Procedural Skeletons: Kinematic Extensions to CGA-Shape Grammars

Martin Ilčík, Stephan Fiedler
Werner Purgathofer, Michael Wimmer

Institute of Computer Graphics and Algorithms
Vienna University of Technology
- Procedural modeling
- Grammars
- Articulated objects
Procedural modeling

- ↑ Abstraction
- ↓ Design costs
- ↓ Artistic skills
- ↑ Reusability

- ↑ Domain knowledge
- ↓ Local control
- ↑ Formal theory
- ↓ Reconstruction

CityEngine, Pascal Müller
Nature vs. Urbanism

- Elements
- Survival
- Jagged
- Long evolution

- Regular
- Short term
- Planarity
- Batch changes

Rome Rebuild, Pascal Müller
Split grammars

- Sets of shapes instead of symbols
- Large amount of rules and attributes
- Attribute propagation
- Rule selection
- Image based reconstruction
 - Symmetries
 - Visual editing
- [Wonka et al. 2003]
CGA grammars

- Scope to oriented bounding boxes
 - transformation rules
 - splits and repetition
 - absolute and relative scaling
 - component splits

- Sequential
- Occlusion
- Snapping

[Müller et al. 2006]
[Lipp et al. 2008]
Procedural modeling of cities

CityEngine, Pascal Müller

Martin Ilčík
Poses and Expressions

- Pose
- Expression
- Semantics
- Relations
- Functionality
Poses and Expressions

- Pose
- Expression
- Semantics
- Relations
- Functionality
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pose</td>
</tr>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>Semantics</td>
</tr>
<tr>
<td>Relations</td>
</tr>
<tr>
<td>Functionality</td>
</tr>
</tbody>
</table>
Poses and Expressions

- Pose
- Expression
- Semantics
- Relations
- Functionality
Poses and Expressions

- Pose
- Expression
- Semantics
- Relations
- Functionality
Excavator Example - Basis
Excavator Example - Basis
Excavator Example - Motor
Excavator Example - Cabin
Excavator Example - Cabin
Excavator Example - Chassis
Excavator Example - Arm
Excavator Example - Shovel
Excavators
Excavators
Excavators
Excavators
Excavators
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones
 - Parent link
 - Children links
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones
 - Parent link
 - Children links
- Joint
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones
 - Parent link
 - Children links
- Joint
 - Default pose
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones
 - Parent link
 - Children links
- Joint
 - Default pose
 - Limited transformations
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones
 - Parent link
 - Children links
- Joint
 - Default pose
 - Limited transformations
 - Current transformation
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones – **Automatic**
 - Parent link
 - Children links
- Joint
 - Default pose
 - Limited transformations
 - Current transformation
Pose description

- Kinematic Shapes
- Rigid bodies
- Bones – **Automatic**
 - Parent link
 - Children links
- Joint – **Kinematic Rules**
 - Default pose
 - Limited transformations
 - Current transformation
Starting configuration
Sequential split
Parallel split

NO CHILDREN ALLOWED DURING A PARALLEL SPLIT
Component split
Properties

- Kinematic independence
Grammar Example

BuildingRoot →
 Subdiv("Y", 3.5){Basement|Floor}

Floors → Repeat("Y", 3a){Floor}
Grammar Example

BuildingRoot →
 Subdiv("Y", 3.5){Basement|Floor}

Floors → Repeat("Y", 3a){Floor}

Floor →
 Comp("sidefaces"){FloorFacade}

FloorFacade →
 Repeat("Y", 1.5a){WindowPane}
Grammar Example

BuildingRoot →
 Subdiv(“Y”, 3.5){Basement|Floor}

Floors → Repeat(“Y”, 3a){Floor}

Floor →
 KinematicRotation(RotLimits,CurrentRot)
 Comp(“sidefaces”){FloorFacade}

FloorFacade →
 Repeat(“Y”, 1.5a){WindowPane}
Grammar Example
Conclusions

- Poses enrich semantics
 - Rule based
- Simple extension to CGA
 - Integration
 - Interactivity
- Rigging for free
 - Post-processing
Future Work

- Connectivity preservation
- Mass and stability
- Deformations
- Animation
- IK

Martin Ilčík
Acknowledgements

- Johannes Kühetreiber, Frederico Dusberger
- Daniel Scherzer, Markus Lipp
- Reviewers

- FIT-IT Visual Computing Initiative
- GameWorld Project

THANK YOU FOR YOUR ATTENTION