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Abstract

In Augmented Reality applications it is important to have a good
description of the surfaces of real objects if a consistent shading
between real and virtual object is required. This thesis emphasizes
on this topic as the thesis is a part of the RESHADE1 project whose
aim is to deliver a scene of virtual and real objects mixed together
where difference is not noticable for the viewer. That means that
virtual objects also influence the appearance of the real objects.
If such a description of a surface is not available it has to be esti-
mated or approximated during runtime.
In my bachelor thesis I will present certain methods that deal with
real-time bi-directional reflectance distribution function (BRDF)
approximation in augmented reality. Of course the most impor-
tant thing is that the applications I present all work in real-time and
compute good (and real) looking results.
There are different methods on how to achieve this goal. Most of
the methods I am going to present work via image based lighting
and require a 3D polygonal mesh representation of the object whose
BRDF shall be approximated. Some methods estimate the BRDF
parameters via error values and provide results at each iteration.
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1 Structure of this thesis

After a brief introduction about augmented reality, BRDF and
BRDF approximation I will describe the papers listed in Section
2 in detail, give a summary about the parts that concern BRDF
approximation or estimation and I will conclude each method de-
scription with a short paragraph where I will point out some prob-
lems with the algorithm and their performance and usability in aug-
mented reality. The summaries of the papers are chronologically
arranged beginning with a paper from Yu et al. from 1997 and con-
cluding with a paper from Ritschel and Grosch from 2008.
In each section I will give a summary of the presented paper with
a short discussion about performance and problems which might
occur. After the summary of the papers I will compare all the pre-
sented papers. The main focus here will be performance, as this is
the most important part of the approximation, but photorealism (if
provided) is also important.
At the end I will compare the presented methods in matter of per-
formance and photorealism and give a general conclusion over the
topic.

2 Introduction

Several papers deal with the problem of real-time BRDF approxi-
mation. BRDFs are functions with lots of parameters that describe
how a certain surface reflects incoming light. If a BRDF for
certain objects is not known it has to be approximated as closely as



possible. In Augmented Reality applications it would be desireable
to do it during runtime to allow maximal scene dynamic.
We need a good representation of the reflection behaviours of the
surfaces and, what makes it even more difficult, we need them in
real-time.
The most of the presented methods are rather similar, as all use
image based lighting. Still there are differences in performance and
photorealism which I will try to point out at the end of the section
and again in the section at the end of this thesis.

The papers presented in this thesis are:

• Inverse global illumination: Recovering reflectance models of
real scenes from photographs, [Yu et al. 1999]

• Image-Based Rendering of Diffuse, Specular and Glossy Sur-
faces from a Single Image, [Boivin and Gagalowicz 2001]

• Photorealistic rendering for augmented reality using environ-
ment illumination, [Agusanto et al. 2003]

• Recovery of material under complex illumination conditions,
[Wu et al. 2004]

• A Framework for Automatically Recovering Object Shape,
Reflectance and Light Sources from Calibrated Images,
[Mercier et al. 2007]

• Recovering surface reflectance and multiple light locations
and intensities from image data, [Xu and Wallace 2008]

• On-line estimation of diffuse materials, [Ritschel and Grosch
2008]

2.1 A survey to Augmented Reality

Basically Augmented Reality is an alteration of Virtual Reality. In
Augmented Reality virtual three dimensional objects are being in-
tegrated into a real scene, so the user can still see and move in the
world around him. According to Azuma Augmented Reality sys-
tems must meet the following charactaristics: [Azuma 1997]

1. Combines real and virtual

2. Interactive in real-time

3. Registered in 3D

What is important here is that all virtual objects must be interactive
3D objects. So simple blending of 2D objects does not count as
Augmented Reality. Augmented Reality applications are found in
medicine, entertainment and visualisation amongst others.

Figure 2: A video see through HMD. Picture from
http://www.vrlogic.com/

How is this being achieved?

There are two different approaches to Augmented Reality namely
optical and video. The optical approach is realized with a
see-through HMD (Head-Mounted Displays). As the name says,
the user sees the real world through this device but also virtual
objects can be added to the users sight by reflecting these virtual
images onto the combiners. While in the 90s those devices were
big and not really handy, there are nowadays HMD which have
the size of normal glasses. They can be adapted to smartphones
which could process complex AR applications in future as
there are already some rudimentary applications like World Wide
Signpost2 which lets you annotate buildings at different viewpoints.

The other possibility is to use video-see-through HMD (see
Figure 2). The real world gets recorded by a camera, merged with
virtual objects and then is shown on an HMD-device [Azuma
1997]. This method is nowadays used in many smartphone and
tablet PC applications like games or architecture programs.

2.2 BRDF approximation

Bidirectional Reflectance Distribution Functions describe how in-
coming light gets reflected by a particular material and has first
been described by Nicodemus et al. [Nicodemus et al. 1977]. It
should at least combine both the diffuse and the specular part (i.e.
highlights) of the reflection. The BRDF shown here is a 6 dimen-
sional (location, four angles and wavelength) function, but it can be
more- or less-dimensional:

fr =
Lr(ωr)

Li(ωi)cosθidωi
, (1)

where L(ωr) marks the flux of reflected light at direction ωr, L(ωi)
is the flux of incoming light at direction ωi and θi is the angle be-
tween the surface normal at a point i and the light incident on that
point. An image of the BRDF and those parameters can be seen in
Figure 3.

Figure 3: Geometry of incoming and reflected light. The z-axis
marks the surface normal [Nicodemus et al. 1977].

2http://studierstube.icg.tu-graz.ac.at/handheld ar/wwsignpost.php



Reflected radiance is defined by

Lr(θr,φr) =
∫ 2π

0

∫
π/2

0
Li(θi,φi) fr(θi,φi;θr,φr)cosθi sinθidθidφi.

(2)

where fr is the BRDF (the rest of the parameters will be explained
later in Section 9 at Equation 39 which is basically the same equa-
tion with a different parametrization) defined by two incident and
two reflected angles. fr is bi-directional because the incident and
reflected directions can be reversed and the function will return the
same result [Ward 1992].
If the BRDF is not known it has to be approximated or interpo-
lated respectively. In most of these cases we use the algorithms
presented by Phong [Phong 1975] or Ward [Ward 1992]. We
will later see that there exist some BRDF-approximations for Aug-
mented Reality which deliver parameters for these BRDF mod-
els. For a better approximation of the BRDF Lafortune [Lafor-
tune et al. 1997] made an important contribution in presenting the
Generalized Cosine Lobe Model, where reflectance properties at
different camera angles were rendered properly with just linear ba-
sis functions. Their method works very well on broad and glossy
reflectance lobes.
Basically the BRDF is the most important part of the Rendering
Equation (see Equation 2). Sometimes the BRDF alone is called
Rendering Equation.

2.2.1 Lambert’s Law

A Lambertian reflector is a surface which can be thinked of as
purely diffuse. The reflected radiant light energy from any point
on the surface is calculated with Lambert’s cosine law which states
that the amount of radiant energy coming from any small surface
area dA in a direction φN relative to the surface normal is porpor-
tional to cosφn. The intensity is the same for all viewing directions
which can be described as

α
cosφN

dAcosφN
= constant (3)

where α is the viewing angle [Hearn and Baker 2004]. This con-
stant parameter is usually spoken of as kd which denotes the diffuse
reflectance parameter.

2.2.2 Phong’s reflectance model

One of the most efficient and frequently used BRDF models was
introduced by Phong [Phong 1975]. He defines shading as a func-
tion which yields the intensity value of each point on the surface of
an object from the characteristics of the light source, the object (the
material properties) and the position of the observer (important for
specular highlights) [Phong 1975].
The specular part of the reflected light at point p can be computed
as

Ip = ks cosn
φ (4)

where φ is the viewing angle relative to the specular reflection di-
rection ωr, ks is the specular reflectance parameter, and n is the
specular exponent where the value for n is direct proportional to the
specular reflectance of the surface [Phong 1975] [Hearn and Baker
2004].

The interesting part of his work is of course the specular reflectance.
To simplify this model, cosφ from the original fomula can be re-
placed with V ·ωr, where ωr = (2N ·ωi)N −ωi, N is the surface
normal of this point, V is the viewing vector and ωi is the direction
of the incoming light [Hearn and Baker 2004].
This simplification works under the assumptions that the light
source and the observer are located at infinity [Phong 1975]. That
leaves us with

Sspecular = ks(V ·ωr)n. (5)

So for the Phong shading model you only need three parameters:
the diffuse reflectance kd , the specular reflectance ks and the shini-
ness n.

2.2.3 Ward’s reflectance model

Here more parameters are needed as this model is more physically
plausible.

Figure 4: A gonioreflectometer with movable lightsource. Picture
by [Ward 1992]

To find the correct BRDF Ward proposed to use a goniorefelctome-
ter (see Figure 4) to get all the parameters needed and then use them
for the isotropic gaussian model

fr,iso(θi,φi;θr,φr) =
ρd

π
+

ρs√
cosθi cosθr

exp[− tan2 δ/α2]
4πα2 . (6)

where ρd is the diffuse, ρs is the specular reflectance and α is the
standard deviation of the surface slope. 1

4πα2 is the normalization
factor which replaces the geometric attenuation factors which are
usually difficult to integrate [Ward 1992].
Ward states that this model is superior to the model presented by
Phong (Section 2.2.2) as it is more physical plausible and the nor-
malization factor guarantees energy balance. The alteration of the
isotropic gaussian model to the anisotropic case is realtively simple.
The anisotropic gaussian model is

fr(θi,φi;θr,φr) = ρd
π

+
ρs√

cosθi cosθr

exp[− tan2 δ (cos2 φ/α2
x +sin2

φ/α2
y )]

4παxαy

(7)



where φ is the azimuth angle of the half vector projected into the
surface plane, αx is the standard deviation of the surface slop in the
~x direction and αy is the same for the~y direction. [Ward 1992].
The papers I will present that try to approximate the parameters for
Ward’s reflectance model try to find all the missing parameters for
this gaussian anisotropic model.

2.3 Finding Illumination from an image

Some of the following papers determine the scene illumination
from a high dynamic range (HDR) image. This method of image
based rendering was developed by Debevec [Debevec 1998] and
[Debevec and Malik 1997].
Before these contributions light sources had to be determined man-
ually or the user at least had to refine a lot of the resulting data. With
the method of the image based model an HDR fisheye picture of the
scene is taken and all light sources of this scene can be determined.
To achieve this, they split the scene into three components:

1. Distant scene

2. Local scene

3. Virtual objects in the scene

The distant scene illuminates the objects but all light reflected to
the distance will be ignored. The local scene are all the polygons
and meshes that interact with the object. So here the intereflections
between the objects and the scene should be taken into account.
Ideally all these three components are well modeled and positioned
and a global illumination algorithm renders the whole scene.

3 Inverse Global Illumination: Recovering
Reflectance Models of Real Scenes from
Photographs

An approach at image based rendering has been made by Yu et al.
[Yu et al. 1999]. Although their paper has not much to do with
augmented reality (and nothing with real-time) it still presents an
interesting algorithm on how to gain reflectance properties from
a real scene and use them afterwards as paremeters for a virtual
scene, which of course can be adapted to augmented reality as
they write in their introduction. They don’t say that their approach
works at real-time, however this paper is from 1999 and it is a good
guess that it will work interactively today. Little disadvantages
are that their algorithm limits itself to low parameter reflectance
models, it presumes the diffuse part of the reflectance to vary arbi-
trarily over any surface and furthermore it presumes the specular
part to be constant. Nevertheless I will discuss their contribution in
this section as their sampling of diffuse and specular reflectance is
rather interesting for approximating BRDFs in augmented reality
applications.

Basically their algorithm creates a 3D geometric representa-
tion of the scene using a sparse set of photographs. From this rather
small set it is impossible to gain all the needed information on the
BRDFs, that’s why they made the aforementioned limitations.
The inputs for their algorithm are the geometric model of the scene,
a set of radiance maps taken from the photographs under known
illumination and partitioning of the scene into areas with similar
reflectance properties for the non-diffuse parts. They address the
problem of gaining the illumination parameters as inverse global
illumination and the recovering of the diffuse reflectance inverse
radiosity [Yu et al. 1999].

Before addressing the problem of general surfaces they make
a number of calculations for special cases. At first they make the
assumption that all surfaces are purely diffuse reflectant.
The inverse radiosity equation is easy to calculate. For ”normal”
radiosity they have the well known equation as

Bi = Ei +ρi ∑
j

B jFi j, (8)

where Bi is the resulting radiosity, Ei is the emission of the light
coming from that patch i, ρi is the diffuse albedo and Fi j is the form
factor between the patches i and j [Sillion and Puech 1994].
From the photographs which are also taken from the lightsources
we can get the radiance Bi via HDR-techniques contributed by De-
bevec [Debevec and Malik 1997]. Since they assumed the surfaces
to be perfectly diffuse, Ei is also known. The formfactors can be
retrieved from the known geometry, so that leaves us with

ρi =
Bi−Ei

∑
j

B jFi j
(9)

to get to the diffuse albedo in this special case.

Another special case helps them to calculate the BRDF. The
special case here is that they assume to have a surface with
uniform BRDF which is illuminated by a point light which is again
photographed with a camera. As input they get the radiance Li
from the photograph of every point Pi in direction of the camera
which lets them calculate Ii, the irradiance incident at that point.
They use Ward’s [Ward 1992] BRDF model for this case, as it
only needs two parameters the diffuse term ρd

π
and the specular

term ρsK(α,θ), where ρd and ρs are the diffuse und specular
reflectence properties of the surface and K(α,θ) is a function,
where α is the surface roughness vector (for the specular highlight)
and θ is a vector of the azimuths and elevation of the incident and
viewing directions (see Section 2.2.3).
So for each surface they now get

Li =
(

ρd

π
+ρsK(α,θi)

)
Ii. (10)

As mentioned before, Li and Ii can be measured or calculated re-
spectively from the photographs. θ is also known, so they just
need to estimate the reflectance parameters and the roughness vec-
tor, which can be done through nonlinear optimization according to
Yu et al. [Yu et al. 1999].
Now I will discuss the general case of finding BRDFs in the contri-
bution from Yu et al. We now have surfaces which can be diffuse
and/or specular. To get the BRDF of such a point Pi viewed from
camera Cv, we first need to get the irradiance. We already have
this equation for the special perfectly diffuse case. Generally Equa-
tion 10 is

LCvPi = ECvPi +ρd ∑
j

LPiA j FPiA j +ρs ∑
j

LPiA j KCvPiA j . (11)

Again everything except for α and the reflectance terms ρs and ρd
are known. To get these parameters they need a photograph of every
surface under specular lighting conditions, to record the radiance
coming from that patch.

The specular component of a surface is different to the direction
from the viewpoint of the camera and from the direction of another
surface (see Figure 5). This difference is denoted as ∆S. To
calculate these specular differences the BRDF of A j has to be
known, which is not the case. So ∆S needs to be estimated which



Figure 5: Specular highlight from Pi as viewed from the camera and
another patch A j. Picture from [Yu et al. 1999]

happens in an iterative framework also presented by the authors.
The initial value for this iterative process sets ∆S = 0, so that the
L-values (the radiance) from Figure 5 are equal.

As now all the patches’ radiances are recorded we have a
similar optimization problem as we had above. This process can
be made easier if the surfaces get subdivided into a hierarchy of
patches and link the sample points. So we get the radiance from a
patch to a sample point LPiA j and an associated ∆S.
Each sample point gathers radiance from not only one patch but
from all the surfaces surrounding it. To obtain all the highlights the
authors present the following algorithm

1. For each camera position C

2. For each polygon T

3. For each light source O

4. Obtain the intersection P between plane of T and line CO′ (O′
and O are symmetric about T);

5. Check if P falls inside polygon T;

6. Check if there is any occlusion between P and O;

7. Check if there is any occlusion between C and any point in a
local neighborhood of P;

A highlight area is detected if P passed all the above tests.
Now to complete the inverse global illumination process they first
find a BRDF for all surfaces independently. After having done this
they use the found information on the radiance parameters L and
the specular differences ∆S to refine the found BRDFs. They do
this a couple of times until the final solution is found.

A rather huge challenge is to estimate the ∆S. Yu et al. did
this with Monte Carlo raytracing with only one bounce. The
bounce of a patch A j is random but weighted by the function
K(α,θ) which denotes the direction of the specular light. So most
of the bounces will fall into the cones Q in Figure 6, which are
centered around the mirror directions. Now ∆S can be calculated as

∆S = ρsA j (LQPiA j
−LQCK A j

) (12)

according to Yu et al. [Yu et al. 1999].

The next part is to model a function, called albedo map, on each
surface. Yu et al. present the diffuse albedo for a point x on a
surface as

ρd(x) =
πD(x)
I(x)

, (13)

where D(x) is the diffuse radiance map and I(x) is the irradiance
map.
D(x) gets computed by substracting the specular part from the
whole radiance L(x), which we obtained from the photographs. I(x)
can be calculated from the direct illumination using the form fac-
tors. To minimize errors that can occur due to wrongly estimated
high specular components they eliminate the highest observed spec-
ular part at different viewing angles.

Figure 6: Ray tracing through the patches to find specular reflec-
tions. Picture from [Yu et al. 1999]

3.1 Problems and Performance

The running time of their algorithm was about six hours on a 300
MHz PC using 40 HDR images. Whereas I don’t think that’s possi-
ble to do in real-time now, it still shows an interesting approach to
get BRDF parameters for a known lighting model.
Also there occured errors in the estimation of the BRDF which af-
fected the diffuse part of the illumination the most.
Another disadvantage is, that a 3D geometric representation of the
scene is needed as input parameter.

Figure 7: Result after the first iteration. All specular components
are zero.



Figure 8: Result after all iterations. Both pictures from [Yu et al.
1999]

4 Image-Based Rendering of Diffuse,
Specular and Glossy Surfaces from a
Single Image

This approach, developed by Boivin and Gagalowicz, addresses
the problem in an iterative way [Boivin and Gagalowicz 2001].
Every iteration step adds another level of detail to the rendered
scene until the result - rendered with Ward’s BRDF reflectance
model [Ward 1992] - looks well enough.
The input for this algorithm are a simple photograph and a 3D
geometric model of the scene. Note that no HDR picture is needed.
The 3D geometrical model is built from the single photograph
which they achieved with Alias Wavefront’s Maya modeler and
which took them six hours. The 3D geometrical model of the scene
includes camera position and lightsources which are not exact but
approximated. Another idea is to add the lightsources manually to
the model. For the Ward reflectance model (which was also used in
the paper I presented in Section 3) five parameters are needed: the
diffuse reflectance ρd , the specular reflectance ρs, the anisotropy
direction ~x and the anisotropic roughness parameters αx and αy
[Boivin and Gagalowicz 2001].

As stated before the algorithm works iteratively and each it-
eration step is refined several times. Each subsequent state refines
the previous one based on an error picture between the (offscreen)
rendered picture and the original photograph. The algorithm
runs through a couple of assumptions where the next step is only
computed if the error value from the previous picture is over a
certain threshold. The assumptions are that the surface is

1. perfect diffuse

2. perfect specular

3. non-perfect specular

4. diffuse and non-perfect specular

5. isotropic (rough)

6. anisotropic (rough)

7. textured

Only if the assumption before is proven wrong with the error
picture the next assumption is being taken and a new picture gets
rendered and compared afterwards.

4.1 Perfect diffuse

The error ε is computed as the ratio between the average of the
radiances from an object (more exactly its a group of objects) in the
real picture and in the synthetic one.

ε̂ j =
B̂o j

B̂n j

=
̂T−1(Po j )
̂T−1(Pn j )

(14)

where B̂o j and P̂o j are the averages of the radiances and the pixels
of an object j in the real image and the index n marks the averages
of the same object j in the synthetic image. T () is a γ correction
camera transfer function.
The diffuse reflectance ρd can be corrected iteratively now with
help of this error value. For each rerendering iteration k:

ρdik+1 = ρdik × ε̂i

ρdik+1 = ρdik ×
∑

ni
j=1 f (ε̂ j)·(ε̂ j×m j)
ni

∑
j=1

f (ε̂ j) ·m j︸ ︷︷ ︸
6=0

(15)

where

f (ε̂ j) =

{
0, if ε̂ j ≥ (1+λ ) ·md
1, else

and is used to eliminate problems caused by smaller objects which
are more affected by noise. ε̂i and ε̂ j are the total error values be-
tween the original and the synthetic image for group i and object
j, ni is the number of objects for group i, md is the median of the
erros, λ is the authorized dispersion criteria and finally m j is the
number of pixels covered by the projection of object j [Boivin and
Gagalowicz 2001].
The steady refinement of ρd can be seen in Figure 9.

Figure 9: In the top row are from left to right the refined images
based on the error pictures below. Picture from [Boivin and Gaga-
lowicz 2001].

If the perfectly diffuse assumption failes (i.e. the error is too high)
the second assumption is tried (perfectly specular = all objects are
mirrors). This is easy to accomplish as you simply have to set the
diffuse reflectance ρd = 0 and the specular reflectance ρs = 1 and
replace all the ρd in Equation 15 with ρs.

4.2 Diffuse and specular

If there are still objects that have a high error value, it is now consid-
ered to be diffuse and specular (but no roughness is so far assumed)
although those surfaces do not appear so often. To get good ap-
proximations to these surface reflectances the error value has to be
minimized.



(T−1(Isynth)−T−1(Io))2 =
nbg

∑
i=1

(ρd ·Bd +ρs ·Bs−T−1(Io))2

where nbg is the number of pixels covered by the group projection.
Now the minimization

(
ρd
ρs

)
=
(

∑nbg BdT−1(Io)
∑nbg BsT−1(Io)

)(
∑nbg B2

d ∑nbg BdBs

∑nbg BdBs ∑nbg B2
s

)−1

has a solution for each wavelength R,G,B [Boivin and Gagalowicz
2001].

4.3 Isotropic surfaces

Now the surfaces are assumed to have a certain roughness factor
α . This roughness factor is considered in Ward’s BRDF Model
[Ward 1992]. Now ρd , ρs and α have to be minimized. Boivin and
Gagalowicz did this with the downhill simplex method [Nelder
and Mead 1965]. As the accuracy does not have to be that high
(10−2 for ρd and ρs and 10−4 for α respectively) the parameters
can be found within two minutes [Boivin and Gagalowicz 2001].

4.4 Anisotropic surfaces

Now all five parameters of Ward’s BRDF model have to be taken
into account: The diffuse and specular reflectances ρd and ρs, the
anisotropy direction~x and the roughness factors αx and αy. As they
already computed the rather independant ρd and ρs, they do not
have to calculate them anew.
Minimization of the remaining three parameters does not work and
only makes the error bigger as no global minimum can be found by
the downhill simplex method used in the isotropic case. So they de-
termined~x from the original picture. Their algorithm to that works
as follows:

1. Assume that the anisotropic surface is a perfect mirror

2. Estimate difference between the original image and the syn-
thetic one

3. In this difference picture find the part of the mirror where the
specular reflection is ”extended”.

4. Compute an index buffer for this mirror of all objects visible
from it

5. Find a reference surface which covers the largest area of the
mirror while being closest to it in a manner that the ratio
Area(reflected surface)/d(S, p) is maximized

6. Sample the anisotropy direction creating a number of vectors,
where each one determines a direction to traverse the error
image and compute the average of the standard error deriva-
tions computed in the error image, around the normal to the
anisotropic surface

7. Select the direction for which the average error becomes
smallest

8. This direction equals~x

where d(S, p) is the Euclidian distance between the center of grav-
ity of the selected surface and the center of gravity of the mirror
[Boivin and Gagalowicz 2001].
Now that their algorithm computed the anisotropy direction the re-
maining two parameters can be determined via the previously men-
tioned downhill simplex method.

4.5 Textured surfaces

This is their final assumption if all previous assumptions failed to
provide low error values. As the textures of the objects in the real
image are already lit by the lightsources they can not simply take
those textures as they would be overlit by the lightsources that are
already present in the virtual image. So they introduce the notion
radiosity texture that balances the extracted texture with an interme-
diate texture in order to minimize the error between the real and the
synthetic image, where these error minimizations follow the prin-
ciple I have shown in Section 4.1 (the iterations to minimize the
diffuse reflecatance error) [Boivin and Gagalowicz 2001].
To increase the speed of this method they propose several alter-
ations of the algorithm. For example, if the error after the specular
assumption is higher than 50% the algorithm goes directly to the
textured case as the isotropic and anisotropic cases last the longest
(almost 4 hours for the anisotropic case).

Figure 10: Result of the algorithm presented by Boivin and Gaga-
lowicz. These images show the usability of their approach for aug-
mented reality applications as there have been made some changes
from the original image. The image on the upper left side shows the
original image with some removed objects. The other ones show
the same scene under novel lighting conditions, new viewpoints or
with new objects. Picture from [Boivin and Gagalowicz 2001].

4.6 Performance and Problems

The recovery of the image in the anisotropic case took more than
four hours. With the enhancments they made the algorithm does
not have to try the isotropic and anisotropic cases as they do not
promise to deliver better results. So the two most time consuming
parts of their algorithm can be skipped if the error after the specular
assumption is too high.
The rendering of Figure 10 took about half an hour. The prepro-
cessing was of course more time consuming, the inverse algorithm
took them 4 hours and 40 minutes, where 4 hours alone have been



spent to recover the anisotropy parameters for the aluminium sur-
face [Boivin and Gagalowicz 2001].

5 Photorealistic rendering for augmented
reality using environment illumination

Agusanto et al. used an image based lighting approach [Agusanto
et al. 2003], [Debevec and Malik 1997]. They acquire the scene
radiance with HDR photography and process the data afterwards in
their rendering framework and render the pictures with the Phong
illumination model [Phong 1975].
Image based lighting means that radiance maps taken from a
real (HDR) picture are used to get the scene illumination. Those
radiance maps can be used to correctly illuminate virtual objects
rendered into the scene.
Other than Ritschel and Grosch who used two HDR cameras, Agu-
santo et al. used photography and a light probe. The light probe
is a calibrated reflectance sphere (a mirror ball) made of chrome.
A big advantage is the low cost of the utilities. The ball is placed
in the scene where the virtual objects will be positioned later and
pictures (with varying position, shuttertimes and exposure values,
see Figure 11) are taken. They made low dynamic range pictures
and assambled them with HDRShop [HDRShop ] developed by
Debevec et al. into one single HDR picture.
Of course the lighting conditions of the AR application needs to
be the same it was during the recording of the scene with the light
probe. Plus the camera should ideally be aligned to the viewer’s
point of view.
As they also obtain the interreflections between all objects in
the scene, these radiance maps can be used as environment
illumination maps in hardware based rendering which is employed
for AR.

Figure 11: The lightprobes photographed at different shutter times.
Picture from [Agustanto et al. 2008]

5.1 Creating illumination maps

To keep flexibility within their approach the environment maps are
derived from the radiance maps. Otherwise they would have to use
a sphere with different surfaces and materials for different objects.
Instead these different types of spheres (diffuse, specular, glossy...)
are simulated in a virtual environment which is basically just a box
textured with the previously obtained illumination map and the
demanded type of sphere in the middle of it (in a very small ratio

from 1:50 to 1:500).
The viewing vector needs to be directed at the center of the
sphere. The surrounding box serves as area light source for the
global illumination algorithm (ray tracing) to obtain the synthetic
illumination map.

5.2 Environment map prefiltering

To obtain the diffuse and the specular illuminations the environ-
ment maps run through a prefiltering process. This process is the
solving of the rendering equation (Equation 2). Agusanto et al.
used an approach presented by Kautz et al. [Kautz et al. 2000].
A prefiltered environment map captures all the reflected radiance
to a certain direction.

Lglossy(x;~v,~n,~t) =
∫

Ω

fr(~ω(~v,~n,~t), ~ω(~l,~n,~t))Li(x;~l) <~n,~l > d~l,

(16)

where ~v is the viewing direction and ~l is the light direction,
{~n,~t,~n×~t} is the local coordinate frame of the reflective surface,
~ω(~v,~n,~t) represents the viewing direction and ~ω(~l,~n,~t) the light
direction relative to that frame. The pre-filtered environment map
now stores the radiance of light reflected towards the viewing
direction ~v which is computed by weighting the incoming light
Li (which is basically the unfiltered environment map) from all
direction~l with the BRDF fr [Kautz et al. 2000].

5.2.1 Diffuse Environment Maps

Miller proposed to use only purely diffuse BRDF to prefilter envi-
ronment maps [Miller and Hoffman 1984]. So from Equation 16
they get

Ldi f f use(x;~v,~n,~t) =
∫

Ω

kdLi(x;~l) <~n,~l > d~l. (17)

Now all dependencies except for the normal vector are dropped and
the resulting two dimensional environment map is:

Ldi f f use(x;~n) = kd

∫
Ω

Li(x;~l) <~n,~l > d~l. (18)

and stores all diffuse illumination at point x [Kautz et al. 2000].

Agusanto et al. used several prefiltering techniques. Apart from
the diffuse map they also applied the Phong environment map since
they used the Phong illumination model for their rendering.

5.2.2 Phong Environment Map

The environment map for Phong’s BRDF model can be expressed
as:



Lphong(x;~v,~n,~t) =
∫

Ω
ks

<~rv(~n),~l>N

<~n~l>
Li(x;~l) <~n,~l > d~l

= ks
∫

Ω
<~rv(~n),~l >N Li(x;~l)d~l.

(19)

For the usage without prefiltering (as is supported in OpenGL) the
indexing can be done just with the reflection vector~rv:

Lphong(x;~rv) = ks

∫
Ω

<~rv,~l >N Li(x;~l)d~l. (20)

For the complete illumination model which Agusanto et al. used,
they follow a method from Miller [Miller and Hoffman 1984] and
Heidrich [Heidrich and Seidel 1999] and use a weighted sum of
a diffuse and a Phong environment map with a Fresnel term that
varies the ratio between the diffuse reflection and the lobe of the
specular reflection so that a wider variety of materials can be ren-
dered [Kautz et al. 2000]. The final environment map is:

Lo(~rv,~n) = Fd(<~rv,~n >)Ldi f f use +Fp(<~rv,~n >)Lphong (21)

5.3 Rendering

Rendering is done within a multi pass rendering framework to ren-
der different effects like antialiasing, stencil buffer and so on. The
framework presents itself as follows:

for a number of image samples do
Jitter the camera
Enable stenceling / blending operation
for a number of passes do

Add effects to the polygon model
end for
Render the polygon model
Do stencil / blending test
Perform accumulation buffer operation

end for

Some operations - like sampling of images - are only needed if
photorealism is required as they reduce the speed remarkably.
The number of images being sampled can be reduced to one if
photorealism is not that important.
As this framework enables stencil buffer (e.g. for shadow maps)
we don’t need global illumination to obtain shadows.

Now their implementation (with OpenGL commands) of this
multipass framework is presented. The most important commands
of their implementation are:

1. Enable blending

2. Transform the object

3. Enable 2D texture mapping

4. Set blending functions (GL ONE, GL ZERO)

5. Render the virtual object

6. Enable environment mapping

7. Set environment mapping to GL DECAL mode

8. Generate the sphere mapping texture coordinates

9. Set blending function
(GL DST COLOR, GL ONE MINUS SRC ALPHA)

10. Render the virtual object

and do this for all virtual objects.

The reason behind the multiple passes is to add one photorealistic
effect after the other in each pass. In the second pass for example,
the previously obtained illumination map is used to illuminate the
virtual object. With the use of the derived environment map they
don’t need to specify light sources for the rendering process. For
shadowing the lightsources are being approximated by the also
previously taken light probe image.

The algorithm has been tested using ARToolKit [Shared-
Space-ARToolKit. ] and 3D polygon models (The programming
language was C with OpenGL).

5.4 Performance and Problems

All models that have been rendered with this algorithm could be
drawn at almost real-time (> 17 fps). As this is a seven year old
paper (using just a 400 MHz machine) this surely will be much
faster today.

The main problem is that a lot of computations have to be
done before the actual rendering is done. The biggest advantage of
this approach is the high photorealism it provides (see Figure 12)

Figure 12: Diffuse and glossy models rendered at 17 fps. Picture
from [Agusanto et al. 2008]

6 Recovery of material under complex illu-
mination conditions

Wu et al. presented a method on how to recover the BRDF for
RADIANCE’s low parameter reflectance model, which also uses
Ward’s model, for a real homogenous object under complex light-
ing conditions from a HDR photograph of the object and one of the
environment to find the lightsources [Wu et al. 2004].
Important is that the object is lit in a way that enough specular high-
lights are seen, so that only one HDR image is sufficient. The il-
lumination field is computed via environment maps taken from dif-
ferent viewpoints.
Again their aim is to recover fr (here ρ) - the BRDF - from Equa-
tion 2, where all other variables are known. The parameters they



need for their modified RADIANCE reflectance model are specu-
lar, diffuse and directional diffuse refleactance and transmission.
The BRDF model they used can be expressed as

fr = max(0,~q ·~np)
[

ρd

π
+ρs

]
+max(0,−~q ·~np)

[
τd

π
+ τs

]
(22)

where
ρd = pC(1−a4)

ρs = rs
fs(~q)√

(~q·~np)(−~v·~np)

τd = a6(1− rs)(1−a7)pC

τs = a6a7(1− rs)
gs(~q)√

(−~q·~np)(−~v·~np)

rs =

{
a4 plastic
{a1a4,a2a4,a3a4} metal

where ~q is the direction from the surface point to a light source
sample, ~v is the direction of an eye ray, ~np is the surface normal
at the point p, C is the surface colour, p is the material pattern
and ai(i = 1, . . . ,7) are parameters. The ρ-parameters define the
reflection, the τ-parameters the transmission coefficients [Wu et al.
2004].
The two functions fs(~q) and gs(~q) have the form

fs(~q) =


e[(~h·~np)2−‖~h‖2 ]/(~h·~np)2/α

4πα
, isotropic

1
4π
√

αxαy
exp

[
(~h·~x)2

αx
+ (~h·~y)2

αy

(~h·~np)2

]
, anisotropic

(23)

and as they only consider opaque materials for the anisotropic case,
for the isotropic case

gs(~q) =
e(2~q·~t−2)/β

πβ
, (24)

where
αx = α = a2

5 + ω

4π

αy = a2
6 + ω

4π

β = a2
5−

ω

π

~t = ~v
‖~v‖

and~h is the bisection vector between the incident light ray and the
eye ray [Wu et al. 2004].

After the acquisition of the illumination maps they now pro-
ceed to recover the wanted materials for the object which is lit by
known lighting that is represented as an illumination field. Similar
to the approach described in Section 4 the recovery of the material
parameters is done via the minimization of a difference value
between the real (Ir) and a synthetic rendered (Io) image of the
object. The difference in the mean of least squares is

χ2 = ‖Io− Ir‖2 = ∑i ‖pOi− pri‖2 =
= ∑i[(roi− rri)2 +(goi−gri)2 +(boi−bri)2]

(25)

where r, g and b mark the colour values of a certain point p. This is
a nonlinear optimization problem that Wu et al. solved with simu-
lated annealing algorithm. The algorithm works with a set of initial
parameter values to optimize them and to reduce χ2 step by step
until a global minimum is found. These calculated parameters are
then used to render the object with ray tracing. A result of their
work can be seen in Figures 13 and 14.

Figure 13: a), b) and c) show the real objects, d), e), and f) the
rendered ones after the last optimization step. Picture by [Wu et al.
2004]

Figure 14: Left: Virtual objects rendered into a real (augmented
reality) scene. Right: Virtual objects rendered into a virtual scene.
Picture by [Wu et al. 2004]

6.1 Performance and problems

The recovery of the materials took them about 2 to 3 hours on a Dell
Dimension 4100 with a 667 MHz CPU and with 128 MB of work-
ing memory [Wu et al. 2004]. The method is similar to the method
by Boivin and Gagalowicz [Boivin and Gagalowicz 2001] and is
not remarkably faster. On the other hand they do not need a 3D
geometrical model of the scene which makes the precomputations
cheaper. The illumination calculations (extraction of lightsources
for the illumination map to light the virtual objects) they presented



were also rather interesting and take some computation cost but
they are not topic of this thesis.
As they also noted they can not reconstruct all materials especially
not high frequent materials as they would require additional light-
sources in the real scene.

7 A Framework for Automatically Recover-
ing Object Shape, Reflectance and Light
Sources from Calibrated Images

Mercier et al. [Mercier et al. 2007] present a method for recovering
object shapes, reflectance properties (for the modified Phong model
[Lewis 1994]) and the position of light sources from a set of images.
In my thesis only the surface and reflectance recovery is going to
be discussed. The modified Phong model is expressed as

Lr =
Lskd

πr2 cosθ +
(n+2)Lsks

2πr2 cosθ cosn
φ (26)

where Lr is the radiance reflected, Ls is the radiance emitted by a
light source S arriving at P, r is the distance between S and P, θ is
the angle between the surface normal and the direction of the light
source, φ is the angle between the mirror reflection direction and the
actual reflection direction and again ks and kd are the specular and
diffuse parameters and n is the specular exponent.

For each of the images in the image-set the position and orientation
of the camera have to be known (see Figure 15).

Figure 15: Camera setup with fixed light sources. [Mercier et al.
2007]

They made different images for different purposes. In Figure 15
you see that they made an overexposed image for segmentation of
the surfaces and a second image for reflectance and for the estima-
tion of the lightsources.

Their first step is to acquire the object shape from these images
using a shape to silhouette approach. With the help of image
pixels they used the marching cubes algorithm for providing
the polygonal surface and the surface normals (that need to be
estimated for each voxel) that are later needed to estimate the
BRDF parameters.
After they have acquired the polygonal mesh of the object they
now proceed to the estimation of the light source directions which
can be found using specular highlights seen on images. They also
note that diffuse or specular self-interreflections sometimes disturb
the BRDF estimation [Mercier et al. 2007].

Figure 16: a) The overexposed image, b) normal image, [Mercier
et al. 2007]

During the estimation of the lightsources they also present
an identification algorithm to provide the BRDF coefficients again
using an error function Ea.
They split the estimation of lightsources into two classes. The first
one applies to diffuse the second to the glossy surfaces. To find the
type of surface a variation coefficient V class is computed from the
radiance samples:

V class =

√√√√∑
NbV
i=1 ∑

NbLi
i=1

(
Li, j−Lmoy

i
Lmoy

i

)
∑

NbV
i=1 NbLi

(27)

where NbV represents the number of voxels in the class, Vi is the ith
voxel, Li, j is the jth radiance sample of Vi, and Lmoy

i is the average
radiance of Vi; NbLi corresponds to the number of radiance samples
in the voxel Vi [Mercier et al. 2007]. Now for a perfectly diffuse
surface Equation 27 equals zero. V class increases directly propor-
tional to the specular aspect of the surface i.e. that it is higher the
glossier a surface is. Some examples for V class:

• V class < 0.15⇒ perfectly diffuse

• V class > 0.30⇒ glossy

• 0.15 ≤ V class ≤ 0.30⇒ no decision possible. For this class
Mercier et al. apply algorithms for both diffuse and glossy
surfaces.

For both surface types a point light and a directional light source are
estimated according to the error function Ea [Mercier et al. 2007]:

NbV

∑
i=1

NbLi

∑
j=1

[(
Lsk
πr2 cosθi +

(n+2)Lsks

2πr2 cosθi cosn
φi, j

)
−Li, j

]2

(28)

where Li, j corresponds to the radiance sample j of the voxel Vi.
The reflectance paramters Lskd , Lsks and n are not known and need
to be estimated. Mercier et al. applied an identification algorithm
with the help of a gradient descent method in order to minimize
Ea and hereby find the BRDF parameters. The parameters are cho-
sen this way that Ea becomes as low as possible and the type of
surface is known. This is applied for each class and to refine the
BRDF parameters a final identification algorithm is applied again
using the error Ea. To reduce noise and grazing angles, Mercier et
al. used only radiance samples corresponding to a small incidence
angle lower than 45 degrees (see Figure 17).



Figure 17: Estimated BRDF together with actual radiance samples
[Mercier et al. 2007]

7.1 Performance and Problems

They used a Dual Intel Xeon 2.4 GHz processor with 1 GB of work-
ing memory. The BRDF estimation of the clown Figure (see Fig-
ure 18) took 6 minutes and 30 seconds precomputation time.

Figure 18: Result of the algorithm with sharp specular highlights
[Mercier et al. 2007]

The approach by Mercier et al. has also certain limitations. For
example is it hard to acquire the surface proberties if the object
posseses a variety of textures. Also diffuse interreflections are ig-
nored hence certain artifacts can affect the shading [Mercier et al.
2007].

8 Recovering surface reflectance and mul-
tiple light locations and intensities from
image data

Xu and Wallace presented a method to recover reflectence prop-
erties from multiple objects using a 3D image. Their approach
provides the diffuse and constant specular reflectance parameters
from object images [Xu and Wallace 2008]. They also recover the
light source parameters.

To get the surface geometry they used an active 3D scanner
and a stereo pair of CCD cameras. They split their approach into
two steps. The first step is to get the light source parameters and the
specular reflection for the Phong-Blinn reflection model with the
simplified formula for the specular irradiance which also considers
the light intensity (see Equation 5 for the original formula)

Ispec = ksL(P)(H ·N)n (29)

where L(P) is the light intensity at point P, N is the normal at that
point, n is the specular exponent and H is the halfway vector which
calculates as

H =
l +V
|l +V |

,

where l is the normalized vector pointing to the lightsource and V
is the viewing vector [Xu and Wallace 2008], [Hearn and Baker
2004].

8.1 Obtaining the specular reflectance

Remember that they used two cameras. They assume that both
cameras have the same radiometric constant α0 and give the im-
age brightness (diffuse and specular reflectance) as

I(p) =
α0kdL0

|l−P|3
[(l−P) ·N]+

α0ksL0

|l−P|2
(H ·N)n (30)

which gives two equations one for each camera where only the
halfway vector H differs.

{
I(p1) = α0kd L0

|l−P|3 [(l−P) ·N]+ α0ksL0
|l−P|2 (H1 ·N)n

I(p2) = α0kd L0
|l−P|3 [(l−P) ·N]+ α0ksL0

|l−P|2 (H2 ·N)n (31)

Now for convenience Ss = α0ksL0 and the difference from both
camera images is

∆I(P) =
Ss

|l−P|2
[(H1 ·N)n− (H2 ·N)n]. (32)

The part for the diffuse reflectance disappeared as the diffuse re-
flectance is the same for each viewpoint and only the specular re-
flectance differs. Now Xu and Wallace compute the difference εr
between the meassured and the predicted values

εr(Pi) = ∆Im(Pi)−∆I(Pi)
= ∆Im(Pi)− Ss

|l−Pi|2 [(Hi1 ·Ni)c− (Hi2 ·Ni)n] (33)

where i = 1, . . . ,n, n indicates the number of successfully measured
brightness values in the paired images [Xu and Wallace 2008].
Now this error gets again minimized. The unkown variables are
the X ,Y,Z values of l, the specular coefficient Ss and the specular
exponent c. The minimization function is called f.

flr =
n

∑
i=1

[
∆Im(Pi)−

m

∑
j=1

(
Ss j

|l j−Pi|2
[(Hi j1 ·Ni)c− (Hi j2 ·Ni)c]

)]2

.

(34)



To solve this minimization Xu and Wallace used a gradient de-
scent least-square optimization procedure on f using the Levenberg-
Marquardt method. To compute the initial values for Ss j (the j pa-
rameter is for multiple lightsources) the following steps have to be
made. First a linear system is obtained by approximating the mea-
sured image brightness difference ∆Im using the predicted values
∆I.


1

|l−P1|2 [(H11 ·N1)c− (H12 ·N1)n]
...

1
|l−Pn|2 [(Hn1 ·Nn)c− (Hn2 ·Nn)n]

 [Ss] =

 ∆Im(P1)
...

∆Im(Pn)

 (35)

This equation has the form BlrSs = ∆Im. The least-squares solution
for this linear system is determined from [Xu and Wallace 2008]

Ss = (BT
lrBlr)−1BT

lr∆Im. (36)

8.2 Obtaining the diffuse reflectance

Following the method to gain the specular reflectance Xu and Wal-
lace now use Equation 30 to estimate the diffuse parameter.


δ1(Pi)Im(pi1) = δ0(Pi)δ1(Pi)

[
SdiSs
|l−Pi|3 [(l−Pi) ·Ni]+ Ss

|l−Pi|2 (Hi1 ·Ni)n
]

δ2(Pi)Im(pi2) = δ0(Pi)δ2(Pi)
[

SdiSs
|l−Pi|3 [(l−Pi) ·Ni]+ Ss

|l−Pi|2 (Hi2 ·Ni)n
]

(37)

By adding those two equations Sdi,(i = 1, . . . ,n′) are estimated by

Sdi = [δ1(Pi)Im(pi1)+δ2(Pi)Im(pi2)]
δ0(Pi)(δi(P−I)+δ2(Pi))Ss[(l−Pi)·Ni]

−

δ0(Pi)Ss|l−Pi|[δ1(Pi)(Hi1·Ni)n+δ2(Pi)(Hi2·Ni)n]
δ0(Pi)(δi(P−I)+δ2(Pi))Ss[(l−Pi)·Ni]

(38)

where n′ is the number of successfully measured brightness values,
the δx(Pi) denote visibiltiy of the point Pi to the light (δ0), the first
(δ1) and the second image (δ2) [Xu and Wallace 2008].

Figure 19: a) and b) are the two stereo images of the camel cup,
c) is the rendered image with the estimated parameters from a new
viewpoint [Xu and Wallace 2008]

8.3 Performance and Problems

A result of Xu and Wallace’s work can be seen in Figure 19.
The difference between the estimated specular parameters and the

ground truth was (at 1% additive noise) 4.76% for Ss and 1.1% for
c. This image had only one point light source. The error goes up as
the number of lightsources increases.

9 Online Estimation of Diffuse Materials

Ritschel and Grosch presented a way to get diffuse parts of BRDFs
at runtime from digital photographs [Ritschel and Grosch 2008].
They do not really work in real-time environments but expect their
approach to also work in real-time. The only difference really is the
parametrization of the model (which has to be done automatically
at real-time). They used two HDR video cameras to get the diffuse
materials. The equation for the outgoing radiance on a photograph
at a surface point is

L0 =
∫
2π

fr(ωi,ω0)Li(ωi)cos(θi)dωi (39)

where fr is the BRDF of the surface, Li is the incoming radiance
from direction ωi and cos(θi) is the cosine of the angle between
incoming direction and surface normal.

If we follow the calculations of Debevec [Debevec 1998] the initial
values for L0 are being approximated as perfectly diffuse ( fr = 1).
So after putting fr in front of the integral and dividing by the in-
coming radiance L (and inverting the whole equation afterwards)
we get fr for each part of the image as a result of the fraction

fr =
L∫

2π

Li(ωi)cos(θi)dωi
. (40)

The previously mentioned HDR cameras are positioned as follows.
One is observing the object whose BRDF shall be approximated
and the second is filming the light source (see Figure 20). This
light-camera is at a fixed position and records the whole environ-
ment illumination with a fisheye lens. The object-camera should
be moved as close to the object as possible so we get the same
illumination on the virtual object as on the camera.

The object camera should take pictures from different viewing
angles and capture the illumination of the objects it observes.
The rotation of the objects needs to be known. Also a marker is
placed besides the object to track camera position and orientation.
This happens via optical tracking with ARToolkit [Shared-Space-
ARToolKit. ]. They used a couple of markes with known position
to increase the precision of the process.
But first the synthetic object is required to be in a polygonal
mesh representation. As said before, Ritschel and Grosch did
this offline (manually), but this can be done using an automatic
parametrization as presented by Levy [Lévy et al. 2002].

The images captured with this camera run through a couple
of processes discussed in the following. The software side of their
procedure is divided into two steps: Inverse Texturing (storing the
camera images to a texture) and Inverse Lighting (processing these
textures to one final reflectance texture).
As their approach only works for diffuse lighting, they propose to
factorize the software steps into orthogonal components to get the
specular part as well.



Figure 20: Camera setup by [Ritschel et al. 2006]

Inverse Texturing. The pixels sampled are being converted to
texels (from vertex- to texturespace) then drawn into a texture.
The next step is to discard all pixels before the near-plane of the
camera. Then the perspective has to be transformed through linear
interpolation and translation. Finally the texture gets drawn onto
the object as a triangle. A vertex program transforms the required
vertices and exchanges them with the texture coordinates. So the
name explains as they sample the pixels (RGB color) from an
image to draw into a texture rather than sampling from a texture to
draw the triangles onto the image.
Then all the pixels that are not seen from the viewer’s angle are be-
ing cut out via an id buffer. To get this buffer the whole scene gets
rendered from the object camera’s point of view using an OpenGL
command to encode the facets as a certain color with depth buffer-
ing and culling enabled. This procedure works better than a depth
buffer as it is only required to know whether a texel is equal depth
(and not behind another texel as it is required by depth buffering).
The next thing to do after the first rendering step is to compare all
the facets. If id’s of two facets are unmatched the first facet’s alpha
is set to zero (i.e. it’s not going to appear in the final image). They
also propose to use this technique to occlude objects that don’t be-
long to the final image (this only works if their geometry is known).

To get a decent alpha channel of the texture a so called con-
fidence (i.e. weights) is also stored depending of the viewing angle
and distance. The confidence is a sum of

• Viewing distance λd (larger value for closer views)

• Viewing angle λa (larger value for normal angle)

• Distance to camera image center λp (larger values near the
center)

• Camera speed λv (larger values for slower motions)

The borders of LDR images are darker and blurred, therefore
their confidence is lesser than the one in the middle of the object.

Also they experienced problems while determining λv as motion
blurring appears when moving the camera not continously. They
call these t observation textures Ai = (A1,A2, ...At).

Inverse Lighting. From At they determine a radiance atlas
Rt storing all the diffuse values. To get these values Equation 40 is
used (the radiance L is being observed, the irradiance (the bottom
part of the fraction) needs to be simulated). When they finally
have t textures and radiance maps the need to compute a final map
R f inal . This is done iteratively. First they set

R f inal = R0.

Now a small part of the following Ri are added at every step t.

R′f inal = (1−λ )R f inal +λRt

λ can be chosen arbitrary but λ = 0.02 gives good results. This
whole operation is an averaging of all Ri to determine a final radi-
ance map and eliminating noise.

Illumination can now be determined by using a technique presented
by Havran [Havran et al. 2005]. Basically they determine the
lightsources recorded by the light-camera (the second camera
which is directed at the lightsource as in the previously mentioned
model) and use them for environment mapping.

After the determination of the light sources shadows are being
drawn via multiple shadow maps (which can happen in real-time).
Here the real shadow of the object is being removed and the new
computed one is being drawn.

9.1 Performance and problems

Figure 21: A cloned donkey from [Ritschel et al. 2008]

The algorithm presented by Ritschel and Grosch has a performance
of 5 fps with a model that has 100 facets and a resolution of
320x240 (results see Figure 21). This can be faster today, as their
paper is 2 years old. The most time consuming process was the in-
verse lighting (70 ms). As this is done on the GPU (on a GeForce
7800) the algorithm can be faster today (e.g. on a GeForce GTX



480). Of course the performance always depends on the number of
pixels and texels.
The presented method is not without certain unsteadinesses. The
problem of optical tracking (where the error is proportional to the
distance from the tracker to the object) is always present.

10 Comparison of the presented methods

The first presented paper by Yu et al. used an inverse global illumi-
nation algorithm to approximate the BRDF parameters [Yu et al.
1999]. It is clear that this approach is very expensive and not as
practical as more modern approaches which mostly cite Yu et al.’s
work. The running time of this work is not that important as their
computations can be done during the pre-computation step and we
can not say how fast their approach would work with todays GPUs.
The largest part of the papers presented in this thesis used image
based methods to estimate the BRDF parameters. Most need an
HDR, or couple of LDR pictures of the scene and a 3D model of
the scene/of an object. Some papers ( [Yu et al. 1999], [Boivin and
Gagalowicz 2001], [Agusanto et al. 2003]) need a polygonal mesh
as input. The other ones include or reference to a parametrization
method which is of course also costly.
So if a 3D polygonal mesh is known those three methods can be ap-
plied to approximate or estimate the BRDF. Especially the method
from Boivin and Gagalowicz [Boivin and Gagalowicz 2001] pro-
vides very good looking results with an algorithm that is not hard
to implement.
If the 3D polygonal mesh is not known one of the more modern
approaches should be used as some of them ( [Mercier et al. 2007],
[Wu et al. 2004], [Ritschel and Grosch 2008]) presented a software
approach to find the shape of the objects just from images. Xu and
Wallace [Xu and Wallace 2008] used an active 3D scanner and a
pair of CCD cameras which does not appear to be a low budget so-
lution.
If a fast solution is needed, the approach from Boivin and Gagalow-
icz [Boivin and Gagalowicz 2001] is the best choice even though a
fast approximation provides an image which is not the correct one.
If you change the threshold and the error value accordingly you get
a rough approximation but after a very short time (if you skip the
isotropic and anisotropic assumptions it will always be rather fast).
Some papers ( [Agusanto et al. 2003], [Mercier et al. 2007],
[Xu and Wallace 2008]) used the Phong illumination model or the
Phong-Blinn model respectively. While Phong’s model is widely
used and simple it is still not physically plausible. Other papers try
to make their objects look more realistic and adapt different illumi-
nation models. Two papers ( [Yu et al. 1999], [Boivin and Gaga-
lowicz 2001]) approximated and estimated parameters for Ward’s
BRDF model, others ( [Wu et al. 2004]) for RADIANCE or a
completely different illumination algorithm ( [Ritschel and Grosch
2008]).
The realism of the papers was generally rather good. Where some
had some problems with artifacts due to optical tracking errors
( [Ritschel and Grosch 2008], [Xu and Wallace 2008]) others did
not have this problem as they already had the polygonal mesh of
the objects, as I have previously mentioned.
The best solution for augmented reality applications was presented
by Boivin and Gagalowicz who also presented some ways to deal
with their method in augmented reality (setting of a novel view-
point, changing illumination conditions, adding and removing ob-
jects). A very interesting aspect was that isotropic surfaces (a mirror
for example) were recognized that way and were not just textured.
That means that objects which could be added to the scene would
also be reflected in that mirror [Boivin and Gagalowicz 2001].
Most of the other papers dealt only with the recovery of BRDF (or

shape) of a certain model as they assumed that the geometry is not
known.

11 Conclusion

In my thesis I presented 7 papers that deal with BRDF approxi-
mation or estimation. All but Yu et al. [Yu et al. 1999] mention
the possibility to use their work in augmented reality applications
which was of course the topic and an important point of my thesis.
In each section I summarized the parts of the papers that dealt
with BRDF approximation or estimation with respect to their
usage in augmented reality. I presented results of the different
papers and concluded each section with a short paragraph about
the performance (if given in the original work) and problems that
occured or might occur when using the corresponding algorithm.
At the end I compared all the relevant papers in respect to
input data, running time, the illumination method used (Phong,
Phong-Blinn, Ward,...), photorealism, whether or not a rough
approximation of an image before the actual computation of the
end result is possible, their usage in augmented reality applications
and whether the methods are costly or low budget solutions.
All the approaches are rather sophisticated and it might be
interesting to find out whether some of the older papers I presented
( [Yu et al. 1999], [Boivin and Gagalowicz 2001], [Agusanto et al.
2003]) might work completely on the GPU or generally faster with
more modern graphic cards.
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