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Figure 1: Procedurally generated excavator models with different geometry, skeletons and poses. All have been created by a single set of
production rules. Our kinematic extensions to shape grammars allow easy posing of procedurally generated models.

Abstract

Procedural modeling for architectural scenes was as yet limited to
static objects only. We introduce a novel extension layer for shape
grammars which creates a skeletal system for posing and interactive
manipulation of generated models. Various models can be derived
with the same set of parametrized rules for geometric operations.
Separation of geometry generation and pose synthesis improves de-
sign efficiency and reusability. Moreover, by formal analysis of
production rules we show how to efficiently update complex kine-
matic hierarchies created by the skeletons, allowing state-of-the-art
interactive visual rule editing.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Systems 1.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation

Keywords: procedural modeling, architecture, skeletal animation,
shape grammars

1 Introduction

The main contribution of our work is a set of kinematic rules gen-
eralizing grammar-based procedural modeling. These rules allow
incorporating semantic variations of models by creating diverse
poses. We focus on urban and architectural scenes enriched by de-
formable objects composed of rigid parts (see Figure 1).

1.1 Motivation

Efficient creation of realistic, large scale, highly detailed models
is very important for development of successful computer games,
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movies, and digital art. Manual modeling of such content is very
expensive, plus it requires cooperation of many highly skilled artists
producing stylistically consistent output. Procedural generation of
urban scenes and architecture is a very active research field that pro-
vides great solutions for interactive massive design of 3D content.
Efficient grammar systems exploit the fractal nature of urban scenes
and a high number of identical items organized in regular patterns.
Only a small set of production rules is needed to represent the ge-
ometry. Shape grammars [Wonka et al. 2003; Miiller et al. 2006]
turned out to be a great choice for efficiently generating realistic,
high resolution models of cities. A major shortcoming in becoming
more general and powerful is the static nature of generated models.
It is possible to change the scene setup by taking movable objects
like cars as whole and incorporate variations in their placement.
However, even in scenes with no living creatures or plants there are
objects maintaining the same basic geometry while changing their
appearance by adopting diverse poses. Moreover, styling an object
by using a certain posture (e. g., clock hands on a tower clock) can
significantly improve the power of its semantic expression. The se-
mantic attributes related to poses and expressions actually make up
an important part of the content in a movie or a game, even if the
amount of work behind this is not directly visible.

Shape grammars were designed for static models only, but we want
to go further by adding a space of valid poses that allows more
variable results. Our motivation is to enable opening doors and win-
dows, to see a rotating weathercock, moving cranes, excavators and
other complex machines. Yet there was no shape grammar-based
solution able to divide a procedurally generated model into mov-
able parts, define its agility and set a specific pose. L-Systems are
a great option for procedural animation, however shape grammars
are better suited for architectural modeling. Possible combination
of shape grammars and L-systems in one production environment
would only lead to unnecessary overhead, syntax confusion and
complex evaluation issues.



1.2 Approach overview

Our main step towards general semantic modeling with grammars
is a posing interface controlling the motion freedom limits and the
current model pose. We propose to store the kinematic information
as an additional attribute hierarchy in a separate graph in parallel
to the original model derivation graph. This additional graph is a
skeleton represented by a hierarchy of joints and bone relationships
—atechnique widely used in skeletal animation [Maestri 1999]. The
nodes of this graph are the leaf nodes of the original model deriva-
tion graph, while the edges represent kinematic joints. It structures
mesh parts stored in leaf nodes according to functional links be-
tween them. One significant advantage of this data structure is its
modularity.

Using the original CGA shape grammar [Miiller et al. 2006], a sys-
tem of procedural rules for a class of objects is very complex to im-
plement and maintain and it is even more time-consuming to create
a new set of rules whenever a pose changes. Our proposed kine-
matic skeleton system is created automatically during the applica-
tion of geometry production rules. This approach allows using the
existing rule sets while adding kinematic information to any proce-
durally generated model without interfering with each other. The
same geometry derivation might be at any time extended and trans-
formed to various models with different semantic meaning. The
posing can be adapted through kinematic rules from the grammar
or afterward as a post-processing step in a 3D modeling suite.

We provide an overview of related research mainly on the field
of procedural architecture modeling in Section 2. Basics of CGA
shape are shortly explained in Section 3. Our main contribution —
the kinematic extensions — is presented in Section 4.

2 Related Work

Procedural modeling including all grammar based approaches has
been used for compression of object description and parametriza-
tion for decades. Skeletal animation has become standard com-
puter graphics knowledge as well. We focus on recent trends in
both fields, related to procedural architecture.

2.1 Procedural modeling of architecture

Many procedural techniques have been developed in context ur-
banism and architectural design. The usage of grammars gained
popularity when Prusinkiewicz and Lindenmayer showed, that for
geometric plant modeling impressive results can be achieved by us-
ing L-systems [Prusinkiewicz and Lindenmayer 1991] as model-
ing of biological objects is based on growth. Man-made structures
are better characterized as a sequence of partitioning steps describ-
ing the spatial distributions of objects [Prusinkiewicz et al. 2001;
Wonka et al. 2003]. For the analysis and construction of archi-
tectural design, shape grammars [Stiny 1975] working with geo-
metrical shapes instead of strings were successfully used by many
authors [Downing and Flemming 1981; Beirdo and Duarte 2005].
Efficient procedural production of buildings uses shape grammars
adapted to the needs of computer graphics. Split grammars [Wonka
et al. 2003] are focused on adding geometric detail to fagades, their
successor CGA (Computer Generated Architecture) shape gram-
mars [Miiller et al. 2006] were developed to produce large scale
mass models of buildings. Recently, structural feasibility for ma-
sonry CGA shape models [Whiting et al. 2009] was achieved by
adding mass and stress properties to the shapes. There is no more
need for manual rule editing in text form, as an interactive visual ed-
itor [Lipp et al. 2008] enables rapid content creation without both-
ering with the grammar syntax. CGA shape can be considered as
a state-of-the-art tool for procedural modeling of architecture. We

will examine this class of grammars in more detail in Section 3.
More related techniques are discussed in a recent state-of-the-art
report [Vanegas et al. 2010].

2.2 Skeletal animation

In the field of robotics the problem of forward and inverse kine-
matics has been extensively studied [Denavit and Hartenberg 1955]
and numerous methods for calculating solutions have been devel-
oped [Wang and Chen 1991; Zhao and Badler 1994], which are also
used for posing and animating humanoid models [Smidt 1998]. A
common method for animation of complex models uses a skeletal
system to describe poses and movements [Maestri 1999]. Generally
speaking, a kinematic skeleton consists of rigid sections connected
by rotational joints. Each section has a joint that connects it to a
parent section, and the joints describe the rotation and translation
of a section relative to its parent. Together they form a hierarchy
where the position of each section depends on the pose of all those
which precede it in the skeleton hierarchy. Different poses can be
applied to a model by rotating the joints, and it is possible to limit
the rotations of joints to an arbitrary range relative to a rest posi-
tion. Kinematic skeletons were introduced to computer animation
as a part of layered system for mesh deformations [Chadwick et al.
1989], they are often derived from the model geometry [Bloomen-
thal 1999]. Deformations of shapes are out the scope of this paper,
as are many other related animation techniques focused mainly on
human body animation [Collins and Hilton 2001]. Procedurally
generated plants also use hierarchies of joints for animation of mo-
tion in wind [Sakaguchi and Ohya 1999].

2.3 Grammar-based animation

L-Systems have been used not only for modeling growing ob-
jects, but for animation of the growth process [Prusinkiewicz et al.
1993] and environment interactions [Noser et al. 1992; Méch and
Prusinkiewicz 1996] as well. Most of these approaches use rule se-
lection driven by a time parameter with no explicit skeleton struc-
ture. Extracted skeletons have been used for animation of human
organ growth [Durikovic et al. 1998]. On a higher level, behav-
ioral animation of virtual creatures including synthetic sensors for
sensing the virtual environment [Noser and Thalmann 1999] can be
achieved by using L-Systems.

3 Grammar-based mass modeling

CGA shape grammar is a well established approach for procedural
modeling of architecture [Miiller et al. 2006]. Our kinematic exten-
sions build upon the original grammar rules, thus we would like to
introduce the basic concepts in this section.

3.1 CGA shape grammar overview

This language employs conditional, context-sensitive, stochastic
evaluation of rules to retain realistic layouts of architectural ele-
ments while allowing for a wide variety of buildings generated from
a set of rules. The basic rules are general enough to support the
development of rule sets for different architectural styles, and the
model generation does not require user input to select rules. Key
elements of CGA shape are the notion of shape, the definition and
geometric interpretation of basic rules, and the control of their eval-
uation.

Each shape consists of a string symbol as well as geometric and
numeric attributes. Symbols relate to the semantics of shapes and
can identify them, especially for the purpose of selecting applicable
rules. Geometric attributes define the visible form of a shape, and
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Figure 2: Shape, scope and skeleton. An elliptic shape is located
inside a bounding box representing its scope. The scope is bound
to a kinematic section with a joint (red circle), a parent on the left
and one child section on the right. Joints located at the origin of
each local coordinate system (thin arrows) determine the kinematic
transformation. Thick arrows represent the bones of the skeleton —
rigid connections between adjacent sections.

most importantly include an oriented bounding box called scope.
Shapes can be three- or lesser-dimensional. Numeric attributes al-
low to parametrize rules and to further control the derivation pro-
cess.

One part of the basic rules modifies the scope by translation, rota-
tion or scaling, respectively, which also affects the geometry con-
tained within the scope. The essential rule, a split rule, creates two
or more shapes of the same dimensionality by splitting the scope
along one or more of its axes. The repeat split rule works similarly
but creates as many shapes of the same kind as will fit into the orig-
inal shape. Since both split rules should work well on a range of
differently sized scopes, some of the split sizes have to be scaled,
but some elements are more suitable to scaling than others. To ac-
commodate for this fact, split sizes can be absolute or relative to
the size of the original scope. Finally, the component split rule de-
composes a shape into its lower-dimensional features, for example
to create a shape for each face of a three-dimensional shape. To
go back to higher dimensions, shapes can be extruded, expressed in
the grammar as scaling along a scope axis.

CGA shape is a sequential grammar, which means that one rule is
applied at a time. The order of application is determined by the
priority of rules, so that rules applied earlier coarsely structure a
model, and later rules gradually add more details. Each rule can
also have preconditions based on numeric attributes of shapes to
decide on its suitability. If several rules are applicable, one is se-
lected based on a probability value for each rule.

4 Kinematic extensions

Starting from a set of original rules describing a static model, we
add kinematic rules to define movement limitations and the current
pose. Adding these extension rules requires defining how to deal
with kinematic structures when applying original rules as well. We
now provide an overview of the kinematic rules and examine the
interpretation updates to original rules.

To simplify the kinematics integration to the existing rules system,
each scope is now embedded in a kinematic section. It stores the
joint limitations, the current kinematic transformation and linking
to the parent section and children. We only allow creation of rigid
bodies, thus scaling can be omitted. Joint positions and orientations
are relative to their parent’s coordinate system, not to the world
coordinate system.

4.1 Skeleton grammar

Our main goal is to extend CGA grammars with new rules and
concepts to allow easy control of modeled shapes by a skeleton
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Figure 4: A component split rule creates new shapes for lower di-
mensional components of a shape. Applied to the shape A in Figure
2 it can e. g. create new shapes for the top and bottom sides. The
kinematic section of each component is connected to the original
shape’s section. New joints are placed at the centers of sides, with
z-axis pointing along the normal vector of side faces. This results
in a rotated coordinate system for the bottom component.

system. During a model derivation, the skeleton always links leaf
nodes of the current parse tree (Figure 3) and describes their pos-
sible movements and actual positions of mesh parts, i.e., terminal
shapes. The skeleton is a directed tree created automatically along
with the shapes of the model, as the production rules for shapes also
change the structure of the skeleton. For this, rules create new joints
and kinematic sections (see 2.2) if necessary and connect them to
existing sections. An additional set of rules allows to modify each
joint and its current pose. The shapes of a model are themselves
attached to the sections and move with the skeleton.

Whenever a production rule is applied to a shape, the skeleton struc-
ture of the resulting shapes must be defined. Most importantly, the
rules define for each resulting shape the section to which it is at-
tached, as well as its parent, rotation and translation. For rules that
produce only a transformed shape copy, the result replaces the origi-
nal shape in the skeleton and therefore its section is the same as the
original. We define the evaluation of kinematic sections for rules
that produce more than one shape as follows:

Kinematic rules

The main purpose of introducing procedural skeletons is to sep-
arate the model generation and pose synthesis. There is a set of
kinematic rules in our grammar responsible only for model posing.
Since the default placement of joints may not be the best for all
cases, a joint placement rule exists which places a joint at an arbi-
trary position relative to the connected shape geometry. Limitation
rules set transformational limits for joints movement. All joints are
by default blocked to be fixed — both translation and rotation are
limited to zero. Their rest rotations are set by the scope transfor-
mation. Finally, the current transformation of a joint is changed
by current translation and current rotation rules, which are used to
apply actual poses to the model while staying within allowed move-
ment limits.

The interpretation of model positioning needs to be reconsidered
as well. The model pivot is placed at the root joint of the skeleton.
All children shapes are placed by accumulating the kinematic trans-
formations. The original CGA scopes are applied to shapes as the
last transformation, without being accumulated for descendants. In
the following we describe how the original CGA shape rules are
modified so that they correctly update the skeleton.

Component split

In a component split, the original shape is copied to the result and it
becomes the parent of all lower dimensional components. The joint
of each component is placed at its center, and its section is rotated
according to the orientation of the component.
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Figure 3: Parse tree evolution for the shapes on Figure 2 including the skeleton hierarchy. First a split rule is applied, then two rotations.
Strong arrows link skeletal structures, soft arrows shapes in parse tree. The skeleton root is emphasized with thick border:
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Figure 5: An example sequential split rule applied to Figure 2 cre-
ates three new shapes and connects them in an ordered sequence.
A direction vector defines the split planes, the order of resulting
shapes and the placement of new joints. In this split the first shape
(on the left) has the same parent as the original, and the child gets
connected to the last shape.
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Figure 6: Here the shape of Figure 2 is sequentially split by three
horizontal planes. The split direction is always independent of
bones direction. As shown here, any of the new sections can replace
the original section in the skeleton hierarchy. All other shapes re-
sulting from the split become its direct or indirect children.

Basic split rule and Repeat rule

Since the repeat rule can be interpreted as a special case of the split
rule, we focus only on the latter one. The split rule can create two
different skeletal structures. The first type of split is sequential.
It connects pairs of adjacent shapes with joints and thus creates a
chain of shapes which replaces the original shape in the skeleton.
The first shape in the result is placed in the same section as the
original, and the last shape becomes the new parent of the origi-
nal children in the skeleton graph (Figure 5). This can be seen as
splitting a section into several ones, with joints between them. The
sequential split rule places new joints on the split planes and on a
line that is parallel to the split direction and lies on the joint posi-
tion of the original shape. The split direction influences the order in
which the split shapes are connected and should usually point away
from the parent of the original shape to its children. Connecting
parent and children to other than the first and last section is also
possible (Figure 6).

The second type of split represents a fork in the skeleton and can
be used to model legs or fingers (Figure 7). In this parallel split
each new shape is connected to the parent of the original shape.
The joints are placed at the midpoint between split planes, on a line
that is parallel to the split direction and goes through the original
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Figure 7: The parallel split connects each new shape to the original
parent. This allows to create an arbitrary number of children at
each level of the skeleton hierarchy. There must be no children
before the application of a parallel split.

joint position. Before applying a parallel split, there must not be
any kinematic children of the shape and it must have a kinematic
parent. These restrictions serve to avoid confusion of having more
parents or choosing a single one for each section.

If we want to reuse models created with the original CGA shape
rules set, we need to make a decision at each split rule application
whether to take the sequential or the parallel version. This can be
done locally by taking a sequential split if the split direction and the
shape bone are nearly parallel and a parallel split otherwise, if there
are no kinematic children.

Occlusion and snap rule

The occlusion rule interpretation needs to be adapted to the model
transformations introduced by kinematic sections. While testing for
intersections of shapes, these have to be correctly placed and rotated
according to the skeleton configuration. A very similar problem
occurs by application of a snap rule. It is closely related problem
of visual debugging handled in section 4.3, which shows how to
obtain the final kinematic transformation for an arbitrary shape.

Epsilon symbol

The € symbol in shape grammars represents empty geometry.
When a shape with no kinematic children is substituted by ¢, it gets
destroyed. Otherwise it is dealt with as a terminal shape and stays
stored in the configuration string to keep the skeleton consistent.

4.2 Interoperation properties

We have combined the original CGA shape rules with our kine-
matics rules to encode a secondary hierarchy of semantic informa-
tion into the shape configuration. For later considerations, we now
provide some details about special interoperation properties of the
two rule sets. We mainly examine the behavior of production rules
that change the skeleton structure: basic splits and component split.
All other rules only apply transformations to valid section dupli-



cates, thus we may implicitly exclude them from most of the proofs:
scope rules, occlusion rule, snap rule, limitation rules and current
pose rules.

Kinematic skeleton basic properties

Definition A kinematic section is called valid only when it belongs
to a leaf node of the parse tree.

Lemma 4.1 For each non-empty model there is always at least one
valid kinematic section.

Proof An axiom is always the first skeleton root. Each production
rule applied to a shape creates at least one new shape added to the
skeleton instead of the original. The only way to destroy a shape is
to replace its symbol by €. In case the skeleton consists of a single
shape, substitution by € leads to a contradiction by an empty result
model. If there are more shapes in skeleton it means the root has
at least one child. Because €-shapes with kinematic children are
preserved, the root is never destroyed. ]

Lemma 4.2 All valid kinematic sections of the parse graph are or-
ganized in a single, rooted tree.

Proof An axiom is a single rooted tree. First we show by structural
induction over parse trees, that the graph of all valid kinematic sec-
tions is continuous. A Component split copies the previous valid
section and adds new branches, a sequential split adds a sequence
of valid sections. Only a parallel split would cause problems by
dividing the tree into several components when applied to a section
with no parent. Since we have defined the parallel split to be appli-
cable only to shapes with a kinematic parent and no children, that
case can not occur.

Second we show that there is only one root for each skeleton. If a
section is the skeleton root i. e. it has no kinematic parent, each rule
(except parallel split — not applicable to the skeleton root) produces
exactly one child with no parent — becoming the new root. If a sec-
tion has a kinematic parent, then all derived shapes are connected
to a parent as well. Similar to the proof of Lemma 4.1, if the root is
replaced by € the shape is considered to be a terminal with empty
geometry.

Third we show that the graph is a tree i. e. it contains no cycles. For
arooted tree it means that each node has exactly one kinematic par-
ent. Kinematic links between sibling shapes created by an arbitrary
rule satisfy this condition. Similar to the first proof part, inherited
kinematic links cause problems only by a parallel split applied to
a shape with kinematic children. From the child’s point of view it
would split its single parent into several more. This is one of the
reasons why we have decided to forbid application of parallel splits
to shapes with kinematic children.

Corollary 4.3 No kinematic section has more than one parent.

Previous statements were related to the restrictions of parallel splits.
An example of its wrong usage is depicted on Figure 8.

@ Wrong parallel split
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Figure 8: Example of a parallel split applied wrong in two ways:
First, it is applied to a section with no parent, thus the skeleton gets
two roots. Second, the Y node gets two parents.
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Figure 9: Left: the shape A before evaluation with a parent and
two children. Right: the subtree of A with internal kinematic links
and nodes By and C connected outside of the subtree to kinematic
parent X and children Y and Z. In case of a parallel split there
might be more children of X in s(A) denoted by By, otherwise there
is only one node with kinematic parent X.

Kinematic independence of parse subtrees

After full derivation of a parse node the outgoing kinematic connec-
tions from its parse subtree are exactly those of its root. We assume
here that no other nodes except those of the subtree are evaluated.
You can see an illustration of this kinematic independence on Fig-
ure 9. More formally:

Theorem 4.4 Let the shape A be a parse tree node pos-
sibly with at most one kinematic parent p(A) (see Corol-
lary 4.3) and a finite set of kinematic children c(A).
The set of all parse children of A is denoted by s(A).
Then YN € s(4) : (p(N)=p(4) ® p(N) € s(4)\ {N}) A
(c(N)=c(A) @ c(N) Cs(A)\{N}) holds when production rules
are applied only to shapes from {A}Us (A).

Proof We again show that starting with a valid configuration (see
Lemma 4.1), after any rule application it stays valid. It can be
proven in a very similar way to Lemma 4.2. Possible side branches
as shown in Figure 6 have no effect on the linking to original parent
or children. |

This theorem has several straight forward consequences:

Corollary 4.5 If there is no kinematic parent resp. child in the
subtree root, there is also no parent resp. child link leading outside
from any subtree node.

Proof Directly from Theorem 4.4 by setting p (A) ={} and ¢ (A) =
{} respectively. O

Corollary 4.6 There is always at most one leaf node of the subtree
with outgoing child links.

Proof Similar to the proof of Theorem 4.4 and by Lemma 4.2, only
an incorrectly applied parallel split to a shape with kinematic chil-
dren would cause ¢ (A) to be linked to several nodes from s (A) (see
Figure 8).

General kinematic independence of parse subtrees

If we want to generalize Theorem 4.4 to stay valid after evaluation
of arbitrary parse nodes, we must take into account that p (A) and
¢ (A) might have been influenced by further evaluation of the parse
tree. Therefore, we apply the previous theorem to both of them as
well.

Theorem 4.7 Using the notation from Theorem 4.4, we sup-
plement that s({}) = {} and s({a1...a,}) = Up_;s(m).
Then VYN € s(A) : (p(N)es(p(A)) @ p(N)es(A)\{N}) A
(c(N)Cs(c(A)) ®c(N)Cs(A)\{N}) holds.

Proof We suppose that an isolated subtree evaluation of the node
A followed the Theorem 4.4. Due to Corollary 4.3 p(A) always



Figure 10: The full evaluated subtree of A with internal kinematic
links as in Figure9. The derivation is resumed by evaluating the
parent X and both children shapes Y and Z. The kinematic parent of
Bisnow T — a descendant of X. The number of kinematic children
of C might have increased in case of parallel splitting — depicted as
Uk and Vk

has at most one element. If we apply Corollary 4.6 to the node X,
there will be only one leaf node with an outgoing kinematic link
— namely the node T (see Figure 10) with one or more children
By.. By Corollary 4.5 even if |Bi| > 1, still only one node is linked
to kinematic children outside of s(A). Thus, the first part of the
Theorem holds. In a similar way we apply Theorem 4.4 to ¢ (A)
together with Corollary 4.6 to prove the second part. O

Direct scope and kinematics transformations

Lemma 4.8 No rule applied to a shape performs geometric or
kinematic transformations on any other shapes.

Proof Detailed examination of all rules finds two exceptions: Af-
ter the joint placement rule moves its own section it needs to move
all direct children sections in opposite directions to maintain rela-
tive positions in the skeleton. The sequential basic split rule places
pivots of created shapes at the splitting hyperplanes, requiring to
compensate by an inverse movement of the last shape’s children.
Storing the children translation in the parent section and querying
when necessary resolves this problem for both production rules. [J

Transformations lock after birth

Definition We define the birth state as the derivation configuration
after a production rule was applied to a shape and all its direct chil-
dren have been created — but no rule has been yet applied to any of
them.

Theorem 4.9 Only skeletal links of a shape change after its birth.

Proof A kinematic section consists of a joint and skeletal links.
According to Lemma 4.8, only direct scope and kinematics trans-
formations are applied. For all rules it happens only at birth time,
thus there will be no change to the joint afterward. It follows that
only skeletal links change after birth. O

4.3 Visual debugging

Visual debugging of models is a very important tool for understand-
ing the whole derivation step-by-step. It is carried out by highlight-
ing non-terminal shapes including their kinematic transformations,
so that the user gains insight into any intermediate configuration of
the model. To render a shape in the correct pose it is necessary to
accumulate all kinematic transformations back to the skeleton root.
The kinematic links are always valid only in leaf nodes of the parse
tree. After each further production rule application, the kinematic
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Figure 11: A broken skeleton after removal of a subtree rooted in
C. The algorithm needs to fix the skeleton by finding the broken
links and connecting them to C. We use a shortened notation of the
parse tree accumulating transformational rules in this figure.

links are transferred to the new leaf shapes, destroying the links in
previous shapes. For visual debugging of arbitrary parse tree nodes,
it must be possible to reconstruct the broken links.

Our solution requires all shapes to store kinematic information valid
for the skeleton birth state configuration. The kinematic links of
birth snapshots are always valid, thus the whole skeletal chain up
to the root can be traversed using the birth snapshots. By Theorem
4.9, the joint state in the birth snapshot is always identical to the
final one. Using the birth snapshots we can show any shape in the
parse tree correctly placed and oriented according to the skeleton
configuration during its creation.

4.4 Interactive editing

Recent trends prefer visual editing of grammar systems [Lipp et al.
2008] instead of manual text writing. Interactivity and fast evalua-
tion of models play a very important role during the visual design
process. To reduce the number of shape computations after a user
action, it is sufficient to select and regenerate only those parts of a
model that could possibly be affected by one of the updated rules.

Looking at the model parse tree, all subtrees rooted in nodes with
symbols of relevant rules need to be reevaluated. This means that
leaf nodes containing final skeleton parts get destroyed. The con-
cept of procedural skeletons as presented in previous sections has
no possibility to recover in such a situation (see Figure 11).

In section 4.3 we have explained how each shape stores birth time
kinematic information for the retrieval of the skeleton configura-
tion. The problem of subtree regeneration for a non-terminal parse
node is different, since we need to divert the skeleton in its final
configuration from the subtree leaf nodes to its root, instead of only
traversing earlier configurations. By Theorem 4.9, only skeletal
links change after shape birth, so there is no need to care about
restoring kinematic transformations. Again, kinematic links of the
subtree root are valid only at their birth, thus they must be recon-
structed from the subtree.

We work with the final parse tree with terminal shapes in leafs. The
selected subtree collapses to a single leaf node, making its inner
kinematic links obsolete. Only the links leading out of the subtree
are interesting for the update. Kinematic independence of parse
subtrees described in theorems 4.4 and 4.7 assures that the skeleton
stays consistent during the evaluation to the leaf nodes. Accord-
ing to Corollary 4.6 there is only one leaf node with child links
pointing outside of the subtree and only one external leaf node with
child links pointing inside. We connect these to the subtree node to
maintain the skeleton consistency. To improve the search traversal
for these two nodes, we mark the first and last kinematic section in
the chain created by application of each rule. Leaf nodes marked as
the first resp. last are the wanted ones.



Algorithm 1 Example part of a grammar for buildings with rotat-
ing floors. RotLimits and CurrerntRot are variables for specifying
the rotation of each floor. The skeleton is rooted at the basement,
thus the rotations will be accumulated up to the top. The building
variations are shown in Figure 12.

BuildingRoot  ~~  Subdiv(”Y”,3.5){Basement|Floor}
Floors ~» Repeat(”Y”,3a){Floor}
Floor ~» KinematicRotation(RotLimits,CurrentRot)

Comp(”sidefaces”){FloorFacade}
FloorFacade ~> Repeat(”Y”,1.5a){WindowPane}

The occlusion rule and snap rule are the only ones with global
scope. Their results are dependent from a number of collision tests
with shapes resp. snap lines spread over the whole parse tree. Thus,
our subtree evaluation method is inefficient here. We see space par-
titioning as a possible option.

5 Results and performance

Our approach adds several kinematic rules for transformations of
model parts. We explore the opportunities of this grammar exten-
sions and demonstrate the flexibility by several examples with var-
ious grammar systems. A nice architectural use case is the concept
of rotating towers [Fisher 2008]. We anchor the skeleton in the
basement and accumulate rotations on each floor. The grammar ex-
tension allowing rotations is minimal (see Algorithm 1). Creation
and testing of the basic model with kinematics takes only a few
minutes. The poses are applicable to other skyscraper models as
well.
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Figure 12: Example of a building with rotating floors constructed
with a simple grammar (see Algorithm 1). Since the kinematic rules
are incorporated in the modeling grammar, it is possible to apply
them to other models as well and they can be used later for chang-
ing the pose or animating the model.

For a more complex example, we have chosen to design a grammar
for production of various heavy construction machines. Finding the
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Figure 13: Two excavators with similar skeletons. Created by one
grammar, they share some geometric and kinematic properties.
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Figure 14: A parametrized robot model with different types of
physique and a complex kinematics system.

correct grammar desing using CGA rules and setting up the kine-
matics took us about an hour. In comparison to the towers example,
the skeleton plays a much more important role here. The pose of a
machine can clearly express its working status. On Figure 13 you
can see two excavators. Thanks to our kinematic extensions and au-
tomatic skeleton creation it is possible to easily produce and control
both machines by a single grammar. The excavators have diverse
geometry and skeletons, but there are also a lot similarities due to
common rule basis.

The most complex model from our experiments can be seen on Fig-
ure 14. It is a procedurally created humanoid robot with variable
body shape and a large number of joints. It is able to take a wide
range of various poses and exploits nearly all CGA capabilities.
Therefore, it became our favorite testing object.

Grammar interpretation including the kinematic extensions is com-
parable in the performance to the original system. For our imple-
mentation we have defined the production rules and shapes as pro-
gram classes, so the language is not interpreted from a text file. We
can manipulate the rules with a simple interface without the need
of direct text editing. For efficient design we use a "normal form"
for rules to improve understanding and editing the rule structure:
first geometry operations are applied (geometry refinement/splits),
then kinematics. The visual debugging introduced in Section 4.3
is a great help together with tree-views of the grammar structure,
skeleton and parse tree. The user also has any time the possibil-
ity to switch off all kinematics for better examination of the basic
model setup.

6 Conclusions and future work

We have demonstrated how CGA shape grammars can be gener-
alized by adding a set of kinematic rules and adjusting the inter-
pretation of existing rules. Our approach combines procedural 3D



modeling with rigging, at a minimal cost. Creation of kinematic
relations is part of the modeling process. Therefore, the objects be-
come easier to animate and kinematic characteristics can be easily
applied to different models created by the same rule set.

Geometry and skeleton are treated as a two-layered data structure.
We have shown an efficient update strategy for the coupled graphs,
avoiding re-evaluation of the whole derivation tree. Efficient up-
dates of rules with global scope are one of the next research topics.

There are still many problems and challenges, possible ways of im-
proving the grammar systems and breaking away from architecture
to general objects modeling. The most important topic for future
work is another improvement of rules interpretation. The shapes are
not connected when kinematic transformations are applied. Leaks
and overlaps emerge as you can see on most of the pictures. We
would like to treat shapes directly connected by kinematic sections
not only as independent rigid bodies, but also as one deformable
mesh with geometric connectivity preserved depending on given
attributes. There are several problems to consider: preservation of
mass, extremal positions and collisions resolution. We also plan
to pursue our research goal of animated scenes where not only the
poses but the whole movement would be generated by grammar
based controllers. The approach used for feasible masonry models
[Whiting et al. 2009] shows how important it is to address statics
issues — in future we could deal with pose stability in a similar way.
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