geometrically (dragged, scaled, rotated)
to find a good place, while the merged layer Lm gives interactive feedback on
the result (see Figure 4.11).

Deletion Upon deletion, the selected elements are simply removed from
the urban layout. Since no new intersections are created, the resulting layout
is valid.

74

4.2. EDITING OPERATIONS USING LAYERS AND LAYOUT
TRANSFORMATIONS

4.2.3 Further Examples of Direct Artistic Control Using
Layers and Merging

Persistent local changes In procedural editing systems, changing the
input parameters to the procedural algorithm usually causes a regeneration of
parts of or the whole urban layout. In order to protect local modifications to
the urban layout, the user can mark important elements with the key-value
pair protected = true. Now, before the regeneration occurs, the system
automatically copies all marked elements into a new higher level layer. Then
the urban layout in the original layer is replaced with the newly generated
one, and the merging process ensures that the protected elements are retained.
Figure 4.12 shows an example of this process.

global
layout
change

Figure 4.12: Left: The user marked the orange elements as protected. Right:
After a global layout change, the elements are still preserved.

Merging assets It does not matter if the urban layout in a layer originated
from a procedural creation algorithm or was hand crafted by a designer. The
layering system allows merging content from different sources in a unified
way. As an additional benefit, a procedural algorithm does not need to
know anything about the layering system, and thus every street generating
algorithm can be employed.

Combining styles using flexible merging When street networks with
different styles are defined in different layers, an assignment can be used to
specify where a specific style should be used. An example of this is shown in
the accompanying video.

Tweaking in an advanced development stage In the context of com-
puter games, moving gameplay relevant urban layout parts into a distinct

75

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

layer allows moving them freely around the city. This enables fine tuning
during the whole production process.

4.3 Persistent Anchored Assignments

In a city modeling system, urban layouts are refined by assigning tags (key/-
value pairs) like building height to elements in the layout. In previous work,
this is either done using global image maps [PM01] or by directly modifying
tags of individual elements. However, when using our flexible editing opera-
tors, those methods would not be appropriate: A global image map would
not follow geometric transformation, while direct assignments to elements
would be lost when the elements are deleted (for example caused by a global
regeneration), causing a persistence issue.

Therefore we introduce anchored assignments, which follow geometric
transformations and are persistent after element deletions. An example is
shown in Figure 4.13. In the following sections we will first define them and
then show how they are used.

4.3.1 Definition of Anchored Assignments

One anchored assignment consists of tags, a target, a world space position
denoted as Pos, and an anchor.

Tags describe what key/value pairs to assign, and can represent properties
like building height, type or style. They can also point to specific 3d assets
to be used, enabling the placement of landmark buildings. Also priority
assignments for our flexible merge operator can be represented in tags.

The world space position is a simple vector representing the global place-
ment of the assignment in the city.

A target specifies to which elements the tags should be assigned. It contains
a list of element types that should be affected, including minor/major streets,
nodes or parcels. Further, it specifies if only the nearest element of given type
to Pos or a complete region centered at Pos should be affected. For regions,
it is also possible to specify a numerical distribution, for example a radial
falloff with respect to the distance to Pos. This is especially useful to define
priority distributions for flexible merging.

An anchor describes how Pos should react to transformations of the layout.
It contains a pointer to one specific element of the layout. When this element
is transformed, the same transformation is applied to Pos, essentially moving
the assignment relative to the element.

76

4.3. PERSISTENT ANCHORED ASSIGNMENTS

Figure 4.13: Purple lines represent a color assignment anchored to the adjacent
street, with a parcel as target. When the orange street is moved, the anchored
assignments stay relative to the street, and apply to the nearest parcel.

4.3.2 Usage of Anchored Assignments

We will now show how to create anchored assignments, how they maintain
persistence, and how they are actually applied to the layers.

Creation For every layer, a user can add an arbitrary amount of assign-
ments. To add one assignment, we provide a graphical assistant. Here, the
user can input the key/value pairs and specify the target properties. Then
the user clicks somewhere in the city to specify Pos. Finally, he clicks on a
specific element in the layer to set the anchor.

Persistence Every layer has a list of assignments, which are stored sepa-
rately from the urban layout. This ensures that deletions of elements in the
layout do not delete the assignments, this way they are persistent. However,
when an element is deleted, we have to update every anchor that references
to this element. This is done by modifying the anchor to point to the nearest
element of the same type instead.

Application The actual application of the assignments to the elements is
done during the layer merging process. Recall that two layers are iteratively
merged using Lm = Mf (Ln−i, Lm), i = 1 . . . n− 1. Now, every time before Mf

is called, we apply the assignments stored for layer Ln−i the following way:
For every assignment we do the following: (1) Using the target specification,

we search for the elements ∈ Ln−i where the tags should be applied, and
add the tags to those elements. In case the target specifies a region with a
numerical distribution, the tags are multiplied with those values before they
are added (of course multiplication is only performed when the values are of

77

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

numerical type). (2) In case the same key was already defined in an element,
our system keeps the previously specified value. This way assignments on
higher levels precede assignments on lower levels.

4.4 Results and Discussion

We have implemented our methods in a stand-alone C# application. Urban
layouts can be imported from and exported to the CityEngine [Pro10]. To
generate final city geometry, the grammar system in the CityEngine is used,
based on the tags assigned to objects. In our case, the colors were used to
choose different building types. Figure 4.15 shows an example urban layout
with geometry created in the CityEngine.

Work flow The user interface allows direct and interactive usage of our
introduced methods. When assets are imported, they can be arranged to
layers, using a tree-view layer manager. Objects can be freely moved from one
layer to another. Visual region-, single- and soft-selection tools using mouse
clicks in the interactive viewport are used to define selections. A tag editor
allows direct tag assignments, as well as adding anchored assignments. These
elements are shown in Figure 4.14. Transformation tools like rotation, scale
and translate allow direct and interactive modifications by directly clicking
on objects and moving the mouse.

layer
manager

tag editor

interactive
2D/3D view

Figure 4.14: The user interface of our implementation.

Artist feedback During the design of our interaction methods, we con-
sulted artists and programmers from a computer game company on their ideas
and needs for an urban modeling tool. They noted that the lack of merging of

78

4.4. RESULTS AND DISCUSSION

hand-crafted assets as well as the missing direct artistic control was a major
disadvantage in previous work. We conducted an informal guided user session.
The initial feedback is positive, especially the seamless integration of assets
from multiple sources using a layering system and flexible merging is intuitive
from an artist’s background, and has promising potential to facilitate artist
collaboration. They also appreciated the predictability of Mh when merging
small city parts.

Figure 4.15: Different editing stages for a city. From left to right: (1) The long
street on the left, the park, the main city and the city center on the right are on
separate layers. (2) This is the result of moving the layers on top of each other.
(3) Close-up of the merged (4) The flexible merging operator was then used to
incorporate a part from the street network layout of Rome.

Performance We achieve interactive frame rates of around 15fps (on an
Intel Core2 Quad 6600) for moderately sized cities of about 3,000 parcels and
560 streets on four layers, when moving one layer and performing merging
with Mh. Using Mf , the frame rates are around 5fps. In our current imple-
mentation, no spatial acceleration structures are employed for intersection
calculations, therefore we think that there is a high optimization potential.

Limitations Our current implementation has no mechanism to combine
streets or crossings that are relatively near to each other. This can result in
very small parcels being generated, which can cause overlaps when actual
street geometry is generated. In future work this can probably be solved by
introducing a routine to combine nearby objects after merging. Further, the
minimal graph cut can sometimes exhibit unintuitive and erratic changes.
Especially when the priorities of the two layers are very similarly small, layer
movements can cause the minimal cut to jump around a few blocks. This
can be observed in the accompanying video, when the layer is moved over an
important region in the lower layer. In such a case, the hard merge can be
more suitable.

79

CHAPTER 4. DIRECT ARTIST CONTROL FOR PROCEDURAL
CITY LAYOUTS

4.5 Discussion

Comparison to previous work Compared to the method of Parish and
Müller [PM01], on which the commercial tool CityEngine [Pro10] is based, we
contribute persistent and validity preserving transformations of city layouts.
Their system does not provide such transformations.

Changing and underlying tensor field [CEW+08], or creating cities using
simulations [WMWG09, VABW09] provides indirect control over the city
layout, in contrast to our approach enabling direct control.

Kelly and McCabe [KM07] proposed a mixture of interactive and proce-
dural techniques: Major roads are created manually, while the minor roads
enclosed by main roads are created procedurally. The paper does not describe
how to interactively change minor roads or make persistent local changes.

The example based method by introduced by Aliaga et al. [AVB08] stores
properties of a street network as parameters of the crossings. A random walk
algorithm then connects those crossings and parcels are generated, providing
indirect control over the connectivity. In contrast, in our method connectivity
is directly specified in the street graph.

The reconfiguration of a city layout defined by a street network with
corresponding aerial imagery is explored in [ABVA08]. As aerial imagery
is used the main issue here is minimizing the distortions that can occur
when transformations are applied to the street network. Therefore a global
constraint solver is employed to reduce distortions after a tile is transformed.
The main drawback of this method is the global nature of the optimization,
as small changes can have effect on the whole city.

Layered procedural modeling Outside the context of city editing, a layer-
based procedural editing method that targets single objects and supports
triangle meshes was introduced by Schmidt and Singh [SS08]. In contrast to
this, we target city-wide modeling and support three semantically different
categories (streets, parcels and assignments) for each layer.

Graphcut In image processing, graphcut [FF62] can be used to merge
images [KSE+03]. Zhou et. al [ZHW+06] showed how to use graph cuts to
merge overlapping mesh regions in the context of geometric texture synthesis.
In contrast to our work, they use multiple local graph cuts in overlapping
regions, while we use a global graph cut on the whole city layout.

80

4.6. CONCLUSION

4.6 Conclusion

This chapter presents a city modeling system based on the concept of valid
urban layouts. We show that three basic operations, in combination with a
layering system, can express all important editing operations on urban layouts.
The main advantage of our method is that editing operations like dragging,
deletion and insertion, and merging of different layouts from arbitrary sources
(procedural or hand-crafted) always produce a valid urban layout. This greatly
reduces the cost of editing procedural cities. In the future, we want to add
an error function to the flexible merging, with the goal of improving the
quality of the graph cut result. Also, we would like to extend the system with
convenient tools like merging or snapping to nearby objects.

In addition, elevating complex editing operations to separate layers allows
transient operations, like dragging a street over a layout, to only have transient
effects on the layout. We have also introduced anchored assignments to allow
persistent customizations of a layout in the light of frequent modifications.
This enables modifications to an already customized layout (like a finished
game level) without destroying the customizations (hand-crafted buildings,
game-logic assignments etc.).

Our method combines the power of procedural modeling, which can quickly
create large city layouts, with the flexibility of manual modeling, where every
aspect of a city can be hand-crafted. Due to persistent assignments, procedural
steps and manual assignments can be interleaved and reiterated at any stage
of the modeling pipeline.

81

5
Parallel Generation of Multiple

L-Systems

Figure 5.1: L-systems generated in real-time, at up to 198,000 modules per
millisecond: Hilbert 3D space-filling curve and 2D plant.

In the previous chapters we looked at methods to enable visual and persis-
tent direct control for procedural algorithms. Specific details for performance
enhancements were only briefly mentioned. Therefore we will now look at
significant performance improvements for specific methods in this chapter.
Out of the numerous approaches, we picked L-system based methods. We
think this is a first step towards accelerating other methods as well. The
results of this chapter have been published under the following reference:
[LWW10].

Let us now provide a general motivation for L-system acceleration: Pro-
cedural modeling techniques to compute large and detailed 3D models have
become very popular in recent years. This leads to the question of how to
handle the increasing memory requirements for such models. The current
trend is towards data amplification directly on the GPU, for example tesse-
lation of curved surfaces specified by a few control points. This results in

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

low storage costs and allows generating the complex model only when needed
(i.e., when it is visible), while also reducing memory transfer overheads. In
the same vein, grammars can be viewed not only as a modeling tool, but also
as a method for data amplification since a very short grammar description
leads to a detailed model.

In this chapter we investigate whether it is possible to efficiently evaluate
one of the most classical procedural modeling primitives, L-systems, directly
on parallel architectures, exemplified by current GPUs and multi-core CPUs.
The main motivation is to enable interactive editing of large L-systems
(examples are shown in Figure 5.1) by designers, therefore it is important
to speed up the computation of L-systems in order to achieve low response
times.

Although L-systems are parallel rewriting systems, derivation through
rewriting leads to very uneven workloads. Furthermore, the interpretation
of an L-system is an inherently serial process. Thus, L-systems are not
straightforwardly amenable to parallel implementation. Previous work has
therefore focused on specialized types of L-systems that do not allow side
effects in productions, which makes them very similar to scene graphs [LH04].
In contrast, we deal directly with uneven workloads in L-system derivation,
and we have identified two main sources of parallelism in the interpretation
of L-systems: (1) the associativity of traversal in non-branching L-systems,
and (2) the branching structure itself in branching L-systems.

The main contribution of this chapter is a highly parallel algorithm for
L-system evaluation that

• works on arbitrary L-systems , including parametric productions, context
sensitive productions, stochastic production selection, and productions
with side effects

• works directly on an input string and a plain-text representation of the
productions without requiring any compilation or transformation step
(e.g., into shaders)

• is efficient in the sense that it requires no explicit inter-thread commu-
nication or atomic operations, and is thus completely lock free

• parallelizes both within one L-system as well as among a large number
of L-systems

To our knowledge, this is the first L-system algorithm that is highly parallel,
i.e. utilizes thousands of threads in an efficient manner. This is achieved by
identifying and exploiting the parallelism inherent in L-system derivation using

84

5.1. ANALYSIS OF PARALLELISM IN L-SYSTEM

parallel programming primitives like scanning or work-queue management,
and a novel algorithm to explicitly resolve the branching structure. We
demonstrate that our algorithm outperforms a well optimized single-core
CPU implementation on larger L-systems.

Overview An analysis of the intrinsic parallelism of L-systems is provided
in Section 5.1. Then our system consisting of two major building blocks will
be described: (1) The derivation step will start with the axiom and generate
a long string of modules (Section 5.2). (2) The interpretation step takes the
string as input and generates the actual geometry (Section 5.3). An extension
to support multiple independent L-systems in parallel is shown in Section 5.4.

5.1 Analysis of Parallelism in L-System

5.1.1 Derivation

As an L-system is by definition a module string rewriting system utilizing
parallel module replacements, the domain of parallelization is obvious: We
simply assign chunks of the modules uniformly to multiple threads and perform
the rewriting in parallel. The rewritings themselves are independent and thus
do not need inter-thread communication. However, the output strings need to
be concatenated again, which creates a dependency between the threads. The
major problem here is that the length of these strings can vary greatly: for a
chunk containing n modules, the minimum expanded module amount is n.
This case occurs when no production can be applied and thus every module is
copied unmodified to the output. However, the maximum amount of modules
is mn, when the production with the maximum amount m of modules in the
successor gets applied to each module.

Therefore, a parallel implementation has to efficiently cope with highly
incoherent output module counts for each chunk. Previous shader-based
approaches rely on the graphics pipeline to handle concatenation by load
balancing (i.e. different output sizes of the geometry shader), which is not
ideal because it can lead to serialization, and only works for special types of
L-systems. In Section 5.2 we show a native parallel solution to this problem
utilizing the scan primitive.

5.1.2 Interpretation

The interpretation of a derived word is defined in a serial manner: Starting
with an initial turtle state from the beginning of the module string, the
position in the module string is advanced one by one, while applying a

85

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

modification to the turtle state as defined by the letter of the current module.
Therefore, the turtle state of every module string position is dependent on
all previous turtle states. While it may look like there is no parallelism to
exploit here, there are two inherent parallel concepts that can be extracted,
as shown next.

Associative Operations As mentioned before, most turtle commands
and the turtle state can be represented as 4x4 matrices, except the push and
pop commands. Further, as 4x4 matrix transformations can be combined, we
can represent the turtle state up to a specific module string position using
one matrix. The key point to parallelize the interpretation is to exploit the
associativity of those matrix multiplications by accumulating matrices in each
parallel chunk locally and combining them in a separate pass using a scan
operation, as described in Section 5.3.1.

Inherent Branch Hierarchy Since push and pop commands cannot be
represented as matrices, the matrix approach cannot be applied for branching
L-systems. Fortunately, the push/pop commands create another type of
implicit parallelism that we can exploit: Every time a module representing a
push command is encountered, two independent interpretation branches are
possible: the module string directly following the push command, and the
module string following the corresponding pop command. Thus we can split
the work at this point into two threads, as shown in Section 5.3.2.

5.1.3 Multiple L-Systems

Another possibility for parallelism is deriving and interpreting multiple inde-
pendent L-systems in parallel, for example interpreting multiple trees in a
forest. A trivial approach to achieve this is to launch independent threads
for every L-system. However, there are two problems with this approach:
First, CUDA does not allow running different programs (also called kernels)
in parallel. Every thread has to use the same program with possibly different
input data. Therefore, in order to interpret different L-Systems in parallel, we
need one flexible program that is able to handle all input L-systems. Second,
we also want to achieve work-load balancing between the different L-system
threads, so there has to be some communication between them. In Section
5.4 we show how to solve those problems in a data-parallel fashion.

5.2 Parallel Derivation

First we show how productions and module strings are efficiently represented
on the GPU. Then we introduce the algorithm to perform one iteration of

86

5.2. PARALLEL DERIVATION

the derivation.

5.2.1 Efficient L-system Representations

4 2 A (2 * 0) [B (2 + 1)]

F l Al∗g1[B lg2]

row 38
ASCII 'F'
nr. of
successor
modules

nr. of actual
parameters
in successor

production header
arithmetic expression of

formal parameters

unique
parameter ID

module letters

Figure 5.2: An example production of a parametric L-system packed in a texture.

In order to allow fast and efficient access to the productions, we store
them in a 2D texture in the GPU version. The global parameters are also
stored in a texture. For the multi-core CPU version we use a 2D array.

The successor is stored in the row indexed by the ASCII-value of the
predecessor’s letter. To resolve collisions of two productions that have the
same predecessor letter, we create collision chains similar to hash tables.

We perform two simple optimizations: First, we count the number of
modules and parameters occurring in the successor for later reference. Those
values are stored in a designated header area. Second, in order to allow O(1)
parameter value lookup during the derivation, we translate every parameter to
a unique numerical ID. To differentiate between local and global parameters,
we define that all IDs over a certain threshold lt identify local variables. This
process is visualized for parametric L-systems in Figure 5.2. In order to
store stochastic or context sensitive productions, we extend the header area
accordingly, by adding the production probability or respectively the left and
right context letters.

Representing the Module String A module string contains n module
letters. As every module may have an arbitrary amount of parameters
assigned, we use an additional array of size n containing indices to an array
of actual parameters. One advantage of this separation is that we can simply
ignore the parameter array when we have an unparameterized L-system, thus
removing the overhead of parameter storage. Figure 5.3 visualizes one module
string.

87

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

F [- F]
0 -1 3 4 -1

1.2 3.8 0.1 1.2 0.9

module letter
param. index

actual module
parameters

Figure 5.3: A module string represents a specific state during derivation. We
store it as an array of module letters, a parameter index and the actual parameters.

5.2.2 Derivation

First, we prepare the axiom module string on the CPU side. In the GPU
version we then upload it to the GPU. This step is extremely fast, as the
axiom usually consists of just a few modules. For the desired iteration amount,
we perform one iteration after the other on the GPU or the multi-core CPU.
One iteration of the derivation takes the current module string as input and
creates an expanded output module string. Between the iterations we swap
the pointer to the input module string with the output module string.

The method to compute one iteration in parallel consists of three passes
(or “kernels” of the parallel programming language) (see Figure 5.4):

pass 1: count required number of
output module letters and parameters

pass 2: scan amount of required
module letters and parameters

F + F - [F - F + F - F] F [- F + F]

9 6 6 9 6 6 5
4 2 2 4 2 2 2

0 9 15 21 30 36 42
0 4 6 8 12 14 16

pass 3: perform module rewriting
and parameter calculation, scatter

letters:
param.:

letters:
param.:

Figure 5.4: Three passes are performed during each iteration, transforming an
input module string to an output module string. For better readability, we show
only the letters of the input modules, and omit the parameters.

1. Count. We launch a kernel with n threads. m = inputSize/n sub-
sequent modules from the input module string are assigned to each thread.

88

5.2. PARALLEL DERIVATION

Each thread visits all m assigned modules, and fetches the amounts of re-
quired output module letters and parameters from the header section of the
corresponding production. Those amounts are accumulated for all assigned
modules, and finally written to an array in global memory.

2. Scan. We perform a sum-scan operation on this array, in order to
calculate offset positions for the scattering of the result.

3. Rewrite. Again, m threads are launched, but this time the module
replacement and parameter calculation is actually performed. This is done by
fetching for each assigned module the matching production. If a production
is context-sensitive, we also compare the left and right module letters of a
module with the letters stored in the production header in order to determine
if the production is applicable. There is no problem in performing a context
search across chunk boundaries, as the whole input module string is stored in
global GPU memory, and is thus visible to all threads. For bracketed context
sensitive L-systems the context search is more involved, as we need to take
the push and pop commands into account. Therefore, for those systems, we
perform a parallel hierarchy extraction step as explained in Section 5.3.2
before we start one iteration. For stochastic productions, we determine a
random value for every applicable production, using a texture containing
random values indexed by the position in the module string. This value is
multiplied with the probability stored in the rule header. We then choose the
rule with the highest result of the multiplication.

After having decided which production to use, we evaluate the parameters
for every module in the production’s successor, and insert the resulting
successor modules into the result module string. The parameter evaluation
based on the arithmetic expression of formal parameters is conducted by a
simple mathematical expression parser in the kernel. When no production
is defined for a module, we simply copy it unmodified to the output. As we
have the offset values to index the module string, every thread can write its
resulting modules without interference from the other threads.

Alternative Method Our algorithm requires three passes for each it-
eration. An alternative approach is to implement the module string as a
linked-list of modules, which is modified with atomic operations. This re-
quires only one pass. The amount of atomic operations can be reduced by
using batched linked lists, where each element contains multiple modules.
However, when we implemented this alternative approach it turned out to
be considerably slower than the three-pass approach, probably caused by the
implicit serializations occurring on concurrent atomic operations.

Possible Enhancement Our algorithm does not use shared memory
between threads on the same multiprocessor for communication. Maybe
applying the shared-memory aware compaction model presented by Billeter

89

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

et al. [BOA09] could further improve performance.

5.3 Parallel Interpretation

The result of a derivation is a module string. This needs to be converted
into a geometric representation. There are two cases allowing two different
parallel algorithms: non-branching and branching L-systems.

5.3.1 Non-Branching Module Strings

As explained in Section 5.1, most modules can be represented as associative
matrix transformations. We can exploit this efficiently to interpret non-
branching L-systems by interpreting chunks independently. We present a
three pass algorithm (see Figure 5.5):

pass 1: calculate matrix for each chunk,
count number of required geometric objects

F + F - B + B - A F F F - F + C D F + F

2 0 0 3 1 1 1
matrices:

objects:

pass 3: calculate transform for each geometric
object, scatter objects to VBO using offsets

VBO

pass 2: (i) scan using matrix multiplications
provides global transformations for chunks
(ii) scan on object counts delivers VBO offsets

0 2 2 2 5 6 7
matrices:

objects:

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Figure 5.5: By exploiting the associativity of modules representable as matrix
operations, we can efficiently interpret non-branching L-systems with this algorithm.

1. Matrix accumulation The string is split into m chunks, each chunk is
assigned to an independent thread. In each chunk, we combine the matrices
corresponding to the modules in the chunk, resulting in one local transfor-
mation matrix. Further, we count the amount of geometry generated in the
modules. Both values are stored in an global array.

2. Matrix scan. A parallel scan operation is performed on the matrices,
using 4x4 matrix multiplication as the operator. The resulting array contains

90

5.3. PARALLEL INTERPRETATION

matrices representing a global transformation of the turtle state to the start
of each chunk. Additionally, a scan using integer additions on the objects
array is performed to calculate offsets for the geometry to be created.

3. Geometry generation. Finally, to get the global positions of each
geometry object, we again operate on m chunks in parallel as in 1. and
accumulate module matrices. But this time we do not start with the identity
matrix but with the matrix determined during the scan. Furthermore, every
time we encounter a geometry generation module, we calculate the global
position of the object and insert it into a vertex buffer object (VBO), using
the offsets determined during the object scan.

The idea to use a scan to determine VBO offsets for tessellating parametric
surfaces was introduced by Schwarz and Stamminger [SS09].

5.3.2 Branching Module Strings

For branching L-systems, parallelization is achieved by exploiting the branch
hierarchy. Whenever a push command opening a new branch is encountered,
two independent new work items are generated: one for the branch and one
for the remaining string following the corresponding pop command. The
main problem is to find the pop command in an efficient (i.e., parallel) way.
This information is also necessary for fast context search in bracketed context
sensitive systems. We therefore first present a novel parallel algorithm to
extract the hierarchy, and then show how the work items can be efficiently
managed.

Parallel Hierarchy Extraction

One critical observation is that when looking only at a particular hierarchy
depth in the branch hierarchy, corresponding push/pop pairs follow each other
directly. The main idea is therefore to extract the push and pop commands
from the module string and sort their positions into buckets according to
their depths. Each bucket will then contain the positions of corresponding
push/pop pairs. These can then be easily traversed to store with each push
the position of the corresponding pop.

We introduce an efficient parallel algorithm based on this idea that does
not require direct communication between the blocks. We assume that we
know the maximum depth of dmax of the branching hierarchy and allocate a
two-dimensional bucket sort array with dmax rows. The complete algorithm is
visualized in Figure 5.6, and consists of 5 passes operating on uniform chunks
in parallel:

91

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

pass 1: add 1 for each [, subtract 1 for each]

pass 2: a scan results in the depth at
the start of each chunck

F [[F] F [F] - [- F] []]

pass 3: count to get depth of each [and]
count how often each depth occurs

depth 0
depth 1

pass 4: performing a scan on each row
results in the bucket offsets

2 -1 1 0 0 0 -2

0 2 1 2 2 2 2

1 0 0 0 0 0 1
1 1 1 2 0 2 1

0 1 1 1 1 1 1
0 1 2 3 5 5 7

depth 0
depth 1

2 20
3 5 7 10 12 16 17 19

bucket 0
bucket 1
every two consecutive elements index a push/pop pair!

get
depth
of
each
[and]

get
offsets
to
bucket
sort
array

pass 5: store the positions of each [and] in a
bucket sort array using determined offsets

+ + +

Figure 5.6: This algorithm allows efficient and parallel searching for corresponding
push and pop pairs.

1. Chunk depth calculation. Starting at zero, we add 1 for every push,
and subtract 1 for every pop occurring in a chunk. This results in the depth
of the chunk end relative to the chunk start.

2. Depth scan. Performing a scan of those values results in the absolute
depths of the start of each chunk.

3. Depth-based push/pop count. Now, by starting at the calculated
absolute depth of the chunk start, we can determine the absolute depth of
every push and pop occurring in the chunk. We use this to to determine the
offsets for the bucket sort array by counting the amount of push and pop
commands mi in each depth j in the following way: cj =

∑
mi | di = j. We

store the values for cj | 0 < j < dmax in a global array.
4. Scan push/pop counts. The scan of the cj arrays results in the bucket

offsets oj each thread has to use in order to allow conflict-free writing to
buckets.

92

5.3. PARALLEL INTERPRETATION

5. Write push/pop locations. Again, we visit every push and pop command
mi of every chunk. But this time we write the absolute input module string
position of the module mi in the bucket di using the offset positions determined
previously. This ultimately leads to a bucket sort array where every two
consecutive elements in a row correspond to a push and pop pair.

Analogously to the matrix interpretation algorithm, we also calculate VBO
offsets needed to scatter the geometry. In our implementation, this process is
combined with pass 1, and the VBO offsets are stored as a parameter of push
commands.

Memory Footprint In order to reduce the memory footprint of the
bucket sort array, we actually use a one-dimensional array instead of two
dimensions. This allows us to pack the bucket arrays for the individual depths
without empty spaces tightly together. In the worst case, when every module
in the module string is a push or pop module, the number of required memory
elements is then equal to the amount of modules. The offsets needed for
the 2D to 1D packing can simply be calculated form the values obtained in
iteration 4: cj + oj of the last chunk equals the total amount of elements in a
specific bucket. When we perform a scan operation of those values for each
bucket we get the offsets to map the 2D bucket arrays into a 1D array.

Integration into Module String As a last step, we use the information
bucket arrays to write the position of corresponding push and pop modules
directly into the module string to allow fast access during interpretation.
This is a simple parallel algorithm: We evenly assign the 1D bucket array to
multiple threads. Every even element in this array contains the position of a
push command, every odd element references a pop command. Thus we need
to write the position stored at every odd element as a parameter to the push
module referenced by the preceding even element.

Work Queue-based Interpretation

As a result of the previously explained algorithm, every push module has a
parameter indexing the position of the corresponding pop module, as well as
a VBO offset parameter. With this information, we use a parallel work-queue
approach [ZHWG08, LGS+09, PO08]:

First, we define a work item as a tuple (M, i) where M is a 4x4 matrix
representing the turtle state, and i is the array index of a module in the
module string. The interpretation is started with the work-queue item (I, 0),
where I represents the identity matrix. Then, one thread starts serially
interpreting the module string using this work item. When a push-module is
encountered, the thread creates two work items (M, i1) and (M, i2), where M
is the current turtle state, i1 is the current module index and i2 is the index

93

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

of the corresponding pop command. Then it puts (M, i1) on a thread local
work stack and continues with (M, i2). Directly continuing with (M, i2) is
important for good performance, as it induces a breadth-first traversal (with
respect to the branch hierarchy) which enables faster spreading of the work
items to multiple threads.

To actually distribute the work items between threads, we use parallel work
queue management [ZHWG08] [LGS+09] [PO08] in the following adapted
way: When the local work stack of a thread is full, we write the contained
items to a work item array in global memory. Each thread is assigned a
unique offset to this array. When all threads are finished, we create a compact
array of indices to the work item array using scan operations. These indices
are then evenly distributed to threads, which execute the tasks as described
previously. The process is iterated until no more work items are left.

Alternative approach In our approach each thread has an independent
local work item queue. During kernel execution, no intra-block distribution
of work is performed using the shared memory. We have also implemented
and tested a version utilizing shared block local memory to distribute threads.
However, this method turned out to be slower, probably the overhead of
the multiple required intra-block synchronization points is higher than the
possible gain achieved through faster work distribution.

5.4 Multiple L-systems

The algorithms presented in the previous sections always work on one L-system
at a time. However, it would be beneficial to derive multiple L-systems with
different parameter sets in parallel at the same time. An example application
for this is designing procedural forests using L-systems, as shown in Figure 5.7.
Therefore we introduce extensions to the previously introduced algorithms,
allowing the derivation of multiple L-systems in parallel while still retaining
work-load balancing between threads.

5.4.1 Representation of Multiple L-systems

For every L-system Li with the unique identifier i, we need to define a unique
set of productions, global parameters and an initial turtle state Ti. In Section
5.2.1 we showed how one L-system production and global parameter set is
stored in a texture. In order to store multiple L-systems, a unique offset Oi

into this texture is assigned to every L-system. The offsets can be trivially
calculated by summing the amounts of productions and parameters of every
L-system, and ensuring that the values stored in the texture do not overlap.

94

5.4. MULTIPLE L-SYSTEMS

Figure 5.7: Here multiple different L-systems with unique parameters are shown.
The derivation and interpretation can still be performed interactively.

In order to access this representation during derivation, a lookup table
from Li to Oi and Ti is created and stored in global memory.

5.4.2 Derivation of Multiple L-systems

Before the derivation algorithm is started, we connect the axioms of every
L-system to one combined axiom. At the start of every axiom a delimiter
symbol (we have arbitrarily chosen ‘M’) is inserted. In order to keep track
of which letter belongs to which L-system during derivation, the following
algorithm is performed before every derivation iteration: First we assign
the letters uniformly to threads. Then every thread counts the amount of
delimiter symbols in its assigned chunk. In a second pass, an additive scan is
performed on those values, resulting in the L-system index of the first letter
for each chunk. This algorithm is outlined in Figure 5.8.

Afterwards the derivation is performed. Every time a rule or parameter
needs to be fetched, we determine the texture offset from the look up table
using the L-system index. When a delimiter symbol is encountered, the index
is increased by one. In the last pass of the derivation, we also write the
positions of the delimiter symbols in the module string to a global array.

95

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

pass 1: count delimiters 'M'

pass 2: scan yields L-system
index at chunk start

M A - [B] M A + F M A - [B] MC D E

1 0 1 1 0 1 0

0 1 1 2 2 2 3

Start derivation and use offsets
during texture fetches

delimiters:

L-system
index:

delimiters

Figure 5.8: In order to determine which L-system a letter belongs to, this algorithm
is performed before every derivation iteration.

Different Iteration Amounts In order to support different numbers of
iterations for the L-systems, the number of iterations to be performed is also
stored in the look up table. This value is compared with the current iteration
number during the derivation. When it is higher, no rule replacement is
performed for this L-system.

5.4.3 Interpretation of Multiple L-systems

For non-branching L-systems, the algorithm in Section 5.3.1 needs to be
modified. Instead of a scan of all matrices, a segmented scan of the matrices
needs to be performed. The segments are defined by the delimiter symbols.
The matrix of the first letter after a delimiter symbol is set to the initial
turtle state stored in the lookup table.

As we know the string positions of each delimiter symbol after the deriva-
tion, the adaptation of the branching interpretation algorithm described in
Section 5.3.2 is straightforward. We simply create a work item for every
delimiter symbol. In every work item the L-system index is stored, and the
turtle state is set to the one in the look up table. Then the interpretation
algorithm is performed as described in Section 5.3.2.

5.5 Results

We implemented our parallel algorithms for GPUs utilizing CUDA and for
multi-core CPUs using POSIX threads. In CUDA, up to 1920 threads are

96

5.5. RESULTS

utilized (60 blocks of 32 threads), the multi-core CPU version uses 4 threads.
We compare those implementations against a highly optimized single-core CPU
version, created with the help of performance profilers to detect and remove
bottlenecks. This version has the advantage that no kernel or thread launch
overheads occur, and that no scan or multi-pass operations are necessary.
The main low-level optimizations include the complete avoidance of advanced
C++ features like virtual functions and dynamic memory allocations during
runtime. Those optimizations resulted in a speedup of multiple orders of
magnitude compared to our initial single-core CPU implementation. The test
platform was an Intel Core 2 Quad Q6600 2.4GHZ PC with a Geforce GTX
280 graphics card.

L-system b
ra

ck
et

ed

p
ar

am
et

ri
c

st
o
ch

as
ti

c

co
n
te

x
t

se
n
s.

Hilbert 3D, pg. 20
Koch curve, pg. 10 (d)
row of trees, pg. 48 X
2D plant, pg. 25 (c) X
3D tree, pg. 60 (b) X X
plant stochastic, pg. 28 X X
p. ctx. sens., pg. 35 (b) X X

Table 5.1: Property matrix of the L-systems shown in our results. The page
numbers refer to the L-system definitions by Prusinkiewicz and Lindenmayer
[PL96].

Test Scenes We used seven test scenes to demonstrate several aspects
of our system. In order to ensure repeatability and comparability of our
results, all our L-system productions are directly taken from Prusinkiewicz
and Lindenmayer [PL96] for our performance measurements. In Table 5.1 we
classify the test scenes according to the properties of the used production set.

Rendering Our implementation creates a VBO containing lines. For our
figures we use a geometry shader during rendering, creating cylinders from the
lines. All our performance measurements do not contain the rendering times,
as the rendering times are the same both for the CUDA and the CPU versions.
Neither do the measurements contain the CPU-GPU memory transfer times
required by the CPU versions, which we measured in the range from 20–40ms,
making the CPU versions very hard to use in a real-time rendering setting.

97

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

total derivation times
ms rel. speedup

L-system, i modules 1 core 4 cores CUDA df
Hilbert 3D, 6 1,266,864 4.70 3.76× 2.92× 5
Koch curve, 7 915,049 3.45 3.26× 3.20× 6
row of trees, 10 815,545 10.21 3.29× 3.15× 8
2D plant, 7 813,169 3.31 3.04× 3.15× 6
3D tree, 16 622,334 8.53 1.40× 1.17× 13
plant stoch., 11 835,481 6.45 1.75× 3.23× 9
p. ctx. sens., 30 25,174 0.73 0.39× 0.03× ?
multi L-sys., 10 2,751,022 30.51 1.48× 1.31× 4

Table 5.2: Derivation performance measurements. i shows the amount of iterations
performed. The single-core CPU times are absolute values in milliseconds, the
multi-core CPU and CUDA values are relative speedups compared to the single-core
CPU values. df denotes the first iteration where CUDA is faster compared to the
single-core CPU version during derivation.

Scalability We evaluated how our derivation and interpretation scale
with the number of iterations. For all our test scenes, we measured how long
one specific iteration i of the derivation takes, and calculated the number of
modules generated per microsecond during each iteration i. The results for
three L-systems are shown in Figure 5.9. For the interpretation, a specific
amount of derivation iterations was performed prior to the interpretation, the
interpretation time was measured, and the amount of modules interpreted
per microsecond was calculated. The results are shown in Figure 5.10. For
readability only three L-systems are shown, but all results show a similar
pattern: As expected the initial iterations incur some overhead in the parallel
implementation on the GPU and the multi-core CPU, because the amount of
parallelism is limited, and the overhead of launching CUDA-kernels or POSIX
threads is a significant factor. This makes parallel versions slower on the
first few iterations. For the later iterations the parallel implementations are
several times faster, because a high amount of threads can be utilized. For
all L-systems, we list the first derivation iteration df where CUDA is faster
compared to the single-core CPU version, as well as the first interpretation of
a string generated with if iterations where CUDA is faster in Tables 5.2 and
5.3. The total performance including the cases where CUDA is slower will be
discussed in the next two paragraphs.

Total Derivation Performance The CUDA and the multi-core CPU
version are very similar in performance and are significantly faster than the
single-core CPU version in most cases. There are two notable exceptions: First,

98

5.5. RESULTS

total interpretation times total speedup
ms rel. speedup deriv.+interpr.

L-system, i 1 core 4 cores CUDA if 4 cores CUDA
Hilbert 3D, 6 31.50 1.23× 6.61× 5 1.35× 5.68×
Koch curve, 7 22.56 0.70× 2.99× 6 0.78× 3.02×
row of trees, 10 77.04 4.25× 10.84× 7 4.11× 8.43×
2D plant, 7 22.45 1.27× 1.21× 7 1.37× 1.31×
3D tree, 16 31.44 2.78× 3.87× 13 2.30× 2.59×
plant stoch., 11 14.70 0.09× 0.24× ? 0.13× 0.33×
p. ctx. sens., 30 0.11 0.43× 0.11× ? 0.39× 0.03×
multi L-sys., 10 29.12 1.65× 2.22× 4 1.56× 1.64×

Table 5.3: Interpretation performance measurements. if denotes the first iteration
where CUDA is faster compared to the single-core CPU version during interpretation.
The total speedup is shown in the last two colums.

the 3D tree is only marginally faster. Second, the context sensitive plant is
considerably slower. Both cases can be attributed to the following observation:
The corresponding L-systems are growing rather slowly, compared to the
other test cases. For the 3D tree 622,334 modules are created in 16 iterations,
while the plant creates only 25,174 modules in 30 iterations. All other tested
L-systems create more modules with a lower iteration count. Therefore the
other L-systems have less relative thread launch overhead. To sum it up,
during the derivation the parallel implementations are significantly faster
when the L-systems grow relatively fast. Another important thing to note
is that the results for the stochastic system vary with the random seed, our
measurements were in a range of about +/- 20% for different seeds.

Total Interpretation Performance The three tested non-bracketed
(serial) L-systems are significantly faster in CUDA compared to the other
versions, probably because the parallel matrix interpretation makes good use
of the high arithmetic density of the GPU. On the other hand, the multi-core
CPU version performs rather bad on those L-systems (with the exception
of the row of trees L-system), probably the matrix multiplications and the
memory bandwidth are the limiting factors here.

The results for the branching L-systems vary. The first thing to note is that
the five-pass hierarchy extraction step requires considerably less time than
the actual interpretation. For reference, a hierarchy extraction takes 3.3ms on
one CPU core and 1.97ms in CUDA for the 2D plant. Our interpretation of
the varying results is that the L-systems have different branching structures,
which directly affect how effective our work-queue interpretation is: The 3D
tree (Figure 5.11) has very regular branching, and is considerably faster to

99

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200
400
600
800

1000
1200
1400
1600

specific derivation iterationm
od

ul
es

 g
en

. p
er

 m
ic

ro
se

co
nd Koch curve

CUDA
4 cores
1 core

row of trees
CUDA
4 cores
1 core

3d tree
CUDA
4 cores
1 core

Figure 5.9: Scalability analysis of the derivation step. For every iteration, we
calculate the number of modules generated per microsecond.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

nr. of derivation iterations performed prior to interp.m
od

ul
es

 in
t.

pe
r m

ic
ro

se
co

nd

Koch curve
CUDA
4 cores
1 core

row of
trees
CUDA
4 cores
1 core

3d tree
CUDA
4 cores
1 core

Figure 5.10: Scalabilty analysis of the interpretation step. We performed a specific
amount of derivation steps before the interpretation was performed.

interpret with the parallel versions, while the 2D plant (Figure 5.1) exhibits
more irregular branching, resulting in only a small speedup. The stochastic
plant contains only a few long branches with many small ones attached (Figure
5.11), making it hard to spread the work to multiple threads. The context
sensitive plant is even harder for the parallel algorithms to interpret, as the
amount of modules is very low compared to the other cases. In summary,
the non-bracketed L-systems are considerably faster in CUDA, while the
bracketed L-systems create varied results based on the branching structure.

Total Speedups The combined derivation and interpretation speedups
are shown in the last two columns of Table 5.3. In all but the context sensitive
and multiple L-system case, the interpretation time is much higher than the
derivation time, therefore the combined speedups are mainly dependent on

100

5.6. DISCUSSION

Figure 5.11: L-systems generated in real-time: 3D tree and stochastic plant.

the interpretation speedups.

Multiple L-Systems The performance of multiple L-systems is tested
using a scene consisting of 38 2D plants with 4 iterations and 12 3D trees with
10 iterations, similar as shown in Figure 5.7. The results are shown in the
last row of Tables 5.2 and 5.3. While the multi thread versions consistently
show a speedup of up to 2.22 times, it is not as high as we had expected.
It is important to note that we did not optimize the multiple L-system
implementation, while the single-core version is highly optimized. We believe
that there is still room for improvement.

5.6 Discussion

Comparison to Previous Work The main advantage over the previous
GPU-based methods [LH04, Mag09] is that we make explicit use of parallel
primitives and do not rely on the graphics pipeline to deal with data ampli-
fication and other issues. We fully support productions having side-effects
and thus do not need to rely on the specific side effect-free turtle commands
presented by Lacz and Hart [LH04]. Furthermore, we can directly use the
productions without requiring a compilation or transformation step. Com-
pared to the multi-CPU based method proposed by Yang et al. [YHL+07] our
algorithm does not need an intermediate scene-graph representation of the
module string. Furthermore our algorithm can utilize thousands of threads,
which is significantly higher than what was shown in the multi-CPU version.

Memory Transfer to Graphics Hardware One important advantage
of our CUDA version is that the resulting geometry already resides in GPU
memory, so there is no need for a copy operation. The CPU versions, on the
other hand, needs to perform a copy from the main system memory to the

101

CHAPTER 5. PARALLEL GENERATION OF MULTIPLE
L-SYSTEMS

GPU. We measured copy times of about 20–40ms for the tested L-systems
– this is very high compared to the generation times, increasing the total
speedup of CUDA significantly, and showing that a GPU implementation is
highly desirable. All our results do not include those transfer times.

Intra-Block Thread Divergence In CUDA, when different execution
paths are taken within a sub-block of threads (called warp), those execution
paths are serialized, reducing the utilization of the intrinsic SIMD capabilities.
In our algorithm, the following situations lead to divergence in the code: (1)
If two productions produce a successor of different length during derivation.
This divergence is directly caused by the varying data amplification, and can
probably not be avoided. (2) During interpretation, the matrix notation helps
in maintaining thread coherence, as we can perform the multiplications coher-
ently after each thread decides which matrix to use based on the associated
commands. However, when some threads either have no command to perform
or have a geometry generation command, SIMD can not be fully utilized. (3)
In the work-queue algorithm, the number of elements in a local work queue
can vary, leading to divergence. As pointed out, in an alternative approach
we removed this divergence by enabling intra-block work item sharing, which
turned out to be slower than having divergence. (4) The length of one work
item can vary, leading to divergence. Unless we would further split work
items into sub work items, we can probably not avoid this divergence.

Limitations The varying results of the work-queue approach indicate
that there may be future work necessary in creating more consistent speedups,
maybe a more elaborate work-queue management can achieve this. As for
the tested context sensitive L-system, the high iteration counts result in a
low performance of the CUDA approach, making the use of the CPU version
more appropriate in this case. Stochastic productions can be used to simulate
biological plant-internal signals [PL96], maybe there is a way to abstract this
simulation that is more amenable to parallel interpretation.

5.7 Conclusion

In this chapter we introduced a solution to generate L-systems on a parallel
architecture. We make two major contributions. First, we show how parallel
primitives can be employed to handle the varying data amplification during
derivation. Second, we introduce an algorithm to match the push and pop
stack operations to obtain a parallel implementation of L-system interpretation.
The system can work with a broad set of rules, including parametric rules,
stochastic rules, and context-sensitive rules. It can parallelize a single L-
system as well as multiple independent L-systems. We have demonstrated

102

5.7. CONCLUSION

that our parallel L-system outperforms a highly optimized single-core CPU
implementation in many test cases, while there are some cases where the
single-core version is faster. The advantage of our GPU version gets more
pronounced when taking into account CPU-GPU memory transfer times
required by the CPU versions.

Future Work We would like to integrate the parallel derivation of L-
systems in a rendering engine to render large-scale environments. We plan
to combine the derivation of L-systems with occlusion queries and memory
management algorithms so that we can render environments several times
the size of graphics card memory in real time. Also, it would be interesting
to extend the work to procedurally generated architecture, and more complex
L-system concepts.

103

6
Summary

The goal of this thesis was to bring direct artist control to procedural methods,
show novel visual interaction techniques enabled using such methods, as well
as to improve the performance of procedural methods to real-time speeds.

To this end, we introduced new paradigms and algorithms for direct and
visual artist control of procedural content generation. We presented a visual
grammar editor for split grammars and visual high-level tools to modify city
layouts. Artists of a game company employed our software prototype and
provided feedback. Additionally, a novel algorithm for parallel generation
of grammars was introduced. Let us focus on those contributions in greater
detail:

Artist control Two novel paradigms for persistent direct control were
introduced. For architecture, we enable direct control by introducing semantic
tags to the rules. Direct visual editing operators like drag and drop are
automatically mapped to locators and changes to steer the derivation after
global changes. An abstract view of this paradigm is shown in Figure 6.1.

input procedural
generation output

semantic tags
added

apply

locator/change
pairs

direct changes are
automatically mapped

Figure 6.1: Abstract view of our first novel persistence paradigm: Semantic tags
are (automatically) added to the input. Direct changes are automatically mapped to
locator/change pairs. Those changes are applied during procedural generation.

CHAPTER 6. SUMMARY

For cities, we introduced a layering system, allowing to merge content
generated from various procedural algorithms. Persistent direct changes are
supported by moving changed elements to a new layer, and merging them to
the final result after a global change. The main advantage of this approach is
that the procedural generation algorithm does not need to know anything
about the layering system, thus essentially we decouple procedural generation
from persistent direct control. This is visualized in Figure 6.2.

input procedural
generation output

manually created
output

direct changes

merged
output

direct changes
moved to new layer

m
erging opera tor

Figure 6.2: Abstract view of our second novel persistence paradigm: Content from
arbitrary sources, manually created or automatically generated, is merged into one
output. Direct changes to this output can be moved into a new layer, making them
persistent even when one of the inputs changes.

Novel interaction techniques We showed that using our visual grammar
editor, building grammars can be constructed in about ten minutes. Visual
high-level operations enable intuitive direct control without modifying the
grammar. A layering system for cities allows artists to collaborate in a
direct way, and high-level visual operations can be performed without manual
remodeling of city parts.

Real-time performance In Chapters 3 and 4 we provided some implemen-
tation details to achieve real-time speeds of the corresponding algorithms, as
well as brief performance evaluations showing real-time speeds are obtained.

In Chapter 5 this was done in much greater detail, by introducing and
evaluating a novel algorithm for L-system generation, based on the parallel
scan primitive, which is able to spread the work to thousands of threads. We
see this as a first step towards accelerating other grammar-based approaches
as well.

106

6.1. RESEARCH OUTLOOK

Expected benefits The main benefit of our direct control methods is
the possibility of significant cost reduction when creating virtual urban
environments. Large pars of the city can be created rapidly using procedural
methods, while fine-tuning of individual parts is always supported, without
the need of laborious adoptions of city parts after minor modifications. This
enhances the appeal of procedural methods in general, preparing a wide-spread
adoption of such methods in various fields.

6.1 Research Outlook

We have shown that our novel persistence algorithms work for architecture
and buildings. It would be interesting to add those concepts to plants or
procedural textures. Another interesting future work is extending the parallel
L-system algorithm to split grammars, creating buildings. Further, there is
currently no method to automatically map direct output changes to input
changes, for example changing a rule-base when the output is modified.

107

List of Figures

1.1 Applications of virtual urban models. Left: In this urban
planning scenario, the impact of the planned red building
on the cityscape can be evaluated. Middle: Futuristic city
created for a computer game. Right: A virtual model of
Pompeii for cultural heritage applications. Images generated
with Procedural Inc. Cityengine [Pro10]. 1

1.2 Conceptual overview of procedural methods: A possibly iter-
ative procedural generation algorithm creates output assets
from input data. 3

1.3 Conceptual procedural pipeline for urban envrionment genera-
tion. Starting from a landscape, initially the street network,
then the parcels, and finally the buildings, plants and streets
are created. 4

1.4 Classification of possible interactions in a procedural generation
system. 6

1.5 Illustration of the persistence problem. The artist interactions
are numbered. After an input change the previous local change
is lost. 7

2.1 An example 3D plant generated using L-systems. Image cour-
tesy of Prusinkiewicz and Lindenmayer [PL96]. 12

2.2 Synthetic topiaries created using pruning to a bounding box.
Image courtesy of Prusinkiewicz et al. [PMM94]. 13

2.3 Using function modules, the relative turtle position can be used
to query a user-defined function. This allows direct control of
plant shapes. Image courtesy of Prusinkiewicz et al. [PMKL01]. 14

2.4 Conceptual view of artistic control for L-systems. 15
2.5 Components can be connected by an artist to create plants.

Image courtesy of Lintermann and Deussen [LD99], annotations
added. 15

2.6 Two shape rules and a possible outcome of the generation are
illustrated here. The points represent labels. Note that this
grammar can create an infinite amount of generation results.
Figure based on illustration from Stiny [Sti80]. 16

2.7 Mughul garden created using shape grammars. Image courtesy
of Stiny and Mitchell [SM80]. 17

2.8 Example derivation of a split grammar. Image courtesy of
Wonka et al. [WWSR03]. 18

2.9 City created using 190 CGA shape rules. Image courtesy of
Müller et al. [MWH+06]. 19

LIST OF FIGURES

2.10 3d facade extracted from a single image. The extracted shape
allows flexible resizing of the output. Image courtesy of Müller
et al. [MZWG07]. 20

2.11 3d facades extracted from multiple images. On the right,
an irregular facade is shown. Image courtesy of Xiao et al.
[XFT+08]. 21

2.12 Gothic windows created using GML. Image courtesy of Berndt
et al. [BFH05]. 21

2.13 One the top, an excerpt of visual symbols representing a func-
tional language is shown. On the bottom, a wing profile created
using such a language is shown. Image courtesy of Milicchio et
al. [MBP05]. 22

2.14 On the top, graphs for tree generation, roof point calculation
and roof geometry generation are shown. On the bottom
results obtained using such graphs are shown. Image courtesy
of Ganster and Klein [BFH05]. 23

2.15 Pipeline for procedural city generation. Image courtesy of
Parish and Müller [PM01]. 25

2.16 Modeling sequence of streets using tensor fields. (1) Initial
landscape (2) Tensor field modeled using intractive tools (3)
Streets generated from tensor field (4) Refinements of tensor
field (5) New output (6) Further refinements. Image courtesy
of Chen et al.[CEW+08]. 26

2.17 Several iterations of an interactive city simulation over time.
Image courtesy of Weber et al. [WMWG09]. 27

2.18 Coupling of behavioral parameters with geometric urban layout:
A new highway is added and the population is automatically
redistributed. Image courtesy of Vanegas et al. [VABW09]. . . 28

2.19 Blue and red areas represent street networks generated from
different example data. Using a join and blend operation,
they can be connected seamlessly. Image courtesy of Aliaga et
al.[AVB08]. 29

2.20 Conceptual view of incremental editing as a basis for artist
control. 29

2.21 This tree was generated on the GPU. Image courtesy of Lacz
and Hart [LH04]. 31

2.22 Seamless branches generated on the GPU. Image courtesy of
Baele and Warzee [BW05]. 31

2.23 Parallel scan using addition. 32

110

LIST OF FIGURES

2.24 CUDA hierarchy: multiple threads are organized into blocks.
Each GPU core can run one block a time, while multiple blocks
are scheduled automatically on different cores. Image courtesy
of NVidia [COR07]. 33

3.1 Screenshots from our real-time editor for grammar-based pro-
cedural architecture. Left: Visual editing of grammar rules.
Middle left: Direct dragging of the red ground-plan vertex and
modifying the height with a slider creates the building on the
middle right. While dragging, the building is updated instantly.
Right: Editing is possible at multiple levels, here the high-level
shell of a building is modified. 35

3.2 The rulebase on the top has two possible windows, enabling
variations during generation. An example output is shown on
the top right. If we want to specify the window type to be used
for the encircled window, we have to manually rewrite rules in
order to set the window. The necessary rulebase changes are
shown at the bottom, creating the new rendering. We found
this rewriting to be tedious and error prone, even when just
one variation is controlled. 38

3.3 On the left, the automatically generated shape hierarchy corre-
sponding to the facade in Figure 3.2 is shown. Only the second
floor is visualized, in order to increase readability. Utilizing
direct control, the user can drag and drop the desired window
on the rendered facade, automatically changing the underlying
shape hierarchy, as seen on the left. No manual rewriting is
necessary for the user. 39

3.4 Using hierarchical selections, all shapes underlying a specific
shape in the shape hierarchy are selected. Semantic selections
allow selecting multiple shapes that share common semantic
properties. Please note that it is impossible to select a whole
column just by using one hierarchical selection in this shape
hierarchy, as there is no rule that directly represents a whole
column. 40

3.5 A persistence problem occurs when we at first generate a shape
hierarchy from the rulebase, and then modify this hierarchy
utilizing direct control. When we need to perform a regenera-
tion (for example because the house height has changed) the
unmodified version is generated, thus all direct modifications
are lost. 41

111

LIST OF FIGURES

3.6 Hierarchy 1 corresponds to the rulebase in Figure 3.7, hierarchy
2 is a more complex example. Red circles around shapes
represent corresponding selections. Edges are sequentially
numbered. Over the bottom rendering, the semantic tags and
corresponding absolute values of columns are shown. Please
note that while the renderings are quite similar, the underlying
graphs are significantly different. 43

3.7 We introduce semantic tags attachable to commands, repre-
sented here as F for floor and C for column. 43

3.8 On every shape we can assign values to variables. Assignments
extend their scope to all underlying shapes. Assignments on
lower levels override assignments on higher levels. Numbers
below windows show the values of windowWidth. 46

3.9 Example for ordering value calculation. The rendering corre-
sponds to the hierarchy graph. To increase readability, we only
show elements having a tag attached in the graph, as other
elements do not influence the algorithm. Using a blue line we
illustrate the traversal of the algorithm during calculation of
tag C, while orange circles highlight important events occurring
during the traversal. The resulting sequential numbering is
overlaid in the rendering. Line numbers correspond to Figure
3.10. 47

3.10 Pseudocode for ordering value calculation. Essentially this is a
modified postorder traversal with special measures to increase
the count of the ordering value after each subtree was visited.
Lines that handle arbitrary nesting of tags are marked orange,
lines that actually increase the ordering value are yellow. . . . 48

3.11 Three windows make up our GUI: (a) A building editor enables
direct variation control on buildings (b) Rulebases can be
visually created from scratch in the rule editor, providing
indirect control (c) Textures and meshes are stored in the
library editor. 49

3.12 Interactive building editor providing direct variation control.
(a) Menu with various rendering and derivation controls (b)
Real-Time rendering of result. Currently a floor is selected. (c)
List of all building instances (d) All parameters occurring in
the currently selected shape. 50

112

LIST OF FIGURES

3.13 Sequence showing hierarchical modifications. (1) A shape repre-
senting a floor is selected. (2) The parameter windowHeight is
modified - all shapes on lower levels are automatically modified
(3) Selecting a specific shape allows overriding the parameter
on a lower level. 51

3.14 Interactive Rule Editor. (a) Tool palette allows creation of new
commands and rules (button descriptions were added to the
screen shot) (b) Real-time rendering of result and visualization
(c) Linked tree-view. Yellow puzzle icons represent predecessor
shapes, blue/green puzzle icons represent shapes occurring in
a successor. (d) Parameters are automatically mapped to GUI
elements. 52

3.15 Geometry during picking and direct dividing plane movements. 53

3.16 Example workflow using our rule editor. Creating this simple
building required 3.5 minutes. These are screenshots from an
recorded user interaction. The screenshots were cropped to
magnify important details. A description of the individual
screenshots is provided in Section 3.4. In approximately addi-
tional 10 minutes we were able to create the building seen in
Figure 3.12 which has many ornamentation details. 56

3.17 Milliseconds per iteration versus triangles for various modes. . 57

4.1 This figure illustrates possible urban transformations using our
method. From left to right: (1) The initial urban layout. (2)
The layout is transformed using a rotation with a soft influence
radius, and a red color assignment with a soft border region
is added. (3) A different city center is merged into the layout.
(4) A height assignment is modified. Note that during all
those steps, the color and height of the two distinct buildings
on the bottom stayed persistent, because they had individual
assignments. 61

4.2 This figure illustrates how, using traditional urban layouting
tools, a simple translation transforms a valid layout (left) into
an invalid one with intersections (right). 62

4.3 The orange street is moved and rotated. The underlying parcels
update accordingly. When the street is moved or rotated back,
the original layout is regained again, providing circular editing
capabilities. 63

4.4 Content from a different source, highlighted in orange, is in-
serted into the layout and moved, scaled and rotated. Full
circular editing is supported. 63

113

LIST OF FIGURES

4.5 The basic building blocks for urban layouts. 65

4.6 The orange street was moved. Left: Smooth transformation
of parcels, exhibiting some distortions. Right: Local parcel
regeneration. 66

4.7 Application of graph cut to city layouts. (a) Creation of
shared graph. Green: Ua, red: U b, orange dots: intersections,
white/black dots: constraint arcs. (b) The blue line represents
a possible cut. White and black dots now represent the graph
coloring. (c) Deletion of streets with nodes in wrong partition.
(d) Mending of holes by including certain streets of Ua. 67

4.8 Visualization of constraint arcs: White and black dots represent
necessary constraint arcs to the source and sink respectively.
Left: Overlapping region. Right: Red graph is completely
contained in the green graph. Grey lines are examples of cuts
that we want to prevent. 69

4.9 Streets are classified into hull and non-enclosing streets for
numerically stable clipping. 72

4.10 Semantic street selection: First, one street is selected, as shown
in orange on the left. The continuation, shown on the right,
is then automatically found by walking along the streets and
comparing angles. 73

4.11 Layering: An existing urban layout in layer L0 is merged with
a street on layer L1 and with a park on layer L2 resulting in
the merged layer Lm. 74

4.12 Left: The user marked the orange elements as protected. Right:
After a global layout change, the elements are still preserved. . 75

4.13 Purple lines represent a color assignment anchored to the
adjacent street, with a parcel as target. When the orange
street is moved, the anchored assignments stay relative to the
street, and apply to the nearest parcel. 77

4.14 The user interface of our implementation. 78

4.15 Different editing stages for a city. From left to right: (1) The
long street on the left, the park, the main city and the city
center on the right are on separate layers. (2) This is the result
of moving the layers on top of each other. (3) Close-up of the
merged (4) The flexible merging operator was then used to
incorporate a part from the street network layout of Rome. . . 79

5.1 L-systems generated in real-time, at up to 198,000 modules
per millisecond: Hilbert 3D space-filling curve and 2D plant. . 83

114

LIST OF FIGURES

5.2 An example production of a parametric L-system packed in a
texture. 87

5.3 A module string represents a specific state during derivation.
We store it as an array of module letters, a parameter index
and the actual parameters. 88

5.4 Three passes are performed during each iteration, transforming
an input module string to an output module string. For better
readability, we show only the letters of the input modules, and
omit the parameters. 88

5.5 By exploiting the associativity of modules representable as
matrix operations, we can efficiently interpret non-branching
L-systems with this algorithm. 90

5.6 This algorithm allows efficient and parallel searching for corre-
sponding push and pop pairs. 92

5.7 Here multiple different L-systems with unique parameters are
shown. The derivation and interpretation can still be performed
interactively. 95

5.8 In order to determine which L-system a letter belongs to, this
algorithm is performed before every derivation iteration. . . . 96

5.9 Scalability analysis of the derivation step. For every iteration,
we calculate the number of modules generated per microsecond.100

5.10 Scalabilty analysis of the interpretation step. We performed a
specific amount of derivation steps before the interpretation
was performed. 100

5.11 L-systems generated in real-time: 3D tree and stochastic plant. 101

6.1 Abstract view of our first novel persistence paradigm: Semantic
tags are (automatically) added to the input. Direct changes are
automatically mapped to locator/change pairs. Those changes
are applied during procedural generation. 105

6.2 Abstract view of our second novel persistence paradigm: Con-
tent from arbitrary sources, manually created or automatically
generated, is merged into one output. Direct changes to this
output can be moved into a new layer, making them persistent
even when one of the inputs changes. 106

115

List of Tables

3.1 Exact and semantic instance locators for the encircled shapes
in Figure 3.6 are shown here. Sx, Sy represent a Split X/Y
command, Scale a scale command. 44

5.1 Property matrix of the L-systems shown in our results. The
page numbers refer to the L-system definitions by Prusinkiewicz
and Lindenmayer [PL96]. 97

5.2 Derivation performance measurements. i shows the amount of
iterations performed. The single-core CPU times are absolute
values in milliseconds, the multi-core CPU and CUDA values
are relative speedups compared to the single-core CPU values.
df denotes the first iteration where CUDA is faster compared
to the single-core CPU version during derivation. 98

5.3 Interpretation performance measurements. if denotes the first
iteration where CUDA is faster compared to the single-core
CPU version during interpretation. The total speedup is shown
in the last two colums. 99

Bibliography

[ABVA08] D.G. Aliaga, B. Beneš, C.A. Vanegas, and N. Andrysco. Inter-
active reconfiguration of urban layouts. IEEE Comput. Graph.
Appl., 28(3):38–47, 2008.

[AVB08] D.G. Aliaga, C.A. Vanegas, and B. Beneš. Interactive example-
based urban layout synthesis. In SIGGRAPH Asia ’08, pages
1–10, New York, NY, USA, 2008. ACM.

[BBJ+01] P.J. Birch, S.P. Browne, V.J. Jennings, A.M. Day, and D.B.
Arnold. Rapid procedural-modelling of architectural structures.
In VAST ’01: Proc. of the conference on Virtual reality, archeol-
ogy, and cultural heritage, pages 187–196, NY, USA, 2001. ACM
Press.

[BFH05] R. Berndt, D. Fellner, and S. Havemann. Generative 3d models:
a key to more information within less bandwidth at higher
quality. In Web3D ’05: Proceedings of the tenth international
conference on 3D Web technology, pages 111–121, New York,
NY, USA, 2005. ACM.

[BOA09] M. Billeter, O. Olsson, and U. Assarsson. Efficient stream
compaction on wide simd many-core architectures. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009, pages 159–166, NY, USA, 2009. ACM.

[BPF+03] F. Boudon, P. Prusinkiewicz, P. Federl, C. Godin, and R. Kar-
wowski. Interactive design of bonsai tree models. In CG Forum:
Proc. of Eurographics, volume 22, pages 591–599. EG, 2003.

[BW05] X. Baele and N. Warzee. Real time l-system generated trees
based on modern graphics hardware. In SMI ’05: Proceedings
of the International Conference on Shape Modeling and Applica-
tions 2005, pages 186–195, Washington, DC, USA, 2005. IEEE
Computer Society.

[Cac09] Fernando Cacciola. 2D straight skeleton and polygon offsetting.
In CGAL User and Ref. Manual. CGAL Editorial Board, 3.5
edition, 2009.

[CEW+08] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Inter-
active procedural street modeling. ACM Trans. Graph., 27(3),
2008.

BIBLIOGRAPHY

[Cha89] S.C. Chase. Shapes and shape grammars: from mathematical
model to computer implementation. Environment and Planning
B: Planning and Design, 16(2):215–242, 1989.

[COR07] NVIDIA CORPORATION. Cuda: Compute unified device
architecture. http://developer.nvidia.com/. 2007.

[dSM06] L. Gonzaga da Silveira and S.R. Musse. Real-time generation
of populated virtual cities. In VRST ’06: Proc. of the ACM
symposium on Virtual reality software and technology, pages
155–164, NY, USA, 2006. ACM Press.

[Dua05] J.P. Duarte. Towards the mass customization of housing: the
grammar of siza’s houses at malagueira. Environment and
Planning B: Planning and Design, 32(3):347–380, 2005.

[EK72] J. Edmonds and R.M. Karp. Theoretical improvements in algo-
rithmic efficiency for network flow problems. J. ACM, 19(2):248–
264, 1972.

[FF62] L. Ford and D. Fulkerson. Flows in Networks. Princeton Uni-
versity Press, 1962.

[GK07] B. Ganster and R. Klein. An integrated framework for procedural
modeling. In Mateu Sbert, editor, SCCG ’07, pages 150–157.
Comenius University, Bratislava, April 2007.

[GMB06] K.R. Glass, C. Morkel, and S.D. Bangay. Duplicating road
patterns in south african informal settlements using procedural
techniques. In Afrigaph ’06: Proc. of the 4th international
conference on CG, virtual reality, visualisation and interaction
in Africa, pages 161–169, New York, NY, USA, 2006. ACM
Press.

[Hav05] S. Havemann. Generative Mesh Modeling. PhD thesis. TU
Braunschweig, 2005.

[HBW06] E. Hahn, P. Bose, and A. Whitehead. Persistent realtime build-
ing interior generation. In sandbox ’06: Proc. of the ACM
SIGGRAPH symposium on Videogames, pages 179–186, NY,
USA, 2006. ACM.

[HF06] Kai Hormann and Michael S. Floater. Mean value coordinates
for arbitrary planar polygons. ACM Trans. Graph., 25(4):1424–
1441, 2006.

120

BIBLIOGRAPHY

[HJA02] C. Hoffmann and R. Joan-Arinyo. Handbook of Computer Aided
Geometric Design, chapter 21: Parametric modeling, pages 519–
541. Elsevier, 2002.

[KM07] G. Kelly and H. McCabe. Citygen: An interactive system for
procedural city generation. In Fifth International Conference
on Game Design and Technology, pages 8–16, 2007.

[Kno03] D. Knott. Cinder collision and interference detection in real
time using graphics hardware. Master’s thesis, UBC, 2003.

[KSE+03] V. Kwatra, A. Schödl, I.A. Essa, G. Turk, and A.F. Bobick.
Graphcut textures: image and video synthesis using graph cuts.
ACM Trans. Graph., 22(3):277–286, 2003.

[LD99] B. Lintermann and O. Deussen. Interactive modeling of plants.
IEEE CG Appl., 19(1):56–65, 1999.

[LGS+09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast bvh construction on gpus. Computer Graphics
Forum, 28(2):375–384, 2009.

[LH04] P. Lacz and J.C. Hart. Procedural geometry synthesis on the
gpu. In Workshop on General Purpose Computing on Graphics
Processors, pages 23–23, NY, USA, 2004. ACM.

[LWW08] M. Lipp, P. Wonka, and M. Wimmer. Interactive visual editing
of grammars for procedural architecture. ACM Trans. Graph,
27(3):102:1–10, 2008. Article No. 102.

[LWW10] M. Lipp, P. Wonka, and M. Wimmer. Parallel generation of
multiple l-systems. Computers & Graphics, 34(5):585 – 593,
2010.

[LWWF03] T. Lechner, B. Watson, U. Wilensky, and M. Felsen. Procedural
city modeling. In 1st Midwestern Graphics Conference, 2003.

[Mag09] M. Magdics. Real-time generation of l-system scene models
for rendering and interaction. In Spring Conf. on Computer
Graphics, pages 77–84. Comenius Univ., 2009.

[MBP05] F. Milicchio, C. Bertoli, and A. Paoluzzi. A visual approach to
geometric programming. Computer-Aided Design and Applica-
tions, 2(1-4):411–421, 2005.

121

BIBLIOGRAPHY

[MK10] M. Magdics and G. Klár. Rule-based Geometry Synthesis in
Real-time, pages 41–66. A K Peters, 2010.

[MP96] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of
plants interacting with their environment. In Holly Rushmeier,
editor, Proc. of ACM SIGGRAPH 96, pages 397–410. ACM
Press, August 1996.

[MWH+06] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural Modeling of Buildings. In Proc.
of ACM SIGGRAPH 2006 / ACM Trans. Graph, 2006.

[MWR+09] P. Musialski, P. Wonka, M. Recheis, S. Maierhofer, and W. Pur-
gathofer. Symmetry-based facade repair. In Proceedings of the
Vision, Modeling, and Visualization Workshop 2009, pages 3–10,
2009.

[MZWG07] P. Müller, G. Zeng, P. Wonka, and Luc Van Gool. Image-based
procedural modeling of facades. ACM Trans. Graph., 24(3):85,
2007.

[PL96] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants. Springer-Verlag New York, Inc., NY, USA, 1996.

[PM01] Y.I.H. Parish and P. Müller. Procedural modeling of cities. In
Eugene Fiume, editor, Proc. of ACM SIGGRAPH 2001, pages
301–308. ACM Press, 2001.

[PMKL01] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane.
The use of positional information in the modeling of plants. In
SIGGRAPH ’01: Proc. of the 28th annual conference on CG and
interactive techniques, pages 289–300, NY, USA, 2001. ACM
Press.

[PMM94] P. Prusinkiewicz, M.J., and Radomı́r Mêch. Synthetic topiary.
In SIGGRAPH ’94: Proc. of the 21st annual conference on
CG and interactive techniques, pages 351–358, NY, USA, 1994.
ACM Press.

[PO08] A. Patney and J.D. Owens. Real-time reyes-style adaptive
surface subdivision. ACM Trans. Graph., 27(5):1–8, 2008.

[PPV95] A. Paoluzzi, V. Pascucci, and M. Vicentino. Geometric pro-
gramming: a programming approach to geometric design. ACM
Trans. Graph., 14(3):266–306, 1995.

122

BIBLIOGRAPHY

[Pro10] Procedural Inc. Cityengine, www.procedural.com, 2010.

[SG72] G. Stiny and J. Gips. Shape grammars and the generative
specification of painting and sculpture. Inf. Proc., 71:1460–1465,
1972.

[Sha02] V. Shapiro. Handbook of Computer Aided Geometric Design,
chapter 20: Solid modeling, pages 473–518. Elsevier, 2002.

[SHZO07] S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens. Scan
primitives for gpu computing. In Graphics Hardware, pages
97–106, NY, USA, 2007. ACM.

[SM78] G. Stiny and W. J. Mitchell. The palladian grammar. Environ-
ment and Planning B, 5:5–18, 1978.

[SM80] G. Stiny and W.J. Mitchell. The grammar of paradise: on the
generation of mughul gardens. Environment and Planning B:
Planning and Design, 7(2):209–226, 1980.

[SS08] R. Schmidt and K. Singh. Sketch-based procedural surface mod-
eling and compositing using Surface Trees. Computer Graphics
Forum, 27(2):321–330, 2008. Proceedings of EG 2008.

[SS09] M. Schwarz and M. Stamminger. Fast gpu-based adaptive
tessellation with cuda. Computer Graphics Forum, 28(2):365–
374, 2009.

[STdKB10] R. Smelik, T. Tutenel, K.J. de Kraker, and R. Bidarra. In-
tegrating procedural generation and manual editing of virtual
worlds. In PCGames ’10: Proceedings of the 2010 Workshop on
Procedural Content Generation in Games, pages 1–8, New York,
NY, USA, 2010. ACM.

[Sti80] G. Stiny. Introduction to shape and shape grammars. Envi-
ronment and Planning B: Planning and Design, 7(3):343–351,
1980.

[Sti82] G. Stiny. Spatial relations and grammars. Environment and
Planning B: Planning and Design, 9(1):113–114, 1982.

[VABW09] C.A. Vanegas, D.G. Aliaga, B.Beneš, and P.A. Waddell. Inter-
active design of urban spaces using geometrical and behavioral
modeling. ACM Trans. Graph., 28(5), 2009.

123

BIBLIOGRAPHY

[VAW+10] C. Vanegas, D.G. Aliaga, P. Wonka, P. Müller, P. Waddell, and
B. Watson. Modeling the appearance and behavior of urban
spaces. Comput. Graph. Forum, 29(1):25–42, 2010.

[WMWG09] B. Weber, P. Müller, P. Wonka, and M.H. Gross. Interac-
tive geometric simulation of 4d cities. Comput. Graph. Forum,
28(2):481–492, 2009.

[WWSR03] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant
architecture. ACM Trans. Graph., 22(3):669–677, 2003.

[XFT+08] Jianxiong Xiao, Tian Fang, Ping Tan, Peng Zhao, Eyal Ofek,
and Long Quan. Image-based façade modeling. ACM Trans.
Graph., 27(5):1–10, 2008.

[XFZ+09] Jianxiong Xiao, Tian Fang, Peng Zhao, Maxime Lhuillier, and
Long Quan. Image-based street-side city modeling. In SIG-
GRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, pages
1–12, New York, NY, USA, 2009. ACM.

[YHL+07] T. Yang, Z. Huang, X. Lin, J. Chen, and J. Ni. A parallel
algorithm for binary-tree-based string rewriting in l-system. In
Proc. of the Second International Multi-symposiums of Com-
puter and Computational Sciences, pages 245–252, Los Alamitos,
California, 2007. IEEE Computer Society Press.

[YKG09] K. Yue, R. Krishnamurti, and F. Gobler. Computation-friendly
shape grammars. In Proceedings of CAAD futures, pages 757–
770, 2009.

[ZHW+06] K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo,
and H.Y. Shum. Mesh quilting for geometric texture synthesis.
Proc. of ACM SIGGRAPH 2006, 25(3):690–697, 2006.

[ZHWG08] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph., 27(5):1–
11, 2008.

124

Curriclulum vitae
Name: Markus Lipp

Date of birth: 15. 10. 1981

Nationality: Austrian

Email: lipp@cg.tuwien.ac.at

Languages: German, English

Education

Abbreviations: VUT = Vienna University of Technology

1997–2001: Technical High-School, main focus Telecommunica-
tions (HTL Nachrichtentechnik) in Innsbruck

June 2001: Graduation (Matura) (with distinction) from HTL
Innsbruck

2001–2010: Studies in Computer Science at the VUT with
special emphasis on Computer Graphics

April 2005: Graduation in Computer Science as “Bakkalaureus
der Informatik” from the VUT

September 2007: Graduation in Computer Science (with distinguished
honours) as “Diplom-Ingenieur der Informatik” from
the VUT (thesis: “Interactive Computer Generated
Architecture”)

Since October 2007: Phd student at the Institute of Computergraphics
and Algorithms

Employment

Abbreviations: WS= winter semester; SS = summer semester;

Summer 1998-2000: Practica at Electronic Works Reutte (EWR) work-
ing as electrician, one month each summer

Summer 2001-2004: Heavy shift worker at Plansee metallurgical prod-
ucts, one month each summer

February 2003: Website developer at Steel & Metals Market re-
search

Oct 2004–Apr 2005: Practica at the Institute for Computer Graphics
on “High Dynamic Range Rendering” (VUT)

Sept 2005–Oct 2005: Practica at VRVis research company on “Precalcu-
lated Global Illumination”

WS06: Tutor in computer graphics 2+3(VUT)

SS07: Tutor in real-time graphics (VUT)

Since October 2007: Research assistant at the FIT-IT project “Game-
world”’ (VUT)

126

	1 Introduction
	1.1 Procedural Modeling
	1.2 Artist Control for Procedural Modling
	1.2.1 Importance of artist control
	1.2.2 Types of Artist Control
	1.2.3 Visual Interfaces for Artist Control

	1.3 Real-Time Performance
	1.4 Dissertation thesis
	1.5 Contributions
	1.6 Overview

	2 Related Work
	2.1 Plants
	2.2 Architecture
	2.2.1 Shape grammars
	2.2.2 Split grammars
	2.2.3 Alternative approaches

	2.3 Urban Layouts
	2.3.1 Control through global input change
	2.3.2 Control through incremental editing

	2.4 Parallelizing L-Systems

	3 Direct Artist Control for Procedural Architecture
	3.1 Visual Editing Concepts
	3.2 Instance Locators for Local Control
	3.2.1 Selections
	3.2.2 Direct Modifications and Persistence

	3.3 Interactive Visual Editor for Grammars
	3.3.1 Building Editor
	3.3.2 Rule Editor

	3.4 Implementation and Results
	3.5 Comparison to Related Work
	3.6 Conclusion and Future Work

	4 Direct Artist Control for Procedural City Layouts
	4.1 Transformations of Urban Layouts
	4.1.1 Definition of Urban Layouts
	4.1.2 Non-Topological Transform
	4.1.3 Flexible Merging using Graphcut
	4.1.4 Hard Topological Merge

	4.2 Editing Operations Using Layers and Layout Transformations
	4.2.1 Layers
	4.2.2 Basic Editing Operations
	4.2.3 Further Examples of Direct Artistic Control Using Layers and Merging

	4.3 Persistent Anchored Assignments
	4.3.1 Definition of Anchored Assignments
	4.3.2 Usage of Anchored Assignments

	4.4 Results and Discussion
	4.5 Discussion
	4.6 Conclusion

	5 Parallel Generation of Multiple L-Systems
	5.1 Analysis of Parallelism in L-System
	5.1.1 Derivation
	5.1.2 Interpretation
	5.1.3 Multiple L-Systems

	5.2 Parallel Derivation
	5.2.1 Efficient L-system Representations
	5.2.2 Derivation

	5.3 Parallel Interpretation
	5.3.1 Non-Branching Module Strings
	5.3.2 Branching Module Strings

	5.4 Multiple L-systems
	5.4.1 Representation of Multiple L-systems
	5.4.2 Derivation of Multiple L-systems
	5.4.3 Interpretation of Multiple L-systems

	5.5 Results
	5.6 Discussion
	5.7 Conclusion

	6 Summary
	6.1 Research Outlook

	List of Figures
	List of Tables
	Bibliography
	Curriculum vitae

