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Kurzfassung

Die Erkenntnis, dass wir Linien, von denen wir wissen, dass sie tatsächlich im Raum
parallel sind, als Linien wahrnehmen, die scheinbar zu einem gemeinsamen

Fluchtpunkt konvergieren, hat zu Techniken geführt, mit denen Künstler einen
glaubwürdigen Eindruck von Perspektive vermitteln können. Dies führte später auch

zu Ansätzen, mit denen die zugrundeliegende Geometrie von Bildern – oder in der Tat
auch von Gemälden mit korrekter Perspektive – extrahiert werden kann.

In dieser Arbeit beschäftigen wir uns mit der Extraktion von Fluchtpunkten mit dem
Ziel, die Rekonstruktion urbaner Szenen zu vereinfachen. Im Gegensatz zu den
meisten Methoden zur Extraktion von Fluchtpunkten, extrahiert die unsere eine

Konstellation von Fluchtpunkten über mehrere Ansichten hinweg, anstatt nur in einem
einzigen Bild. Durch das Verwenden eines starken Orthogonalitätskriteriums in jeder

Ansicht, einer optimalen Berechnung von Segmentschnittpunkten und einem
neuartigen Dreibein-Ausrichtungsverfahren, erlaubt unser Ansatz die Extraktion von

Ergebnissen, die eine nahe Approximation der dominanten drei paarweise
orthogonalen Orientierungen typischer urbaner Szenen darstellen. Dementsprechend

kann unser Ansatz als wesentliche Verfeinerung der Methode von Sinha et al.
bezeichnet werden.
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Abstract

The realization that we see lines we know to be parallel in space as lines that appear to
converge in a corresponding vanishing point has led to techniques employed by artists

to render a credible impression of perspective. More recently, it has also led to
techniques for recovering information embedded in images—or, indeed, in paintings
that feature correct perspective—concerning the geometry of their underlying scene.

In this thesis, we explore the extraction of vanishing points in the aim of facilitating
the reconstruction of urban scenes. In departure from most vanishing point extraction
methods, ours extracts a constellation of vanishing points across multiple views rather

than in a single image alone. By making use of a strong orthogonality criterion per
view, optimal segment intersection estimation and a novel tripod fitting technique, our
approach allows for the extraction of results that correspond closely to the dominant

three pairwise-orthogonal orientations of a typical urban scene. Accordingly, ours can
fairly be described as a material refinement of the approach proposed in Sinha et al.
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Chapter 1

Introduction

1.1 Motivation and Objective

In casting a glance at a scene, we are not surprised to see that lines we know from expe-
rience to be parallel appear to converge in a single point. The realization that this occurs
has led to techniques employed by artists to render a credible impression of perspec-
tive, as da Vinci famously did in his fifteenth-century mural, The Last Supper1 (cf. Fig-
ure 1.1). It has also led to more recent techniques for recovering information embedded
in images—or, indeed, in paintings that feature correct perspective—concerning the ge-
ometry of their underlying scene. These techniques can provide constraints for scene
reconstruction, partial camera calibration and the navigation of robots and autonomous
vehicles. In this regard, a sizeable literature has arisen since the late 1970’s, offering a
litany of algorithms for extracting and employing knowledge of vanishing points.

In this thesis, we explore the extraction of vanishing points in the aim of facilitating
the reconstruction of urban scenes. Real-world urban scenes tend to feature a predomi-
nance of scene lines corresponding to the pairwise-orthogonal axes of a 3-dimensional
Euclidean coordinate frame; accordingly, we shall have in mind a scene that indeed
features a predominance of such lines when referring to what we call a typical urban
scene. It is on account of the geometry of image formation that a set of lines parallel
in the scene—that is, that share a single orientation in space—project to lines in the
image plane that converge in a corresponding vanishing point. Under known camera
geometry, we can map that vanishing point back to a ray through the camera center
that likewise shares that same orientation (cf. Figure 1.2). Accordingly, if we are able
to compute the vanishing points corresponding to the scene’s dominant three pairwise-
orthogonal line orientations, we have in our possession normal vectors corresponding
closely to each of the scene’s dominant three pairwise-orthogonal plane orientations.

In departure from most vanishing point extraction methods, ours extracts a constel-
lation of vanishing points across multiple views rather than in a single image alone. By
making use of a strong orthogonality criterion per view, optimal segment intersection
estimation and a novel tripod fitting technique, our approach allows for the extraction
of results that correspond closely to the dominant three pairwise-orthogonal orienta-
tions of a typical urban scene. Accordingly, ours can fairly be described as a material
refinement of the approach proposed in Sinha et al. [38].

1See http://www.haltadefinizione.com/ for an image of da Vinci’s The Last Supper with a
resolution of 16 billion pixels.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Leonardo da Vinci’s fifteenth-century mural, The Last Supper. Note that
the superimposed segments—representing the projection of a set of lines we understand
to be parallel in the scene that da Vinci depicts—converge in a vanishing point in the
canvas. Image c© HAL9000 S.r.l. - Haltadefinizione [14].

1.2 Organization
We begin with an overview of related work in the field in Chapter 2, where we dis-
cuss extraction techniques and their application to scene reconstruction. In Chapter
3, we give an introduction to the geometry of vanishing points, which is intended to
serve as a self-contained primer to the subject for anybody familiar with basic vector
algebra. In Chapter 4, we discuss the multiple-view approach implemented within the
framework of this master’s thesis. Finally, we provide an evaluation of our algorithm
in Chapter 5 and close the thesis in Chapter 6 with a conclusion, in which we include
recommendations with respect to the integration of our approach with a larger urban
scene reconstruction system. The appendices serve to explain or motivate techniques
central to our approach but that do not fit thematically with Chapter 3.

1.3 Notational Conventions
We have tried to follow the notational conventions that Hartley and Zisserman employ
in their widely cited canonical text, Multiple View Geometry in Computer Vision [15].
We do so because the text is widely recognized as one of the principal authoritative
sources on the geometry of image formation across multiple views, and because it was
unequivocally the main source used in penning this master’s thesis. Accordingly, we
represent vectors in boldface, e.g., b. Also, rather than specify points using coordinate
notation (a, b, c), we write them as column vectors (a, b, c)>. Starting in Section 3.4 of
Chapter 3, we represent points in world coordinates X ∼ (X,Y, Z)> with upper-case
letters and their projections x ∼ (x, y, z)>, with letters in lower case. We also attempt,
wherever possible, to name and present our vectors and matrices in a manner consistent
with the text; e.g., we thus denote the line at infinity as l∞ ∼ (0, 0, 1)>. In noteworthy
departure from their conventions, however, we use the similarity relation ∼ to indicate
that two vectors in Pn are equal to within a non-zero scalar k, x ∼ x′ ⇔ ∃k 6= 0 : x =
kx′, rather than by ‘overloading’ the equality relation = as they do.
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πC

v

�1

�2l1
l2

Figure 1.2: The projections l1, l2 ⊂ π of two lines `1, `2 in space converge in a cor-
responding vanishing point v in the image plane π. Note that under known camera
geometry, the lines `1, `2 in space thus have the same orientation as the ray extending
from the camera center C through v. We call that ray the back-projection of v with
respect to the given camera.
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Chapter 2

Related Work

The literature on the extraction of vanishing points dates back to the late 1970’s and
straddles the fields of photogrammetry, computer vision and robotics. As we men-
tioned in Chapter 1, knowledge of vanishing points has been put to use in scene re-
construction, partial camera calibration and the navigation of robots and autonomous
vehicles. Since our focus is on scene reconstruction, however, we direct our attention
to extraction approaches accordingly.1 We proceed by first examining the progression
of relevant vanishing point extraction techniques proposed over the years in the litera-
ture. Next, we consider how vanishing points have been employed in facilitating scene
reconstruction.

2.1 Extraction Techniques

Extraction techniques tend to involve what amount to an accumulation (or grouping)
step followed by an estimation (or search) step, perhaps repeated for some number of
iterations. In the accumulation step, line segments—which are typically obtained in a
pre-processing step (cf. Guru et al. [13], Rosin and West [33] or Burns et al. [5])—are
grouped according to the condition that they come close enough to sharing a common
point of intersection, which we interpret as a candidate vanishing point. In the estima-
tion step, one or more optima are chosen from among the results of the accumulation
step, and a subsequent re-estimation of those optima is often computed vis-à-vis their
respective inlier segments. As we confirm in our own experiments (cf. Chapter 5),
small errors in those segments can lead to material inaccuracies in vanishing point esti-
mates. Accordingly, the fact that we extract line segments from quantized noisy images
makes developing an accurate and robust extraction technique a challenge, and—some
four decades after the first approaches were published—the extraction of vanishing
points consequently remains an active field of research.

Tessellating the Gaussian Sphere. The Euclidean unit sphere S2 centered on
the camera center C ∈ R3 is (locally) topologically equivalent to the corresponding
camera’s image plane π (cf. Figure 2.1). Under known camera geometry, points in
space and their projection onto π map two-to-one to antipodal points on this sphere,

1Extraction techniques employed in the navigation of robots and autonomous vehicles place real-time
performance over quality, and are thus categorically ill-suited for our purposes. This is not true in general of
techniques used in partial camera calibration.

5
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and lines in space and their projection onto π map one-to-one to great circles. The inter-
section of two lines thus corresponds to the antipodal intersection of two great circles.
One extraction strategy in the literature involves tessellating this sphere—also known
as the Gaussian2 sphere—and tallying the number of great circles that pass through
each accumulation cell, where maxima are assumed to represent the vanishing points
corresponding to dominant scene orientations. Note that this amounts to mapping to a
Hough3 space (cf. Hough [16] and Duda et al. [10]).

πC

v

�1

�2l1
l2

Figure 2.1: The Gaussian sphere, centered on the camera center C. Under known
camera geometry, a line ` and its projection l in the image plane π correspond to the
same great circle on the Gaussian sphere, and the intersection of two lines l1, l2 ⊂ π
correspond to the intersection of their great circles. Note that the lines `1, `2 in space
have the same orientation as the ray from C through their corresponding vanishing
point v. Note also, however, that since we do not assume that camera geometry is
known, the assumed location of C with respect to π is at best a good guess, and the
accuracy of that guess influences through which cells great circles pass.

Barnard [3] was the first to have availed himself of the Gaussian sphere as an ac-
cumulation space for extracting vanishing points. Quan and Mohr [32] improve upon
Barnard’s approach by carrying out a hierarchical sampling of their Hough space—
thereby reducing the likelihood that veridical vanishing points fall on cell boundaries
and go undetected—and by making use of a better tessellation. They observe that the
quality of results obtained using their approach depends on how close the assumed focal
length is to the veridical one; indeed, this is true of all approaches that rely on tessel-
lating the Gaussian sphere, and results in fact depend more broadly on how closely the
assumed location of C with respect to π corresponds to true camera geometry. Lutton
et al. [26] first extract candidate vanishing points using a related Hough approach and
subsequently use a second Hough approach to choose three vanishing points assumed
to correspond closely to the scene’s dominant three pairwise-orthogonal scene orien-
tations. They discuss the influence of poor assumptions vis-à-vis camera geometry on

2Named after the German mathematician Johann Carl Friedrich Gauß (1777-1855), a Gaussian surface—
of which a Gaussian sphere is a special case—is, according to its original meaning, a closed surface within
the framework of Gauss’ law of electric flux, which describes the relationship between the net electric flux
through that closed surface and the charge it encloses.

3Note that much like the correct pronunciation of Lord Byron’s Don Juan is /d�n d`uq�n/, the correct
pronunciation of Hough is /h�f/.
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the performance of their algorithm at greater length. Shufelt [37] observes that spu-
rious maxima on the Gaussian sphere can arise both on account of weak perspective
effects, and on account of textural effects leading to segments that do not correspond
to dominant scene orientations. Accordingly, he introduces one Gaussian sphere tech-
nique that incorporates a priori knowledge about the geometry of objects of interest,
and another that incorporates edge precision estimates in the aim of compensating for
the influence of segments that arise from textural effects.

An advantage of using the Gaussian sphere as an accumulation space is that it
allows for the unbounded image space to be mapped to a bounded space—thereby
constraining the search space—and for infinite and finite vanishing points to be treated
in the same manner. One disadvantage of approaches that rely on Hough transforms
is that results depend on the chosen quantization (cf. Grimson et al. [12]). Another
disadvantage involves the need to make guesses relating to camera geometry. A third
disadvantage—observed in Rother [34]—is that the mapping of lines in the image to
great circles on the Gaussian sphere does not preserve relative distances, which—as
pointed out in Pflugfelder [31]—is a consequence of Girard’s theorem.

The Intersection Constraint. For three lines in the image plane to be the projec-
tion of lines parallel in space, the normals of their interpretation planes must (ideally)
be coplanar (cf. Section 3.1.1 of Chapter 3). This fact motivates van den Heuvel’s [40]
introduction of an intersection constraint for triplets of image segments, which states
that three extracted image segments s1, s2, s3, with corresponding interpretation plane
normals l1, l2, l3, share a common vanishing point if the magnitude of det(l1, l2, l3)
is below a tight threshold. Given n image segments and the

(
n
3

)
possible triplets of

interpretation plane normals, van den Heuvel rejects all triplets that do not satisfy his
intersection constraint. He then carries out a clustering step over the remaining clus-
ters, with clusters themselves constrained such that each triplet of interpretation plane
normals they respectively contain satisfy the intersection constraint. Roughly speaking,
the largest cluster is then chosen to correspond to the first vanishing point; another two
are subsequently extracted, constrained to be collectively close to pairwise-orthogonal
with the orientation estimated from the first vanishing point. Van den Heuvel thus finds
three vanishing points assumed to correspond closely to the underlying scene’s domi-
nant three pairwise-orthogonal orientations without using the Hough transform. Note,
however, that he too assumes that at least a good guess of the focal length is available.

The Image Plane as Accumulation Space. Magee and Aggarwal [28] compute
the intersections of all

(
n
2

)
pairs of lines through image segments and cluster them on

the unit sphere. Rother [34] presents an approach that likewise operates over the set
of all such intersections, but instead uses a voting scheme coupled with single-view
constraints on camera geometry (cf. Liebowitz and Zisserman [24]). Part of Rother’s
contribution is a distance function d(v, s) for determining the extent to which an im-
age line segment s corresponds to a given (candidate) vanishing point v. Although
we do not ourselves do so, the method upon we base our vanishing point extraction
approach—namely, that of Sinha et al. [38]—makes use of this distance function. In
the interest of completeness, we provide a more thorough summary of Rother’s algo-
rithm in Appendix A.

Expectation Maximization. Košecká and Zhang [20] cast the problem of ex-
tracting the vanishing points corresponding to the scene’s dominant three pairwise-
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orthogonal orientations in terms of an expectation maximization (EM) framework.
Pflugfelder [31] introduces his own EM framework, and integrates segment informa-
tion over a video stream for a static camera. Advantages of using a video stream include
greater robustness to single-frame sensor noise and the ability to incorporate additional
dynamic information that may appear in the scene, due for instance to human activity
or changes in lighting conditions. In both approaches, the extracted vanishing points
are used to carry out partial camera calibration.

Extraction across Multiple Views. Werner et al. [41] present a multiple-view
approach for extracting the dominant three pairwise-orthogonal orientations across
k available uncalibrated views of the scene. They begin by computing vanishing
points per view assumed to correspond closely to the scene’s dominant three pairwise-
orthogonal orientations, using RANSAC (cf. Appendix C). Next, they proceed to
match those vanishing points combinatorially across the k views. Finally, they esti-
mate the corresponding orientations in space by minimizing the reprojection error with
respect to each corresponding vanishing point’s inlier segments.

Sinha et al. [38] begin by computing up to n candidate vanishing points across each
of the k available calibrated views of the scene. They then map each candidate’s back-
projection to a point on the unit sphere, and cluster over those points in the aim of ob-
taining three clusters corresponding closely to the dominant three pairwise-orthogonal
orientations of the scene. Since it is upon their approach that we base ours, we provide
a more detailed summary of their technique in Appendix B.

2.1.1 Estimation

Given a set Sv of image segments determined to be inliers of a candidate vanishing
point v ∈ P2, Caprile and Torre [6] re-estimate v by computing a weighted mean of
the intersections of the lines l ∈ P2 corresponding to the segments s ∈ Sv. A more ac-
curate approach involves fitting a point v ∈ P2 to the set of lines l ∈ P2 corresponding
to the segments in Sv by minimizing with respect to point-line incidence (cf. Collins
and Weiss [8], Cipolla and Boyer [7]), which can be solved using the SVD (cf. Ap-
pendix D). An approach that produces potentially even better intersection estimations
is the maximum likelihood (ML) intersection estimation technique of Liebowitz [22],
which can be solved using an implementation of a non-linear least squares solver such
as Levenberg-Marquardt (cf. Lourakis [25]). Pflugfelder [31] gives a comparison of
the SVD and ML techniques with a mean approach. We discuss the SVD and ML
intersection estimation techniques at greater length in Section 4.2 of Chapter 4.

2.2 Application to Scene Reconstruction

Feature Point-based Reconstruction. Rother [35] presents a system for using
vanishing points extracted per view of a typical urban scene to initialize a feature point-
based algorithm for the estimation of relative camera pose and calibration parameters.
The vanishing points are assumed to correspond closely to pairwise-orthogonal scene
orientations, and are constrained to be so in a vein that follows from the camera and
orthogonality criteria of Rother [34]. Having computed feature point matches across
views, he simultaneously recovers camera geometry and generates a sparse point cloud
of the scene.
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Figure 2.2: Scene reconstruction of Jan Vermeer’s oil painting, The Music Lesson
(1662-65), aided with knowledge of vanishing points. Figure from Criminisi [9].

Model-based Reconstruction. Criminisi [9] discusses the geometry of scene re-
construction aided with knowledge of vanishing points in detail. Using vanishing
points extracted manually, he succeeds in producing several compelling reconstruc-
tions4 of the scenes that paintings in correct perspective depict (cf. Figure 2.2).

Werner and Zisserman [41] extract the scene’s three dominant pairwise-orthogonal
scene orientations from vanishing points computed across k available views. Next,
they sweep planes along those dominant orientations in the aim of generating a model
of the scene (cf. Figure 2.3). Sinha et al. [38] use orientations extracted from per-view
vanishing points estimates to provide ‘snapping directions’ to the user in addition to
candidate plane orientations (cf. Figure 2.4).

4See http://www.robots.ox.ac.uk/˜vgg/projects/SingleView/ for VRML models
and videos of such single-view reconstructions.
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Figure 2.3: The urban scene reconstruction approach of Werner and Zisserman [41],
which uses knowledge of vanishing points to guide a plane sweeping technique.

(a) Input photographs. (b) 2D sketching interface. (c) 3D geometric model.

(d) Texture-mapped model.

Figure 2.4: The urban scene reconstruction pipeline of Sinha et al. [38], which uses
vanishing points extracted across multiple views to compute plane orientations and
so-called ‘snapping directions’ corresponding to principal orientations of the scene.



Chapter 3

The Geometry of Vanishing
Points

Adde parvum parvo magnus acervus erit.

—Ovid

The notion that a cube is composed of three sets of respectively parallel and mutually
pairwise-orthogonal edges follows necessarily from the definition of a cube. Even so,
regardless of the pose from which we observe a cube, we see that lines through the
edges of at least one of those three sets invariably appear to converge in a correspond-
ing point—called a finite1 vanishing point—as illustrated in Figure 3.1. This would
perhaps seem a contradiction, but for the fact that it follows necessarily from the man-
ner in which light is projected through the lens of a human eye onto the eye’s retina, or
the lens system of a camera onto its photosensitive surface.

We begin our discussion of the geometry of vanishing points with an examination
of the foundations of projective geometry, which provides a suitable framework for
discussing how vanishing points arise. We then explore the process of image formation,
which accounts for why they arise. Finally, we discuss vanishing points and vanishing
lines in more detail, and conclude our discussion with a synopsis.

3.1 A Suitable Geometric Framework

The geometry of rigid bodies usually lends itself to adequate description within the
framework of Euclidean geometry; in Euclidean geometry, we can measure the sides
of objects, we can compute the angle between intersecting lines, and we can describe
any two lines as parallel if they lie in the same plane and never meet. However rigid
bodies—and with them whatever other kinds of bodies—are, with respect to how we
see them, better served by projective geometry. Indeed, one of the shortcomings of
Euclidean geometry in the plane is that provision must be made for two classes of line
pairs: those that intersect in a point and those that—on account of being parallel—do
not. Projective geometry does away with this distinction by elegantly augmenting the

1We shall see that an infinite vanishing point is the point of intersection of the projection of lines parallel
in space that are at the same time parallel to the image plane.

11
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(a) One-point
perspective.

(b) Two-point perspective.

(c) Three-point perspective.

Figure 3.1: A cube depicted in one-, two- and three-point perspective, terms borrowed
from descriptive geometry. The number of points refer to the number of finite vanishing
points in the corresponding view.

Euclidean plane with ‘ideal points’ that serve as the points of intersection of lines par-
allel in the plane. Moreover, projective geometry allows us to neatly model the central
projection that underlies the image formation process, and which accounts for why
vanishing points arise. We shall see that projective geometry thus offers a convenient
formalism for our study of the geometry of vanishing points.

Several texts offer an excellent introduction to the geometric foundations that un-
derlie the geometry of vanishing points. Among them, there figure Hartley and Zis-
serman [15], Ma et al. [27] and Springer [39]. This chapter—diagrams and matrices
included—is based primarily on the expositions given in the first two. For a scholarly
treatment of the techniques employed over the history of European art to render an
impression of perspective (cf. Figure 3.2), refer to Andersen [1] or Kemp [18].

3.1.1 Homogeneous Coordinates

Points in Pn. In Euclidean geometry, we represent points as n-dimensional ordered
tuples (x1, . . . , xn)> ∈ Rn called Euclidean coordinates. We can augment the Eu-
clidean space Rn to the projective space Pn by representing all points in Rn as ho-
mogeneous (n + 1)-dimensional vectors (x1, . . . , xn, 1)> ∈ Pn = Rn+1 \ {0}.2 We
declare that a vector (x1, . . . , xn, 1)> ∈ Pn and any vector (kx1, . . . , kxn, k)> ∈ Pn
for k 6= 0 represent the same point; that is, they belong to the selfsame equivalence
class, since we are at all times accordingly free to scale one into the other. We indicate
that two vectors x,x′ ∈ P2 are equal to within a non-zero scalar factor k by using the
notation x ∼ x′ ⇔ ∃k 6= 0 : x = kx′. In order to take the homogeneous vector
(kx1, . . . , kxn, k)> ∈ Pn, k 6= 0, to its representation in inhomogeneous Euclidean

2We omit the vector 0 ∈ Rn+1 from Pn because—as we shall see—it represents neither a point nor an
orientation of Rn.
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Figure 3.2: Illustration by French engineer Salomon de Caus (1612) of Albrecht
Dürer’s string method for producing a perspective composition. The point H on the
wall is the center of projection (or eye point, as it is called in perspective drawing).
Image reproduced from Andersen [1].

coordinates, we return all but the last coordinate, each of which we divide by k, giving
(x1/k, . . . , xn/k)> ∈ Rn. For brevity, we shall accordingly often refer to such vectors
x simply as points, even if they are in fact vectors that represent points.

All homogeneous vectors of P2 scaled such that x3 = 1 lie in the plane x3 = 1.
We may think of the plane x3 = 1 as an embedding of the Euclidean plane R2 in P2,
given by the unit translation of the Euclidean plane R2 along the positive x3-axis of the
3-dimensional Euclidean coordinate frame. Accordingly, we call the vector space P2

the projective plane (cf. Figure 3.3).

Points at Infinity in Pn. Points in Pn with coordinates (x1, . . . , xn, 0)> are the
points at infinity (or infinite points); in inhomogeneous Euclidean coordinates, we rep-
resent a point at infinity with a vector (x1/0, . . . , xn/0)> ∈ Rn, and we think of it
accordingly as a point infinitely distant from the origin of the coordinate frame in the
direction (x1, . . . , xn)> ∈ Rn. Since points at infinity thus have no real counterpart in
Rn, we also term them ideal points. Note, however, that infinite points are but ordinary
points in Pn. In addition to all points of Rn, the projective space Pn thus contains
points—namely, the ideal points—not present in Rn.

Hyperplanes in Pn. Let us consider the general form equation of a line l ⊂ R2 in
the Euclidean plane,

ax1 + bx2 + c = 0. (3.1)

Rewriting Equation (3.1) as the scalar product of two vectors,

(a, b, c)>(x1, x2, 1) = 0, (3.2)

reveals an incidence relation between the homogeneous vector of a 2-dimensional point
x ∼ (x1, x2, 1)> ∈ P2 and a second vector l ∼ (a, b, c)>, where we qualify two
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x2

x1

x3

π

l
x

x

l 0
x3 = 1

Figure 3.3: The projective plane P2. The vector l ∈ P3 is the homogeneous normal
vector of the plane through the origin that intersects the plane x3 = 1 in the line l ⊂ R2,
called the interpretation plane corresponding to l. A point x ∈ R2 is given in by the
vector x ∈ P2 through x, and thus x ∈ l only if l>x = 0.

vectors as incident if they are orthogonal with respect to one another. Since scaling
the vector l by a non-zero scalar has no effect on its incidence with x, the vector l—
like the vector x—is itself homogeneous. Interpreting the vector l as a normal vector
of a plane through the origin of the coordinate frame—a plane we term the projective
interpretation plane of the line l—we see that all vectors (x1, x2, x3)> ∈ P2 that lie
in that plane satisfy Equation (3.2). Rescaling all such incident homogeneous vectors
such that x3 = 1, we thus arrive at the set of all points that form the desired line l in
the plane x3 = 1. Geometrically, l is thus given by the intersection of the plane x3 = 1
with the interpretation plane corresponding to l. Accordingly, we understand the vector
l ∼ (a, b, c)> ∈ P2 to represent the line l ⊂ R2 in question, and shall—again, in the
service of brevity— often refer to such vectors l simply as lines. Analogously, we can
extend the incidence relation in Equation (3.2) to n-dimensional points and hyperplanes
through the origin of the coordinate frame of Pn.

Hyperplanes at Infinity in Pn. The line l∞ ∼ (0, 0, 1)> ∈ P2, termed line
at infinity (or the ideal line), is the line incident with all 2-dimensional ideal points
(x1, x2, 0), since (0, 0, 1)>(x1, x2, 0) = 0 for all x1, x2. The ideal points of P2 thus
all lie in the plane x3 = 0, which is the interpretation plane that corresponds to l∞.
Note that this plane is parallel to the plane x3 = 1, which it consequently does not
intersect (except, so to speak, ‘at infinity’). In P3, we speak of the plane at infinity
π∞ ∼ (0, 0, 0, 1)>, which is the plane incident with all 3-dimensional ideal points
(X1,X2,X3, 0)> of P3. Analogously, we can extend the notion to n dimensions.

3.2 The Projective Plane P2

In our forthcoming discussion of image formation in Section 3.4, the projective plane
P2 serves as the image plane of our camera model. In this section, we discuss point-line
incidence in P2 and see how homogeneous coordinates allow us to neatly express the
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intersection of lines and the join of points in terms of the vector product. We determine
that the vector x ∼ (x1, x2, 0) ∈ P2 that represents the intersection at infinity of two
parallel lines l, l′ ⊂ R2 has the selfsame orientation as l and l′. Accordingly, the points
at infinity of P2 serve to represent the totality of orientations of the projective plane. We
also explore the planar projective transformations, which characteristically preserve
point-line incidence but do not in general guarantee that parallel lines be mapped to
parallel lines. Projective transformations will, again, be of interest in Section 3.4, since
the projection of a plane in space onto an image plane reduces to precisely a projective
transformation.

3.2.1 Incidence, Collinearity and Concurrence

Two vectors are incident when their scalar product is zero, and a point x ∈ P2 lies on
a line l ∈ P2 only if the vectors x and l are incident. Another way to think of point-
line incidence is that the point x lies on a line l only if the vector x lies in the plane
through the origin of R3 whose normal is the vector l, recalling that we are at all times
free to scale the vector x ∼ (x1, x2, x3)> such that x3 = 1. Accordingly, all vectors
corresponding to collinear points or concurrent lines are, respectively, coplanar.

The Line Joining Two Points. A consequence of the homogeneous representa-
tion of points is that the line l ∈ P2 joining two points x,x′ ∈ P2 is x×x′ ∼ l. This is
because the vector x× x′ is the unique homogeneous vector that is incident to both x
and x′. Indeed, by the triple scalar product identity, x>(x× x′) = x′>(x× x′) = 0.

The Intersection Point of Two Lines. The intersection of two lines l, l′ ∈ P2 is
the point l× l′ ∼ x ∈ P2. The proof is analogous to the argument given above for the
line joining two points in P2. To see what happens when we compute the intersection
of lines parallel in the Euclidean plane, let us consider the lines l ∼ (a, b, c)> and
l′ ∼ (a, b, c′)>. One way to see that the corresponding lines l, l′ ⊂ R2 in the Euclidean
plane are parallel is by observing that their respective slopes are both −a/b.3 Their
point of intersection is then

x ∼ l× l′ ∼

∣∣∣∣∣∣
i j k
a b c
a b c′

∣∣∣∣∣∣ ∼
 b
−a
0

 , (3.3)

which is a point at infinity. This demonstrates that, contrary to the state of affairs in the
Euclidean plane, two parallel lines always meet in a point—albeit an ideal point—in
the projective plane. Finally, we note that since two lines l, l′ ⊂ R2 with identical slope
−a/b meet in the ideal point x ∼ (b,−a, 0)>, it follows that the vector x and the lines
l, l′ all share the same orientation. One way to satisfy ourselves that this is true is to
consider that a slope −a/b represents a per-unit displacement in the Euclidean plane
by b units in the x-direction, and one of −a units in the y-direction, which amounts to
precisely a displacement by the vector (b,−a, 0)>.

Collinearity of Three Points. Three points x,x′,x′′ ∈ P2 all lie on a line l ∈ P2

if, without loss of generality, the vector that represents the line l ∼ x′ × x′′ joining

3We recall from gradeschool mathematics that by rewriting the general form equation ax+ by + c = 0
of a line in slope-intercept form, we obtain y = −(a/b)x− c/b.
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two of the points is incident with the vector that represents the third, i.e., l>x = (x′ ×
x′′)>x = 0. All three vectors x,x′,x′′ must therefore be coplanar. Equivalently, we
can articulate this requirement as det(x,x′,x′′) = 0.4

Concurrence of Three Lines. Three lines l, l′, l′′ ∈ P2 are incident with the
same point x ∈ P2 (i.e., they are concurrent), when det(l, l′, l′′) = 0. The proof is
analogous to the argument given above for the collinearity of three points in P2. This
is the foundation of the ‘intersection constraint’ van den Heuvel [40] uses in his single-
view vanishing point extraction approach (cf. Chapter 2).

3.2.2 Duality of Points and Lines

In our discussion of incidence, collinearity and concurrence, we have seen that the role
of points and lines can be interchanged. Indeed, to every theorem of the projective
plane P2 there exists a dual theorem of P2 obtained by substituting points for lines and
lines for points. This follows from the symmetry of the incidence relation.

3.2.3 Projective Transformations of P2

Geometrically, a projective transformation (synonymously termed a homography, a
collineation or a projectivity) of P2 is an invertible mapping h : P2 → P2 that preserves
point-line incidence, and thus maps lines to lines (hence the term ‘collineation’). Alge-
braically, a mapping h is a projectivity if and only if there exists a 3×3 invertible matrix
H such that, for any x ∈ P2, it holds that h(x) ∼ Hx. Indeed, if three collinear points
x1,x2,x3 ∈ P2 lie on a line l ∈ P2, then each x′i ∼ Hxi, i ∈ {1, 2, 3}, lies on the
line l′ ∼ H−>l, since l′>x′i = (H−>l)>Hxi = l>H−1Hxi = l>xi = 0, i ∈ {1, 2, 3}.
Accordingly, a projectivity h represented by an invertible 3 × 3 matrix H transforms a
point x ∈ P2 to the point x′ ∼ Hx and a line l ∈ P2 to the line l′ ∼ H−>l, and point-
line incidence is thus preserved. Note that the matrix H is, again, itself homogeneous,
since scaling H by a non-zero scalar has no effect on the outcome of the corresponding
projective transformation.

In the spirit of Klein’s Erlangen program [19], a projective transformation is char-
acterized by the geometric properties invariant to it. General projective transformations
given by arbitrary invertible 3 × 3 matrices form a group called the projective linear
group on three dimensions. All projectivities preserve incidence (and with it collinear-
ity and concurrence) and a measure called the cross ratio. Meanwhile, the projective
linear group on three dimensions encompasses a hierarchy of nested subgroups of trans-
formations that feature increasingly specialized invariants in addition to the invariants
of their respective encompassing supergroups. Accordingly, the Euclidean transfor-
mations are a subgroup of the similarities, the similarities a subgroup of the affinities,
and the affinities a subgroup of the general projectivities. In addition to their own spe-
cialized invariants, the Euclidean transformations thus preserve all the invariants of the
similiarities, the similarities all the invariants of the affinities, and the affinities all the
invariants of the projectivities.

With respect to invariance, our focus is on the effect that projectivities have on
the line at infinity l∞, since the transformation of l∞ to a finite line l accounts for
parallel lines being projected to lines that meet in a finite point. For a more detailed

4Interpreting the determinant of three vectors in P2 as the volume of the parallelepiped spanned by three
vectors in R3, we correctly arrive at a volume of zero if the three vectors are coplanar.



3.2. THE PROJECTIVE PLANE P2 17

treatment of the properties invariant to the projective linear group on three dimensions
and its subgroups, as well as for an explanation of the cross ratio, refer to Hartley and
Zisserman [15].

Euclidean Transformations. The Euclidean transformations (also referred to as
the isometries or displacements) of the plane are the planar rotations, translations and
reflections. They preserve length and angle, in addition to the affine invariants, namely
ratio of lengths, parallelism, incidence (and with it collinearity and concurrence) and
the cross ratio. The form of the general Euclidean transfomation matrix is

HE ∼

 ε cos θ − sin θ tx
ε sin θ cos θ ty

0 0 1

 =
[

R t
0> 1

]
, (3.4)

where ε = ±1 and R is an arbitrary 2 × 2 orthogonal matrix. Like the similarities, the
Euclidean transformations map the line at infinity l∞ to itself, and—since Euclidean
transfomations preserve incidence—points at infinity to points at infinity.

Similarity Transformations. The similarities of the plane encompass uniform
scaling in addition to rotations, translations and reflections. Similarities preserve all
the properties that affinities preserve, in addition to angle and ratio of lengths. Col-
lectively, similarities thus happen to preserve all the invariants that Euclidean transfor-
mations do, except length; i.e., the Euclidean properties, defined up to scale. We term
these invariants the metric properties. The form of the matrix of a general similarity
transformation is

HS ∼

 s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 =
[
sR t
0> 1

]
, (3.5)

where s ∈ R and R is an arbitrary 2 × 2 orthogonal matrix. Like affinities, Euclidean
transformations also map the line at infinity l∞ to itself, and consequently points at
infinity to points at infinity.

Affine Transformations. In addition to uniform scaling, rotations, translations and
reflections, the affinities also feature non-uniform scaling. They preserve the invariants
that general projectivities preserve, together with parallelism. The form of the matrix
of a general affinity is

HA ∼

 a11 a12 tx
a21 a22 ty
0 0 1

 =
[

A t
0> 1

]
. (3.6)

The line at infinity l∞ ∼ (0, 0, 1)> ∈ P2 is invariant under the affinities (and
consequently the similarities and the Euclidean transfomations as well), since

H−>A l∞ ∼
[

A−> 0
−t>A−> 1

] 0
0
1

 ∼
 0

0
1

 ∼ l∞. (3.7)

Under affinities, points at infinity thus remain at infinity. Note, however, that a point at
infinity x ∼ (x1, x2, 0)> is not mapped to itself unless there exists a non-zero scalar k
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such that A(x1, x2)> = k(x1, x2)>, since

x′ ∼
[

A t
0> 1

] x1

x2

0

 ∼
 A

(
x1

x2

)
0

 . (3.8)

In other words, for a point at infinity x ∼ (x1, x2, 0)> to be mapped to itself, the vector
(x1, x2)> must be an eigenvector of the matrix A.

Projective Transformations. The general projectivities encompass all of rota-
tions, translations, reflections, uniform and non-uniform scaling, central projection be-
tween planes and all compositions of projectivities. With respect to invariants, general
projectivities preserve only incidence (and with it collinearity and concurrence) and the
cross ratio. The general projectivity is given by an arbitrary invertible 3× 3 matrix

HP ∼

 a11 a12 tx
a21 a22 ty
v1 v2 v

 =
[

A t
v> v

]
. (3.9)

The line at infinity l∞ is not invariant under general projective transformations,
since HP can be any invertible 3× 3 matrix. What this amounts to is that l∞ is—unless
the projectivity is an affinity—transformed to a finite line, and the points at infinity are
thus transformed to points5 incident with this finite line, according to

x′ ∼
[

A t
v> v

] x1

x2

0

 ∼
 A

(
x1

x2

)
v1x1 + v2x2

 . (3.10)

3.3 The Projective Space P3

Like the projective plane P2 is an augmentation of the Euclidean plane R2 with the set
of ideal points (x1, x2, 0)> ∈ P2, so too is projective 3-space P3 an augmentation of
Euclidean 3-space R3 with the set of ideal points (d>, 0)> = (X1,X2,X3, 0)> ∈ P3.
Moreover, like the points at infinity of P2 represent the totality of orientations of the
projective plane, so too do the points at infinity of P3 represent the orientations of pro-
jective 3-space. Analogously to the fact that the line at infinity l∞ ∼ (0, 0, 1)> ∈ P2

contains all orientations of P2, the plane at infinity π∞ ∼ (0, 0, 0, 1)> ∈ P3 contains
all orientations of P3. A more thorough discussion of projective 3-space is available in
Hartley and Zisserman [15]. The facts of projective 3-space we have hereby presented,
however, will suffice for the remainder of our discussion.

3.4 Image Formation

Vanishing points arise on account of how image formation works. Image formation is
the process of projecting points in 3-dimensional space to a 2-dimensional image plane,

5We refrain from qualifying the totality of these transformed points as finite for good reason. In particular,
all but one of the infinitude of points incident with a finite line are themselves finite; this is because every
finite line (a, b, c)> ∈ P2 is incident with the infinite point (b,−a, 0)> ∈ P2, which is the mapping of the
unique point in projective 3-space for which v1x1 + v2x2 = 0.
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in our case in the manner done by a typical consumer-level digital camera. Rather than
try to account for the totality of physical phenomena that come into play when we take
a photograph, we satisfy ourselves with a simplified camera model that allows us to
better understand the geometry in which we are interested. The model we choose is
called the finite projective camera. We carry out our discussion stepwise, beginning
with an examination of the thin lens camera, which we subsequently generalize to the
pinhole camera, which we in turn finally generalize to the finite projective camera.

A more thorough but still readable introduction to image formation is given in Ma
et al. [27] and Hartley and Zisserman [15], the both of which serve collectively as the
main sources for this section. The classic textbook on the physics of image formation
is reputably Born and Wolf [4].

3.4.1 The Thin Lens Camera
A typical consumer-level digital camera is composed of a system of one or more lenses
used to refract light onto a photosensitive sensor (or surface) such as a CCD chip. The
simplest and most specialized model of such a camera is the thin lens, which we illus-
trate in Figure 3.4. Perpendicular to a single ideal double-convex (and consequently
symmetric and converging) lens,6 the optical axis (or principal axis) crosses the center
of the lens at a point called the optical center (or camera center) C. By definition, rays
of light emanating from a point X on the opposite side cross the lens according to the
following refraction rules:

i. the lens refracts incident rays parallel to the optical axis such that they invariably
pass through a point on the optical axis called the focal point (or focus), lying at a
distance f called the focal length (or camera constant) from C;

ii. incident rays passing through the opposite side’s focal point (also at a distance f
from the lens) are refracted such that they continue parallel to the optical axis;

iii. incident rays passing through C cross the lens undeflected.

C

ff

X

x

z Z

Figure 3.4: The thin lens camera model.

The image x of the point X lies at the point of intersection of any two rays obtained
by the above rules. Note that the projected point x is upside down with respect to the
projecting point X.

6The English lens derives ultimately from the identically spelled Latin word for ‘lentil’, owing to the
lentil-like shape of a double-convex lens.
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As an aside, let the point X lie at a distance Z from the lens, and its image x, at a
distance z from the lens on the opposite side. Using similar triangles, we obtain

1
Z

+
1
z

=
1
f
, (3.11)

which is the fundamental equation of the thin lens.

3.4.2 The Pinhole Camera
As we shrink the aperture of a thin lens camera towards zero, the only rays of light
allowed to reach the image plane are—in the limit—those that pass through the optical
center. The resulting construction is called a pinhole camera, and models a camera that
directs light onto its image plane using not a lens, but—like a camera obscura—only a
tiny aperture, a ‘pinhole’.

Y

ZC = 0

X

x

p = (0, 0, –f )T

f

X

πy

x

Figure 3.5: The pinhole camera model.

According to the model, a point X = (X,Y, Z)> ∈ R3 in space projects to the
point x = (x, y)> ∈ R2 on the image plane π through the optical center C ∈ R3, such
that X 6= C and C /∈ π, are related by the central projection. The central projection (or
perspective projection) is a general mathematical formulation7 of the projection from
3-dimensional space onto a 2-dimensional image plane π through a point C, C /∈ π,
that serves as the center of projection. Given a point X = (X,Y, Z)> ∈ R3, X 6= C,
the projection maps X to a point x ∈ π obtained by intersecting the plane π with the
line joining C and X. Assuming that C lies at the origin of R3 and that π is the plane
Z = −f , the corresponding mapping from R3 to R2 (cf. Figure 3.5) is given, again
using similar triangles, by

(X,Y, Z)> 7→ (−fX/Z,−fY/Z)>. (3.12)

Note that the projected point x is—as was the case with the thin lens camera model—
upside down with respect to its projecting point X. In order to eliminate this effect,
we flip the image plane π according to the mapping (x, y) 7→ (−x,−y). Doing so

7Note that usage varies; in the photogrammetry literature, the ‘central projection’ (or perspective projec-
tion) is understood more broadly to conceptually encompass the ‘pinhole camera model’ of the computer
vision literature (cf. Mundy [30]).
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is equivalent to placing the image plane Z = −f on the opposite side of the lens at
Z = f , and corresponds to the frontal pinhole camera (cf. Figure 3.6) model given by

(X,Y, Z)> 7→ (fX/Z, fY/Z)>. (3.13)

X

Y

Z
C = 0

X

x

p = (0, 0, f )T

f

πy

x

Figure 3.6: The frontal pinhole camera model.

Using instead the homogeneous coordinates of projective 3-space P3, we can re-
formulate the mapping in (3.13) as a matrix multiplication,

X
Y
Z
1

 7→
 fX

fY
Z

 =

 f 0
f 0

1 0




X
Y
Z
1

 , (3.14)

which expresses the central projection as a linear mapping between the respective ho-
mogeneous coordinates of a point in space and its projection on the image plane. We
call the 3 × 4 matrix in (3.14) the camera projection matrix P, which we can further
decompose as

P ∼

 f
f

1

 1 0 0 0
0 1 0 0
0 0 1 0

 , (3.15)

where we call the 3 × 4 matrix the standard (or canonical) projection matrix and the
3 × 3 matrix the camera calibration matrix K. We express this decomposition more
compactly using block notation as

P ∼ K[I | 0]. (3.16)

3.4.3 The Finite Projective Camera
Manufacturing defects such as the misalignment of a camera’s lens with its photosen-
sitive surface (e.g., a CCD chip) or physical imperfections in its lens system cause the
model of an ideal pinhole camera as presented in (3.14) to be ill-suited to adequately
modeling the geometry of image formation. Accordingly, we make the appropriate
modifications to the camera calibration matrix K introduced above to obtain the fi-
nite projective camera. Note that in our discussion of the finite projective camera, we
understand a vector X to be a homogeneous vector in P3, and a vector X̃ to be its
inhomogeneous counterpart in R3.
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Principal Point. The point of intersection (px, py) ∈ R2 between the optical axis
and the image plane π is called the principal point. The (frontal) pinhole camera model
given above assumes that the principal point lies at the origin 0 ∈ R2 of the image
coordinate frame. If, however, the optical axis is not orthogonal to π, the principal
point lies elsewhere in the image plane. In order to account for this effect, we rewrite
the mapping in (3.13) as

(X,Y, Z)> 7→ (fX/Z + px, fY/Z + py)>. (3.17)

In the homogeneous coordinates of P3, this mapping is given by
X
Y
Z
1

 7→
 fX + Zpx

fY + Zpy
Z

 =

 f px 0
f py 0

1 0




X
Y
Z
1

 , (3.18)

and, accordingly, the 3× 3 camera calibration matrix K becomes

K ∼

 f px
f py

1

 . (3.19)

More compactly, the mapping in (3.18) is

x ∼ K[I | 0]Xcam, (3.20)

where Xcam ∈ P3 is understood to be a point in space given—in what is called the
camera coordinate frame—with respect to the camera assumed to be located at the
origin of R3 and with its optical axis pointing in the direction of the positive Z-axis.

Pixels in CCD Cameras. So far, we have assumed that the image coordinates are
Euclidean coordinates, with equal scale in both axial directions. In order to account
for the fact that our image plane is tessellated into pixels, we modify our 3× 3 camera
calibration matrix K accordingly, yielding

K ∼

 mxf mxpx
myf mypy

1

 =

 αx x0

αy y0
1

 , (3.21)

wheremx,my give the number of pixels per unit distance along the x- and y-directions
in image coordinates. Although omitted for most normal cameras, we may also include
a parameter s, which expresses a measure of pixel skew. Accordingly, our matrix K
becomes

K ∼

 αx s x0

αy y0
1

 . (3.22)

Camera Pose. The pose of a camera refers collectively to its position and to the
direction in which it is facing, with respect to the world coordinate frame. Given a
vector X̃ ∈ R3 representing a point’s position in world coordinates and given some
finite projective camera P, the same point X̃cam ∈ R3 in camera coordinates is related
to X̃ in world coordinates by the Euclidean transformation

X̃cam = R(X̃− C̃), (3.23)
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where C̃ ∈ R3 represents the position of the camera center in world coordinates and
R is a 3 × 3 rotation matrix that gives the orientation of the camera coordinate frame
with respect to the world coordinate frame. We can reformulate the transformation in
Equation (3.23) in terms of the homogeneous coordinates of P3 as

Xcam ∼
[

R −RC̃
0> 1

]
X
Y
Z
1

 =
[

R −RC̃
0> 1

]
X, (3.24)

where X is in the world coordinate frame. By substituting the rightmost expression in
Equation (3.24) for X̃cam in Equation (3.20), we obtain

x ∼ KR[I | −C̃]X, (3.25)

and our final finite projective camera projection matrix P is accordingly

P ∼ KR[I | −C̃] = K[R | −RC̃] = K[R | t], (3.26)

where t = −RC̃. The 3 × 4 matrix P thus maps 3-dimensional points in the world
coordinate frame to 2-dimensional points in the image coordinate frame. Note that the
last column Kt of the matrix P is the projection of the origin (0, 0, 0, 1)> ∈ P3 of the
world coordinate frame.

3.4.4 Mappings between Planes
In mapping between planes by the central projection, point-line incidence is preserved
(cf. Figure 3.7). Accordingly, we can represent any plane-to-plane mapping given by
a finite projective camera as a planar projectivity h : P2 → P2, which we can express
using an invertible 3× 3 matrix H. The only requirements are that a coordinate system
be defined in both planes and that points be represented using homogeneous vectors.
Consequently, lines parallel in a projecting plane are projected onto the image plane as
lines that meet in a finite point, unless the projectivity is an affinity.

3.4.5 Forward Projection
As we have seen, given the camera matrix P of a finite projective camera, the corre-
sponding projection of a point in space given by the vector X ∈ P3 to a point in the
image plane given by the vector x ∈ P2 is obtained by

x ∼ PX. (3.27)

In the case of infinite points D ∼ (d>, 0)> ∈ P3, which represent the orientations of
projective 3-space, the mapping simplifies to

x ∼ PD = KR[I | −C̃]D = [KR | −KRC̃]D = [M | p4]D ∼ Md, (3.28)

where M = KR is an invertible8 3 × 3 matrix and p4 = −MC̃ is the last column of the
matrix P. As we shall see in Section 3.5, Md is precisely the vanishing point v incident
with the projection of every line ` in space that shares the orientation of the vector D.

8Were the matrix M non-invertible, then P ∼ [M | p4] would represent an infinite projective camera (or
affine camera), which has its camera center at infinity and thus models a parallel projection.
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x2

x1

π

0
x3

π´

Figure 3.7: A mapping between planes by the central projection preserves point-line
incidence. Accordingly, we can represent such a mapping using a planar projectivity.

3.4.6 Back-Projection
Given a vector x ∈ P2 corresponding to a point in the image, its back-projection is the
set of all points X ∈ P3 in space that P maps to x. The back-projection is thus given by
the ray through the camera center passing through the image point in question. Since
we can decompose P as

P ∼ KR[I | −C̃] = M[I | M−1p4], (3.29)

it follows that the camera center C̃ ∈ R3 is given by M−1p4, and thus

C ∼
(

M−1p4

1

)
. (3.30)

A second point on the ray is given by the ray’s intersection with the plane at infinity
π∞ ∼ (0, 0, 0, 1)>,

D ∼
(

M−1x
0

)
. (3.31)



3.5. VANISHING POINTS 25

Indeed, every point along the ray can be obtained by the parameterization C + λD,
for the appropriate λ ∈ R. Accordingly, a vanishing point v ∈ P2 back-projects to
its corresponding orientation in space, since if v ∼ P(d>, 0)> ∼ Md represents the
vanishing point corresponding to the orientation (d>, 0)>, then the back-projection of
v itself has the orientation ((M−1Md)>, 0)> ∼ (d>, 0)>.

3.5 Vanishing Points

We have already seen that every orientation projects to a vanishing point whose back-
projection is a ray along the original orientation. Our concern, however, is the relation-
ship between lines ` in space and vanishing points in the image plane. Given the pro-
jection matrix P of a finite projective camera and the parameterization X(λ) ∼ A+λD
in homogeneous world coordinates of a line ` in space such that D ∼ (d>, 0)> and,
as λ increases, the point X(λ) travels either along or past the camera’s image plane, its
projection onto the image plane is given by

x(λ) ∼ PX(λ) ∼ PA + λPD = PA + λ[M | p4]
(

d
0

)
∼ a + λMd. (3.32)

The corresponding vanishing point v ∈ P2 is obtained in the limit,

v ∼ lim
λ→∞

x(λ) ∼ lim
λ→∞

(a + λMd) ∼ lim
λ→∞

λMd ∼ Md, (3.33)

recalling that the homogeneous vector Md ∈ P3 is equivalent to the homogeneous
vector λMd ∈ P3, for any scalar λ 6= 0. The location of a vanishing point in the
image plane is thus identical for all lines in space that share the same orientation,
since it is only that orientation that plays any role given a fixed camera. By the central
projection, the line through the camera center C and the vanishing point v on the image
plane necessarily has that same orientation as well; consequently, the vanishing point
corresponding to an orientation D is equivalently given by the intersection with the
image plane of the unique ray through C with orientation D (cf. Figure 3.8).

π
C

�

l

x(λ0)

X(λ0)

v ~ x(λ∞)

X(λ1) X(λ2) X(λ3)
X(λ∞)X(λ4)

Figure 3.8: The projection of a line ` = {X(λ) | λ ∈ R} in 2-dimensional space
to the line l = {x(λ) | λ ∈ R,x(λ) ⊂ π} in the 1-dimensional bounded image
plane π. The vanishing point v is obtained at x(λ) as λ → ∞; that same point v is
obtained equivalently by intersecting the ray through the camera center C parallel to `.
The same holds for the projection of a line in 3-dimensional space to a 2-dimensional
image plane.
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Infinite Vanishing Points. Given a 3 × 4 camera projection matrix P, points
(x, y, 0)> ∼ PX arise from the projection of points X ∈ P3 orthogonal to the third
row of P. Consequently, that third row of P is the normal vector of the principal plane
through the origin of R3 parallel to the image plane π, since the infinite vanishing
points of π are the projections of orientations parallel to π.

Vanishing Points in the Columns of P. The first three columns of the projection
matrix P of a finite projective camera are the respective vanishing points of the orien-
tations in 3-dimensional space corresponding to the X-, Y- and Z-axes of the world
coordinate frame. Let pi indicate the ith column of P. To take an example of the X-
axis, the orientation of the X-axis is given by (1, 0, 0, 0)> ∈ P3 and thus projects to
p1 ∼ P(1, 0, 0, 0)>.

3.6 Vanishing Lines
The intersections at infinity D ∼ (d>, 0)> ∈ P3 of a set of pairs of lines ` parallel
in space project to corresponding vanishing points v ∈ P2 incident with a single line
l ∈ P2 in the image plane, called a vanishing line, if and only if the orientations in
space of all such lines ` are coplanar (cf. Figure 3.9). Since the mapping between
planes by the central projection reduces to a planar projectivity h : P2 → P2, and
since projectivities preserve point-line incidence, a vanishing line is the projection onto
the image plane of the vector in P2 corresponding to a vector in R3 normal to the
plane through the center of projection that contains the totality of the said coplanar
orientations. Accordingly, the vanishing line l of a plane is precisely the line at infinity
l∞ if and only if the projecting plane is parallel to the image plane. In either case, l
specifies the orientation in world coordinates of the projecting plane.

Affine Planar Rectification. As an aside, let us consider that carrying out the rec-
tification to within an affinity of the projectively distorted image of a plane reduces to
identifying the plane’s corresponding vanishing line l. If the projecting plane contains
at least two distinct pairs of parallel lines, we can compute l as the join of their two
corresponding vanishing points. Once we have identified its vanishing line, we can
remove the projective distortion in the plane’s image by applying a projective warping
specified by a planar projectivity h that maps l ∼ (l1, l2, l3)> to its canonical position
l∞ ∼ (0, 0, 1)>. This mapping is given by an invertible 3× 3 matrix H,

H ∼ HA

 1 0 0
0 1 0
l1 l2 l3

 , (3.34)

where HA is any planar affinity, since

H−>l ∼ H−>A

 l3 0 −l1
0 l3 −l2
0 0 1

 l1
l2
l3

 ∼ H−>A

 0
0
1

 ∼ l∞, (3.35)

recalling that the line at infinity l∞ is invariant under the affine transformations of the
plane. We call the application of such a projective warping an affine planar rectifica-
tion. Note that in order to rectify the image to within a non-zero scalar factor, we would
need to carry out a metric planar rectification (cf. Hartley and Zisserman [15]).
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3.7 Synopsis
Projective Geometry. Parallel lines in Euclidean geometry never meet in a point;
in projective geometry they always do, albeit in points at infinity. The points at infinity
(x, y, 0)> ∈ P2 represent the totality of orientations of the projective plane; the points
at infinity (d>, 0)> = (X,Y, Z, 0)> ∈ P3 represent all of the orientations of projective
3-space. In the projective plane, a point x ∈ P2 lies on a line l ∈ P2 only if the
vectors x, l are incident, i.e., only if x>l = 0; in projective 3-space, we have incidence
between points X ∈ P3 and planes π ∈ P3. In P2, the unique line l that joins the
points x,x′ is given by l ∼ x × x′; likewise, the point of intersection x of two lines
l, l′ is given by x ∼ l × l′. The vector in P2 that thus represents the intersection of
two lines parallel in the image plane has the same orientation as those two parallel
lines. All infinite points of the projective plane are incident with the line at infinity
l∞ ∼ (0, 0, 1)>. A projectivity h : P2 → P2 in the projective plane is an invertible
mapping that preserves point-line incidence, and we can represent any such h using an
invertible 3 × 3 matrix H. Unless the projectivity h is an affinity, h transforms l∞ to a
finite line l. Since projectivities preserve point-line incidence, the infinite points are—
with a single exception9—themselves transformed to finite points, and lines parallel in
the plane are accordingly projected such that incidence with these transformed infinite
points is preserved.

Image Formation. We model image formation using a finite projective camera,
which projects points X ∈ P3 in 3-dimensional space to points x ∈ P2 in the 2-
dimensional image plane fundamentally via the central projection. Under known cam-
era geometry, we can accordingly determine to which point x in the image plane a
point X in space projects. Moreover, we can back-project any point x in the image
plane to the ray through the camera center that passes through all points X in space
that project to x. Back-projecting the projection onto the image plane of an infinite
point D ∼ (d>, 0)> ∈ P3 in space yields a ray with the selfsame orientation as the
orientation the vector D itself represents.

Vanishing Points. Vanishing points arise on account of the nature of image forma-
tion. Every orientation in space projects to a corresponding vanishing point v ∈ P2

in the image plane, albeit perhaps one at infinity. Projecting any line ` in space with
orientation D ∼ (d>, 0)> ∈ P3 onto the image plane and intersecting the image plane
with the unique ray through the camera center C with orientation D equivalently yields
the same vanishing point v. The back-projection of v yields a ray whose orientation
D is the same as that of the projecting line `. Every point in the image plane is the
vanishing point corresponding to a particular orientation in the scene.

Vanishing Lines. Every vanishing line uniquely determines the orientation of a
plane in space, and every vanishing line is given by the join of two vanishing points
corresponding to lines respectively parallel in that plane. A projecting plane is parallel
to the image plane if and only if its corresponding vanishing line l is the line at infinity
l∞; only then are lines parallel in the projecting plane projected to lines parallel in the
image plane. Affine rectification reduces to transforming l to l∞. The vector l is the
normal vector in R3 of the projecting plane.

9We recall (from an earlier footnote) that every finite line l ∼ (a, b, c)> is incident with the single
infinite point (b,−a, 0)>.
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v1

v2

v3

l12

l13

(a) One finite van-
ishing point v1, two
at infinity v2, v3.
The vanishing line
l23 is at infinity, l12
and l13 are finite.

v1 v2

v3

l12

l13 l23

(b) Two finite vanishing points v1, v2, one at infinity v3. The
corresponding vanishing lines l12, l13, l23 are all finite.

v3

v1 v2

l13 l23

l12

(c) Three finite vanishing points v1, v2, v3. The
corresponding vanishing lines l12, l13, l23 are all
finite.

Figure 3.9: Vanishing points and vanishing lines for triplets of pairwise-orthogonal
scene orientations, using the cube from Figure 3.1. We depict vanishing points at
infinity in the customary manner, using an arrow that specifies a direction of the cor-
responding orientation. A line lij = lji is the vanishing line shared by the vanishing
points vi, vj . All the vanishing lines in the figure are finite, with the sole exception of
the line l23 in (a), which corresponds to the line at infinity l∞. Note that, for instance,
the vanishing line l12 of (b) belongs to both the top and bottom planes of the cube
and thus uniquely specifies the common orientation of both planes, and all planes with
which they are parallel.



Chapter 4

Implementation

4.1 Processing Pipeline

Our system borrows in spirit most heavily from the multiple-view approach for ex-
tracting the dominant three pairwise-orthogonal orientations of a typical urban scene
proposed in Sinha et al. [38] (cf. Appendix B). As we shall see, however, ours is a
material refinement of their approach. We begin with the recovery of camera geometry
for each view (cf. Irschara et al. [17]). Across the k available views, we then extract
image line segments and compute a single constellation of two or three candidate van-
ishing points per view, constrained to satisfy an orthogonality criterion and refined
with respect to candidate vanishing point inliers determined using an optimal distance
measure. We then map the orientations corresponding to those candidate vanishing
points to antipodal points on the unit sphere, given by corresponding unit direction
vectors. We proceed to extract three pairwise-orthogonal orientations—which we ex-
pect to correspond closely with the dominant three pairwise-orthogonal orientations of
the underlying urban scene—by fitting a tripod centered at the sphere’s origin to those
said points. We illustrate the processing pipeline of our approach in Figure 4.1.

(a) Recovery of cam-
era geometry for the k
available views.

π

C

(b) Extraction of a con-
stellation of two or
three candidate vanish-
ing points in a sin-
gle view, constrained
to correspond closely
to pairwise-orthogonal
scene orientations.

(c) Antipodal unit
direction vectors
corresponding to
the orientations
computed from
candidate vanishing
points extracted
across the k views.

(d) The pairwise-
orthogonal orienta-
tions corresponding
to the best-fit tripod.

Figure 4.1: The processing pipeline of our approach.
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4.2 Extracting a Constellation in a Single View

Candidate Vanishing Points. Given a view of the scene that we have projectively
warped in order to compensate for the effect of radial lens distortion (cf. Hartley and
Zisserman [15]) and a set S of line segments s that we have extracted from that view,
we compute candidate vanishing points from the intersections of the image lines l ⊂
R2 corresponding to the segments s ∈ S. We begin by obtaining the homogeneous
representation l ∈ P2 of a line l in the image plane corresponding to an extracted
image segment s by working out the vector product of the homogeneous endpoints
p1,p2 ∈ P2 of s,

l ∼ p1 × p2.

Given the homogenous vectors l, l′ ∈ P2 that represent the two lines l, l′ ⊂ R2, we
compute the intersection of l, l′ once again using the vector product,

v ∼ l× l′,

yielding the candidate vanishing point v ∈ P2 corresponding to the segments s, s′. We
then normalize v = (v1, v2, v3)> such that v = (v1, v2, 0)> if the magnitude of v3 is
not much greater than the machine epsilon, and v = (v1/v3, v2/v3, 1)> otherwise.

Accumulation. In order to determine which line segments correspond to a given
candidate vanishing point, Sinha et al. [38] make use of a distance function d(v, s) =
α ∈ [0, π/2] proposed in Rother [34]. This distance function delivers an angular mea-
sure of the ‘closeness’ of the line segment s ∈ S to the vanishing point v ∈ P2, where
a smaller angle indicates a better correspondence than a larger one (cf. Figure A.1 of
Appendix A). Sinha et al. consider all line segments s for which d(v, s) < TRoth to
form the set Sv ⊆ S of inliers of the candidate vanishing point v.

Rother’s distance measure, however, is not optimal; as justified in Pflugfelder [31],
the error measure of Liebowitz [22] (cf. Figure 4.2) is the only true error measure be-
tween a line segment s and a vanishing point v available in the literature. Consequently,
we appeal to the distance measure of Liebowitz rather than to that of Rother.

v
di

a di
b

mi

xi
b

xi
a

si lî

xi
a

xi
b

ˆ

ˆ

Figure 4.2: The line l̂i = arg minl F (i)(l) is the line through v that minimizes the
error F (i)(l) = d2

⊥(l,xai )+d2
⊥(l,xbi ) = dai ·dai +dbi ·dbi with respect to the segment si,

where d2
⊥(l,x) gives the squared Euclidean distance in the plane between the point x

and its projection to the line l. The error F (i)(̂li) gives the error measure of Liebowitz
with respect to a segment si and a candidate vanishing point v. Note that mi is not
necessarily the midpoint of the segment si.

Let the vectors xai = (xai1, x
a
i2, 1)>,xbi = (xbi1, x

b
i2, 1)> ∈ P2 represent the end-

points of the segment si, the vector v = (v1, v2, v3)> ∈ P2 represent a candidate
vanishing point, and the vector l = (l1, l2, l3)> ∈ P2 represent a line that joins v with
some mi = kai x

a
i + kbix

b
i ∈ P2. Given a segment si and a line l through a fixed can-
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didate vanishing point v, we declare that the line’s error1 F (i)(l) with respect to the
segment si is given by

F (i)(l) = d2
⊥(l,xai ) + d2

⊥(l,xbi )

= dai · dai + dbi · dbi

=
(xa>i l)2 + (xb>i l)2

l21 + l22
, (4.1)

where d2
⊥(l,x) gives the squared Euclidean distance between the point x and its pro-

jection to the line l. The line l̂i = arg minl F (i)(l) through v that minimizes the error
with respect to si is thus the line

l̂i = v ×mi

= v × (kai x
a
i + kbix

b
i )

= v × ((xai + xbi )
>ki), (4.2)

where the vector ki specifies the linear combination mi of the endpoints xai ,x
b
i of the

segment si for whichF (i)(̂li) is minimized. It is this minimized error measureF (i)(̂li)
that we term the distance measure of Liebowitz between a segment si and a vanishing
point v. Substituting l̂i = v× [xai + xbi ]ki from Equation (4.2) for l in Equation (4.1),
we obtain2

F (i)(v × ((xai + xbi )
>ki)) =

ki>ki
ki>Aki

, (4.3)

which is minimized when ki is the unit eigenvector of A corresponding to the largest
eigenvalue λmax of A, since it follows that ki>ki = 1 and ki>Aki = λmaxki>ki =
λmax. The matrix A is given by

A =
1
µ

[
A11 A12

A12 A22

]
, (4.4)

where

µ = 2(xbi2v1 − xbi1v2 − v1xai2 + xbi1v3x
a
i2 + v2x

a
i1 − xbi2v3xai1),

A11 = (−xai2v3 + v2)2 + (−v1 + v3x
a
i1)2,

A12 = (−xai2v3 + v2)(v2 − xbi2v3) + (−v1 + v3x
a
i1)(xbi1v3 − v1),

A22 = (v2 − xbi2v3)2 + (xbi1v3 − v1)2.

Finally, we plug k back into the right-hand side of Equation (4.2) to obtain the sought
optimal line l̂i through v corresponding to the segment si. The corresponding error is
F (i)(̂li) = F (i)

min = 1/λmax. Note that we can also obtain this error F (i)
min by taking the

larger roots of the characteristic polynomial of the matrix A,

F (i)
min =

µ

A11 +A22 +
√

(A11 −A22)2 + 4A2
12

, (4.5)

1We denote the Liebowitz error F in calligraphic script in order to be consistent with the notation of
Liebowitz. Elsewhere, however, we use letters in calligraphic script strictly in order to denote sets.

2See Liebowitz [22] for the complete derivation of this step, which includes with it the derivation of the
matrix A as well.
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which is computationally less expensive to work out than an eigenvalue decomposition.
It is the error F (i)

min that we use in our grouping of segments with respect to a candidate
vanishing point rather than Rother’s distance function d(v, s); accordingly, given a
candidate vanishing point v, we consider each segment si for which F (i)

min < TLieb to
be an inlier of v. See Liebowitz [22] for a more detailed treatment of how to compute
the line l̂i through a vanishing point v corresponding to a segment si.

Optimal Intersection Estimation. Once Sinha et al. have grouped inlier seg-
ments s ∈ Sv with a given candidate vanishing point v ∈ P2, they carry out no
supplementary re-estimation of that candidate vanishing point with respect to its inliers
in Sv. In contrast, we wish to compute an optimal point of intersection corresponding
to the segments determined to be inliers of a candidate vanishing point. With respect
to point-line incidence (cf. Section 3.2.1 in Chapter 3), the ideal point of intersection
for a set of lines l ∈ P2 would be given by the vector v∗ ∈ P2 that is orthogonal to
each vector l. Since we compute our lines l from segments s ∈ S extracted from a
quantized and inherently noisy image, an ideal vector v∗ will in practice—except by
fluke—never exist. Given a set of n lines li ∈ P2, the least-squares point of intersection
with respect to point-line incidence is given by the vector v̂SVD ∈ P2 that minimizes
the quantity ∥∥∥[l1 · · · ln

]>
v̂SVD

∥∥∥2

, (4.6)

where each vector li is scaled to unit length (cf. Cipolla and Boyer [7]). This minimiz-
ing vector v̂SVD is precisely the vector corresponding to the smallest singular value of
the singular value decomposition (SVD) of the n × 3 matrix

[
l1 · · · ln

]>
(cf. Ap-

pendix D). Note that computing the vector v̂SVD amounts to fitting a great circle
through the set of points li lying on the unit sphere.
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Figure 4.3: Maximum likelihood intersection estimation. The point v̂ML is the point
that minimizes the Liebowitz error

∑
si∈Sv d

2
⊥(̂li,xai ) + d2

⊥(̂li,xbi ).

We may proceed to even further refine the result v̂SVD we have thus obtained.
A maximum likelihood (ML) estimate of the corresponding vanishing point over all
segments si is given by the vector v̂ML = arg minv cost(v), where

cost(v) =
∑
si∈Sv

d2
⊥(̂li,xai ) + d2

⊥(̂li,xbi ) =
∑
si∈Sv

F (i)
min. (4.7)

Since we know how to compute the Liebowitz error F (i)
min with respect to each segment

si given any candidate vanishing point v, we have what we need to minimize cost(·)
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over different values of v using the Levenberg-Marquardt non-linear least squares op-
timization technique (cf. Lourakis [25]). We initialize the solver3 with the estimate
v̂SVD obtained by means of the aforementioned SVD approach. For a more detailed
treatment of this ML intersection estimation technique, we refer the reader once again
to Liebowitz [22].

Orthogonality Criterion. For a pair of candidate vanishing points v1,v2 ∈ P2,
our criterion requires that the unit direction vectors d1,d2 ∈ R3 corresponding to their
back-projections be within a tight threshold of orthogonality; i.e., |d>1 d2| < Tortho.
For a triplet v1,v2,v3 ∈ P2, we check each pair di,dj , i 6= j, of corresponding
back-projections for orthogonality in the same manner.

Sinha et al. do not enforce orthogonality in the orientations corresponding to the
candidate vanishing points extracted in any single view, assuming instead that enough
of the orientations they extract across the k available views will correspond to the
scene’s dominant three pairwise-orthogonal orientations. Since we seek a solution that
corresponds as closely as possible to the dominant three pairwise-orthogonal orienta-
tions of the scene, however, we choose to enforce orthogonality already in the orienta-
tions extracted from each view.

π

C

Figure 4.4: Our orthogonality criterion. We constrain the constellation of two or three
vanishing points extracted from any single view to back-project to rays that are pairwise
within a threshold Tortho of orthogonality.

A Constellation’s Vote. We assign a vote to each constellation, intended to reflect
its relative ‘goodness’ vis-à-vis the segments in S. Given a constellation C of two or
three candidate vanishing points, its vote is given by

vote(C) =
∑
v∈C

∑
si∈Sv

1− F
(i)
min

TLieb
, (4.8)

where F (i)
min is, once again, the error of the optimal line l̂i through the candidate van-

ishing point v with respect to the segment si; the set Sv contains all inlier segments si
of v, such that as before, each F (i)

min constrained to be smaller than the threshold TLieb.
Note that 1−F (i)

min/TLieb = 1—and is thus maximized—for a segment si ∈ Sv if and
only if its Liebowitz error F (i)

min with respect to v is naught.

3See http://www.ics.forth.gr/˜lourakis/levmar/ to obtain levmar, the implementa-
tion of the Levenberg-Marquardt non-linear least squares solver that we used to minimize cost(·).
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Pseudocode. For each of the k views of the scene, we extract a constellation C
of two or three vanishing points corresponding ideally to the dominant three pairwise-
orthogonal orientations of the scene. Our approach is inspired by RANSAC (cf. Ap-
pendix C) and is an adaptation of one presented in Rother [35]. We provide the pseu-
docode of our approach in Algorithm 1.

Algorithm 1 Extracting a Constellation of Vanishing Points in a Single View
1: for N iterations do
2: take 6 distinct image line segments at random from S and compute the candidate

vanishing points v1,v2,v3

3: for all 4 constellations C ∈ {{v1,v2,v3}, {v1,v2}, {v1,v3}, {v2,v3}} do
4: voteC ← vote(C) {the support of the constellation C}
5: if |C| = 3 yet the constellation with the greatest vote thus far encountered

contains only a pair of candidate vanishing points, and the constellation C
satisfies the orthogonality criterion then

6: store C as the constellation with best support
7: else if voteC is the greatest constellation vote thus far encountered and the

constellation C satisfies the orthogonality criterion then
8: store C as the constellation with best support
9: end if

10: end for
11: end for
12: return the re-estimation of each candidate vanishing point in the constellation

with best support

4.3 Optimizing across k Views of a Scene
A constellation extracted using Algorithm 1 from any one view does not for all input
necessarily correspond to the scene’s dominant three pairwise-orthogonal orientations,
owing in part to the fact that a competing constellation might happen to genuinely
have better support in a particular view, and in part to the fact that Algorithm 1 in-
volves choosing from constellations selected at random. Moreover, since we compute
those orientations from a re-estimation of each candidate vanishing point in a best-
support constellation C, and since prior to re-estimation the corresponding orientations
are themselves constrained to be pairwise-orthogonal to only within a threshold Tortho,
the orientations extracted using Algorithm 1 will in general fall short of being exactly
pairwise-orthogonal. We accordingly seek to obtain a result that takes into account the
information extracted from across the k available views and that yields a triplet of gen-
uinely pairwise-orthogonal orientations that are as close as possible to the dominant
three pairwise-orthogonal orientations of the scene.

A vanishing point back-projects to a ray through the view’s camera center C whose
direction, if given by a unit vector, can be either of an antipodal pair of vectors; to
which of the pair of antipodal unit vectors that direction corresponds depends on the
camera’s pose with respect to the back-projection’s orientation. Let the set T—which
we call a tripod—contain three orthonormal vectors t ∈ R3. Let the set K contain the
k contellations C of two or three candidate vanishing points extracted across k available
views. Let X be the set of antipodal pairs of unit vectors corresponding to the back-
projection of each vanishing point from the union of the k contellations C ∈ K. We
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proceed by fitting a tripod T to the antipodal unit direction vectors in X by iteratively
rotating the tripod T with respect to the vectors in X close to the tripod’s axes. We
carry out this fitting, initialized with a tripod T corresponding to the back-projection
of the candidate vanishing points in each of the k constellations K; we then choose the
resulting fitted tripod with the highest support as the basis for the winning set of three
dominant pairwise-orthogonal scene orientations.

An Iteration of Tripod Fitting. Given, without loss of generality, a vector t1 ∈
T = {t1, t2, t3} and the set X1 ⊂ X of the unit vectors in X within an angle Taxis of
t1, the mean unit vector µ1 of the vectors in X1 is given simply by the normalized sum
of all x ∈ X1,

µ1 =
∑
x∈X1

x
/∥∥∥∥∥∑

x∈X1

x

∥∥∥∥∥ . (4.9)

Let the matrix R1—which we can obtain ultimately by means of a corresponding unit
quaternion—be the matrix that rotates the vector t1 into the vector µ1. We treat the
denominator of the right-hand side of (4.9) as a measure of confidence ω1 in the rotation
given by R1, the magnitude of which depends on the cardinality of X1 and on the extent
to which the vectors x ∈ X1 are clustered together. Having also computed the rotation
matrices R2, R3 and weights ω2, ω3 corresponding, respectively, to the axes t2, t3 ∈ T ,
an axis t ∈ T rotates to t′ by our tripod fitting technique according to

t′ =
ω1R1t + ω2R2t + ω3R3t
‖ω1R1t + ω2R2t + ω3R3t‖

=
(ω1R1 + ω2R2 + ω3R3)t
‖(ω1R1 + ω2R2 + ω3R3)t‖

=
At
‖At‖

= Rt. (4.10)

In order to express the transformation in (4.10) as a single matrix irrespective of t, we
seek the orthogonal4 matrix R for which Rt gives t′. By the SVD, we can decompose
the matrix A such that A = UΣV>, where U, V> are orthogonal matrices and Σ is a
diagonal matrix; the orthogonal matrix closest in a least-squares sense to the matrix A
is R̂ = UV> (cf. Appendix D). For a single iteration of our tripod fitting algorithm, the
tripod T thus rotates to T ′ according to

T ′ =
⋃
t∈T
{R̂t} (4.11)

Initialization. We run our fitting algorithm k times, once for a tripod corresponding
to the back-projections of the candidate vanishing points in each of the k available
constellations C ∈ K. If a constellation C contains only a pair of candidate vanishing
points, we compute the third axis of the corresponding tripod T from the vector product
of its first two. Since we demand that our final tripod have pairwise-orthogonal axes,
we orthogonalize every tripod T that we use to initialize our tripod fitting algorithm.
This reduces to orthogonalizing the matrix T =

[
t1 t2 t3

]
in the same manner as

presented above; i.e., T = UΣV>, and so T̂ = UV> =
[
t̂1 t̂2 t̂3

]
.

4We recall that if a matrix R is orthogonal, then Rt = Rt/‖Rt‖; i.e., it is a rotation matrix.
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Support. From among k runs of our tripod fitting algorithm—each run initialized
with a parwise-orthogonal tripod corresponding to one of the k views—we choose our
best-fit tripod from among the k outcomes based on cosine similarity (cf. Banerjee
et al. [2]). For each of the k outcome tripods T , we compute

γT =
∑
t∈T

∑
x∈Xt

cos(x>t), (4.12)

which expresses the aggregate cosine similarity between each tripod axis t ∈ T and
every vector x ∈ Xt, and is thus5 a measure of the tripod’s support. We accordingly
choose the tripod with best support as our best-fit tripod.

Pseudocode. We obtain a best-fit tripod with respect to X as the final result with
best overall support from among k runs of an iterative fitting procedure, with each run
distinctly initialized with a tripod corresponding to one of the k available constellations
C ∈ K. The result with best support is the tripod T which, within N iterations of
initialization, yields the highest weight γT . We present the pseudocode of our approach
in Algorithm 2.

Algorithm 2 Fitting a Tripod with Pairwise-Orthogonal Axes across k Views
1: K ← the set of k constellations C obtained across k views using Algorithm 1
2: X ← the set of antipodal unit vectors corresponding to the back-projection of each

candidate vanishing point contained across all k constellations in K
3: for all k constellations C ∈ K do
4: T ← the set of vectors corresponding to the back-projections of the pair or

triplet of candidate vanishing points in the constellation C
5: if the set T contains only a pair of vectors then
6: T ← T ∪ {t1 × t2}, where t1, t2 ∈ T
7: end if
8: T ← orthogonalize(T ) {the tripod initialization}
9: for N iterations or until change is below a threshold Tε do

10: for all 3 pairwise-orthogonal tripod axes t ∈ T do
11: Xt ← all x ∈ X such that cos−1(x>t) < Taxis

12: ωt ← ‖
∑

x∈Xt
x‖

13: µt ←
∑

x∈Xt
x/ωt

14: Rt ← the matrix that rotates t into µt

15: end for
16: A←

∑
t∈T ωtRt

17: R̂← orthogonalize(A)
18: T ←

⋃
t∈T {R̂t}

19: end for
20: γT ←

∑
t∈T

∑
x∈Xt

cos(x>t) {the support of the tripod T }
21: end for
22: return the tripod with best support

5We recall that 0 = arg maxθ cos(θ), cos(0) = 1, with cos(0) > cos(θ) for all 0 > θ ≥ π.



Chapter 5

Evaluation

Student: Herr Professor, aber die Daten stimmen mit Ihrer Theorie nicht überein. . .
Professor: Das ist aber schlecht für die Daten!

—overheard1 from a colleague at VRVis

Following a brief note on computational complexity, we proceed to examine our algo-
rithm’s performance. We examine that performance by considering three data sets—
acv, ares and techgate—corresponding to real-world urban scenes at Vienna’s
Donau City development, incidentally home to VRVis. We first demonstrate the out-
come of a run of our algorithm on each of our three data sets by identifying the respec-
tive inlier segments of the vanishing points corresponding to the projection per view
of the extracted pairwise-orthogonal scene orientations (cf. Figures 5.1, 5.2 and 5.3).
We then provide a depiction of the antipodal directions extracted across all views of
each data set, and with them the corresponding best-fit tripods (cf. Figure 5.4). In
order to satisfy ourselves that the tripod fitting algorithm yields plausible results, we
view a result thus obtained from a handful of different poses (cf. Figure 5.5). We
compare these with the antipodal directions extracted via the approach of Sinha et al.
[38], numbering—as in their paper—eight per view; to these, we likewise fit a tripod
in our manner, since Sinha et al. omit a description of how exactly they choose their
three pairwise-orthogonal scene orientations (cf. Appendix B). Note that in each case,
we rendered the best-fit tripod (in red) more easily visible by superimposing vector
graphics—drawn by hand—over the best-fit tripod (also in red) present in the respec-
tive screenshot. Finally, we show graphs of relative inlier counts (cf. Figures 5.6, 5.7
and 5.8) and error measures (cf. Figures 5.9, 5.10 and 5.11)—once for each of our three
data sets—for three runs each of our algorithm and our adaptation of the approach of
Sinha et al. Note also that all parameters were kept the same across all runs and for each
data set, and that the vanishing point re-estimation approach we used is the SVD-based
technique from Section 4.2 of Chapter 4.

5.1 Remarks on Complexity

The running time bottleneck of our algorithm—certainly if camera geometry is recov-
ered in a pre-processing step—lies at the extraction of candidate vanishing points cor-

1(and uttered in jest, of course)

37
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responding to pairwise-orthogonal scene orientations (cf. Algorithm 1). Given n line
segments extracted in one view, there exist a total of

(
n
2

)
= n(n− 1)/2 ∈ O(n2) can-

didate vanishing points from among which to choose. The number of ways to choose
three distinct candidate vanishing points from among the total is precisely((n

2

)
3

)
=

1
3!
·
(
n

2

)
·
((

n

2

)
− 1
)
·
((

n

2

)
− 2
)
, (5.1)

since we have
(
n
2

)
candidates available for our first point,

(
n
2

)
− 1 for our second, and(

n
2

)
−2 for our third, and there are 3! ways of ordering those three points. Accordingly,

the complexity of an enumeration—carried out in order to determine which constella-
tion has best support—of just each unique triplet (recall that in Algorithm 1, we also
consider pairs!) of distinct candidate vanishing points in a single view is O(n6) in the
number of line segments extracted in that view, repeated for each view. It is in order
to vie with this crippling complexity that we opt instead to obtain our best-support re-
sult from among a (potentially) much smaller number N of constellations, obtained
from pairs of segments chosen at random from among the available n. In all of our
experiments, we set that number to N = 1000.

5.2 Results
Tallying counts of inlier segments per vanishing point or the corresponding cumulative
error values relative to inlier tallies in an image does not in general and by itself yield
a meaningful measure of the performance of an algorithm for the extraction of the van-
ishing points corresponding to the underlying scene’s dominant pairwise-orthogonal
orientations. Our data sets, however, are of the sort that most line segments do in
fact correspond to one such vanishing point; accordingly, we expect that only a mi-
nority of segments should wind up unclassified with respect to the dominant three
pairwise-orthogonal scene orientations our algorithm extracts. Unrelatedly, we expect
our algorithm to be stable; in this regard, we expect that the aforementioned inlier pro-
portions and normalized cumulative error for the inliers of each vanishing point remain
consistent across runs. In our experiments, the results for our approach support the
contention that our algorithm satisfies both of these criteria; in contrast, the approach
of Sinha et al. yielded results that are of a comparatively poorer quality, and that were
less consistent across runs.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.1: The acv data set with an approximation of its dominant three pairwise-
orthogonal scene orientations extracted using our approach, with the inlier segments
of their corresponding vanishing points shown per view in red, green and blue, respec-
tively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: The ares data set with an approximation of its dominant three pairwise-
orthogonal scene orientations extracted using our approach, with the inlier segments
of their corresponding vanishing points shown per view in red, green and blue, respec-
tively.
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(a) (b)

(c) (d)

(e)

Figure 5.3: The techgate data set (note the displacement of the lamp post) with an
approximation of its dominant three pairwise-orthogonal scene orientations extracted
using our approach, with the inlier segments of their corresponding vanishing points
shown per view in red, green and blue, respectively.
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(a) The acv data set. (b) The ares data set. (c) The techgate data set.

(d) The acv data set. (e) The ares data set. (f) The techgate data set.

Figure 5.4: Antipodal unit direction vectors extracted across all views of the given data
set, with the corresponding best-fit tripod indicated in red. The top row corresponds to
the results obtained using our approach and given in Figures 5.1, 5.2 and 5.3, respec-
tively; the bottom, to our tripod fitting with respect to the antipodal directions obtained
via the approach of Sinha et al.

Figure 5.5: A best-fit tripod and the antipodal directions (obtained via the method of
Sinha et al.) to which it was fitted using our tripod fitting technique, viewed from a
handful of different poses.
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Figure 5.6: Inlier proportions for the acv data set across three runs. The top row
corresponds to the results obtained using our approach; the bottom, to our tripod fitting
with respect to the antipodal directions obtained via the approach of Sinha et al. In
both cases, run 1 refers to selfsame respective run that gave rise to the corresponding
tripod in Figure 5.4.
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Figure 5.7: Inlier proportions for the ares data set across three runs. The top row
corresponds to the results obtained using our approach; the bottom, to our tripod fitting
with respect to the antipodal directions obtained via the approach of Sinha et al. In
both cases, run 1 refers to selfsame respective run that gave rise to the corresponding
tripod in Figure 5.4. Note that the graphs corresponding to runs 2 and 3 of our approach
are indeed distinct, and that VP 2 had no inliers for images (b) and (d) in run 1 of the
approach of Sinha et al.
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Figure 5.8: Inlier proportions for the techgate data set across three runs. The top
row corresponds to the results obtained using our approach; the bottom, to our tripod
fitting with respect to the antipodal directions obtained via the approach of Sinha et al.
In both cases, run 1 refers to selfsame respective run that gave rise to the corresponding
tripod in Figure 5.4.
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Figure 5.9: Cumulative inlier error relative to inlier count for the acv data set
across three runs. The top row corresponds to the results obtained using our approach;
the bottom, to our tripod fitting with respect to the antipodal directions obtained via the
approach of Sinha et al. In both cases, run 1 refers to selfsame respective run that gave
rise to the corresponding tripod in Figure 5.4.
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Figure 5.10: Cumulative inlier error relative to inlier count for the ares data set
across three runs. The top row corresponds to the results obtained using our approach;
the bottom, to our tripod fitting with respect to the antipodal directions obtained via the
approach of Sinha et al. In both cases, run 1 refers to selfsame respective run that gave
rise to the corresponding tripod in Figure 5.4. Note that the missing values in run 1 of
the approach of Sinha et al. are due to the fact that the corresponding inlier counts are
naught (cf. Figure 5.7).
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Figure 5.11: Cumulative inlier error relative to inlier count for the techgate
data set across three runs. The top row corresponds to the results obtained using our
approach; the bottom, to our tripod fitting with respect to the antipodal directions ob-
tained via the approach of Sinha et al. In both cases, run 1 refers to selfsame respective
run that gave rise to the corresponding tripod in Figure 5.4.
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Chapter 6

Conclusion

Our approach presents a material refinement of the multiple-view vanishing point ex-
traction technique proposed in Sinha et al. [38]. Our method achieves this refinement
by making use of a strong orthogonality criterion per view, optimal segment intersec-
tion estimation and a novel tripod fitting technique. Unlike Sinha et al., our tripod
fitting paradigm does not require that we assume that one of the extracted scene orien-
tations corresponds to a cluster of points on the unit sphere “that is most well aligned
with the up vector for most of the cameras” (cf. Sinha et al.), and guarantees a gen-
uinely pairwise-orthogonal result. By considering antipodal directions, our approach
yields results that make better use of the information extracted per view. Moreover, by
re-estimating candidate vanishing points according to their inlier segments, we obtain
information per view that is more representative of the underlying scene geometry. Fi-
nally, by enforcing orthogonality with respect to the constellations extracted per view,
we restrict our fitting to relevant potential scene orientations. We found in our exper-
iments that our method consistently outperformed the fundamental approach of Sinha
et al., yielding results that were comparatively more stable across runs and that in each
case corresponded closely to the respective dominant three pairwise-orthogonal orien-
tations of each of the three scenes considered.

6.1 Recommendations

Our approach is intended as only a single step in the processing pipeline of a larger
framework for the reconstruction of (typical) urban scenes. In this regard, we should
like to offer the following recommendations—which we consider consequences of our
evaluation in Chapter 5 coupled with good sense—in the hope that applying them might
lead to better scene reconstructions.

Line Segments. As our algorithm operates on line segments extracted across views,
the quality of those segments necessarily influences the quality of the results. Accord-
ingly, the user ought to have control over the parameters that control the output of the
chosen line segment extraction algorithm. Since long segments are more likely to be
accurate than short ones, another parameter over which the user ought to have control
is minimal segment length.
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Bad Views. It is not necessarily expedient to optimize scene orientations across
views that—upon the user’s judgment—contain a predominance of ‘bad’ segments,
even if our algorithm should be robust to some amount of bad data. Accordingly, the
user ought to be in a position to remove such bad images from consideration in our
multiple-view optimization step.

Fitting a General Tripod. There is to our knowledge in principle no reason why
our tripod fitting approach cannot be adjusted to search for triplets of orientations that
are something other than pairwise-orthogonal. The only part of the fitting approach
that explicitly assumes that we seek pairwise-orthogonal orientations is the initializa-
tion step, which orthogonalizes the back-projection of the constellation extracted in a
single view. Accordingly, fitting a general tripod reduces to formulating an appropriate
initialization strategy.

Additional Scene Orientations. Real-world urban scenes often feature more than
only three dominant pairwise-orthogonal scene orientations. Given k views of a scene
and a set S of segments per view, one way to extract additional scene orientations—
and, indeed, the manner according to which Sinha et al. proceed—is to allow the user
to manually draw (or select) two segments in any one view known by the user to cor-
respond to the selfsame scene orientation; the back-projection of their intersection v
gives the intersection’s corresponding scene orientation. One way to refine this result
follows neatly from our approach for coming close to finding the scene’s dominant
three pairwise-orthogonal orientations:

Algorithm 3 Computing an Additional Scene Orientation
1: compute an optimal re-estimation v̂ of v with respect to the inliers Sv ⊆ S of v,

disregarding all segments in S corresponding to the inliers of the pre-computed
dominant three pairwise-orthogonal scene orientations

2: back-project v̂ to an antipodal pair of unit vectors
3: project the corresponding orientation to and subsequently carry out steps (1) and

(2) for each of the k − 1 remaining views
4: return a single orientation fitted to the k antipodal directions thus obtained in a

manner akin to our tripod fitting approach

A more automatic—albeit less robust—avenue would involve removing the inliers
across all k views corresponding to the extracted dominant three pairwise-orthogonal
orientations and clustering over candidate orientations obtained from the remaining
segments in a manner akin to the approach of Sinha et al.

Segment Intersection Estimation. We carried out the evaluation of our approach
on results we obtained from per-view constellations refined using the SVD-based in-
tersection estimation technique we present in Section 4.2 of Chapter 4. In our experi-
ments, the orientations extracted per view already corresponded closely to their best-fit
tripod (cf. Figure 5.4); however, our experiments also showed that small deviations
can effect material differences in cumulative inlier error relative to inlier count. As we
also noted in Section 4.2 of Chapter 4, we can obtain a potentially better intersection
estimation—albeit at greater cost—using the ML estimation approach of Liebowitz.
Accordingly, it ought to be up to the user to decide whether the improvement over the
SVD approach obtained using the ML approach merits the additional running time.



Chapter 7

Summary

In this master’s thesis, we present a material refinement of the method proposed in
Sinha et al. [38] for obtaining a close approximation of the dominant three pairwise-
orthogonal orientations of a typical urban scene by means of extracting vanishing
points across multiple views. Our method achieves this refinement by making use
of a strong orthogonality criterion per view, optimal segment intersection estimation
and a novel tripod fitting technique. We found in our experiments that our method con-
sistently outperformed the fundamental approach of Sinha et al. Our method yielded
results that were comparatively more stable across runs and that in each case corre-
sponded closely to the respective dominant three pairwise-orthogonal orientations of
each of the three scenes considered. Our thesis places our method into the context
of earlier work on the extraction of vanishing points in the aim of facilitating the re-
construction of urban scenes. Moreover, our thesis includes what is intended to be a
self-contained primer to the geometry that underlies the formation of vanishing points.
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Chapter 8

Zusammenfassung

In dieser Diplomarbeit wird eine wesentliche Verfeinerung der Methode von Sinha
et al. präsentiert, die mittels Extraktion von Fluchtpunkten über mehrere Ansichten
hinweg eine nahe Approximation der drei dominanten paarweise orthogonalen Ori-
entierungen einer typischen urbanen Szene berechnet. Unsere Methode erreicht diese
Verfeinerung durch Verwendung eines starken Orthogonalitätskriteriums in jeder An-
sicht, einer optimalen Berechnung von Segmentschnittpunkten und einem neuartigen
Dreibein-Ausrichtungsverfahren. In unseren Experimenten hat unsere Methode konse-
quent den fundamentalen Ansatz von Sinha et al. übertroffen. Die Ergebnisse waren
vergleichsweise stabiler und stellten eine nahe Approximation der jeweiligen domi-
nanten drei paarweise orthogonalen Orientierungen in jeder der drei getesteten Szenen
dar. Diese Arbeit stellt unsere Methode in den Kontext früherer Arbeiten zum Thema
Fluchtpunktextrahierung, mit Schwerpunkt Vereinfachung der Rekonstruktion urbaner
Szenen. Desweiteren beinhaltet diese Arbeit eine in sich geschlossene Einführung in
die Geometrie, die der Entstehung von Fluchtpunkten zugrundeliegt.
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Appendix A

The Single-View Approach of
Rother

Rother’s [34] single-view algorithm for extracting a constellation of three vanishing
points corresponding to pairwise-orthogonal scene orientations is divided into two
steps: the first is called the accumulation step, the second, the search step. In the accu-
mulation step, votes are tallied for each of a set of candidate vanishing points computed
from extracted image line segment intersections, according to each candidate’s sup-
port with respect to the segments. In the search step, those votes are used—alongside
constraints of camera geometry and orthogonality of the orientations corresponding to
candidate vanishing points—to extract the winning constellation.

The algorithm’s worst-case complexity is O(n5) in the number of line segments
extracted from the image in a pre-processing step. However, constraints built into the
algorithm materially reduce the likelihood of running at worst-case complexity.

Distance Functions. Rother makes use of two distance functions within the frame-
work of his algorithm. One, as illustrated in Figure A.1(a), gives an angular measure
d(v, s) = α ∈ [0, π/2] of the extent to which a candidate vanishing point—perhaps at
infinity—represented by v ∈ P2 is expected to correspond to an image line segment s,
where an angle α = 0 indicates perfect correspondence. Rother uses this first distance
function in his accumulation step. It is this distance function that Sinha et al. [38] bor-
row for their multiple-view vanishing point extraction approach, and which we borrow
for our approach implemented for the purposes of this master’s thesis. The other, as
shown in Figure A.1(b), provides a measure of the distance between a line l and a seg-
ment s, both in the image plane, expressed as a tuple d(l, s) = (|d|, α). We explain
the meaning of |d| and α in the figure. Rother uses this second distance function in his
search step.

A.1 Accumulation Step
Candidate Vanishing Points. Given a pre-computed set S of n image line seg-
ments, Rother computes a candidate vanishing point v from each non-collinear pair of
the
(
n
2

)
possible pairs {s1, s2} ⊂ S of segments. He does this per pair by calculating

the point of intersection of the unique pair of lines l1, l2 ⊂ R2 that pass, respectively,
through the line segments s1, s2 ⊂ R2 in the image plane.
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(a) The distance d(v, s) between a line
segment s and a finite vanishing point
v is defined as the lesser angle α ∈
[0, π/2] between s and the the line l join-
ing the midpoint of s with v.
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(b) As an infinite vanishing point is rep-
resented by an orientation, the distance
d(v, s) given an infinite vanishing point
is thus defined as the lesser angle α be-
tween s and a vector extending from the
midpoint of s with the orientation of the
infinite vanishing point.

Figure A.1: The distance function d(v, s) of Rother’s algorithm.

By using the homogeneous coordinates of P2 to represent lines in the plane, we
may compute the intersection at infinity of lines parallel in the image plane in the same
way as we would the intersection of lines that meet in a finite point. As shown in
Section 3.1.1 of Chapter 3, we obtain the homogeneous representation l ∈ P2 of a line
l ⊂ R2 in the image plane by working out the vector product of two distinct points
p1,p2 ∈ P2 on l,

l ∼ p1 × p2.

On account of image noise, the best two points on l to choose are the homogenized
endpoints of the corresponding segment s. The point of intersection v ∈ P2 of two
lines l, l′ ∈ P2 is given likewise by

v ∼ l× l′.

We then normalize v = (v1, v2, v3)> such that v = (v1, v2, 0)> if the magnitude of v3
is not much greater than the machine epsilon, and v = (v1/v3, v2/v3, 1)> otherwise.

Endpoint Criterion. Lines parallel in space are projected either to lines parallel in
the image plane that meet at infinity, or to lines in the image plane that meet in a finite
point. Consequently, a vanishing point will not lie anywhere on an image line segment
but at one of the segment’s endpoints (an exception would be a horizon line, or indeed
any vanishing line). For this reason, we reject all candidate vanishing points v ∈ V
that lie between the endpoints of an image segment.

Voting Scheme. Rother assigns a vote to each valid candidate vanishing point v. A
higher vote for v is assumed to indicate a higher likelihood that the candidate vanishing
point is a veridical one. We formulate the voting function that Rother provides as

vote(v) =
∑
s∈Sv

[(
1− d(v, s)

t

)
+ λ

(
length(s)

max{length(s′) | s′ ∈ Sv}

)]
, (A.1)
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Figure A.2: The distance function d(l, s) = (|d|, α) of Rother’s algorithm. The dis-
tance d(l, s) between a line l and a line segment s is defined as the tuple (|d|, α), where
|d| is the length of the segment d perpendicular to s joining the midpoint of s with l
and α ∈ [0, π/2] is the lesser angle between the midpoint of the segment s′ and the
line l. The segment s′ is obtained by translating s by its midpoint along the segment d.

where t ∈ ]0, π/2] is a user-specified threshold that sets the maximal allowable mag-
nitude of d(v, s) since, for 0 ≤ d(v, s) ≤ t, the first term of the voting function is
between 1 and 0, inclusive; Sv ⊆ S is the set of all image line segments s for which,
accordingly, 0 ≤ d(v, s) ≤ t; and λ is a user-specified weight parameter that es-
tablishes the relative influence of the two terms of the voting function. Note that for
λ = 1, the maximal value of both terms, respectively, is 1. The motivation for includ-
ing the second term of the voting function follows from the assumption that longer line
segments are more reliable than shorter ones.

Pseudocode. The first of the two steps in Rother’s algorithm is the accumulation
step, which takes as input a set S of line segments extracted from the image in a pre-
processing step. We give the pseudocode in Algorithm 4.

Algorithm 4 Rother’s Accumulation Step
1: V ← ∅ {the set of candidate vanishing points}
2: for all pairs {s1, s2} ⊂ S of non-collinear line segments do
3: compute candidate vanishing point v from the intersection of s1, s2
4: V ← V ∪ {v} {add v to the set V of candidate vanishing points}
5: for all line segments s ∈ S do
6: if v does not satisfy the endpoint criterion for s then
7: V ← V \ {v} {remove v from the set V of candidate vanishing points}
8: continue
9: end if

10: end for
11: Sv ← the set of all segements s ∈ S such that d(v, s) ≤ t
12: votev ← vote(v), computed over the set Sv ⊆ S
13: end for
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A.2 Search Step
Camera and Orthogonality Criteria. The camera and orthogonality criteria are
motivated by constraints imposed by camera geometry on constellations of vanish-
ing point triplets corresponding to pairwise-orthogonal scene orientations. These con-
straints are discussed more thoroughly in Liebowitz and Zisserman [24]. Taken collec-
tively, the camera and orthogonality criteria for triplets of vanishing points that corre-
spond to pairwise-orthogonal scene orientations are:

i. Three finite v1,v2,v3: no interior angle of the triangle formed by the three fi-
nite vanishing points is greater than or equal to π/2. We can compute the principle
point, which is the orthocenter of the triangle formed by the three candidate vanish-
ing points. Moreover, we can also calculate the focal length, which is the distance
from the principal point to the apex of the pyramid whose base is the triangle and
whose apex is formed by the right-angle intersections of segments extending from
the three candidate vanishing points in the base;

ii. Two finite v1,v2, one infinite v3: the direction of v3 is orthogonal to the line
through v1,v2. The principal point lies on the segment whose endpoints are
v1,v2; since the principal point for a typical camera is near the image center,
we choose the point on the segment closest to the image center. This information
allows us to compute the focal length;

iii. One finite v1, two infinite v2,v3: the direction of v2 is orthogonal to the direction
of v3. The principle point lies at v1, we cannot compute the focal length.

Vanishing Line Criterion. Two vanishing points v,v′ corresponding to coplanar
scene orientations share a vanishing line if at least one of the two is finite. If both
are finite, the vanishing line is the line through the two; if only one is finite, it is the
line through the finite vanishing point in the direction of the infinite vanishing point,
as discussed in Section 3.5 of Chapter 3. We formulate the vanishing line criterion
accordingly:

i. Two finite v,v′: each segment s ∈ Sv ∩Sv′ lies on the vanishing line through the
two vanishing points;

ii. One finite v, one infinite v′: the sets Sv,Sv′ are disjoint; i.e., Sv ∩ Sv′ = ∅.

According to Rother’s approach, a segment s lies on a vanishing line l if, having com-
puted d(l, s) = (|d|, α), the distance |d| and the angle α are each below a threshold.

Pseudocode. The second of the two steps of the Rother algorithm is the search
step, which extracts the winning constellation in a combinatorial fashion. We give the
pseudocode in Algorithm 5.
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Algorithm 5 Rother’s Search Step
1: v1 ← arg maxv vote(v)
2: for all pairs {v′,v′′} ⊂ V \ {v1} of candidate vanishing points do
3: if {v1,v′}, {v1,v′′}, {v′,v′′} satisfy the vanishing line criterion then
4: if the constellation {v1,v′,v′′} satisfies the camera and orthogonality criteria

then
5: vote{v′,v′′} ← vote(v′) + vote(v′′) {the constellation’s vote}
6: end if
7: end if
8: end for
9: return the constellation {v1,v′,v′′} with the largest vote
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Appendix B

The Multiple-View Approach
of Sinha et al.

Sinha et al. [38] present a multiple-view approach for extracting the dominant three
pairwise-orthogonal orientations—and with them potentially additional orientations—
of an urban scene by means of vanishing points. They describe their method in a short
appendix, remarking elsewhere in the same publication that the extraction of vanishing
points is “not the main focus of [their] paper.” Even so, theirs is one of the few papers
that describe the application of knowledge of vanishing points extracted across multiple
views to facilitating the reconstruction of urban scenes (cf. Chapter 2).

B.1 Algorithm

Three Pairwise-Orthogonal Scene Orientations. Sinha et al. begin by extract-
ing up to n candidate vanishing points per view1 using a RANSAC-based approach (cf.
Appendix C) with support defined in terms of inlier count with respect to the distance
measure d(v, s) of Rother (cf. Appendix A); a segment s is an inlier of a candidate
vanishing point v if d(v, s) < TRoth for some chosen threshold TRoth. Once up to
n candidate vanishing points have been extracted in each of the k views, Sinha et al.
back-project each candidate vanishing point to its corresponding normalized direction
vector, which they place on a unit sphere. Next, they cluster—albeit without disclosing
how—the points on that unit sphere, extracting the cluster center best alligned with the
up vector for most of the cameras. From among the remaining clusters, they obtain an-
other two, collectively constrained to correspond to pairwise-orthogonal orientations.
Additionally, Sinha et al. use the three pairwise-orthogonal orientations to refine their
camera pose estimation. As with their clustering, however, so too with their pose re-
estimation do they choose to pass over the greater details in silence.

Additional Scene Orientations. Sinha et al. allow for the interactive selection of
additional scene orientations, presumably from among the remaining available cluster
centers. Alternatively, they also allow for the user to draw a pair of lines in a chosen
view, known by the user to correspond to lines parallel in the scene; the back-projection
of their point of intersection gives the corresponding scene orientation.

1Sinha et al. report having used n = 8 in their experiments.
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Pseudocode. We give the pseudocode of the multiple-view approach of Sinha et al.
for extracting the dominant three pairwise-orthogonal orientations in Algorithm 6.

Algorithm 6 The Multiple-View Approach of Sinha et al.
1: recover camera geometry for the k available views of the scene
2: for all k available views of the scene do
3: Sk ← the set of segments extracted from the kth view
4: Ck ← ∅ {the set of candidate vanishing points corresponding to the kth view}
5: while |Ck| 6= n do
6: if there remain fewer than a pair of segments in Sk then
7: break
8: end if
9: v ← the candidate vanishing point computed from the intersection of a pair

of distinct image line segments s1, s2 ∈ Sk taken at random
10: S ′k ←

⋃
s∈S{s | d(v, s) < TRoth} {the set of the inlier segments of v}

11: if the candidate vanishing point v has best RANSAC inlier support then
12: Ck ← Ck ∪ {v}
13: Sk ← Sk \ S ′k {the set of remaining outliers}
14: end if
15: end while
16: Xk ← the normalized direction vector corresponding to the back-projection of

each candidate vanishing point in C
17: end for
18: X ←

⋃
i Xi {the unit direction vectors extracted across k views}

19: X̂ ← cluster(X ) {the set of cluster centers corresponding to clusters in X}
20: tup ← the cluster center best alligned with the up vector for most of the cameras
21: T ← tup and two additional cluster centers, constrained to be pairwise-orthogonal
22: return the three directions in T



Appendix C

Random Sample Consensus

Random Sample Consensus, or RANSAC, is an algorithmic framework put forward by
Fischler and Bolles [11] for robustly fitting a mathematical model—i.e., for estimating
a model’s parameters—to a set S of data points that contain outliers. The presence of
outliers is characteristic of data sets that are drawn from empirical measurements.

Model fitting approaches that make equal use of all data points in S—such as or-
dinary least squares—make no special provision for gross outliers in the data. Prior to
the introduction of RANSAC, a popular way to address the problem of fitting mathe-
matical models to data with outliers was to iteratively compute a model’s best fit to the
points in S and remove the point most distant from the fit, until a threshold—either in
distance from the fit or number of iterations—is reached. In their paper, Fischler and
Bolles provide an example of how a single gross outlier mixed in with otherwise good
data can cause this particular heuristic to fail.

C.1 Framework
Given a set of data points S to which some particular mathematical model is to be
fit, RANSAC begins with the minimal number of data points S ′ ⊆ S—selected at
random—needed to instantiate the model’s parameters M . Accordingly, in the event
that we should wish to fit a line, the minimal number of data points S ′ ⊆ S we would
need is two. RANSAC then proceeds to determine which of the data points in S are
within a distance threshold Tdist from the instantiated model. If, again, our model is
a line, then its inliers are the data points in S that come close enough to lying on that
line. These inlier data points collectively form the instantiated model’s consensus set
C ⊆ S . If the cardinality of C—called the instantiated model’s support—is greater
than a threshold Tsize, RANSAC invokes a smoothing technique such as least squares
to yield an optimal result vis-à-vis the data points in C, and the algorithm terminates.
Otherwise, the model is reinstantiated with a new minimal set of random data points
S ′ ⊆ S , again chosen at random. If a threshold of N iterations is reached without
having encountered a large enough consensus set, it is the consensus set with best sup-
port encountered that is judged the winner, and likewise undergoes the aforementioned
smoothing technique.

Pseudocode. We provide the pseudocode for the general RANSAC algorithmic
framework in Algorithm 7.
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Algorithm 7 The RANSAC Framework
1: s← the minimal number of data points needed to initialize M
2: for N iterations do
3: S ′ ← a random subset of size s of data points in S
4: M ← the model parameters instantiated using the data points in S ′
5: C ← the consensus set of data points in S within a distance Tdist of M
6: if |C| > Tsize then
7: return the model parameters M re-estimated using the data points in C
8: end if
9: end for

10: return the model parameters M re-estimated using the data points in the best-
support consensus set encountered



Appendix D

Singular Value
Decomposition

D.1 Formulation
By the singular value decomposition (SVD)1, we can decompose any m × n matrix
A,m ≥ n, into a pair of orthogonal matrices U, V and a diagonal matrix Σ such that

A = UΣV> =
r∑
i=1

λiuiv>i , (D.1)

where r is the rank of A. The columns of the m × n matrix U are the eigenvectors
ui ∈ Rm of AA>,

U =
[

u1 · · · un
]
. (D.2)

The n×nmatrix Σ is a diagonal matrix with non-negative entries—called the singular
values of A—that are the square roots σi =

√
λi of the eigenvalues λi of A>A,

Σ =


σ1

. . .
σn

0

 , (D.3)

where σ1 ≥ · · · ≥ σr ≥ 0, σr+1 = · · · = σn = 0. Finally, the columns of the
orthogonal n× n matrix V are the eigenvectors vi ∈ Rn of A>A,

V =
[

v1 · · · vn
]
. (D.4)

The geometric interpretation of the SVD is a rotation2 V>, followed by a (perhaps
anisotropic) stretching Σ and finally a second rotation U. A review of applications of the
SVD for solving computer vision problems is available in Section A4.4 of Appendix 4
in Hartley and Zisserman [15].

1For a more in-depth discussion of the SVD, see http://www.prip.tuwien.ac.at/
teaching/ws/StME/apponly.pdf.

2Let us recall that if an m× n matrix M is orthogonal, the column vectors mi of M must be orthonormal,
i.e., m>

i mj = δij . Accordingly, each column vector mi has unit length and each pair of column vectors
mi,mj , i 6= j, are orthogonal. The column space of M is accordingly an orthonormal basis of an n-
dimensional subspace of Rm. Since it follows that ‖Mx‖ = ‖x‖,x ∈ Rn, the matrix M is a rotation matrix.
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D.2 Minimizing the Quantity ‖Ax‖2 over x

Given an m× n matrix A = UΣV>, m > n, the vector x, ‖x‖ = 1, that minimizes the
quantity ‖Ax‖2 is the rightmost column of V (cf. Hartley and Zisserman [15]).

D.3 Orthogonalizing a Square Matrix
Given an n× n matrix A = UΣV>, the least-squares orthogonalization of A is given by
UV> (cf. Schönemann [36]), which amounts to simply disregarding the influence of the
stretching matrix Σ. Note that this is precisely the solution to the so-called orthogonal
Procrustes3 problem.

3Procrustes (ProkroÔ�hs), son of Poseidon, was an Attic bandit who offered travellers a bed in which
to pass the night. He is infamous for having forced his victims fit this bed by either stretching their limbs or
cutting them away. A Procrustean constraint is thus one to which exact conformity is enforced.
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[20] J. Košecká and W. Zhang. Efficient Computation of Vanishing Points. Pro-
ceedings 2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), pages 223–228, 2002.

[21] K. Levenberg. A Method for the Solution of Certain Nonlinear Problems in Least
Squares. Quarterly of Applied Mathematics, 1944.

[22] D. Liebowitz. Camera Calibration and Reconstruction of Geometry from Images.
PhD thesis, 2001.

[23] D. Liebowitz and A. Zisserman. Metric Rectification for Perspective Images of
Planes. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 482–488, 1998.

[24] D. Liebowitz and A. Zisserman. Combining Scene and Auto-calibration Con-
straints. Proceedings of the Seventh IEEE International Conference on Computer
Vision, pages 293–300 vol.1, 1999.

[25] M. I. A. Lourakis. levmar: Levenberg-Marquardt Non-Linear Least Squares Al-
gorithms in C/C++.

[26] E. Lutton, H. Maı̂tre, and J. Lopez-Krahe. Contribution to the Determination of
Vanishing Points using Hough Transform. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 430–438, 1994.
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