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Figure 1: From left to right: the three-joint figure approaches the user specified target point (red dot).

Abstract

In this report I will describe the implementation of a solver of the Inverse Kinematic (IK) problem
in an environment using shape grammar based on CGA Shape. There exists a number of different
algorithms for this problem, however, this report describes only the cyclic coordinate descent (CCD)
in more detail as this is the method we implemented.
The implementation enabels the positioning of a certain shape so that it touches a user-specified target
point. The implemented algorithm rotates the shapes until the end effector is at the desired position.

1 Introduction

The IK problem is the opposite of forward kinematics where you can rotate all the shapes until the so
called ”end effector” targets a certain point. With IK you can adress this problem from the other way.
When using CCD the IK-algorithm takes the target point as input and iterates multiple times through
all the shapes and operates on the different degrees of freedom of the object (e.g. rotation on a human
arm with certain consraints) until the defined shape touches the point, which needs of course a more
sophisticated approach.
Additionally this IK solver needs to be implemented as a rule in a shape grammar environment.
After describing the CCD-algorithm and our implementation in detail I will conclude this report with
an outview and future work. The next section contains references to various IK solvers.



2 Related Work

There exists a number of different solvers for the IK problem, most coming from the field of robotics.
Besides the already mentioned cyclic coordinate descent (CCD) [Wang and Chen 1991] there are
also the pseudoinverse methods [Whitney 1969], Jacobian transpose methods [Wolovich and Elliott
1984], the Lavenberg-Marquardt damped least squares method [Wampler 1986], quasi Newton and
conjugate gradient methods [Zhao and Badler 1994] and neural net and artificial intelligence methods
[Grzeszczuk and Terzopoulos 1995]. I concentrated on the CCD because it is the method that is easiest
to implement and also it provides very good looking results.

3 Cyclic Coordinate Descent

The cyclic coordinate descent approach, developed by [Wang and Chen 1991], has a lot of advan-
tages over the previously mentioned IK solving approaches. The main advantage is, that it is easier
to implement. The CCD algorithm for a model with an arbitrary number of joints works as follows.
It starts at the endeffector which is usually the last shape of a model (e.g. the hand on a human arm).
The algorithm is recursive. To leave the recursion, a certain thershold value needs to be chosen. This
value specifies how near the endeffector has to be to the target point. In the following I present the
the mathematical description of the CCD algorithm. See Figure 2 for a graphical explenation of the
variables.

• Do this for all shapes in order from the last shape to the IK-root.

• Calculate vector v1, pointing from the local root of the shape to the point where the shape
should actually touch the target point (the ”end effector”).

• Calculate vector v2, pointing from the local root of the shape to the target point.

• Normalize v1 and v2.

• Get the rotation angle α = cos−1(v1 • v2), where • is the dot product.

• Get the normalized rotation axis r = v1×v2
|v1×v2| , where × is the cross product.

• Rotate the shape at the angle α over the rotation axis r, so that v1 and v2 are parallel now.

• When the IK-root is reached but the threshold is not, go back to the first processed shape and
start the algorithm again.

This algorithm has to be stopped after a certain number of iterations (e.g. 20) so that it does not
search endlessly for an unreachable goal, i.e. the threshold value will never shrink small enough. The
IK-root is the shape to which the algorithm goes back to, e.g. the shoulder at a human model when
you only want to move the arm.



Figure 2: Drawing of the variables listed in Section 3. The processed shape in this figure is the root
shape. The roots of v1 and v2 lie at the pivot point of this shape. The rotation axis r is orthogonal to
v1 and v2.

4 Implementation

In this section I will describe all the different steps of my implementation of the CCD algorithm for
the IK rule.
Firstly, joint limits have to be set. An ellbow for example can not be bent backwards. In our CGA
Shape environment a SetJointLimits rule does that for all the required shapes.
Then the IK rule can be applied. My implementation follows the algorithm presented in section 4.
The rule must be applied to the shape that shall touch the specified targetpoint. If no IK root is chosen,
the algorithm goes back to the skeleton root. The maximal number of iterations and the threshold can
be chosen as well. The values are 0.01 for the threshold and 50 for the maximal numbers of iterations.
The user can also choose the end effector. It is defaulty at the top right corner of the shape which
basically means the end effecotr equals (1,1,1)T in relative coordinates.
But this specified vector only counts for the last shape of the IK chain (i.e. the shape where the rule
has been applied to) and stays not the same as we are recursively going through the shapes. So for all
the shapes, except the first one, the corresponding ”length vectors” have to be calculated and accumu-
lated with the specified end effector to get v1. All these vectors are stored in an array. If a shape gets
transformed the vectors in the array need be transformed the same way as we need the exact vectors
for the calculation of v1.
The next step is to calculate v2. The target point is specified but we need the coordinates of the target-
point relative to the same point we calculated v1 and the targetpoint is only given in world coordinates.
To get this relative target point the position of the shape pivot point needs to be substracted from the
global target point.
After obtaining v1 and v2 we can calculate the rotation angle α and the rotation axis r. We experienced
troubles with numerical instability so it is a good idea to first make sure that v1 • v2 ∈ [−1,1] before
applying the cos−1 function on it to get α .
In our CGA Shape environment rotation has been implemented using a quaternion. So in the IK rule
this quaternion is now built with the given angle and axis and rotation can be applied.
Then, after a final check if the end effector is near enough to the targetpoint or if we reached the
maximal number of iterations, we proceed to the next shape in the skeleton, calculate all variables
anew and rotate the shape. If there is no such shape, which means we already reached the IK root, we
go back to the initial shape and start the algorithm on the already deformed model again. This way
the model approaches the final result step by step. A rudimentary pseudocode of our implementation



can be seen at Figure 3. It might be interesting to draw these appraoching steps but more about that
in the final section about future work.

Figure 3: Pseudocode of our implementation of the CCD algorithm.

4.1 IK depth

A speciality here is that the user can specify the depth of the IK chain. We decided to let the user
control the depth via numbers and not via the for the user not visible unique ID of the shapes. In
Figure 4 you see how the different values for the depth affect the model. These IK depth values are
important if you want to move the arm of a human model. You then have to define the depth until the
shoulder otherwise the algorithm would move the shapes until the skeleton root which is usually in
the middle of the upper body.

5 Outview and future work

As said before the drawing of the iteration steps could be implemented in the future. Although it is
not real animation (as there is no interpolation of the positions of the shapes) it will look rather well
most of the time. According to Chris Hecker’s lecture about inverse kinematics [Hecker 2002], the



Figure 4: The different results for different IK depth values. a) 1, b) 2, c) 3, d) 0 = until the skeleton
root

drawing of the outside iteration steps looks like animation because the end effector converges to the
specified target point and tries to find a solution. However, to my knowledge there is no literature
covering this topic.
The CCD algorithm is very stable. That means you get the same result every time you apply the IK
rule. Sometimes the result might not look that well and you would want to get another angle of the
shapes but still touch the target point. A solution for this problem might be to keep certain shapes in
a fixed position (specified by the user) and rotate the other ones. This is already possible as we have
the previously mentioned SetJointLimits rule, where you can specify that certain shapes can only be
rotated to a certain degree, but it would be convinient to fixate the shapes dynamically within the IK
rule.
The IK rule changes only the rotation at the moment. Where this is fine for human models it might be
nice to have it change specified degrees of freedom. For example, if the size is a degree of freedom
the IK rule could stretch the shape to reach an unreachable goal which seems impossible to do with
CCD.
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