
Mesh-Subdivision Methods in CGA Shape Grammars

Frederico Dusberger∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Figure 1: A model of a robot demonstrating the refinement of selected body parts by mesh-subdivision.

Abstract

This report describes the application of mesh-subdivision algo-
rithms in the context of CGA shape, a shape grammar for Com-
puter Generated Architecture. Constituting a procedural modeling
approach, CGA shape allows the creation of models under moder-
ate effort, which can furthermore be varied easily by the possibility
to parametrize the rules of CGA shape.
At the Vienna University of Technology a CGA shape implementa-
tion is being designed and extended by a skeleton system, allowing
an easier variation of poses for humanoid models. In this report we
follow this idea and want to further extend CGA shape by mesh-
subdivision in order to achieve a higher quality and complexity in
the resulting models. We discuss mesh-subdivision in general and
evaluate the results of an implementation in the existing software
system of the Vienna University of Technology.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Systems

Keywords: procedural modeling, shape grammars, mesh-
subdivision

∗e-mail: fdusberger@gmail.com

1 Introduction

In this report we discuss the possibilities of using mesh-subdivision
techniques in connection with procedural modeling, more precisely
a shape grammar. The goal is to further refine automated gener-
ation of highly detailed models and thereby enhance their quality
to a level at which the results are comparable to manually created
models, i.e. models that were developed in a mainly-human guided
process under application of conventional digital modeling tech-
niques.
Furthermore, we describe our integration of mesh-subdivision in
the CGA Shape grammar implementation that is currently being
developed at the Vienna University of Technology

1.1 Motivation

The standards expected from modeling artists regarding the com-
plexity of their work are rising continuously. More and more de-
tails have to be modeled in order to tap the full potential of cur-
rent computer hardware and produce state-of-the-art content for the
movies and computer games of tomorrow. It is understood, that in
the course of this trend the costs and effort necessary to create this
content are likewise increasing. Thus techniques allowing the au-
tomated generation of highly detailed models are required to help
artists to keep up with this development. There is a variety of these
so-called procedural modeling techniques (e.g. fractals or gram-
mars) which currently form a very active and interesting field of



research.
Maybe the most promising approach is the use of shape grammars
[Stiny 1975] which in general work like an L-system [Lindenmayer
1968] with the difference of operating on geometric shapes instead
of strings. Using only a small set of production rules it is possible to
create models with a highly complex geometry. It has been shown
that realistic, highly detailed models of cities can be generated by
the use of shape grammars [Müller et al. 2006]. However there are
some drawbacks to this approach:

• No dynamic models:
The models are static and it is not possible to add movable
parts to them allowing them to appear in different poses.

• Automated process:
As powerful as this automated method of model generation
may be, in some occasions we want to edit the results manu-
ally. Imagine a highly complex city with thousands of build-
ings, created by a shape grammar. Maybe there were enough
production rules to define about 30 different types of build-
ings. The result would still not be as satisfying as it would
have been with a conventional modeling process. What is
missing are particular details and characteristics that make
the buildings unique. To create a realistic model, we would
probably like to reshape some parts here and there to give the
ensemble a convincing look. Sadly such a reshaping is not
possible without writing an immense amount of production
rules and forfeiting the advantages of procedural modeling.

• Difficulties with refinement of the model:
We can easily write production rules to generate high-
resolution models consisting of simple primitives. But as
soon as we want to add fine smooth details to our model
it will become very difficult or even impossible to represent
these by using only basic primitives. We need a possibility to
smoothen models with a relatively simple method, if we want
preserve the strengths of shape grammars.

Regarding the former issue, there is already a solution which we
present shortly in the following sections. This report describes
our approach that aims to cope with the third issue. By means of
mesh-subdivision we extend the current CGA Shape implementa-
tion, making it possible to refine and smoothen a mesh enhancing
the optical quality.

1.2 Overview

The report is structured as follows: In the following section we list
the related work and show how it contributed to our work and this
report. Section 3 shortly talks about conventional modeling and its
disadvantages, in order to present CGA shape, a procedural model-
ing approach, as a possible remedy. We then summarize the func-
tionality of CGA shape using the current work on this approach at
the Vienna University of Technology as an example of an actual
implementation.
The main part, Section 4, is concerned with the discussion on mesh-
subdivision, its possible use in shape grammars, followed by a pre-
sentation and discussion of an integration into our system.
The last section concludes this report with a summarizing discus-
sion on the examined methods.

2 Related Work

The related work, our implementation and this report are based on,
can be divided into two different fields of computer graphics. On

Figure 2: Building mass models generated with only four rules
(starting with the building lot as axiom). Source: [Mueller et al.
2006]

the one hand, there is procedural modeling, the general approach
our CGA Shape implementation is following. And on the other
hand, there is of course mesh-subdivision.

2.1 Procedural Modeling

Since procedural modeling is such an active field of research there
is of course a great number of publications on different approaches
to the issue. In addition to those mentioned in the introduction there
are some more that have to be mentioned as a basis for this pa-
per. The original L-systems have produced impressive results in
the modeling of plants. Being parallel grammars they were per-
fectly suitable considering the main objective of growth over time
[Prusinkiewicz and Lindenmayer 1996]. When dealing with man-
made constructions like buildings it is more convenient to design
the modeling procedure as a sequence of partitioning steps, gradu-
ally refining the model and allowing to structure it. In this context
split grammars, which are based on the previously mentioned shape
grammars, were introduced and applied on the modeling of build-
ings. They consist of a large database of production rules using
a stochastic process to give the resulting buildings a certain ran-
domness, hence a more realistic appearance [Wonka et al. 2003].
A further development in that direction is CGA shape which was
used in generating large scale models of cities. It showed in a
very impressive way, that procedural modeling can also be a proper
approach for mass modeling [Müller et al. 2006]. Recent works
address usability improvement of CGA shape. As before manual
editing of rules in text form was required, an interactive editor has
been developed, enabling easy creation of models without having
to cope with the grammar syntax [Lipp 2007; Lipp et al. 2008].
Furthermore, there are already techniques in development allowing
to introduce physical constraints into models (especially buildings)
generated by procedural modeling. Based upon grammars that ad-
mit the parametrization of production rules a statics analyzer cal-
culates these parameters leading to an appropriate shape, satisfying
the desired architectural style, as well as being structurally sound,
which leads to even better results regarding realistically sound mod-
els [Whiting et al. 2009].



The most recent development is motivated by the desire for dy-
namic human and humanoid models. Further extending the promis-
ing CGA shape grammar our group at the Vienna University of
Technology is currently working on procedural skeletons. In this
approach a kinematic skeletal system is created during the genera-
tion of the model through the production rules. The use of a skele-
ton in order to describe poses and movement (i.e. being able to
animate the models) is a common approach for complex models
[Maestri 1999]. The approach of kinematic skeletons was first in-
troduced as a multi-layered hierarchy of mesh-deformation [Chad-
wick et al. 1989]. Like it has been proposed before [Bloomenthal
and Lim 1999] our implementation follows the idea of automati-
cally deriving the skeleton from the model [Ilcik et al. 2010]. There
is, as well, a first report on the implementation [Fiedler 2009].

2.2 Mesh-Subdivision

The beginnings of mesh-subdivision can be found in the two clas-
sical algorithms that are still in use today [Catmull and Clark 1978;
Doo and Sabin 1978]. Both of them are applicable to arbitrary
meshes, i.e. the faces of the model do not have any restrictions
regarding their valence. A more restricted approach was presented
later [Loop 1987], where only triangular faces are allowed in the
mesh. Among the many other approaches that have been developed
in the following, there is the

√
3 - Subdivision [Kobbelt 2000]. Here

the topological refinement of the mesh is applied in a more natural
way and advances slightly slower during the successive iterations.
The paper furthermore describes adaptive refinement strategies, al-
lowing to define different refinement levels for different parts of
the mesh, as well as a way to define mesh boundaries, resulting in
smooth boundary curves. A newer interesting approach to subdivi-
sion was described more recently [Velho 2003]. The author’s idea is
the description of mesh-subdivision as a graph grammar formalism,
where the production rules describe the geometrical and topological
transformations applied to the mesh.

3 CGA shape

In the Introduction we mentioned conventional modeling tech-
niques. By this term we refer to manual modeling, the models are
generally created by means of 3D modeling suites like 3D Studio
Max, Maya or Blender. Before being able to use these tools it usu-
ally requires a long time of orientation and practice. Only skilled
artists are able to create sophisticated results. Mastering the design
of human models is even more challenging [Ratner 2003]. In the
following we discuss some concrete issues of conventional model-
ing and what solutions CGA shape offers so far to overcome them.

3.1 Why procedural modeling?

• Conventional modeling is time consuming:
Let us begin with the most basic and obvious drawback. As
has been mentioned before, the manual modeling of realis-
tic models is extremely time-consuming. The greatest relief
CGA shape can offer in modeling is the automation of the
process.

• Repetition:
When designing a model that contains the same part several
times, it is necessary to perform a lot of redundant work. Con-
sider the facade of a building where the same type of window
has to be placed across it with a fixed spacing between each

window. It can be quite tedious to take care for the exact
placement manually. A more convenient and elegant approach
is the definition of some production rules, that generate the
desired spatial distribution of objects.

• Post-editing:
If the artist, after finishing the model, wants to change some-
thing basic e.g. the size or the shape, a redistribution of all the
model’s components is necessary. Using a grammar, the ap-
proach would be much easier: A basic change is always easily
achievable, since the production rules will then generate and
distribute the model’s component based on its new shape.

After having thoroughly discussed the benefits of CGA shape, we
now explain its basic concepts.

3.2 CGA shape basics

As mentioned CGA shape is in general a split grammar. It works
in a sequential order because this allows better coping with
structuring of the model. Nevertheless the notation of the general
production rules is similar to the one in L-systems.

Definition. A grammar G = (V,Σ,P,A) consists of the set of non-
terminal shapes V , the set of terminal shapes Σ, an initial (set of)
shape(s) A⊆ (V ∪Σ)+, called axiom, and a set of production rules
P. V ∪Σ =U , the vocabulary of the grammar.

Additionally, when talking about CGA shape, we need to clarify
the key elements this specific type of grammar is based on:

Shape
First of all there is the notion of shape. A shape is the equivalent
to a nonterminal or terminal in an ordinary grammar. It consists of
a symbol, as well as certain geometric and numeric attributes. The
symbol serves as an identifier for the shape, it is either element of
the nonterminal or the terminal symbols. The geometric attributes
describe the spatial position, the orientation (a coordinate system
composed by three orthogonal vectors) and the size (vector) of the
shape, defining an oriented bounding box, called scope. Finally the
numeric attributes are used for parametrization of rules allowing
a more specific derivation process. Shapes can have three or less
dimensions.

Production Rules

Definition. A production rule is denoted in the following way:

id : predecessor : cond;; successor : prob

where id is a unique identifier for the production rule, predecessor
is a symbol v∈V , successor one or more symbols ∈ (V ∪Sigma)+,
cond specifying a condition necessary for this rule to fire and prob
the probability for this rule to be selected.

This means that the application of a production rule p replaces the
shape with symbol v given in the predecessor part of the rule by the
shapes with symbols u1, ...,un, given in the successor part.

For instance

1 : f acade(width) : width > 9;
; wall(h/3)window(h/3)wall(h/3) : 0.8

denotes the rule with identifier 1, which describes the following:
The shape f acade is replaced with the three shapes wall, window



and wall, if its parameter width is greater than 9. The rule however
will only be selected by a chance of 80%. Otherwise some other
defined rule will be chosen.

Derivation
The derivation of a model from an axiom is a simple iterative pro-
cess. For an arbitrary configuration, i.e. a finite set of basic shapes
the procedure works as follows:

Algorithm 1 Derivation Process

While the configuration contains nonterminal symbols:

(1) Choose a shape with symbol S in the set.

(2) Select all production rules that are applicable, i.e. where S is
on the left hand side and the condition, if existent, evaluates to
true.

(3) Pick one of these rules at random (considering their probabil-
ities) and fire it: Replace The shape with symbol S by the shapes
whose symbols are listed on the right hand side of the rule. Then
continue with step (1).

Special Rules
Along with the previously mentioned basic rule syntax of CGA
shape, there are also some special rules to specify the successor
shapes. The rule

1 : f loor;; Repeat(X ,2){B}

for example can be applied on the floor shape and replaces it with
the result of a repeat rule, with the specified parameters.

In general CGA shape consists of five such rules: First there are
the scope rules, which allow us to change the scope and the con-
tained geometry by means of translation, rotation or scaling. The
most significant rule is the split rule. It splits the shape’s scope
along one or more of its axes, creating two or more shapes of the
same dimensionality. Similarly the repeat rule is used to tile a shape
with another one. The original shape will be replaced by as many
shapes of the successor shape as will fit in its place. Last but not
least there are two antagonistic rules, the component split rule and
the extrusion rule1. These two allow a lowering or an elevation of
dimensionality, respectively. The following figure shows the rela-
tionship between these rules.

shape (dimension) component split results extrusion results
polyhedron (3D) faces, edges, vertices -

face (2D) edges, vertices polyhedron
edge (1D) vertices face

vertex (0D) - edge

In addition to these rules, the original CGA shape grammar further
includes two more rules, namely occlusion rule and snap rule. The
former one is used to check for intersections between shapes, the
latter one to align faces and edges of shapes to common lines or
planes.

Figure 3 shows a simple example grammar with 1 nonterminal, 2
terminals and 2 production rules.

1in the original grammar expressed as scaling along a scope axis

Figure 3: Simple infinite grammar consisting of 1 nonterminal, 2
terminals and 2 production rules. This is one possible production
process this grammar allows, applying rule A once. On each result-
ing shape rule B is then applied. As there are only terminal shapes
left the production process is finished here. Source: [Lipp 2007]

3.3 Kinematic extensions

We now describe, how our CGA shape grammar is extended by a
skeletal system allowing us to create dynamic models. First of all
we have to introduce a new key element.

Joints and Kinematic Sections
Every basic skeletal system consists of rigid bones, which define
the particular moveable parts of the model, and rotational joints
which link these parts to each other [Maestri 1999]. Just as well
these are the elemental parts of our procedural skeletons. In our
case joints and bones are represented by the notion of kinematic
section. Each scope is now part of such a section. Furthermore the
section stores the joint position and limitations, the current kine-
matic translation and rotation, as well as the links to the kinematic
parent and children sections (see Figure 4 for an illustration).

We add some new kinematic rules to our existing set of production
rules in order to define pose synthesis separately from model



Figure 4: An elliptic shape, located in its rectangular bounding box
representing its scope. This scope is bound to a kinematic section
whose joint is shown as a circle. The section has a parent on the
left and a child on the right. The sections are connected by their
joints, represented by thick black arrows (i.e. the rigid bones of the
skeleton). Source: [Ilcik et al. 2010]

generation. Since the bones are rigid, the new kinematic rules
have to operate on the joints. To begin with, there is the joint
placement rule that allows us to position the joint of a kinematic
section at an arbitrary position relative to the connected shape
geometry. This sets the boundaries, within which the joint is able
to rotate. Additionally there are limitation and transformation
rules, controlling the actual rotation of the joints with respect to the
defined movement limits.

In order to construct a skeleton hierarchy during modeling
process, we also need to add some modifications to the original
CGA shape rules defined in section 3.2. The joints that hold the
individual kinematic sections of our model together have to be
placed at some initial position during model generation. Thus we
have to address the question how this can be achieved in a way,
the resulting skeletal system is valid. A valid skeleton has the
following properties:

• (i) Each kinematic section belongs to a leaf node of the parse
tree

• (ii) Existence of a unique skeleton root

• (iii) Each kinematic section has exactly one parent section

• (iv) Kinematic independence of parse sub-trees [Ilcik et al.
2010], i.e. the outgoing kinematic links of a parse node, re-
main the same after the derivation.

Changes to the skeletal structure of the model can only occur if new
shapes are added to it. This obviously excludes the transformation
rules, which thus remain unchanged.
The split rules, however, have to be adapted since they introduce
new shapes that have to be integrated in the skeletal hierarchy.

We first deal with the basic split rule. Since splits can basically oc-
cur in two different ways, we have to do a case distinction yielding
two new sub-rules.
First the split can create a sequential structure, by connecting pairs
of adjacent shapes with joints. In this case the solution is simple,
since the original shape O is just replaced by the new sequence of
shapes N1, ...,Nn (see Figure 5). One shape of this sequence is now
placed in the same section as O has been before, carrying over its
parent and another shape becomes the new parent of the original
children. Between these two the other shapes are connected in a
sequence. Although there is, in general, no restriction which shape
becomes the first and which one the last of this sequence, it is the
most common approach to just organize them in the split direction,
i.e. N1 to Nn.

The second case is a parallel split or fork. Here the situation is
more complicated. Before a parallel split can be applied, it has to

Figure 5: Source: A sequential split is applied on the second shape
of Figure 4. [Ilcik et al. 2010]

Figure 6: A parallel split applied on the second shape of Figure 4.
Note that here the child of this shape has been removed in advance,
otherwise the parallel split would have been undefined. Source:
[Ilcik et al. 2010]

be assured, that the respective shape has a kinematic parent. If this
was not the case, the split would produce a number of shapes, all of
them constituting a root of the skeleton hierarchy. This would, in
turn, violate property (ii), we postulated before. As a further restric-
tion the respective shape may not have any kinematic children, to
prevent the children from having multiple parents and thus violating
property (iii). We further avoid any assignment confusions, where
a decision would have to be made, which child becomes linked to
which parent. As a consequence of these constraints all the new
shapes N1, ...,Nn simply become direct children of the former par-
ent of the original shape O.
This is shown in Figure 6.

The repeat split rule does not need any special consideration since
it can be reduced to a special case of the split rule. Therefore the
very same applies.

When a component split is performed, the original shape has to be
copied to the result as well. This shape serves as a parent for all
lower dimensional components.

Another aspect, we have to take care for, is the ε symbol. As in
common grammars ε represents the empty word, in the case of
shape grammars it symbolizes an empty geometry. In order to pre-
serve the consistency of the skeleton we cannot just destroy every
shape that is substituted by ε . In case the shape does not have any
kinematic children, it can in fact be destroyed. Otherwise it has
to remain in the configuration to avoid broken links in the skeletal
hierarchy.

Connectivity
One last important point we have to take care for in the context of
kinematics is the notion of connectivity. In regard to drawing and
filling algorithms it has to be clear which parts are connected in or-
der to clarify what is inside and what is outside the model. When
dealing with a model that is based on an underlying skeleton, we
need to think about the connectivity between the separate skeleton
bones. So in our case the problem is, that we have to define between
which kinematic sections there is or there is not a connectivity re-
lation.
Let us look at a sequentially split set of shapes, for example. Most
easily one could say that each shape has its kinematic parent and
children, so naturally these shapes can be defined as connected to
each other. In most of the cases this may be a correct and sufficient
approach. However, this is not always what we want to have.



Consider the situation where at some point during the derivation
process the model should be split into two or more separate inde-
pendent parts. Imagine the model shown in Figure 2 is to be created
starting from a single cubic shape. It will be necessary to split this
shape in order to obtain the separate buildings which are naturally
not connected to each other. The next problem making connectiv-
ity considerations necessary is the possibility to translate and rotate
each shape. After splitting a shape, we of course know which parts
of the shapes (more precisely, which vertices) are supposed to be
connected to each other. But as soon as we apply transformations
to the shapes this is no longer self-evident. We therefore extend our
shape data structure by a connectivity map which maps the vertices
of a shape to the vertices of its parent shape, specifying the connec-
tivity between these vertices. Every vertex that is not mapped to a
vertex of the parent shape is thus not connected.

Summarizing our work so far we have a highly-expressive procedu-
ral modeling approach at hand. It is possible to create a vast variety
of models using a relatively easy grammar system. We have further
shown how this system can be extended to create dynamic models,
by deriving the skeletal hierarchy during model generation, storing
the resulting skeleton in the leaf nodes of the derivation tree.
We now present our approach to enhance the optical quality of the
created models by refinement through mesh-subdivision.

4 Mesh-Subdivision

We first want to discuss the theory behind the smoothing of the
shapes we generate with the grammar. Since we have to implement
the refinement of the shapes by a new production rule in order to
integrate it into the shape grammar, we need a general procedure
that allows smoothing of an arbitrary shape.
This is where mesh-subdivision comes into play. Concisely mesh-
subdivision is an approximation method. Starting from a relatively
coarse mesh, it gradually rises the number of its faces, successively
refining it in order to get a more and more precise approximation of
a smooth surface. What makes it suitable for our purposes is that
this happens according to certain rules which normally do not af-
fect the geometry as a whole. Usually there is a scheme describing
subdivision rules for each triangle or quadriliteral (or set of trian-
gles/quadriliterals) of the shape. This makes it possible to integrate
the method as a production rule which can be applied to an arbitrary
shape. It is not necessary that any additional information about the
shape’s topology has to be provided.

We begin with a short introduction to subdivision schemes in order
to demonstrate how subdivision in general works. While there are
many subdivision schemes, we have decided to use the

√
3 scheme

for our approach, which will be described in the course of this in-
troduction. Note, however, that we can only provide a very rough
and simplified overview of it. A more sophisticated approach ex-
plaining the mathematical backgrounds and explaining the details
and extensions (e.g. adaptive subdivision, special considerations
for boundary polygons) would go beyond the scope of this report.
After this introduction we describe our implementation of a mesh-
subdivision approach using this scheme. We provide a description
of our approach, as well as an explanation of the three major issues
that occurred and how they have been dealt with.

4.1 Subdivision schemes

As mentioned before, there are many different subdivision schemes.
There are, however, certain features that are common to most of

these schemes. Roughly spoken there are three general steps a
scheme can be broken down to.

1. Generation of new vertices:
According to certain criteria, for each face and/or edge of a
mesh a new vertex is inserted at a specified spatial position.

2. Shifting of vertices:
In order to create a smoother surface the existing vertices of
the mesh are moved to a new spatial position.

3. Connecting the vertices / flipping of existing edges:
Each scheme defines rules, how the newly inserted vertices
are to be connected to each other and moreover, how they
should be connected to the original vertices. Other additional
measures define the flipping of existing edges, such that they
connect to different vertices from the ones they have con-
nected before.

In the following subsection we describe the
√

3 scheme, showing
how these three steps look like in an actual subdivision scheme.
Furthermore it serves as a rough technical overview over the ap-
proach our implementation is based on.

4.1.1
√

3 Scheme

The
√

3 subdivision is based on triangular meshes. [Kobbelt 2000].
This means that the input meshes may only be composed of triangu-
lar faces. The output is of course a triangular mesh, too. Compared
to the traditional dyadic splits (every original edge is split into two
sections, thus every triangle is split into four new triangles) as it can
be seen for example in the Loop subdivision scheme [Loop 1987],
here the basic idea was to generalize this approach to n-adic splits.
In every subdivision step a 1-to-3 split is performed for each tri-
angle by inserting a vertex in the center. Connecting the original
vertices of the triangle with this new vertex then yields three new
triangles replacing the original one. In the end every original edge,
that connects two old vertices is flipped in order to re-balance the
valence of the vertices. This procedure is depicted in Figure 7.
Applying this scheme twice yields a 1-to-9 refinement of the mesh,
which is, in fact, a triadic split. In a way one single iteration can
then be considered the square root of a triadic split, which gives this
scheme its name.

The simplified algorithm for an arbitrary triangular mesh M is
shown in Algorithm 2.

Note that the
√

3 subdivision describes a slower refinement process
than other conventional subdivision schemes. While there each it-
eration in general creates four new quadriliterals or triangles (in the
case of a dyadic split, here we obtain only three new faces with
every step.

4.2 Implemented Approach

As previously mentioned there are many other different subdivision
schemes that can be applied to an arbitrary mesh and generate an
appropriate output. There are basically no additional shape-specific
parameters needed, since the subdivision always has the same goal:
The smoothing of the shape.
For our implementation the

√
3 scheme is chosen out of several

reasons:

• Since the boundary representation of our shapes consists of
triangles it is more appropriate to directly work on triangles
instead of making a detour to quadrilateral faces which have
to be triangularized afterward.



Figure 7: Step-by-step application of the
√

3 scheme. First a new vertex is inserted at the centroid of each face. Then the centroids are
connected to the original vertices of the face. Finally the edges between the original vertices are flipped. Source: [Kobbelt 2000]

Algorithm 2
√

3 Scheme

(1) Face points: for each face F ∈ M: Calculate the centroid of
F and add a new vertex there.

(2) Vertex shift: for each original vertex V ∈ M: Let n be the
valence of V . Let V0,..., Vn−1 be the directly adjacent vertices.
Then the new position of the vertex V is given by

(1−αn) ·V +αn
1
n

n−1

∑
i=0

Vi (4.1)

where

an =
4−2 · cos 2π

n
9

(4.2)

(3) Connect each original vertex to the face points of the adjacent
faces by adding a new edge between these.

(4) For each edge E ∈M that connects two original vertices: Flip
the edge such that it connects the two newly inserted face points
of the faces that were separated by it.

• The subdivision of triangular faces at their center is a more
natural way than splitting all three edges [Kobbelt 2000].

• As the
√

3 subdivision refines the input shape more slowly
than the other algorithms it is easier to control the level of
refinement. This allows us to only refine the mesh as far as
necessary and thus avoid unnecessary calculations.

• It is one of the algorithms that is already implemented in
CGAL, the Computational Geometric Algorithms Library
(www.cgal.org), which is used by our shape grammar imple-
mentation.

Based on this subdivision algorithm we can now design a new pro-
duction rule implementing mesh subdivision.

id : S;; Subdivide(iterations){S}

Our first definition of this rule takes the number of iterations for the
subdivision as the only parameter. When applied on a shape S the√

3 subdivision, as described in Algorithm 2, is applied to it. The
stored geometry for S is then replaced by the new smoothed one.
If we consider single shapes this first approach already yields the
desired result (see Figure 8a and Figure 8b. However, there are
certain further problems and special cases that have to be addressed.

(a) The original parallelepipedical shape

(b) The same shape after the subdivision rule (2 iterations) has been ap-
plied to it.

Figure 8

Recall again the nature of production rules in a shape grammar.
Each rule is supposed to be applied to a specific shape. There are
no global effects, in particular no other shapes than the target shape
of the rule are to be manipulated.
With subdivision, however, we have reached a point where it is dif-
ficult to preserve this basic property of production rules. In the fol-
lowing we present the main concerns that had to be dealt with in the
course of the implementation. Basically, all of the first three issues
are in some way related to the connectivity between the shapes.
The latter aspects then deal with more elaborated, wider modifi-
cations of the grammar. At this point we cross the boundaries of
our implementation, since these are to a great part merely ideas that
have come up in the course of our work, although parts of it have al-
ready found their way into the current implementation. During the
planning of our work different possibilities for improvement have
come up and we will describe the most promising ones, that form
the upcoming features of our grammar and will be implemented in
the future.

4.2.1 Connectivity Preservation

The first flaw of our new rule becomes evident, when we have sev-
eral shapes that are connected to each other. At the moment the
only possibility for smoothing them is to apply the subdivision rule



Figure 9: Three shapes, that have been subdivided separately. There
is no visible connectivity between them.

on each of them. This way each shape is separately smoothed, yet
there is no connectivity between the new smoothed geometry of
these shapes. But consider connectivity is defined between these
shapes. Then such a result is clearly not what we want. In this case
it would be helpful to look at all the shapes as a whole and perform
the subdivision on the union as if it was a single shape. The desired
result, under assumption that the three shapes are connected, is the
same as it would have been, if the subdivision had been applied to
a single shape of the same size and form.
In other words, the application of the split rule and the subdivision
rule on each of the resulting shapes should yield the same result as
if the subdivision rule had been applied first before splitting its re-
sult into a set of new shapes.
Figure 9 shows the current result for three shapes after application
of the subdivision rule on each of them. However, the correct result
for three connected shape would look as shown in Figure 8b, where
each of the shapes is assigned its respective part of the whole shape.

For this reason we have to introduce a pseudo-global effect to our
new rule. Whenever a the subdivision rule is applied to a shape
S, we have to browse through the kinematic ancestors and children
of S. All shapes that have been previously subdivided have to be
joined to S, such that the whole union becomes the target of the
subdivision algorithm.

Smoothing Group
We therefore introduce the notion of a smoothing group, containing
the mentioned set of shapes. This concept serves as a first approach
to the problem and we will see how it can be further improved in
section 4.3. The smoothing group GS of a shape S can be easily
obtained in an inductive way.

1. S ∈ GS.

2. If a shape P is the kinematic parent of a shape φ ∈ GS and P
is connected to φ , then P ∈ GS.

3. If a shape C is a kinematic child of a shape φ ∈ GS and C is
connected to φ , then C ∈ GS.

After application of the subdivision, each of the shapes that were
part of the union is then assigned its respective slice of the subdi-
vision. To achieve this, after the subdivision is applied, for each
shape of the smoothing group the geometric difference between the
whole result and the current (pre-subdivision) geometry of all other
shape is calculated. This way each section containing a shape of
the union, is assigned a corresponding slice of the result after the
subdivision.

Whenever the subdivision rule is applied to a shape, we have to
apply the subdivision to its smoothing group as a whole in order to
preserve the connectivity between the shapes.

(a) Subdivision result without connectivity to unsmoothed shape

(b) Subdivision result with connectivity to unsmoothed shape.

Figure 10: Comparison of subdivision results regarding connectiv-
ity of boundary shape

4.2.2 Boundary Shapes

This leads to the next issue we have to address. If we do not want
to apply the subdivision to the complete shape configuration, there
obviously has to be at least one shape that is at the boundary to an-
other shape which has not been smoothed. This fact by itself would
not cause any trouble, since the smoothing group joins only the nec-
essary shapes not including the non-smoothed ones.
The problem that occurs now is again an issue of connectivity.
There is no visible connection between the smoothed shapes and
the first shape that is not in the smoothing group, even though a
connection between these shapes may have been defined. Similarly
to the former issue we need to add further modifications in order to
make the connectivity between these shapes graphically visible.

To solve this problem the subdivision algorithm is modified, such
that it is possible to define a set of faces (for the 3-dimensional
case) or a set of vertices (for the 2-dimensional case) that should
be excluded from subdivision. This allows us to exclude the faces
(or vertices, respectively) at the boundary of the smoothing group,
that are part of shapes which are connected to shapes outside the
smoothing group.

In order to determine which parts of a shape have to be excluded
from subdivision we introduce the notion of protected faces and
protected vertices. After the collection of all the shapes that are part
of the smoothing group, each shape of the union has to be examined
for connections to shapes that are not in this union (i.e. that are not
part of the same smoothing group). This can be done by simply
checking for each shape if it has a parent or a child, that is not in
this union. For each shape for which this is the case, the according
parts, that form the boundary between this shape and the shape(s)
outside the union, have to be protected. Regarding 2-dimensional
shapes, the vertices which are connected to vertices of a neighbor-
ing shape (i.e. the connectivity relation for them is defined in the
connectivity map) are exactly the vertices that can be marked as
protected vertices. With 3-dimensional shapes, it is necessary to
further check if there are faces of which all composing vertices are
protected. If this is the case, these faces are marked as protected.



Figure 11: Soft Connectivity: Two shapes. The right shape has been
split by a parallel split into four new shapes that are not connected
to each other. The whole set of shapes has then been subdivided.

A list containing all the protected faces (or vertices, respectively) is
then passed as an additional parameter to the modified subdivision
algorithm and will therefore not be subdivided.

To clarify the way the smoothing works now, using the example of
3-dimensional shapes, see Algorithm 3, which describes, how the
protected faces are determined. After this is done the resulting list
of protected faces is passed to the modified subdivision algorithm.
This algorithm then basically works the same way as it did without
the modification for protected faces. The only difference is that
none of the steps 1 to 4 (see Algorithm 2) is applied to the protected
parts of the mesh:

• (1) For protected faces no face point is calculated.

• (2) If a vertex is part of a protected face, it is not shifted.

• (3) Since there are no new face points for protected faces, no
new edges have to be created for these faces.

• (4) If one of the faces that is separated by an edge is protected,
then this edge is not flipped.

Algorithm 3 Determines the faces, that are to be protected
(protected f aces) for a given smoothing group SG

protected vertices = /0
for all shapes S ∈ SG do

if parent P of S with P /∈ SG then
for all vertices V ∈ S that are connected to a vertex of P do

Add V to protected vertices;
end for

end if
for all children C of S do

if C /∈ SG then
for all vertices V ∈ S that are connected to a vertex of C
do

add V to protected vertices;
end for

end if
end for

end for
for all faces F ∈ S do

if each vertex of F is contained in protected vertices then
Add F to protected f aces;

end if
end for

Now it is possible to properly visualize the connectivity between
these shapes. Figure 10a and Figure 10b show the different re-
sults with and without connectivity between boundary shape and
unsmoothed shape.

4.2.3 Soft Connectivity

Finally there is one significant detail that has to be taken care of.
Consider two shapes, A and B, that are connected to each other. A
parallel split is applied on shape B, yielding several new shapes,
that are all connected to shape A. Now, the whole set of shapes is to
be smoothed. The question that arises now is, if the shapes obtained
from the parallel split are connected among each other or not. We
call this kind of connectivity soft connectivity.
According to whether there is soft connectivity between these
shapes or not is important for determining the proper subdivision
result. If the shapes are connected the result we obtain would look
like the configuration shown in Figure 8b. On the other hand, if the
shapes are not connected to each other, we would want to see this in
the resulting model. For a parallel split that yields four new shapes,
the desired result without connectivity is shown in Figure 11.

In order to decide if shapes after a parallel split are soft-connected
or not, we have to further modify our shape data structure and the
split rule.
When a parallel split is applied on a shape the rule needs a list of
boolean values as an additional parameter. This list has to define for
each neighboring two shapes if they are soft-connected or not. The
shape itself receives an additional field to store this information,
such that it can be taken into consideration when the subdivision
rule is applied on it.

We implemented a straightforward and easy solution to this issue.
The soft-connectivity is only defined for shapes that are part of a
parallel split. Each shape that has come into being out of a parallel
split is assigned a boolean value defining if it is soft-connected to
the next shape of the parallel split or not.
Now, in the course of the application of the subdivision rule on
a shape, the only case where an adjustment has to be made is, if
a shape is encountered in the smoothing group, that has its soft-
connectivity set to false. In this case a very small slice of the shape
is cut away. This way the subdivision scheme will also recognize a
gap between this shape and its sibling and smoothen the two shapes
accordingly.
The only other cases are, that the two siblings are soft-connected or
that there has not been a parallel split at all. In both cases, we do
not need to introduce any further changes to the algorithm.

4.3 Further ideas

As already mentioned, this last section deals with the further ideas
that have been developed in the course of our work. We will give an
overview on two important issues that have occurred and how the
intended further developments of the grammar can help overcoming
them.

The key element on which the following considerations are based
on, is a general modification of our grammar. In order to achieve a
higher semantic expressiveness, context-sensitivity has been intro-
duced into the grammar.
This was done by modifying the way rules can be applied to a shape.
As we have described before, subdivision causes the need for rules
that have more than local effects, since neighboring shapes have to
be taken into consideration. For this reason a production can now
not only modify the shape it is applied on, but also other shapes.
This makes it possible to define rules that work differently accord-
ing to the context in which a shape is embedded.

Another aspect is the modification of the shape data structure, more
specifically the symbol that identifies each shape. The symbol is
now no longer represented by just a simple string. It is now rather



a structure, that, along with the string identifying the shape, now
stores two additional data structures.
The first one is the rules semantics dictionary that maps strings to
strings. The first string is used to define a certain semantic attribute
that a shape can have. The second one than defines the value this
certain attribute has for the respective shape.
The second structure is a list of rules actions. It is used to define
methods that should be triggered after a certain event occurs, e.g.
the change of some semantics, the application of a certain rule on a
shape, etc.

This allows some new powerful possibilities of manipulating the
shapes and highly increases the expressiveness of the grammar.

4.3.1 The Semantics of Smoothing Groups

The first issue is related to the concept of smoothing groups, that
has been introduced as a remedy to preserve the connectivity of
multiple shapes, that are to be smoothed (see Section 4.2.1). How-
ever, this concept is still subject to improvements.
As it is, the subdivision algorithm has to be completely evaluated
for every shape. Every time the subdivision rule is called for a
shape, the whole smoothing group of this shape is affected, involv-
ing many join and difference operations in order to assign the cor-
rect slice of the subdivision result to each affected shape. The result
we obtain this way can of course be discarded, as soon as the sub-
division rule is applied on the next connected shape whose smooth-
ing group again includes these shapes. The only result that remains
valid is the last one, which is obtained after the subdivision rule is
applied on the last shape of this smoothing group.

This can be realized by making use of the rules semantics dictio-
nary. We define a new attribute: smoothingGroup. Each shape can
now be assigned a specific value for this attribute.
This gives us the possibility to semantically define which shape be-
longs to which smoothing group. Thus, instead of having to iter-
atively recalculate the smoothing result in the course of the evalu-
ation of the different shapes, as described above, we can now pre-
cisely define which shapes belong together, and should be smoothed
as a union.

As there is now only one subdivision operation which is applied to a
number of shapes a new problem occurs. We have to determine the
correct time when the subdivision should take place for the union of
shapes, since we do not know if, when the subdivision is executed,
all shapes of the smoothing group are ready to be smoothed. Ac-
cording to the previously described implementation the Subdivide
rule is called for every shape separately, which of course can occur
at different times during the derivation process.
The shape on which the subdivision is then executed can be any
arbitrary shape, since, as stated above, the grammar allows us to
manipulate shapes on which a rule is not directly applied on, too, in
the course of the evaluation of that rule.

Synchronization of Subdivision
We therefore develop a different approach for evaluating the rules
that are applied on the shapes. For this reason an additional eval-
uation queue is introduced in which shapes are placed, that are
waiting.
Now, whenever the subdivision rule is to be evaluated we have to
perform a ready check. We iterate over all shapes that are part of the
same smoothing group and check if they are either terminal shapes
or if the evaluation of the subdivision rule has already been tried
for them before, moving them to the waiting queue. Only if all
shapes of the smoothing groups are waiting or terminals (i.e. all
shapes are ready to become smoothed) the subdivision is applied.
See Algorithm 4 for a compact description of the algorithm.

Algorithm 4 synchronization check for evaluation

Let sg be the smoothing group of the shape s.
for all other shapes s other in sg do

if s other is in waiting queue or s other is a terminal shape
then

continue;
else

add s to waiting queue
return false;

end if
end for
return true;

This way we ensure that the subdivision takes place that the sub-
division is performed at the right moment, when all shapes are ex-
pecting it. As described before, which shape becomes the actual
target of the subdivision does not matter, since the whole smooth-
ing group is affected in any case. After the subdivision is executed,
each shape is placed in the normal evaluation queue again (if it is
not already a terminal shape, of course), such that further rules can
be processed.

4.3.2 Refinement of Subdivision Results

The last issue we want to address here is related to the assignment
of the proper slices after the subdivision to the respective shapes.
When using the method we have described before in Section 4.2.1
there are certain special cases where these assigned slices are not
completely correct. This means that parts of the subdivision result
get assigned to a section, that logically are not part of this sec-
tion. As Figures 12a and 12b show, this issue typically occurs
when shapes that are shifted are subdivided together. The sub-
division algorithm creates smooth transitions between the shapes,
which causes the extent of the resulting model to be greater than
the extent of the pre-subdivision model. Clearly our previously de-
scribed method using the pre-subdivision shapes cannot eliminate
these parts.

For this reason it is necessary to implement a post-processing step
that is executed after the assignment of the respective slices is done.
In this step we try to further subtract these parts that should not be
part of the shape.
To achieve this, some simple additional geometric difference oper-
ations are sufficient. For each shape, the connecting faces (or edges
respectively) with the neighboring shapes are examined. In every
case the halfspace that is facing away from the shape is subtracted
from the shape’s current geometry. This way every part of the ge-
ometry that is not directly connected to the main-part of the shape
will be eliminated from its geometry. The result is that each shape
now represents the correct slice of the subdivision.

5 Conclusion

Mesh subdivision is a method that per se can be easily included into
a shape grammar. Since the application of a subdivision scheme is
so general that no information about the shape itself has to be pro-
vided, subdivision is very well-suited to be described by a produc-
tion rule.
Unfortunately, the main effort behind this integration lies in the de-
tail. We have showed that the connectivity between the shapes is
a major issue that has to be taken care of. Therefore a shape has
to contain connectivity information with respect to its neighboring



(a) A union of several shapes before smoothing is applied to them.The red
circle symbolically indicates the area of the first section.

(b) The same union after it has been smoothed. The red circles indicate
the parts that are now forming the shape that is assigned to the first sec-
tion. Note the two additional small circles, that are also assigned to this
section.

Figure 12: Incorrect assignments in a subdivision result.

shapes. Furthermore, once this is assured, the algorithm has to be
adapted, such that it takes this information into consideration when
being applied to a shape.

Apart from these difficulties there is no reason why subdivision
should not be included into procedural modeling, since the smooth-
ing of the models contributes a big part to enhancing the realism of
the results.
Of course this is just one possible approach and depending on the
shape grammar implementation other subdivision schemes may be
more suitable. Depending on the implementation another subdivi-
sion scheme may be more suitable, or additional issues may occur.
However, this would go beyond the scope of this report, and we
think, that we have provided a basic illustration of the approach.

References

BLOOMENTHAL, J., AND LIM, C. 1999. Skeletal methods of
shape manipulation. In SMI ’99: Proceedings of the Interna-
tional Conference on Shape Modeling and Applications, IEEE
Computer Society, Washington, DC, USA, 44.

CATMULL, E., AND CLARK, J. 1978. Recursively generated b-
spline surfaces on arbitrary topological meshes. Computer Aided
Design 16.

CHADWICK, J. E., HAUMANN, D. R., AND PARENT, R. E. 1989.
Layered construction for deformable animated characters. In
SIGGRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 243–252.

DOO, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer Aided Design 10.

FIEDLER, S. 2009. Procedural human posing using CGA gram-
mars. Tech. rep., Technical University of Vienna.

ILCIK, M., FIEDLER, S., PURGATHOFER, W., AND WIMMER,
M. 2010. Procedural skeletons: Kinematic extensions to CGA-
shape grammars. In Proceedings of the Spring Conference
on Computer Graphics 2010, Comenius University, Bratislava,
177–184.

KOBBELT, L. 2000. Sqrt(3)-subdivision. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 103–112.

LINDENMAYER, A. 1968. Mathematical models for cellular in-
teraction in development: Parts i and ii. Journal of Theoretical
Biology 18.

LIPP, M., WONKA, P., AND WIMMER, M. 2008. Interactive visual
editing of grammars for procedural architecture. ACM Transac-
tions on Graphics 27, No. 3, 10.

LIPP, M. 2007. Interactive Computer Generated Architecture.
Master’s thesis, Technical University of Vienna.

LOOP, C. T. 1987. Smooth Subdivision Surfaces Based on Trian-
gles. Master’s thesis, University of Utah.

MAESTRI, G. 1999. Digital Character Animation 2, Volume 1:
Essential Techniques. New Riders Publishing.

MÜLLER, P., WONKA, P., HAEGLER, S., ULMER, A., AND
VAN GOOL, L., 2006. Procedural modeling of buildings.

PRUSINKIEWICZ, P., AND LINDENMAYER, A. 1996. The algo-
rithmic beauty of plants. Springer-Verlag New York, Inc., New
York, NY, USA.

RATNER, P. 2003. 3-D Human Modeling and Animation. John
Wiley & Sons, Inc.

STINY, G. N. 1975. Pictorial and formal aspects of shape and
shape grammars and aesthetic systems. PhD thesis, University
of California, Los Angeles.

VELHO, L. 2003. Stellar subdivision grammars. In SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 188–199.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. In SIG-
GRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, ACM,
New York, NY, USA, 1–9.

WONKA, P., WIMMER, M., SILLION, F., AND RIBARSKY, W.
2003. Instant architecture. In SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, ACM, New York, NY, USA, 669–677.


