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ABSTRACT

It is a difficult task to design transfer functions for noisy data. In
traditional transfer-function spaces, data values of different materi-
als overlap. In this paper we introduce a novel statistical transfer-
function space which in the presence of noise, separates differ-
ent materials in volume data sets. Our method adaptively esti-
mates statistical properties, i.e. the mean value and the standard
deviation, of the data values in the neighborhood of each sample
point. These properties are used to define a transfer-function space
which enables the distinction of different materials. Additionally,
we present a novel approach for interacting with our new transfer-
function space which enables the design of transfer functions based
on statistical properties. Furthermore, we demonstrate that statisti-
cal information can be applied to enhance visual appearance in the
rendering process. We compare the new method with 1D, 2D, and
LH transfer functions to demonstrate its usefulness.

Keywords: Transfer function, statistics, classification, noisy data,
shading.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
ture; I.4.10 [Image Processing and Computer Vision]: Image
Representation—Volumetric

1 INTRODUCTION

Volume classification is a major issue in volume visualization. The
goal of classification is to enhance different materials or features
which are important for further analysis of the data. Transfer func-
tions have been proven to be a powerful tool for classification. Nev-
ertheless, in most cases it is a non-trivial task to find a good transfer
function which is able to achieve the desired classification.

A transfer function is a general concept. Concrete implementa-
tions use one or more properties, derived from the data, to define
a transfer-function space. A transfer function is then designed in
this space. How easily different materials can be distinguished by
the transfer function, depends on the data set as well as on the used
properties in the definition of the transfer-function space.

Noise in the measured data is a typical problem, which compli-
cates the classification process. The most frequently observed noise
in measured data is Gaussian white noise. White noise has a mean
value of zero and a symmetric variance. For different materials in a
volume data set, the noise causes variations of the intensity values
around an average value. Therefore, it is difficult to assign intensity
values of sample points to a certain material, especially if average
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values of other materials are close by. This intermixing of materi-
als in the intensity space cannot be resolved in the transfer-function
space when only local properties, such as the intensity and gradient
magnitude, are used to define the transfer-function space.

In this paper we present a method which considers a larger
area around each sample point to derive properties for the transfer-
function space. By this, we are able to estimate the distribution of
noise around the average value of a material. The statistical proper-
ties of this distribution are used to describe the material at a certain
sample position. Since different materials can be distinguished by
their distributions of intensity values, we are able to separate them.

For the estimation of the statistical properties, we employ an
adaptive growing approach at each sample point. The extent of the
growing is dependent on the local neighborhood of a sample point.
The estimated properties are used to define the statistical transfer-
function space. Sample points from separate materials can be seen
as separate clusters in this space. We introduce special transfer-
function regions which are adapted for this space to design a trans-
fer function. Furthermore, we demonstrate how the statistical prop-
erties can be used to steer visual properties such as shading. This
results in higher quality visualizations, especially for noisy data.

We use the new statistical transfer-function space to generate im-
ages for medical MR and industrial CT data. We show for these data
sets, that our method classifies different materials better than other
state-of-the-art transfer-function spaces.

2 RELATED WORK

The work presented in this paper spans several research fields.
Since we are dealing with noise in the data, the analysis of noise
in image processing is related to this work. The growing of re-
gions around each sample point is similar to the scale-space anal-
ysis where data is analyzed on different scales. In this work we
introduce a new transfer-function space. Therefore, most of the re-
lated work is dedicated to other transfer-function spaces.

Image Processing. Noise in data is a well investigated field in
image processing. In this work we assume the noise in the data to
be Gaussian white noise. This is specifically true for CT data sets
[12, 27]. For other data sets, the Gaussian distribution is at least a
good approximation of the noise distribution. In MRI, e.g., the real
distribution is a Rician distribution, but for a low signal-to-noise
ratio the difference to a Gaussian distribution is very small [6].

Scale-Space Analysis. Early works, such as Lindeberg [14],
analyzed images on different scales. Over the years, different
scale-spaces were investigated. The most common scale space is
the linear scale space, which is generated by progressive Gaussian
smoothing. In this scale-space Lindeberg [15] introduced a tech-
nique for feature detection and automatic scale selection. Due to
the complexity of the scale-space generation for volume data, alter-
natives, such as Laplacian pyramids [5] or Wavelet transforms [20],
were developed for an easier and faster representation of different
scales. A method to improve the classification of features, based
on the pyramid representation, was introduced by Lum et al. [17].
In contrast to scale-space analysis, our method uses different scales
for each sample point because the growing is terminated depending
on local properties of the neighborhood region.



Transfer Function Spaces. In an early work, Levoy [13] used
the data value alone to define a transfer function space. Kniss et
al. [9] employed the data value and the gradient magnitude for
the classification of different materials and borders between them.
Since they only consider single data values and a very small neigh-
borhood for the gradient magnitude, this technique is not well suited
for the classification of noisy data. Hladůvka et al. [8] proposed
curvature as an additional property for the classification. With this
method special features, like ridges and valleys, could be extracted.
An extension to multi-dimensional transfer functions was intro-
duced by Roettger et al. [23]. The method includes spatial infor-
mation in the transfer-function space. They simplified the transfer-
function design-process by using the spatial information to color
the transfer-function space. However, for noisy data different ma-
terials overlap in this transfer-function space.

In the work of Lum and Ma [16], a larger region is considered for
the definition of the transfer-function space. Besides the data value
at a sample point, a data value along the gradient direction is used as
well. In data sets with sharp transitions, such as CT data, this tech-
nique can be used to highlight border areas. An extension to this
method was introduced by Sereda et al. [26] named LH histograms.
This method looks for homogeneous regions along both directions
of the gradient streamline. The detected low and high data values
are used to define the transfer-function space. This method provides
good results for data sets with little noise. For noisy data sets, val-
ues in homogeneous regions have a high variance. Therefore, the
clusters representing homogeneous regions are getting larger and
overlap each other in the LH histogram space.

A method which also uses a larger neighborhood for the clas-
sification was presented by Hadwiger et al. [7]. They use region
growing to detect features of different sizes in industrial CT data.
In a 3D transfer-function space these different features can be clas-
sified. In the work of Correa and Ma [3], a multi-scale approach is
used to detect the size of features in a data set. The feature size is
then used as an additional parameter for the definition of a transfer
function. In both approaches the shape of a feature in the data set
is the main criterion for the classification. Instead in our method,
the statistical properties of materials are used for the classification.
These properties are independent of object shapes.

Lundström et al. [18] introduced a method to classify different
tissues by the local histograms in the neighborhood around a sample
point. Caban and Rheingans [2] used textural properties to differ-
entiate between materials, possibly with similar data values. These
methods are able to separate materials but they use a neighborhood
with a fixed size for the extraction. Thus, these approaches do not
differentiate between homogeneous and inhomogeneous regions.

Laidlaw et al. [11] use Bayes’ theorem on a small neighborhood
of a voxel to classify mixed materials. Tenginakai et al. [24, 25]
introduced a method to extract salient iso-surfaces based on sta-
tistical methods. A different classification based on statistics was
introduced by Kniss et al. [10]. For the estimation of the statisti-
cal characteristics certain properties of the different materials have
to be known. For our approach no prior knowledge of material
properties is necessary. Lundström et al. [19] used the variance in a
neighborhood of a voxel to separate materials. In comparison to our
work, they used a fixed neighborhood size to estimate the variance.
In our previous work (Patel et al. [21]) we used statistical proper-
ties to manually classify materials for differently sized neighbor-
hood regions. In this work we extract the statistical properties for
the best suited neighborhood size semi-automatically. Furthermore,
we use these statistical properties to define a transfer-function space
and to enhance the visual appearance of the resulting rendering.

3 STATISTICAL TRANSFER-FUNCTION SPACE

The idea behind the statistical transfer-function space is that ma-
terials are distinguishable according to their statistical properties.

Since the data is not segmented, we are not able to calculate the sta-
tistical properties for different materials in general. Therefore, we
introduce a technique which extracts statistical properties for the
neighborhood of each sample point individually. We expect that
sample points from the same material get similar statistical prop-
erties. In the new transfer-function space this leads to clusters for
different materials, which makes it possible to design meaningful
transfer functions. In this section we describe all steps which are
necessary to generate the statistical transfer-function space.

Figure 1 shows an overview of the workflow. To generate a visu-
alization based on statistical transfer functions, different processing
steps have to be applied on a volume data set. For the generation
of the transfer-function space, statistical properties, i.e. the mean
value and the standard deviation, are extracted first. This is done
in a pre-processing step. The user defines a confidence level for
this step. This confidence level is a quantity for the tolerance in the
extraction step. It is further explained in Section 3.1.

The properties for each sample point are then depicted in the
transfer-function space. They serve as a clue for the user to design a
transfer function. The transfer function together with the statistical
properties drives the successive visualization step. Additionally the
statistical properties are used to enhance the shading.

Workflow

Statistical Properties Extraction

Definition of Statistical TF Space

Statistical Properties in Visualization

User

TF Design

Confidence
Level

Setting

Volume Data Set

Figure 1: Statistical transfer-function workflow.

To exemplify our new method, we generated a synthetic data
set of size 128× 128× 128. The data set contains three different
materials. In Figure 2(a) a slice through the center of the data set is
shown. Material 2 in the center of the data set is a sphere, embedded
between material 1 and material 3. Gaussian white noise has been
added to all three materials. As mentioned before this is a realistic
noise model for most data sets especially for CT and MRI. In Fig-
ure 2(b) the histograms of the materials are shown. On the horizon-
tal axis the data values f (x,y,z) of the sample points are mapped.
The vertical axis holds the frequency of occurrences I for each data
value. The Gaussian distributions of all three materials have high
standard deviations (σ1 = 0.14, σ2 = 0.09, and σ3 = 0.11), conse-
quently the distributions considerably overlap each other. The black
line gives the frequency distribution of all three materials together.

Material 1 Material 3

Material 2

(a) Slice view
f1

I

0.50.3 0.7

Material 1

Material 2

Material 3

Combined
Frequency

Distribution

(b) Frequency distribution

Figure 2: Slice through the synthetic data (a) and the frequency dis-
tribution of the data values (b).



The synthetic data set exemplifies noisy data. The overlapping
of the distributions for different materials is a problem which often
occurs in real-world data sets [26]. In the further explanation of
the method, the synthetic data set is used to show the effects of the
different processing steps.

3.1 Statistical Properties Extraction
The extraction of the statistical properties is essential for our sta-
tistical transfer-function space. For sample points within a certain
material, the extracted statistical properties should be close to the
statistical properties of the entire material. We achieve this by in-
vestigating a neighborhood region around each sample point. To
keep the neighborhood within the same material, we introduce an
adaptive growing which is dependent on the local properties.

The distribution of data values of a single material in real-world
data sets, such as MRI or CT, can be approximated very well by
the Gaussian white noise model. Therefore, we consider only the
Gaussian distribution as basis for the calculation of statistical prop-
erties. A Gaussian distribution is described by its mean value and
standard deviation. Hence, we use these two parameters as our sta-
tistical properties.

For the extraction of the statistical properties, we iteratively grow
a spherical neighborhood by increasing the radius by one voxel in
each step. We compare for each growing step if the newly grown
hull still belongs to the same material. Figure 3 shows a cross sec-
tion of such a neighborhood. In the following explanation we use
two different notations for the statistical properties. The mean value
μr and the standard deviation σr for a certain radius r, are the esti-
mations for the statistical properties of all points within a sphere of
radius r. μ̇r and σ̇r are the statistical properties of the points in the
outer hull of the sphere (see Figure 3).

r-1
r

μ σr r

μ σr-1 r-1

(     ,     )

(       ,       ) S

Hull r

Sphere r-1

Figure 3: The standard deviation and mean for the sphere and the
outer hull.

In each growing step several calculations are done to decide if the
growing should be terminated or not. Figure 4 shows the processing
steps for each growing step. The goal of these steps is to detect
whether the sphere grows into another material. In such a case the
loop is terminated.

As initial parameters for the loop, the mean value and the stan-
dard deviation of a sphere with a radius of one are used. The data
values of points in the sphere may not be normally distributed. This
can happen when the sphere intersects two materials. Such a sit-
uation should be detected in an early stage so growing can be ter-
minated. Therefore, we apply a normal-distribution test, as will be
described later in this section, to check if the points in the initial
sphere are normally distributed. Only if this test is passed, the loop
is started with the initial statistical properties. Otherwise μ1 and σ1
of the initial sphere are used as statistical properties for the actual
sample point.

In the loop depicted in Figure 4, the first step is the calculation of
the statistical properties μ̇r and σ̇r for points in the hull at a radius r.
In the next step it is tested if the distribution in the hull is normally
distributed. If this is the case, the properties are compared with
μr−1 and σr−1. In the case the statistical properties are similar,
the statistical properties of the hull are merged with the statistical
properties of the sphere r−1. If a sample point lies in the center of a
large homogeneous area, the loop is terminated when the maximum
radius rmax is reached.

Properties Estimation

Similarity Test

Merging Statistical Properties

pass ?

r = r     ?max

No Yes

Yes No

r++

Statistical Properties Extraction Loop

Start

Result

μ  r

μ  , σr r

μ  , σr r
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σr-1 σr

Normal-Distribution Test μ  , σr r

pass ?
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Figure 4: Calculation loop for the extraction of the statistical proper-
ties.

For the extraction of the statistical properties, a confidence level
ω has to be set. This confidence level expresses the general confi-
dence in the distribution of data values in a data set with respect to
the general noise level. It can be set differently to adapt the model
for various data types such as MRI or CT. In the following part
of this section, the usage of ω and the other processing steps are
described in more detail.

Properties Estimation

In each successive cycle of the extraction loop, the statistical
properties of a larger region are considered. Since the statistical
properties for sphere r− 1 are already known, we are interested
in the statistical properties μ̇r and σ̇r of the additional points in
the hull r (see Figure 3).

As the distribution is considered to be Gaussian, we estimate the
mean value and the standard deviation for the points in the hull
r [4]. The mean value μ̇r is the average and σ̇r is the biased
standard deviation of all points:

μ̇r =
1

Ṅr

Ṅr

∑
i=1

fi, σ̇r =

√√√√ 1
Ṅr

Ṅr

∑
i=1

( fi − μ̇r)2 (1)

Ṅr is the number of points included in the hull r. fi denotes the
data value of a sample point in the hull. With these estimations
for the mean value and standard deviation we expect to get values
which are close to the real statistical properties of the material in
the hull.

Normal-Distribution Test

Before we apply a similarity test with the derived properties of
the hull and the statistical properties of the inner sphere, it must
be ensured that the distribution is normally distributed. This is
necessary because the similarity test is based on normal distribu-
tions. When two materials are intersecting the hull, the distribu-
tion is not normally distributed. In such a case the distribution
would have two peaks. With the normal-distribution test we want
to detect such situations and terminate the loop.

In statistics, several normality tests exist. We chose the Jarque-
Bera test (JB). This test uses the third-order moment, i.e. the
skewness Ṡr, and the fourth-order moment, i.e. the kurtosis K̇r,
of the points in the hull at radius r for the calculation of JB:

JB =
Ṅr

6

(
Ṡ2

r +
(K̇r −3)2

4

)
(2)



The benefit of using this test is that it is not necessary to sort the
point values of the distribution. Therefore, it can be efficiently
implemented on the graphics hardware.

The parameter JB is used to test for the null hypothesis with a
test level 1−α of 99.9%. This results in a test value of 13.82
according to statistical lookup-tables:

H0 : JB < 13.82(1−α=0.999) (3)

With the high test level, only distributions with a high divergence
to a normal distribution are declined by the null hypothesis. This
is necessary, due to the low number of samples which are used
for the test. Only distributions which are very different from a
normal distribution will fail the test.

If the null hypothesis is declined, the loop is terminated and μr−1
and σr−1 of sphere r−1 are taken as statistical properties for the
sample point S. If the test passes the null hypothesis, we continue
with the similarity test.

Similarity Test
In this processing step, we measure the similarity between the
statistical properties in the hull r and the statistical properties of
the sphere r−1. The goal is to detect whether the hull is still part
of the same material as the sphere r−1.

Through the properties-estimation step, we get the statistical
properties of the hull. We have calculated the statistical prop-
erties of the sphere r − 1 in the preceding loop cycle. Since all
the values are estimations and the numbers of points which are
involved in the estimation is rather low, we use a variant of the
student’s t-test for the similarity test. This test is best suited for
Gaussian-distributed populations with small sample sizes [4].

In our case, we have two independent samples which were used
for the estimations. Since the mean values as well as the stan-
dard deviations of both estimations can vary, we use a generalized
form of the student’s t-test also known as the Welch’s t-test [28].
As primary parameter for the similarity test, a tr parameter is cal-
culated:

tr =
μr−1 − μ̇r√
σ 2

r−1
Nr−1−1 + σ̇ 2

r
Ṅr−1

(4)

The tr parameter is dependent on the mean values, the standard
deviations, and sample sizes of both distributions. Additionally,
a degree-of-freedom δr has to be calculated:

δr =

(
σ 2

r−1
Nr−1−1 + σ̇ 2

r
Ṅr−1

)2

σ 4
r−1

(Nr−1−1)3 + σ̇ 4
r

(Ṅr−1)3

(5)

The degree-of-freedom δr is only dependent on the standard de-
viations and the sample sizes, but not on the mean values. The δr
value together with the confidence level ω are used as parameters
to get a reference tω (δr) value in a t-test lookup-table. This value
is used to test for the null hypothesis H0:

H0 : |tr| < tω (δr) (6)

If the null hypothesis is true, it is assumed that both Gaussian
distributions are the same. If the null hypothesis is declined then
both distributions are expected to be different with a probabil-
ity of 1−ω . Therefore, a small confidence level ω results in a
high probability that both distributions are not similar if the null
hypothesis is declined. On the other hand, the reference tω (δr)
value for a small ω is high which makes the similarity test less
selective.

As in the step earlier μr−1 and σr−1 of sphere r−1 are taken as
statistical properties if the test is failed. Otherwise we continue
with the next growing step.

Merging Statistical Properties
If the statistical properties have passed the normal-distribution
test and the similarity test, we assume that the material in the
outer hull still is the same as in the sphere r− 1. Therefore, the
statistical properties of both areas can be merged together.

This step results in a new μr and σr. These statistical properties
represent the distribution of all points in the sphere r. The merged
statistical properties are used in the successive cycle of the loop
to do the similarity test with the next larger hull: r +1.

The loop is terminated when the normal-distribution test or the
similarity test fails or when the maximum radius is reached. In the
first two cases we store μr−1 and σr−1 as statistical properties μ
and σ for the sample point S. In the third case we take the statistical
properties μr and σr after the merging step.

Additionally, we store the radius rbreak at which the loop is termi-
nated. The closer rbreak is to rmax the more significant the statistical
properties are at this point, because the population of points for the
estimation is larger. In the next section, rbreak is used to highlight
statistical properties with a higher significance.

Figure 5 shows the statistical properties μ and σ for the synthetic
data set at different confidence levels ω . For a low ω of 0.1%, the
similarity test is more easily passed. Therefore, the sphere grows
larger and results in more consistent values for μ and σ . For the
transfer-function space this means that the clusters of materials are
smaller. If the confidence level ω is high, e.g. 30%, the loop has a
higher probability of being terminated. Since in this case a smaller
area is used to estimate the statistical properties, the result for μ and
σ is less smooth compared to a low ω but details, such as borders,
are preserved better.

μ

σ

ω 30.0%0.1% 5.0%

Figure 5: Statistical properties (μ and σ ) of the synthetic data
for three different confidence levels ω = {0.1%,5.0%,30.0%}. The
brighter a point is, the higher is its value.

Congruent to the characteristic in this example, ω should be cho-
sen according to the type of data. If a modality is very noisy and the
distribution of points does not exactly follow a normal distribution,
the confidence value should be chosen rather low. Therefore, some
details get lost but the clusters for different materials in the transfer-
function space are smaller. MRI is an example of such data. In such
a case, ω should be set to a low value, such as 0.1%. For less noisy
data types with a Gaussian-like distribution of the data values, e.g.
CT, ω can be set to a higher value, such as 20%. Then details are
better preserved and the clusters are small enough due to the low
noise level. The synthetic data set is rather noisy but the distribu-
tion of the points follows exactly a normal distribution. Therefore,
a confidence level of 5% was chosen. The values for the confidence



levels were found through experiments, where we tried to achieve
the best balance between noise reduction and detail preservation.
This has to be done only once for a certain type of data source. In
Section 5 we demonstrate that our presented values work well for
different MRI and CT data sets.

3.2 Definition of Statistical Transfer-Function Space
By extracting the statistical properties we get a mean value μ and a
standard deviation σ for each sample point. In the next step we use
this information for the design of a transfer function. First we have
to define a transfer-function space, which is used for the design of
a transfer function. The intent of this statistical transfer-function
space is to separate different materials in the presence of noise.

For the transfer-function space we use the original data value f of
each sample point together with the mean value μ and the standard
deviation σ . We follow the convention of using the horizontal axis
of a transfer-function space for the data value. The horizontal axis
is, however, also used to depict the mean μ . In the new transfer-
function space the data value f on the horizontal axis is considered
as starting point of a line segment. The statistical properties μ and
σ for each sample point define a second point, where the standard
deviation is given on the vertical axis.

In Figure 6 the transfer-function space is shown. On the left side
the properties of a sample point S are drawn as a line segment in
this space.

μ

σ

f,1

0.10

f(S)

(μ(S), σ(S))
TF Region

(μ  , σ  )R R

αmod
1.0

Figure 6: Schematic representation of the statistical transfer-function
space. On the left side the properties of a sample point are shown
as a line segment. On the right side a transfer-function region in the
new space can be seen.

Since the clusters for each material are expected to show up
around a certain mean value and standard deviation, an elliptical
area is used to define a transfer-function region. On the right side
of Figure 6 an example of such a region is shown. The center of
the region is at (μR,σR). A sample point is only classified by this
region when its statistical properties (μ ,σ) lie within the elliptical
area.

The optical properties for each region are represented with a
color cR and an opacity αR. The position of the transfer-function
region also defines the corresponding Gaussian distribution of data
values along the horizontal axis. The opacity of sample points is
manipulated according to this distribution:

αmod = αR ∗ e
− 1

2

(
f−μR

σR

)2

(7)

αR is the opacity defined for the respective transfer-function region.
f is the data value of the sample point and (μR,σR) is the center
point of the region. Equation 7 is represented as a curve along the
horizontal axis in Figure 6, below the transfer-function region. The
opacity for data values f close to the center μR of the region are
modified less in contrast to the opacity of data values f , which are
more different to μR. By this modification, we reduce the influ-
ence of sample points which are less likely to be part of the desired
distribution.

Figure 7 shows the sample points of the synthetic data set in the
statistical transfer-function space. In Figure 7(a) each sample point
is represented as a line segment. Since the line segments of points
with high σ values might occlude points with low σ values, an
alternative representation is shown in Figure 7(b). In this represen-
tation only a single dot at (μ ,σ) is drawn for each sample point. In
both representations three large clusters for the different materials
and three smaller clusters for the borders can be seen. The border
between material 1 and 3 actually consists of two small clusters.
This results from the fact that the mean values of material 1 and
3 are very different. Therefore, it makes a difference if the origin
sample point of a neighborhood-region lies in material 1 or 3, be-
cause more points from one or the other material are then used for
the estimation of the mean value.

If the difference between the mean values of two materials is
smaller, e.g. between material 1 and 2, then only one cluster shows
up in the transfer-function space.

μ

σ

f,

0.20

1

0.10

(a) Line representation
μ

σ

0.20

1

0.10
Material 1

Material 3

Material 2

Border (1-2)
Border (2-3)

Border (1-3)

(b) Dot representation

Figure 7: Line and dot representation in the statistical transfer-
function space of the synthetic data.

To enhance points with higher significance, we weight the opac-
ity of line segments or dots by the termination radius rbreak of the
calculation loop. Thus, statistically well defined interior regions are
emphasized.

3.3 Statistical Properties in Visualization
In addition to the definition of a transfer function we use the sta-
tistical properties as input for the shading process. In volume visu-
alization gradient-based techniques are most common for shading.
They are computational less expensive and faster as gradient-free
shading techniques. For noisy data the gradient-based techniques
have the penalty that the noise in the data deteriorates the estima-
tion of the gradient and, therefore the shading [1]. Especially in
homogeneous regions, where the gradient magnitude is rather low,
noise has a high impact on the estimation of the gradient direction.

To reduce the influence of noise on the gradient, we use the mean
values of the sample points to estimate the gradient direction. The
mean values are smoother than the original data values and, there-
fore, the gradient direction in nearly homogeneous regions is es-
timated better in comparison to the widely used central-difference
method. With this gradient we calculate a color cshaded based on
Phong shading [22].

For the observer, shading is important for the perception of sur-
faces. To avoid visual clutter resulted when shading all parts of the
volume, we apply shading only for border regions. For this purpose
the standard deviation σ can be used. σ is higher in border regions
and it is less affected by noise than the gradient magnitude. There-
fore, σ is used to interpolate between the shaded color cshaded and
the unshaded color cunshaded :

c = (1−σ)cunshaded +σcshaded (8)

The lower σ is, the less shading is applied. This leads to a vi-
sualization where the border areas are shaded more as opposed to



the rest. The synthetic data with traditional shading in Figure 8(a)
is shown in contrast to the shading based on statistical properties
in Figure 8(b). With statistical shading the influence of noise is
clearly reduced without modifying the data itself from filtering or
other techniques.

(a) Traditional shading (b) Statistical shading

Figure 8: Visual difference between traditional shading and statistical
shading. With statistical shading the influence of noise is reduced.

4 IMPLEMENTATION

The steps which are described in Section 3 can be divided into two
parts of computation. The first part is the extraction of statistical
properties. This is a pre-processing step which has to be recalcu-
lated only when the confidence level ω is changed. The other part is
the visualization with the usage of the statistical transfer function.
This part is done in real-time.

Since the extraction of the statistical properties is a highly paral-
lel process, we use graphics hardware. Nevertheless, the extraction
is expensive because many lookups have to be performed to esti-
mate the statistical properties.

The maximum number of lookups per sample point is dependent
on the maximum radius rmax of the calculation loop. We decided to
set the maximum radius to a value of 6. With this radius, a maxi-
mum of 925 lookups are done per sample point. This leads to the
following 99% confidence limits:

μ = μ ± (0.0424σ) (9)

This means that the estimated μ is, with a confidence of 99%, not
farther away from the real mean value μ than 0.0424 times σ . Even
for a large σ the interval for μ is small enough for our purpose of
estimating the statistical properties.

In addition to the maximum radius rmax, the confidence level ω
influences the speed of the calculation. The lower ω , the less likely
it is that the calculation loop is terminated. Therefore, more lookups
have to be done for the estimation of the statistical properties. In
Figure 9 the termination level at different radii is shown. The graph
shows the percentage of all sample points for which the calculation
loop is already terminated at a certain radius. For the synthetic
data set different confidence levels are used. It can be seen that the
termination level at the maximum radius of 6 is much lower for an
ω of 0.1% in comparison to an ω of 30%. For the low ω the loop
is only terminated for points close to the border. A high ω causes
terminations also for large variations in homogeneous regions. As
shown in Figure 5, the visual difference of various ω values can be
seen in the smoothness.

Apart from the synthetic data set, Figure 9 also shows the termi-
nation level for two real-world data sets with according confidence
levels for each type of data. In the case of CT data, we get a high ter-
mination level even at a low radius. This results from the fact that
areas with zero variation, e.g. air, do not pass the initial normal-
distribution test. For MRI data, the curve is more linear, due to the
fact that all parts contain at least some noise.
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Figure 9: Termination level of the calculation loop for different data
sets and confidence levels ω.

Table 1 shows the time measurements for the estimation of the
statistical properties for the data sets of Figure 9 on a GeForce GTX
260. The different settings for the level ω have only a small influ-
ence on the calculation time. This results from the fact that most
time is used to initialize the graphics hardware for the calculation.

MRI Head CT Backpack Synthetic Data
256×256×128 256×256×186 128×128×128

ω=0.1% ω=20% ω=0.1% ω=5% ω=30%

2.386sec 2.330sec 0.654sec 0.649sec 0.646sec

Table 1: Time measurement for the estimation of statistical properties
for different data sets.

After the extraction of the statistical properties, we use raycast-
ing for the visualization. The statistical properties μ and σ are
stored in additional channels of the volume. To classify a sam-
ple point with the designed transfer function, the parameters of
all transfer-function regions are handed over to the graphics card.
There it is tested if the statistical properties of a sample point lie
within a transfer-function region. If so, the color and opacity is
assigned to the sample point as described in Section 3.2. This clas-
sification can be implemented efficiently on the graphics card. We
get interactive rendering rates for data sets of size 256×256×256
on a GeForce 8800 GT graphics card.

5 RESULTS AND DISCUSSION

In this section we show some results generated with our new
method and compare them with other techniques.

5.1 Synthetic Data Set
For the explanation of the method we have introduced a synthetic
data set, as shown in Figure 2. The three different materials in this
data set are rather noisy. Therefore, it is difficult to separate the ma-
terials in common transfer-function spaces. In Figure 10(a) the 2D
transfer-function space with axis f and | f ′| and in Figure 10(b) the
LH histogram-space were used to classify the different materials.
With the 2D transfer function we were not able to classify all points
correctly, because of the density overlapping. Especially at the bor-
der between material 1 and material 3 (blue and yellow) points are
classified as material 2 (red). In the LH histogram-space it is easier
to separate the different materials and the border but transitions are
very ragged.

In Figure 10(c) the result of our method is shown for an ω of
5%. Since the different materials have different statistical proper-
ties they can be clearly seen as clusters in the statistical transfer-
function space. For the synthetic data, smoothing techniques would
be able to reduce the cluster sizes in the 2D transfer-function space
and in the LH histogram-space. However, the smoothing only clus-
ters the data values. Our approach uses the standard deviation for
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Figure 10: Classification results of the materials in the synthetic data
set with different methods.

the classification as well. Therefore, we are better able to classify
different materials especially if they differ by their standard devia-
tion, such as border regions.

5.2 Real-World Data Sets
In the real world, noise is typically present in measured data sets.
The amount of noise varies between acquisition techniques. In MRI
data sets, the noise level is rather high. Therefore, it is especially
difficult to classify different materials in such data sets. A common
problem is the visualization of the brain in an MRI scan of the head.
Figure 11 shows different results of this task for different classifi-
cation techniques. Below each rendering result, the settings of the
transfer function for each of these spaces are shown. In comparison
to the 1D (Figure 11(a)) and 2D transfer function (Figure 11(b)) as
well as the LH histogram-space (Figure 11(c)), we can better sep-
arate the brain from other tissues with our method (Figure 11(d)).
In the statistical transfer-function space it is also easier to design
a transfer function because the brain tissue has different statistical
properties than other tissues in this data set and is more tightly clus-
tered. As can be seen in Figure 11(d) the cluster is rather large due
to the different matters in the brain but it is distinguishable from
other clusters of other tissues. In comparison to this, in the 2D
transfer-function space and in the LH histogram-space no cluster
for the brain tissue can be seen. Additionally, Figure 11 shows that
the shading based on statistical properties (Figure 11(d)) results in a
smoother surface in comparison to normal gradient-based shading
(Figure 11(a)-(c)).

The ability of the new method to separate different materials by
their statistical properties can be used for many applications. An
example is the detection of certain materials in CT scans for se-
curity checks. Figure 12 shows the scan of a backpack containing
three different fluids. With a 2D transfer function, as shown in Fig-
ure 12(a), the different fluids cannot be classified without classify-
ing also other parts of the data set. It is also hard to detect the fluids
in the transfer-function space because they do not show up as clus-
ters. In comparison, our method can clearly classify the fluids, as
shown in Figure 12(b). It can also be seen that the fluids show up
as clusters with very low standard deviation in the transfer-function
space. This makes it much easier to define a transfer function. Fur-
thermore, the shading with our method is slightly smoother.

Figure 13 shows a result of an MRI scan. The data set contains
a tumor inside the brain. The statistical properties of the tumor are
actually different from the rest of the brain which is captured in our
transfer-function space. This can be seen in Figure 13. Since the
tumor is rather small, only a few sample points show up in the area
of the classification region of the tumor (red region). However, with
other methods, such as 1D, 2D, and LH transfer functions, we were
not able to clearly separate the tumor from the brain.

The results show that the new method can be used for various
data sets and different tasks. The main reason for this is the con-
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Figure 12: Detection of different fluids in a CT scan of a backpack.
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Figure 13: Detection of a brain tumor. For the extraction of the statis-
tical properties ω was set to 0.1%.

fidence level ω , which can be set according to the type of data.
For MRI, e.g., where the material distributions slightly differ from
a Gaussian distribution, we set ω to a low level in comparison to
CT data. We are able to classify different materials even if the data
type is different. This is not as easily possible in common other
transfer-function spaces.

There are some limitations of the new technique. One drawback
is the rather high memory consumption because for each sample
point two different statistical properties have to be stored together
with the data value. Thus the data size is tripled. For large data sets
this could exceed the memory of a graphics card. Another penalty
can occur for noise distributions very different from Gaussian white
noise. In such cases the test methods have to be adapted to the given
frequency distribution in the data sources. For this work we concen-
trated on measured data, where the distributions of data values are
similar to a Gaussian distribution.

Although the confidence level is the only parameter which has to
be set by the user, we want to do further research to automatically
define this parameter. For this task we want to use the termination
level in our future work. With the termination level at different radii
it is probably possible to detect if ω is either too high or too low for
a given data set. Furthermore, we want to develop algorithms for
the automatic detection of clusters in the statistical transfer-function
space. By using the exit radius rbreak of the calculation loop, we
should be able to automatically find significant clusters for different
materials. This additional step should accelerate the design process
for transfer functions because an initial setting can be provided.
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Figure 11: Comparison of the statistical transfer-function space with the 1D and 2D transfer function space as well as the LH histogram-space.
The task for the generation of the results was to classify the brain in the different spaces.

6 CONCLUSION

In this paper we introduced a novel transfer-function space, based
on statistical properties. With these statistical properties from the
neighborhood of each sample point we are able to better separate
different materials in comparison to other widely used transfer-
function techniques. Even for noisy data sets the materials are still
distinguishable by their statistical properties.

Additionally, we use the statistical properties in the shading cal-
culations. Through this approach, the influence of noise on the
shading is reduced.

In our experiments, the novel transfer-function space has proven
to produce better results for different tasks than other common
transfer-function techniques. Therefore, we believe the statistical
transfer-function space can be used for classifying different mate-
rials in a volume data set. Through the user-specified confidence
level it can be employed for data sets from various modalities.
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