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Gaze analysis and prediction in interactive virtual environments, such as games, is a challenging

topic, since the 3D perspective and variations of the view point, as well as the current task,
introduce many variables that affect the distribution of gaze. In this article, we present a novel

pipeline to study eye-tracking data acquired from interactive 3D applications. The result of the

pipeline is an importance map which scores the amount of gaze spent on each object. This
importance map is then used as a heuristic to predict a user’s visual attention according to the

object properties present at runtime. The novelty of this approach is that the analysis is performed

in object space and the importance map is defined in the feature space of high-level properties.
High-level properties are used to encode task relevance and further attributes, like e.g. eccentricity,

which may have an impact on gaze behavior.

The pipeline has been tested with an exemplary study on a first-person shooter game. In

particular, a protocol is presented describing the data acquisition procedure, the learning of dif-
ferent importance maps from the data and finally an evaluation of the performance of the derived

gaze predictors. A metric measuring the degree of correlation between attention predicted by the

importance map and the actual gaze yielded clearly positive results. The correlation becomes
particularly strong when the player is attentive to an in-game task.

Categories and Subject Descriptors: H.1.2 [Models and Principles]: User/Machine Systems—Human Factors;
I.3.3 [Computer Graphics]: Picture/Image Generation—Viewing Algorithms

General Terms: Algorithms,Experimentation,Human Factors

Additional Key Words and Phrases: gaze analysis, eye-tracking, visual attention, high-level prop-
erties, importance map, gaze predictor, video games, virtual environments

1. INTRODUCTION

While attention is one of the most intensely studied topics within psychology and cogni-
tive neuroscience, it has also raised increasing interest in the field of computer science,
especially among those disciplines dealing with imaging technologies, human-computer
interaction or computer vision. Knowing and being able to predict which stimuli are at-
tended to (and which are not) may be used to improve media technologies and interface
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design for software applications, while computer vision systems can use this knowledge to
imitate the mechanics of human visual perception. The common model for visual atten-
tion is two-tiered: on the one hand, there are bottom-up processes which react to low-level
features present in the stimuli; on the other hand, top-down processes find and select the
targets of interest due to the viewer’s goals [James 1890].

Inspired by Treisman’s feature integration theory [Treisman and Gelade 1980], algorithms
to compute so-called saliency maps (e.g. [Itti et al. 1998]), which score the conspicuity
of image regions due to low-level features, have become popular. These methods intro-
duced the first meaningful heuristics to predict features of the stimuli which are likely to
receive more attention than others. Algorithms that compute saliency maps require only
digital images as input and, therefore, they are unaware of high-level processes involved
in the selection of the viewer’s targets. However, in interactive applications, such as 3D
computer games, which are inherently task-oriented, viewing behavior of a user can better
be reflected by gaze prediction models sensitive to top-down processes. For instance, as
shown in figure 1, our predictors revealed a high importance for columns or doors, whereas
bottom-up predictors can neither identify objects nor predict that columns and doors are
important for the player when he navigates through the level of a game.

While bottom-up processes can be modeled and thus predicted according to a well studied
theory independent of a particular application, top-down processes rely on many factors
that cannot easily be generalized, like object semantics, viewer task etc., and are very ap-
plication specific. In this work, we therefore propose to learn top-down attention processes
by observing actual users interacting with an application through eye-tracking, in order to
be able to predict attention for other users without having to eye track them. In contrast
to bottom-up methods, which are inherently image-based, top-down processes work at the
object level [Duncan 1984; O’Craven et al. 1999; Scholl 2001] and therefore our system
needs to work with objects, not pixels. In a static scene, counting the number of fixations
for each object would give a plausible estimate for the importance (i.e., likelihood of being
attended) of each object. However, the major challenge in learning attention for an interac-
tive application like a game is that the environment is dynamic, and thus the set of potential
fixation targets is constantly changing due to camera and object movement. In this paper,
we propose the use of semantic properties of the objects (such as category) and the envi-
ronment (such as player task) as a basis for attention prediction, because such high-level
properties are more insensitive to dynamic changes in the scene.

The main contribution of this paper is a novel pipeline which enables the empirical analysis
of gaze behavior in interactive 3D application by taking into consideration semantic infor-
mation of the game objects and the player. The output of this pipeline is an importance
map which is learned from eye-tracking data and can be used to predict the likelihood of
objects in the stimuli to be attended. These importance maps may find utility in perceptu-
ally optimized rendering algorithms, automated in-game advertising, or may assist game
designers in their task.

As an example of the effect of using high-level semantic properties, consider that a change
in a player property can infer changes in the task, which in turn changes the relevance of
certain objects. For instance, when the player of a shooter is unarmed, one of his primary
tasks is to search for a weapon, whereas as soon as he has found one, he has a different
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(a) (b) (c)

Fig. 1: (a) An example reconstructed framebuffer of the game is overlaid with the visualization of a fixation in the
current frame. In Figure (b), importance values predicted with our method, for each object in the scene, are used
to visually highlight objects in the framebuffer (brighter objects are more important than darker ones). Figure (c)
shows the corresponding saliency map. Since our method is sensitive to semantic properties and common gaze
behavior, it can predict better the high importance of doors or objects in the center, while saliency maps are less
selective and predict the importance of pixels rather than objects. We discovered for instance that none of the
lights mounted on the ceiling were attended, although being indeed salient.

task and other objects are of primary interest. Note that the use of properties requires
access to the internal structures of an application. As we do not analyze the distribution of
gaze on individual objects and instead abstract them by their properties, we can increase
the density of the distribution being inferred, since several objects may share the same
properties. Ideally, this strategy allows us to predict the importance of objects in scenes
which were never included in the gaze analysis (e.g. of different levels or other players).

2. BACKGROUND

2.1 Visual attention

Since the information processing capacity of our brain is limited, incoming information
has to be filtered so that we are able to process the most important sensory inputs. Visual
attention is the control mechanism which selects meaningful inputs and suppresses those
of low importance. Moreover, our eyes can sense image details only in a 2◦ foveal region,
due to a rapid falloff of spatial acuity towards the periphery of the fovea. Although we
have a coherent impression of our field of view, we perceive only a fraction of the detail
that is actually present. Full information about an object is only available in the narrow
field of the current foveal focus [Henderson et al. 2003].

A vast array of experiments trying to carve out the mechanisms of attention can be found
in cognitive psychology and neuroscience literature. A concise overview of important
studies on visual attention can be found in [Wolfe 2000]. Most established is a model
which divides attention into bottom-up and top-down processes [James 1890]. While the
former account for pre-attentive processes, which are considered to be under unconscious
control and driven by low-level features, the latter refer to directed voluntary control of
attention involving high-level processes such as thought, reasoning and memory [Palmer
1999]. However, bottom-up and top-down processes cannot be separated perfectly and
there is much feedback between both [van Zoest and Donk 2004; Wolfe 2007].

Due to this model, low-level features which are likely to be perceptually important tend to
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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attract attention, which is needed to integrate them ([Treisman and Gelade 1980]) and map
them to higher level representations. Meanwhile, cognitive processes consciously direct
attention towards those regions in the field of view being of importance according to the
intentions of the viewer [Yarbus 1967]. Established theories about visual search assume
that low-level features (e.g. color or intensity) characteristic for target objects are enhanced
and guide the search [Wolfe 1994]. A similar intuitive interpretation is that top-down con-
trol raises the saliency of important objects [Oliva et al. 2003; Navalpakkam and Itti 2005;
Elazary and Itti 2008].However, though there are reasonable theories for top-down mecha-
nisms concerning visual search tasks, they do not directly explain how attention is deployed
in complex and changing tasks as occuring in computer games. Eye-tracking studies are
a reasonable method to investigate top-down attention from the opposite perspective, i.e.,
analysing how visual attention behaves under particular complex stimuli and tasks.

2.2 Eye-tracking

Since application-oriented research is interested in where attention is actually directed to,
eye-tracking technology has been the method of choice to obtain an instant estimation
of the attentional focus. Apart from estimating the position of the foveal focus, various
other features useful for analysis, such as fixation duration, fixation counts or amplitudes
of saccades, can be extracted from eye-tracking data [Duchowski 2003]. Notably fixation
duration, which we use to weigh fixation counts, is suggested to be a good indicator to
estimate how strongly cognitive functions, such as object identification (e.g. [De Graef
et al. 1990]), memory (e.g. [Henderson et al. 1999]) and monitoring of task-relevant objects
(e.g. [Land et al. 1999]), are involved. The relationship between human gaze control and
cognitive behavior in real-world scene perception is reviewed in [Henderson 2003].

Eye-tracking is often used under the assumption that there is a strong correlation between
the focus of gaze and the actual focus of visual attention. Indeed it is possible to focus men-
tally on stimuli outside the foveal region. In this case the internal visual attention system
(covert visual attention) is focused on a particular place, whereas eye-movements (overt
visual attention) are directed to other places. The other special case is the phenomenon of
inattentional blindness [Mack and Rock 1998], which was observed when viewers were
concentrated on a task. With the intensity of the task, the probability that they may not
notice details irrelevant to the task, even within their foveal focus, increases [Simons and
Chabris 1999]. However, overt and covert attention have a strong natural relationship and
by tracking eye movements, the local focus of visual attention can be estimated well in
most cases.

For many applications, such as rendering 3D environments, the prediction of overt atten-
tion may be sufficient to perceptually optimize rendering of specific objects, since regions
outside the fovea are not perceived in high detail. For example, [Luebke et al. 2000; Mur-
phy and Duchowski 2001] demonstrated that geometric detail in the periphery of the vi-
sual focus can be reduced without decreasing the perceived rendering quality by using an
eye-tracker for gaze-contingent rendering optimizations. [Komogortsev and Khan 2006]
attempted to predict the visual focus of multiple eye-tracked viewers in order to perform
perceptually optimized video and 3D stream compression.

Gaze behavior was also studied when certain tasks had to be carried out. To analyze gaze
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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behavior in natural tasks, several studies were conducted with easy tasks ranging from
hand washing to sandwich making [Hayhoe et al. 2003; Canosa et al. 2003; Pelz and
Canosa 2001]. Virtual environments [Rothkopf et al. 2007] or computer games [Kenny
et al. 2005; El-Nasr and Yan 2006; Jie and Clark 2007; Sundstedt et al. 2008] recently
became interesting stimuli for eye-tracking experiments as well. All these studies support
the hypothesis that in conditions where a task has to be carried out, gaze behavior is mainly
dominated by task relevance rather than salient features in the stimuli, as task-relevant
objects are continuously monitored by the visual system [Land et al. 1999]. Note that once
a target is found and monitored during a task, the models for top-down control from visual
search are not appropriate anymore.

[Starker and Bolt 1990] proposed to use an eye-tracker to guide synthesis of speech in a
way that narration refers to the current object of the user’s interest. Although eye-tracking
is used for real-time user-to-system feedback, their models of interest map gaze to objects,
and successively the user’s level of interest for each object is inferred. This resembles our
methodology of inferring objects’ importance by mapping eye-tracking data to semantic
properties.

2.3 Heuristics to predict visual attention

In the absence of an eye-tracker in the final application setup, the focus of attention may
be estimated by a predictor algorithm, while eye-tracking is only used to infer the predic-
tor in the first place and to evaluate the performance of predictor heuristics [Marmitt and
Duchowski 2002; Peters and Itti 2008]. Most visual attention or scanpath predictors rely
on low-level features and thus account for bottom-up attention only. A first biologically
inspired computational model for bottom-up attention was proposed in [Koch and Ullman
1985] and was further developed in [Itti et al. 1998; Itti and Koch 2001; Parkhurst et al.
2002]. This method creates feature maps of several low-level features, notably the contrast
in color, intensity and orientation, which are combined into a saliency map which scores
each pixel with one scalar value. Different features can be processed in independent chan-
nels following Treisman’s theory of feature integration [Treisman and Gelade 1980]. For
non-static stimuli such as videos or computer games, it is possible to improve the perfor-
mance of saliency maps somewhat by introducing temporal features [Itti and Baldi 2006;
Peters and Itti 2008], notably motion, flicker or Bayesian surprise. Evaluations on vari-
ous commercial games [Peters and Itti 2008] showed that even color has a non-negligible
contribution, which can be explained by the fact that game designers prefer to texture task-
relevant objects with salient colors.

The advantage of saliency map algorithms is that they work on any sequence of digital 2D
images, giving per-pixel scores of bottom-up attention. Since they are computed from low-
level features only, they perform with greatest reliability in free viewing conditions. On the
other hand, performance of bottom-up predictors in interactive environments is limited, as
in the presence of a task the majority of gaze targets are task-relevant objects [Rothkopf
et al. 2007; Pelz and Canosa 2001]. This holds even if the actions are automated and do
not need conscious attention [Land et al. 1999].

Games, in particular, rarely exhibit a free-viewing behavior; even in passive viewing con-
ditions the observer tends to assume a task [Sundstedt et al. 2008]. In order to take this
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into account, the idea of selective rendering was proposed [Cater et al. 2002; Cater et al.
2003; Sundstedt et al. 2007]. The idea is to exploit inattentional blindness. By means
of a so-called task map[Cater et al. 2002] or importance map[Sundstedt et al. 2005], the
rendering quality of task relevant regions is selectively enhanced. It has been successfully
demonstrated that selectively rendered images are not perceived differently to high-quality
images, but building task maps (e.g. by manual assigment) was rather simple in the non-
interactive examples being studied.

A common trend is to use saliency maps and top-down heuristics in conjunction, for ex-
ample by biasing saliency values at locations which are suggested to be task-relevant (e.g.
[Sundstedt et al. 2005]). Attempts to simulate top-down attention with neural networks
[Peters and Itti 2007] or object detection algorithms [Canosa et al. 2003] demonstrated
significant improvements over the use of saliency maps alone. [Cerf et al. 2008] used
a face recognition algorithm as high-level entity detector, while other important entities
were outlined manually with a minimal region of interest. In this way, saliency maps of
static images can be biased according to high-level content. Since in VEs an object-based
predictor can be more useful (e.g. to switch levels of detail of 3D meshes), [Lee et al. 2007]
implemented a framework where an object-based saliency map is computed by mapping
pixel-based saliency maps to objects using an item-buffer. Moreover, they use the fact that
objects receive more attention than the background (e.g. [Einhäuser et al. 2008]) as a
heuristic to account for top-down factors.

An interesting approach was presented in [Navalpakkam and Itti 2005], where a saliency-
based search algorithm [Itti and Koch 2000] was extended to perform a task-driven search.
An object classification algorithm, which was trained to associate low-level features with
object classes, increases the saliency of those image regions that are likely to belong to
an object with task-relevant properties. They proposed an ontological model which uses a
task graph to capture semantic relations between symbolic classes of objects, their super
classes and the task. This model sounds promising, but it was actually designed for visual
search tasks in machine vision systems.

In many cases, it is possible to access to the internals of an application. This makes it pos-
sible to avoid machine-vision approaches, since task-relevant objects can be determined
from the scene graph in a virtual environment, or the object hierarchy in a game. For ex-
ample, [Sundstedt et al. 2008] carried out an eye-tracking study to generate an importance
map based on high-level properties in a computer game. The task of the game was to nav-
igate a small ball through a maze, which was in 3D, but rendered from a fixed bird’s-eye
view. All items in the maze were tagged with high-level properties, like for instance “cor-
rect path”, to encode the relevance of certain parts of the maze according to the task of
finding the maze exit. They found that the gaze distribution inferred over those properties,
correlated considerably among the different participants of the study. However, this study
reduced the problem of inferring gaze distributions to a very limited case by assuming a
fixed camera and a constant set of objects. In this paper we take a major step further and
generalize this approach to a representative 3D scenario with a dynamic viewpoint and a
field-of-view with variable content.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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3. OVERVIEW

This paper presents a pipeline to analyze gaze data in order to provide an attention predictor
for dynamic scenes that works on objects instead of on pixels. We assume that we have
access to the internal object hierarchy (scenegraph) of the application. Figure 2 shows the
stages of the pipeline: First, we gather data in an eye-tracking session, where we record
the player’s gaze together with the changes to the scenegraph. In the data preparation step
(Section 4), we reconstruct the scenegraph for each frame and correlate it with the gaze
data to find fixated objects. We also extract properties associated with these objects or the
game state. In a subsequent analysis phase, this data is used to learn importance maps,
which assign importance values to each extracted property. In order to predict the attention
of a user at runtime, each object is assigned an importance value that is derived from the
importance values of the properties it is associated with.

Note that importance map is assigned to properties and not to objects. This allows cap-
turing changes to the scenegraph (an object might turn from a friend into an enemy) and
to analyze similarities between objects on a semantic level. However, in practice we can
only observe combinations of properties through eye-tracking, and therefore the number of
properties used for deriving importance values needs to be controlled in order to obtain sta-
tistically relevant estimates. Thus, we introduce an additional step (Section 5.1) where the
user of the system defines simple Boolean high-level properties. Using a simple scripting
language, the user specifies rules how certain properties shall be “interpreted” and selects
the high-level properties to be used as the basis of the importance map. In this stage the
user of the system intervenes to control the analysis process, allowing him to experiment
with various kinds of properties to find a mapping that best encodes the peculiarities of the
application (e.g. different tasks and interaction interfaces).

One essential part of the learning process is to provide the user with feedback about the
performance of the predictors he has generated. The learning process can be iterated until
satisfactory results are achieved. We propose two evaluation strategies (Section 6), which
measure the correlation of the predictions with the actual gaze of subjects that were not
included in the learning stage of the predictors.

While the theoretical concepts of our algorithms are presented in Sections 4 - 6, we also
demonstrate the complete pipeline by means of an exemplary study carried out with a first
person shooter 3D game (Section 7). In particular, we describe our experimental setup, the
game’s design considerations, the data acquisition and analysis stages, and the evaluation
of the generated prediction heuristics.

4. DATA PREPARATION

Our pipeline starts with an eye-tracking session. For this, we describe a particular example
in Section 7), since the way this session is carried out differs from application to appli-
cation. The result of the eye-tracking session is stimulus data in the form of a replay file
which allows reconstructing the complete application state at every frame, and gaze data
in the form of a gaze data file recorded by the eye-tracking software.

The goal of the data preparation step is then to match stimulus data with gaze data and
transform both into an abstract form that can be used by the analysis tool to learn gaze
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Fig. 2: Overview of our pipeline. The eye-tracking and data preparation steps may be performed once, then the
user can design and generate different gaze predictors.

predictors. This makes the analysis step (Section 5) independent of the application and the
eye-tracking software and allows rerunning the analysis with different parameters without
having to redo the expensive application-specific steps. Data preparation includes recon-
struction of the stimuli presented to the player, extraction of the scene graph’s properties,
and processing of the gaze data. The most expensive step is to determine those objects
which were gaze targets.

4.1 Processing stimuli data

4.1.1 Reconstruction. Since in this work we venture into the area of object-based pre-
dictors, we require access to the internals of the application. In our proof-of-concept ex-
periment, we utilize a game engine developed in our lab, although any other engine, com-
mercial or open-source, could be used. Hence, we can record the object-oriented scene
graph instead of capturing the rendered frames with a screen-recording tool (as has to
be done for e.g. commercial games [Peters and Itti 2008]). Apart from the significantly
decreased requirements for data storage, this method provides us the possibility to fully re-
construct the scene graph with all its properties, for every frame. To this end, we modified
the game engine so that it records changes to the scene graph and the camera during run-
time. To guarantee sufficient frame rates throughout the experiment, analysis is performed
separately using a replay tool which reconstructs the game state at every frame. Another
requirement is a reliable synchronization of the recorded frames with the eye-tracking data.
This can be achieved by operating the eye-tracker via the game application, by initializ-
ing and starting the eye-tracker and the replay simultaneously, so that both have the same
temporal starting point.

4.1.2 Extracting object properties. During the replay, we need to extract those properties
from the scene graph that potentially have an impact on gaze behavior. For each frame, we
extract the properties of all elements visible in the player’s field-of-view. Exact visibility
is determined using the item buffer described in Section 4.2.2. Further, we also store the
properties of the player, required to infer the current task the player is performing, and
general environment properties. The selection and interpretation of relevant properties is
then carried out during the analysis stage and it is controlled by the user via a scripting
interface, described in Section 5.1. Another purpose of this step is to normalize numerical
properties (Section A.2) for intuitive use.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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In our experimental study, it turned out that the strongest properties were the semantic
category of an object (which can be easily inferred from the entity name given a consistent
labelling of objects) and its screen-space bounding window, which provides information
about size and pose.

4.2 Processing gaze data

4.2.1 Fixation filtering. The eye-tracker outputs an array of raw gaze points, which are
defined by a timestamp and a 2D position on the screen. From this we need to determine
the actual foci of user attention. In general, human gaze alternates between fixations, where
gaze rests on one location, and saccades, fast transitions between fixations. Since we base
our studies on measuring overt attention, we assume user attention correlates with fixation
locations only [Duchowski 2003]. This makes sense since the viewer is unable to perceive
details in the stimuli during saccades. Thus, we use a fixation filter to find clusters of
consecutive gaze points which are inside a circle of a specified radius and within a specified
temporal window, typically within 200 ms to 1000 ms [Salthouse et al. 1981].

4.2.2 Determining fixated objects. In order to determine fixated objects, we first identify
the objects corresponding to individual gaze points using an item buffer as in [Sundstedt
et al. 2008]. The item buffer is rendered on the GPU as an image of the scene where object
colors are replaced by unique object ids (Figure 3).

Second, we need to consider the whole collection of gaze points belonging to a fixation.
One option is to compute the correlation of the items with a Gaussian splat that approxi-
mates the sensor density within the human fovea as proposed by Sundstedt et al. [Sundstedt
et al. 2008]. The scene objects of the simple maze-like game used in their study (i.e. walls
and floor) were divided in equally sized tiles, each serving as an individual item. The
energy of the Gaussian splat was then binned over the covered items, and thus a single
fixation could contribute to several items.

However, research on cognition found that attributes belonging only to one object can be
discriminated more efficiently. This so-called single object advantage indicates that atten-
tion is in many cases object-based and only one object can be attended to at a time [Duncan
1984; Baylis and Driver 1993; Behrmann et al. 1998]. Hence, we base our work on the
assumption that during a fixation, attention is focused on one object only and is not directly
related to the foveal sensor density. We use a probabilistic model to find the object with
the highest likelihood of being the fixation target.

As the eye-tracker has limited precision and the human oculomotoric system can not hold
gaze stable on a fixed position, we have to deal with the fact that the gaze points, sampled at
discrete points in time, are distributed within a known uncertainty region. We approximate
the density distribution of the continuous gaze paths during a fixation with a bivariate
Gaussian kernel. The parameters of the kernel are derived from the constant uncertainty of
the eye-tracker 1 and the spatial distribution of gaze points clustered within the fixation. A
bivariate kernel provides a better fit to unidirectional drifts of gaze, which were frequently

1In our case 0.7◦, corresponding to a radius of about 16 pixels.
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observed in the gaze data. This kernel is convolved with the areaA(o, t) of object o at time
t and integrated over the fixation time:

Cfix(o) =

∫ tω(fix)

tα(fix)

∫
(x,y)∈A(o,t)

Nfix(x− xfix, y − yfix)d(x, y)dt (1)

Nfix(dx, dy) = exp

(
− 1

2 (1− (ρfix)2)

(
dx2

(σxfix)2
+

dy2

(σyfix)2
− 2ρfixdxdy

σxfixσ
y
fix

))
(2)

The variables tα(fix) and tω(fix) represent the begin and end time of fixation fix, (xfix,
yfix) is the center of the fixation, σxfix and σyfix denote the standard deviations of the fixa-
tion’s uncertainty region in both dimensions, and ρ their correlation in (x, y). In particular
we obtain σxfix from the square root of the sum of the variance of the spatial distribution of
gaze points in x and the quadratic error of the eye-tracker (σxfix is obtained analogously).
Note that we ignore the normalization factor of the Gaussian since it does not influence the
final result. To speed up computation, we ignore pixels that lie outside the fixation filter
radius plus the above-mentioned eye-tracker error.

Finally, we determine the object which is most likely the target of the fixation as the object
with the maximum value Cfix:

ofix = arg max
o

Cfix(o) (3)

(a) (b)

Fig. 3: Figure (a) shows an example framebuffer and Figure (b) the respective itembuffer. Each object is repre-
sented by a unique color code in the itembuffer. Explosions are transparent particle systems, therefore we use an
opacity threshold to render them as opaque single objects into the itembuffer.
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Fig. 4: Screenshots of the analysis software toolbox we implemented to use in our experimental pipeline.

5. CREATING AND USING IMPORTANCE MAPS

Our proposed attention predictor uses an importance map learned from gaze data. In partic-
ular, the importance map reflects the distribution of gaze in the space of object properties.
To obtain enough samples to reliably infer each entry of the importance map, we introduce
an additional step which transforms the raw properties to a small set of Boolean high-level
properties. Importance values are then assigned to combinations (“vectors”) of these high-
level properties instead of the objects themselves. This allows binning objects with the
same set of properties, and, more importantly, taking into account the dynamic context of
an object (is the object in the center of the screen, was the player armed when the object
was fixated etc.).

In this section we will describe how our system transforms the object properties to high-
level properties, how the respective importance map is inferred and finally how the derived
importance map is used to predict the importance of objects at runtime. Figure 4 shows a
screenshot of the tool we use for this workflow.

5.1 Defining high-level properties

In this step, raw properties are “interpreted” and simplified to Boolean values, and addi-
tionally, the user also specifies which properties will actually be used in the importance
map.

We define a transformation function TF which has the raw properties of the objects
rp(o, t) and the player rp(pl, t) at time t as input. The properties of the player are global
properties of the current environmental context and may also comprise other global fea-
tures, such as properties of the camera or the overall brightness in the current frame. Given
the set X = {x1, . . . , xn} of all different high-level properties, the output x(o, t) =
TF (rp (o, t) , rp (pl, t)) is a Boolean vector x ∈ {0, 1}|X|, called high-level property
vector (HLV).

In our system, the user can design and modify the transformation function via a script-
ing language. A script consists of a set of rules which map raw properties to high-level
properties (Figure 5):

if CONDITION STATEMENT then PROPERTY DEFINITION
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Fig. 5: An illustration of the transformation from raw features to HLVs. In our implementation we pass semantic
properties as an array of boolean values to the rule system, while numerical features are represented with an array
of float numbers. All rules are executed on each item and the resulting HLVs are represented bitarrays of length
|X|, where each bit corresponds to one high-level property in X .

In the conditional statement, raw properties can be combined using standard operators, in
particular logical operators (e.g. ∧, ∨), arithmetical operators (e.g. +, −) and relational
operators (e.g. > , < ). The condition must evaluate to a Boolean value which is then
assigned to the property specified by the right hand side of the rule. The resulting property
can be used in conditional statements of subsequent rules. Note that numeric properties
need to be quantized to a Boolean property, e.g. using natural language terms like “big” or
“far”.

The second part of the script, the “selection pass”, declares which combination of these
properties makes up a high-level property vector (HLV). In order to be able to infer stable
importance values from reasonable sample sizes, rule scripts have to be carefully written
in order to minimize the number of different HLVs that actually occur (i.e., in the worst
case this number increases exponentially with the number of properties being combined).
The sample size depends on the number of participants, the number of recorded fixations
and the distribution of the objects.

5.2 Learning an importance map

A schematic overview of the pipeline can be seen in Figure 6. We denote the importance
map as a scoring function I(x), which maps each possible HLV x (interpreted as an integer
key) to an importance score.

To calculate I(x), we accumulate the time Tfix that objects with that x were fixated and
normalize it by the time Tvis that objects with that x were visible during a fixation (i.e.,
when they were a potential fixation target):
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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I(x) =
Tfix(x)

Tvis(x)
(4)

This model takes into account changes due to visibility of objects and changes in the global
(or player) context, but not changes referring to other objects in the scene. However, gener-
alizing the solution to contextual dependencies is a hard problem, as it would increase the
dimensionality of the importance map to the size of the powerset over X , and a sufficient
density of gaze samples would be difficult to acquire.

Thus we compute Tfix(x) and Tvis(x) as follows:

Tfix(x) =
∑

fix∈Fix

∫ tω(fix)

tα(fix)

ϕx(x(ofix, t))dt (5)

Tvis(x) =
∑

fix∈Fix

∫ tω(fix)

tα(fix)

∑
o∈Vt

ϕx(x(o, t))dt (6)

with the characteristic function:

ϕxi(xj) =

{
1, if xi = xj

0, otherwise
(7)

The function x(o, t) = TF (rp(o, t), rp(pl, t)) returns the HLV for object o at time t. Fix
is the set of all fixations taken as input training data. The object assumed as the target of
fixation fix is denoted as ofix, and Vt is the set of visible objects in the item buffer at time
t. The characteristic function ϕx is used to count exclusively for HLV x.

Note that there is a subtlety involved in calculating Tvis(x) because there are several meth-
ods how to count objects that exhibit the same x in a single frame. In addition to simply
counting the objects as shown above, we have also tried (1) just counting the frames in a
fixation where x occurred at least once, (2) using the sum of the pixel areas of the objects
exhibiting x, and (3) counting the number of objects exhibiting x, divided by the number
of visible objects.

Our experience was that (1) is sensitive to objects sharing the same x: if several objects
with the same x appear together in some frames, x receives a higher score because the
fixation probability increases, but the visibility correction does not increase accordingly;
(2) causes unstable scores, since variations in the size between different objects do not seem
to correlate well with fixation probability. Compared to (3) the method we use worked
better because it lets those situations where the player can select between many objects
contribute stronger to the learning process.

5.3 Background objects

There are two problems when including background objects into our prediction algorithm.
First, many hits on background objects result from the fact that users tend to scan the sil-
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Fig. 6: An overview of the complete pipeline used to derive importance maps.

(a) Normalized with #objects (b) Normalized with #pixels

Fig. 7: Importance maps inferred for different background objects with two different heuristic inference methods.
We added boxplots to illustrate the distribution of the scores generated from the data of each individual participant,
while the bars are the average values obtained when processing the data of all participants together. The left image
depicts the importance map which we get by applying the inference method proposed in Section 5.2, while the
second was generated by normalizing with the fraction of pixels the objects cover on the screen. For background
objects the second method is more adequate, since background objects can not really be counted consistently (e.g.
there is only one floor, but often several walls) and there is a high correlation between the size and the fixation
probability.
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Fig. 8: An illustration how importance values are assigned to the objects in the scene. First, visible objects are
determined and their raw properties are inferred from the scenegraph. Then the transformation function TF

defines the respective HLVs using the raw properties of a particular object and those of the player as input. Since
high-level properties are encoded as words of bits, they can be readily converted to an integer value used as a key
to map to the entries of the importance map being learned on the data beforehand.

houettes of foreground objects. These hits should not lead to an increased importance of
the background. Second, some background objects are hit very often simply because of
their large extent through the whole level (e.g., floor, ceiling, walls). This introduces a bias
towards background objects, which is unwanted since they rarely contain important fea-
tures. While an area-weighted importance could remove this bias, this would not work well
for foreground objects as described before (see Figure 7 for results using area weighting).

We therefore exclude background objects from both the set of visible objects Vt and the
set of fixated objects (and thus the corresponding fixations from Fix) using a simple rule
in the scripting interface. This considerably improved the performance of the predictor.
We plan to investigate predictors that also include background objects in future work, for
example by using saliency maps or by tiling them to reduce the size dependency.

5.4 Gaze prediction at runtime

After an importance map has been constructed from an eye-tracking study as described
above, this map can be used at runtime to predict visual attention by generating an im-
portance value for each visible object in a frame at a given time. This requires executing
that part of the pipeline shown in Figure 2 that leads to the output of high-level property
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sets for each object. However, in this case the extraction of properties needs run in real
time. Thus, instead of using an item buffer in an offline stage, we directly compute visible
objects using an efficient visibility algorithm [Bittner et al. 2004]. For each visible object,
raw properties are converted into the corresponding HLV, which is used as an index into
the importance map to retrieve a corresponding importance score, as illustrated in Figure 8.

The final importance value I(o, t) of an object o in a particular frame t is computed by nor-
malizing the importance score with the maximum importance score in the current frame,
so that the most important object has an importance value of one:

I(o, t) =

{
I(x(o,t))

max{o∈V fgt |I(x(o,t))}
, if o ∈ V fgt

0, otherwise
(8)

This normalization provides a rough approximation to context sensitivity: in the presence
of a very important object (e.g. enemy), the importance score of objects with low impor-
tance is suppressed, while it is amplified in the absence of important objects. However, the
choice of normalization method actually depends on the application using the predictor,
and needs to be further investigated for particular cases. We used it only for visualization
purposes up to now.

6. ASSESSING THE QUALITY OF GAZE PREDICTORS

In the previous sections we explained how we learn an importance map from gaze data and
properties of the stimuli recorded throughout an eye-tracking session, and how to use it as
an attention predictor. The second part of the analysis is to evaluate the performance of an
importance map in terms of its gaze prediction capabilities. The purpose of the evaluation
is to provide the user of the analysis tool with feedback about the quality of the importance
map, so that he can carry out improvements by refining the transformation function.

To this end, the fixations detected in the gaze recordings are correlated with the predictions
of the importance map using two different metrics. We use the dataset from one specific
recording session and compare the actual gaze points to the attention targets predicted
by an importance map learned from other recording sessions. As every player chooses
a different path through the level and observes the scene from arbitrary viewpoints, this
evaluation strategy demonstrates that predictions of an importance map, which was trained
with gaze data of a particular group, can generalize to other subjects, other viewpoint
traces, or even other levels, assuming similar tasks and scene content.

Note that in all the evaluation, background objects (and corresponding pixels) are ignored
as described above.

6.1 Correlation between predictions and actual gaze

To score the prediction performance, we assess the degree of correlation between fixated
objects and high importance values. Assuming a better than chance predictor, we expect an
above-average probability for a fixation to be targeted at an object with an above-average
importance value. The probability should increase with the reliability of the predictions,
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Fig. 9: To get a better understanding of the NIF measure we depicted the probabilities to observe a greater or equal
NIF for a randomly chosen object, under the assumption that the importance values in one frame are normally
distributed.

and thus the amount of deviation of the importance value of fixated objects to the average
is an indicator for the reliability and selectivity of the importance map.

Inspired by the normalized scanpath saliency (NSS) proposed in [Peters et al. 2005] for
the evaluation of saliency maps as gaze predictors2, we introduce the measure Normalized
Importance of Fixated Objects (NIF) as the deviation of the importance value of a fixated
object from the average importance value, normalized by the standard deviation of all im-
portance values in the current frame. Higher values of NIF correspond to better prediction
performance, meaning that the actually fixated objects are also predicted to be important
(see also Figure 9). Since fixation duration also correlates to the importance of a fixation
target ofix, we integrate the deviation for one fixation fix between its begin time tα(fix)
and end time tω(fix):

NIF (fix) =
1

tω(fix)− tα(fix)

∫ tω(fix)

tα(fix)

1

σt

(
I(ofix, t)− Īt

)
dt (9)

with:

Īt =
1

|V fgt |

∑
o∈Vt

I(o, t) (10)

σt =

√
1

|V fgt | − 1

∑
o∈Vt

(I(o, t)− Īt)2 (11)

I(o, t) denotes the predicted importance value for an object o in the frame at time t. The
mean importance value Īt and the standard deviation of importance values σt are both
computed from the distribution of importance values assigned to the visible objects Vt at
time t.

2Saliency maps predict the endpoints of saccades and therefore the future end point of a saccade is often used for
evaluation. Our visual attention predictor on the other hand quantifies the duration of a fixation and thus uses the
currently fixated object.
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For a sequence of fixations Fix = {fix1, . . . , fixn}, we compute the weighted mean
using the fixation durations ∆(fix) = tω(fix)− tα(fix) as weights:

NIF (Fix) =
1

TFix

∑
fix∈Fix

∆(fix)NIF (fix), (12)

with a total fixation time TFix =
∑
fix∈Fix ∆(fix).

This metric is invariant to rescaling, such as the normalization inherent in I(o, t). For a
random predictor, NIF gives 0, while for a good predictor the value is significantly higher
than 0, indicating that there is some correlation between objects assigned with above-
average importance values and the fixated objects. Normalizing with the standard deviation
accounts for the distribution of importance values in a particular frame, so that importance
values which have a low probability have a stronger weight. Figure 9 depicts the estimated
probabilities of observing an equal or higher NIF for randomly selected objects. Those
were computed with the normal cumulative density function under the assumption that
importance values in one frame are normally distributed.

Since the prediction quality varies from fixation to fixation, we also compute the standard
deviation across a sequence of fixations. To account for the different fixation durations, we
use the weighted variance:

σNIF (Fix) =

√√√√ |Fix|TFix
(|Fix| − 1)TFix

∑
fix∈Fix

∆(fix) (NIF (fix)−NIF (Fix))
2 (13)

6.2 Distribution of importance values

While the previous metric provides an assessment of the predictor in a single numeric
value, we also provide a more intuitive assessment of the prediction performance by ana-
lyzing the distributions of importance values corresponding to random fixations and human
fixations.

For human fixations, we compute a histogram Dfix, binning the number of fixations ac-
cording to the importance values of the corresponding fixated objects. For random fixa-
tions, we compute either a pixel-based histogram Dpix, which bins the amount of visible
pixels according to importance values, or an object-based histogram Dobj , binning the
number of objects instead of pixels. A user which fixates random positions on the screen
would produce Dpix, whereas a user fixating randomly selected objects would produce
Dobj . The reason for using two models for random fixations is that it is not entirely clear
how much the size of an object actually influences visual attention, since a human observer
recognizes a scene as a composition of objects and not pixels. A description how Dpix,
Dobj and Dfix are exactly computed can be found in Appendix A.1.

Besides a visual inspection of the distribution, [Peters and Itti 2008] proposed to assess the
quality of an importance map in terms of its information value, which we is estimate as the
distance between the distribution of importance values expected by random fixations (i.e.,
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(a) (b) (c) (d)

Fig. 10: Selected frame buffer images of the level used in our exemplary study. In the first phase of the game
the player explores a large environment (a), and searches for the weapon (b). As soon the player retrieves the
weapon, enemies will spawn and the player has to defend himself and simultaneously attack the enemies (c). The
enemies are spherical robots that are moving in the environment and shoot at the player, and they explode after
termination (d).

Dobj or Dpix) and human fixations. To this end, the symmetric Kullback-Leibler distance
(KL) can be used to evaluate the distance between two normalized distributionsDrand and
Dfix:

KL(Drand, Dfix) =
1

2

N∑
i=1

(
Drand[i]ln

Drand[i]

Dfix[i]
+Dfix[i]ln

Dfix[i]

Drand[i]

)
(14)

The KL metric measures the relative entropy between two distributions. In other words,
it computes the number of additional nats3 required to encode a distribution q, with the
coding scheme used for an entropy encoded distribution p. To make the metric symmetric,
the relative entropy is computed in both directions and the mean of both is returned.

7. EXPERIMENTAL STUDY

In this section we describe a concrete example application of the proposed pipeline. We
carried out a pilot study with a first-person-shooter (FPS) game developed in our lab.
Shooter games are one of to the most popular computer game genres, and are thus a rea-
sonable choice for study. In the following sections we will describe how we designed a
level, acquired the data, generated different kinds of importance maps and evaluated the
prediction performance of the corresponding gaze predictors.

7.1 Data acquisition

7.1.1 Level design. The test level used for eye-tracking was designed by a student who
was naive about the purpose of the study. The game was set in an indoor environment,
composed by a network of rooms that contain attacking enemies. Example images of the
game can be seen in Figure 10. The level had three tasks: first, find a weapon (with no
enemies yet), then navigate to the “boss room”, eliminating any enemies along the way,
and finally destroy a crowd of enemies in the boss room to win the game. After solving a
task, the player was allowed to enter the next section with the next task.

3logarithmic units of entropy
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We disabled certain attention-attracting effects and features built into the original game
which could potentially bias gaze behavior. For example, our current system does not
take into consideration GUI elements, therefore, we disabled all elements of the heads-
up display except the cross hairs. The level designer was also instructed to avoid strong
variations in the illumination of the environment, as these are not captured by our system.

7.1.2 Setup. We used a Tobii x50 eye-tracker, running at 50 Hz, which was placed in
front of the display. The calibration and configuration was carried out according to the
manufacturer’s instructions. The eye-tracker together with the game’s state recording func-
tionality were started and stopped simultaneously, at the beginning and end of each game-
play session. For each session, two data files were stored: a file containing the gaze data
provided by the eye-tracker, and another file exported by the game recording all changes
of the game’s scene graph.

All experiments were run on an Intel Core 2 Duo workstation, clocked at 2.4 GHz with
2GB RAM, and an NVIDIA GeForce 8800 GTX graphics card. This setup was suffi-
ciently powerful to simultaneously run the game, including the recording functionality, at
a framerate greater than 50 fps, and also operate the eye-tracker. The display was a com-
modity LCD display (IBM ThinkVision L200p with a resolution of 1600 x 1200 pixels at
100 dpi), set up at a resolution of 1024 × 768 pixels, displayed at a scaled down effective
viewing window with dimensions of 34× 27 cm. We used a smaller viewing window than
possible with the monitor in order to minimize inaccuracies in eye-tracking near the outer
regions of the wide screen. The setup was located in a dark room with dim lighting to
avoid reflections on the screen. A commodity PC stereo sound system was used for the
audio output and the loudspeakers were placed to the left and right of the screen.

7.1.3 Eye-tracking session. Each participant played the level once while the eye-tracker
was recording his gaze. The calibration of the eye-tracker was carried out shortly before
the game started and the participants were seated comfortably in the best position as rec-
ommended by the user’s manual of the eye-tracker. To reduce the risk of inaccuracies, the
participants were instructed to attempt to hold this position as well as they could. Before
the eye-tracking session, all participants played another distinct level of the game as an
introduction. To avoid surprise effects, this level contained every object which appeared
later in the eye-tracked level of our study. The players were informed in detail about the
tasks and goals of the level before the session.

The time the participants needed to complete the level was between four and six minutes.
Between one and two minutes were required to find the weapon, about two to navigate to
the boss room and kill all the ten enemies on this path, and about one and a half minutes
were required to fight the final battle against twelve enemies in the boss room.

At the end of the session, a short questionnaire quantified the gaming skills of the partic-
ipants. We recorded more than 20 participants. Unfortunately, long eye-tracking sessions
cause an increasing drift of the eye-tracker’s accuracy. Towards the end of many sessions,
the precision of the gaze recordings was unacceptable. Some experiments (e.g. [Sundstedt
et al. 2008]) were conducted with a chin-rest to avoid such complications. However, eye
movements of participants on a chin-rest are vastly different than when they are free to
make both head and eye movements [Collewijn et al. 1992]. After a diligent inspection
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Fig. 11: The eccentricity-based importance map defined in “script 1” (Appendix A.3). In the left image we
illustrate the regions defining the eccentricity bins. In the right image, the bars illustrate the importance values
generated from ten datasets together. The boxplots illustrate the distribution of the importance values generated
from the data of single participants.

with our gaze visualization tool, it turned out that only 10 gaze datasets had a reliable ac-
curacy. The respective participants were all male, had normal or corrected to normal vision
and their FPS gaming skills were good to very good.

7.2 Learning importance maps

We will now present three illustrative examples of particular importance maps generated
from the data acquired in our study. Since an importance map is specified by a transfor-
mation function, we listed in the Appendix the relevant script defining the transformation
function for each example.

7.2.1 Eccentricity. When we inspected the gaze behavior with our gaze visualization
tool, the most obvious observation was that most fixations were close to the center of
the screen. Similar results were reported in [Kenny et al. 2005] from a study on gaze
behavior in FPS games. We authored a script (see Appendix A.3) to learn an importance
map which captures this behavior. Five rules were specified, which generate five bins
for the degree of an object’s eccentricity (see Figure 11, left). The resulting importance
map (see Figure 11, right) has a high peak for the inner eccentricity bin 1, and rapidly
decreases with eccentricity. The most probable explanation for this is that the cross hair of
the weapon is displayed at the center of the screen.

7.2.2 Semantic properties. In order to demonstrate that our approach can generate im-
portance maps based on more complex properties, we created a script (Appendix A.4) to
infer importance values according to the semantic object type. We combined this with
one relevant property of the player, notably whether he is “armed” or “unarmed”. With
this combination, differences in the gaze distributions according to the current task of the
player, which is to search the weapon while being “unarmed” and to shoot enemies as
soon he possesses the weapon, should be captured. In Figure 12 we depicted the values
according to the HLVs of the respective importance map.

The importance map we derived shows that only few objects are outstanding attention
attractors, notably explosions, the enemy, the weapon (as long the player is searching for
it), and a panel emitting sound. Explosions occur when an enemy is eliminated. One
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Fig. 12: An importance map from semantic properties. Whether the player is armed or unarmed was added as an
additional HL property. Not all properties appeared for both states, since some objects emerged in parts of the
level where the player was either armed or unarmed. In the image above we illustrated the semantic categories
with the corresponding objects in the game. For the next example, we clustered the semantical properties ac-
cording to their importance value into four categories, which we use to combine semantical and spatial properties
(Section 7.2.3)

reason for their high importance is that the player keeps his focus on the exploding enemy.
The weapon has high importance before the player retrieves it, but as soon the player
carries the weapon, its importance drops significantly (see scores according to the states
“Armed.Weapon” and “Unarmed.Weapon” in Figure 12). The sound-emitting panel is a
conspicuous object in the scene. It has a screen displaying a rotating wheel and emits a
sound which is congruent to the animation. This kind of crossmodal cue possibly causes a
high attentional response. An interesting observation is that the importance of the overview
map changes considerably between both tasks. When the player searches the weapon he
seems to have time to pay more attention to maps and objects suspended on the walls,
while as soon as he is armed and enemies are attacking, he has different priorities.

7.2.3 Semantics and Eccentricity. According to the observations from the preceding
steps, we tested a combination of both models (Appendix A.5). To get enough samples
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Fig. 13: The left figure shows the score function for a combined model of eccentricity and semantics, generated
using “script 3” (Appendix A.5). The right diagram shows the scores for the clusters without combining them
with eccentricity properties.

(a) (b) (c)

Fig. 14: Visualization of the predicted importance, (a) from semantic properties, (b) eccentricity, and (c) a combi-
nation of both. Our visualization is a grayscale overlay to the framebuffer, where object importance is proportional
to the displayed brightness.

for every entry in the importance map, we put the semantic categories into four clusters.
These clusters were intuitively specified according to the importance values in the scoring
function inferred from “script 2”. The clusters are illustrated in Figure 12 with different
colors. We labeled them with “very important”, “important”, “normal” and “unimportant”.
Figure 13 shows for each cluster the importance map scores per eccentricity bin.

7.3 Evaluation of the gaze predictors

7.3.1 Results. The whole walkthruogh of one player (participant 10) with a synchronous
visualization of his gaze and the predictions of the importance map was rendered in the ac-
companying video. A grayscale overlay was used to visualize the importance values, where
object importance is proportional to the displayed brightness. Apart from inspecting the
correlation of fixations and importance maps visually (e.g. screenshots in Figure 14), an
objective analysis with the quality metrics described in Section 6 (NIF value and his-
tograms) was carried out. We perform the analysis for each of the three phases of the
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game separately, i.e., searching for the weapon, navigation and battle on the way to the
boss room, and finally the boss room. The corresponding three tasks show increasing task
intensity, which has an impact on the prediction performance.

The results for the NIF metric (together with the weighted standard deviations across
fixations) are depicted in Table I. Recall that NIF measures how much higher the im-
portance values of fixated objects are in comparison to the average importance value of all
visible objects, normalized by the standard deviation of importance values. Table II shows
the distributions of importance values expected for random fixations (Dpix, Dobj) in com-
parison to the recorded (human) fixations (Dfix), as described in Section 6.2. A resolution
of ten bins was used to build the histograms. We created a histogram for each subject
separately (with an importance map generated from the remaining subjects) and then aver-
aged these histograms to arrive at the figures in Table II. The high counts for bin [0.9, 1.0]
result from the normalization assigning 1.0 to the most important object in each frame. To
allow a better comparison, we also show the relative differences, i.e., Dfix[i]/Dobj [i] and
Dfix[i]/Dpix[i]. A red line through 1 shows which importance values receive more, or
respectively less, fixations as expected for randomly chosen fixation targets.

7.3.2 Discussion. There is clear evidence for all conditions that the predictors perform
better than chance. Eccentricity turns out as the most effective and reliable property to
predict visual attention in a FPS. The predictor based exclusively on semantic properties
performs clearly better than chance even in the least task-intensive phase (searching) (t-test
with NIF : t = 27.3, dof = 9, p < 0.001), where the importance value of fixated objects
is on average between 68% (participant 3) and 97% (participant 8) of the standard deviation
higher than the mean importance of the current frame. Note one standard deviation (i.e.,
NIF = 1.0) corresponds approximately to a probability of 16% to observe for a randomly
selected object an equal or higher importance value than that of the actually fixated object
(see Figure 9). In this phase enemies were absent and the task-target “Weapon” was on
screen less than 7% of the time. This gives us a strong hint that, apart from obvious task
relevance, also other semantic properties provide a considerable potential to discriminate
their impact on visual attention. However, the relatively high standard deviation of the
NIF across fixations shows that the degree of correlation between importance values and
fixations fluctuates considerably.

The KL distance of 0.2 between Dpix and Dfix during the “Searching” phase (Table II
top-left histogram) indicates a weak, although clear difference. We explain the small dif-
ference between Dpix and Dfix in bin [0.9, 1.0] by the fact that the columns were the
most important objects in many frames during the “Searching” period. As columns are the
largest objects and appear very frequently, they contributed a relative strong weight to the
higher bins of Dpix. As Dfix is invariant to the size of fixated objects, the difference to
Dpix was lowered.

Comparing NIF values for the three scripts, the importance map which combines seman-
tic properties and eccentricity could improve the performance compared to the eccentricity
based map in all phases of the game. The improvements were, however, decent, but even
for the worst case, the “Searching” phase, a paired students t-test reveals that the NIF
scores for “script 3” are significantly better than those for “script 2” (t = 4.56, dof = 9,
p = 0.001). We explain the rather moderate performance increase with a strong correla-
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



... · 25

Searching
I.Map type semantic eccentricity ecc.& sem. N
participant 1 0.94± 1.16 1.24± 1.15 1.30± 1.11 143
participant 2 0.81± 1.05 1.14± 1.24 1.19± 1.16 149
participant 3 0.68± 1.12 1.65± 1.13 1.68± 1.06 144
participant 4 0.81± 1.28 1.03± 1.29 1.16± 1.30 213
participant 5 0.75± 1.27 1.00± 1.29 1.06± 1.28 111
participant 6 0.80± 1.06 1.29± 1.32 1.35± 1.26 148
participant 7 0.79± 1.12 1.12± 1.31 1.16± 1.29 149
participant 8 0.97± 1.32 1.54± 1.24 1.57± 1.21 147
participant 9 0.72± 1.04 1.61± 1.32 1.60± 1.23 145
participant 10 0.91± 1.32 1.18± 1.26 1.27± 1.25 140

Navigation & Battle
I.Map type semantic eccentricity ecc.& sem. N
participant 1 1.66± 1.40 1.99± 1.18 2.13± 1.30 178
participant 2 1.59± 1.34 1.78± 1.10 1.89± 1.22 125
participant 3 1.47± 1.25 2.17± 1.09 2.30± 1.04 175
participant 4 1.97± 1.44 2.16± 1.05 2.41± 1.08 176
participant 5 1.99± 1.43 2.05± 1.28 2.33± 1.32 103
participant 6 1.73± 1.10 1.89± 1.25 2.09± 1.21 141
participant 7 1.53± 1.61 1.85± 1.22 1.89± 1.40 173
participant 8 1.82± 1.40 2.11± 0.93 2.30± 1.11 137
participant 9 2.13± 1.29 2.26± 1.09 2.47± 1.12 151
participant 10 2.02± 1.46 2.12± 1.35 2.28± 1.43 212

Bossroom
I.Map type semantic eccentricity ecc.& sem. N
participant 1 1.89± 1.34 1.93± 1.21 2.09± 1.31 206
participant 2 2.14± 1.21 1.96± 1.14 2.25± 1.09 96
participant 3 1.85± 1.34 2.13± 0.81 2.36± 0.80 131
participant 4 2.42± 0.91 2.51± 0.88 2.70± 0.79 85
participant 5 2.27± 0.99 2.45± 0.82 2.67± 0.79 84
participant 6 2.02± 0.99 2.15± 0.98 2.32± 0.96 128
participant 7 2.31± 1.27 2.42± 0.91 2.62± 0.97 82
participant 8 2.07± 1.34 2.12± 1.05 2.38± 1.09 130
participant 9 2.34± 0.95 2.23± 0.94 2.44± 0.84 84
participant 10 2.02± 0.92 2.15± 0.70 2.21± 0.76 65

Table I: Evaluation of the importance maps generated from different scripts. We display the mean and the standard
deviation of the NIF, which was evaluated for all N fixations of each participant (excluding those which fell on
background objects, according to the exclusion rules of the scripts). The importance map which was evaluated
on the gaze data of one participant was always generated from the datasets of the other nine participants.

tion of the eccentricity and the importance inferred from semantics. If an important object
appears on screen, the player tends to orientate the camera soon towards this object and
the eccentricity-based predictor will provide a good prediction, but with delay, whereas
semantic predictors can better estimate which object will probably be attended next.

7.3.3 Conclusion. Though eccentricity provided very good predictions which to start
with, we discovered that there is a statistically significant (even if it is weak) improve-
ment when semantic properties are combined with eccentricity. The strong focus towards
the center seems to be characteristic for first-person games (where the camera is controlled
by the user), but for other games, predicting attention may require more than eccentricity to
achieve a good performance. Hence, we used our system to demonstrate that also semantic
properties (without spatial information) combined with the player’s current task predict at-
tention significantly better than chance, which should open a new avenue for future work.
Overall, we conclude that visual attention in a first-person game is affected by both, spatial
organization and semantics of objects.
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Searching
semantic eccentricity ecc. & sem.

1489 fixations, 10 participants

Navigation & Battle
semantic eccentricity ecc. & sem.

1571 fixations, 10 participants

Bossroom
semantic eccentricity ecc. & sem.

1091 fixations, 10 participants

Table II: The distribution of importance values expected by fixations on randomly chosen objects or positions, in
comparison to the distribution of importance values among actually fixated objects. The image on the top depicts
the distributions side-a-side, while the images below illustrate the difference in Dfix relative to the distributions
expected by random fixations.
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8. GENERAL CONCLUSION AND OUTLOOK

8.1 Contribution

In this article, we have presented a pipeline to infer attention predictors from eye-tracking
data. The main contribution is that the approach relates attention to object and scene
properties, and thus allows predicting attention in dynamic environments with dynamically
changing viewpoints (and thus object visibilities) and tasks. The approach allows a human
operator to specify through a scripting interface how importance values are assigned to
combinations of object properties based on observed gaze data.

Besides providing attention predictors that can be evaluated in real time, for example for
selective rendering, the system can also be used as an analysis tool (e.g. for game de-
signers). According to the results of our examples, one would, for instance, concentrate
most efforts on the design of enemies or explosions, and invest less resources to polish the
appearance of objects on the ceiling, or decorations in rooms where many enemies attack
the player. The fact that eccentricity serves as a very strong predictor in FPS games could
also be utilized to build importance maps without an eye-tracker, but using the crosshair
instead.

Although the examples in this paper revealed results that are mostly not surprising (e.g.,
with respect to eccentricity), our analysis method can quantify the evidence of certain
suspicions about gaze behavior. Due to the generic system design, the approach is capable
to analyze gaze behavior in environments with rich detail and sophisticated tasks, where it
is rather difficult to predict gaze intuitively.

8.2 Limitations

Our results suggest that we can already predict attention well, but we need to point out that
we did not address bottom-up mechanisms affecting the control of attention. We believe
that the two approaches are complementary and can be combined in future work. For
example, while saliency maps are good at predicting what could be the next gaze target, our
approach tries to answer the question how long attention is likely to dwell on a particular
object.

Further, while image space approaches work on arbitrary images sequences, this work
focused on object-based importance maps, which requires an application where the internal
object structure is accessible and item buffers can be created. However, the interface to the
analysis tools to be integrated is light weight and it should be easy to adapt host applications
to this requirement. Also note that image space approaches require object recognition and
identification.

In our experiment, we excluded background objects from the analysis and used objects
with a clear semantic category and a clear geometrical outline. However, environments
in commercial games frequently comprise more difficult content, e.g. large environment
models or vegetations. In future work, solutions need to be investigated which allow de-
composing all elements of a scene adequately, so that gaze can be analyzed according to
the key features of major impact. Particular extensions we are considering, are hierarchi-
cal decompositions of difficult objects, like for example trees or houses, and screen-space
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approaches to subdivide large models or background into regions in such a manner that
features with a different response on visual attention can be spatially separated.

8.3 Future work

There are many ways in which the basic pipeline presented in this paper can be improved.
We propose the following application-oriented directions:

The first is to test the approach for more complex game settings and environments, impos-
ing challenging tasks and missions, comparable to commercial games.

Second, to investigate certain extensions to improve the performance of the predictors.
This includes, on the one hand, to account also for bottom-up mechanisms and to inves-
tigate how we can effectively combine the image-space-oriented saliency maps and the
object-space-oriented importance maps. On the other hand, it is also important to account
for the entire multimodal stimulus presented to the player of an action game. Notably,
including the impact of sound sources in 3D space and elements in the head-up-display
(HUD) of games. Due to the very general design, our system is capable to be extended
with items for sound sources and HUD elements.

And third, the exploration of target applications for gaze predictors. Apart from selective
rendering, we think that there are many other potential applications which are unexplored,
or even unexpected, yet. For example, the prediction of the attentional response to adver-
tisements in gaming environments may be a useful application. The idea would be to use
the gaze predictor to estimate when attention is directed to, or distracted from, a particular
advertising element of a game. This could enable online game vendors to develop more
sophisticated costing mechanisms for their advertising clients.

Finally, we think that many of the tools we proposed, in particular computing gaze dis-
tributions according to object semantics in interactive 3D environments, may find great
application in the study of human behavior in virtual reality.
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A. APPENDIX

A.1 Binning the distribution of importance values

Binning in screen-space. Using N bins with a size of ∆b = (1 + d)/N, d = +0 4, the value for
bin i ∈ {1, . . . , N} is computed by:

D
′
pix[i] =

∑
fix∈Fix

∫ tω(fix)

tα(fix)

|{pixel ∈ Ft|(i− 1)∆b ≤ I(pixel, t) < i∆b}|
|Ft|

dt (15)

Each bin accumulates the fraction of pixels Ft belonging to a visible object with an importance value
(I(pixel, t)) falling into bin i at time t. The fraction is computed relative to the number of pixels
covered by visible objects at time t.

Binning in object-space. In the same manner we compute the distribution of importance values in
object space:

D
′
obj [i] =

∑
fix∈Fix

∫ tω(fix)

tα(fix)

|{oj ∈ Vt|(i− 1)∆b ≤ I(oj , t) < i∆b}|
|Vt|

dt (16)

In this case we normalize with the number of visible objects |Vt|.

Binning for fixated objects. The distribution of importance values among fixated objects is com-
puted by:

D
′
fix[i] =

∑
fix∈Fix

∫ tω(fix)

tα(fix)

ϕi(fix, t)dt (17)

with:

ϕi(fix, t) =

{
1, if (i− 1)∆b ≤ I(fix, t) < i∆b

0, otherwise
(18)

Normalization:. To obtain a unique scale we further normalize all distributions with their totals:

D[i] =
D

′
[i]∑N

i=1 D
′ [i]

(19)

4To avoid more equations, we add an infinitesimal delta to assure that 1.0 < N∆b
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A.2 Scripting Language

A.2.1 Operators. The syntax supports common standard operators, including arithmetic opera-
tors ( + , − , ∗ , / ), comparison operators ( > , < , ≥ , ≤ , = ), which evaluate to a boolean value,
and logical operators (disjunction: ∨ , conjunction: ∧ , not-operator: ¬).

A.2.2 Numerical properties. Properties which have a numerical value are arithmetic operands
and can be related by common arithmetic operators and comparison operators.

In our examples we used the following numeric properties:

Screen space bounding window:
is defined by the lower left corner (bw x,bw y) and the upper right corner (bw X,bw Y). For con-
venient usage we normalized the coordinates to [-1,1] in both dimensions; the center of the screen
is located at (0,0).

velocity:
the velocity of an object in world space in units per second

size x:
the width of the bounding window normalized to [0,aspectRatio]

size y:
the height of the bounding window normalized to [0,1]

pixelCoverage:
the fraction of visible pixels. It is computed by dividing the number of visible pixels of a particular
objects in the itembuffer by the number of all pixels (= numV isP ixels/(768 ∗ 1024))

A.2.3 Boolean operands. All objects are assigned with one or more semantic properties. We
choose to represent such properties as booleans. Hence, the value of a particular semantic property
is TRUE, if it does apply to the object, and FALSE, if not. For simplicity reasons “a” corresponds to
“a = TRUE”, and “ ¬a” to “a = FALSE”.

The following boolean properties we employed in our examples correspond to the semantic cate-
gories depicted in Figure 12:

ceiling, floor,
wall, barrel, box,

picture,
decorLion, map,

column, light,
door,

soundingPanel,
alarm,

loudspeaker,
enemy, weapon

A.2.4 Properties of the player. Unlike scene object properties, which are locally persistent
while a rule set is executed for one object, properties of the player are globally persistent during
processing all objects in the current frame.

In the examples, the boolean property isArmed is used to reflect whether the player has a weapon, or
not ( ¬isArmed).

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



34 · ...

A.3 Script 1: Semantic

begin Rules

//assign an exclude property to background objects
if ceiling ∨ floor ∨ wall then Exclude

//define windows to estimate eccentricity
if bw X > −0.05 ∧ bw x < 0.05 ∧ bw Y > −0.05 ∧ bw y < 0.05 then Ecc1
if bw X > −0.15 ∧ bw x < 0.15 ∧ bw Y > −0.15 ∧ bw y < 0.15 then EccWindow2
if bw X > −0.3 ∧ bw x < 0.3 ∧ bw Y > −0.3 ∧ bw y < 0.3 then EccWindow3
if bw X > −0.7 ∧ bw x < 0.7 ∧ bw Y > −0.7 ∧ bw y < 0.7 then EccWindow4

//subtract inner windows
if ¬Ecc1 ∧ EccWindow2 then Ecc2
if ¬Ecc1 ∧ ¬EccWindow2 ∧ EccWindow3 then Ecc3
if ¬Ecc1 ∧ ¬EccWindow2 ∧ ¬EccWindow3 ∧ EccWindow4 then Ecc4
if ¬Ecc1 ∧ ¬EccWindow2 ∧ ¬EccWindow3 ∧ ¬EccWindow4 then Ecc5

end

begin Selection

Ecc1,Ecc2,Ecc3,Ecc4,Ecc5,Exclude

end

A.4 Script 2: Eccentricity

begin Rules

if ceiling ∨ floor ∨ wall then Exclude

//if the door is in motion it is opening
if door ∧ velocity > 0 then OpeningDoor

//we have sliding doors which vanish into the walls when they open.
//so we assume that highly occluded doors have been opened
if pixelCoverage < 0.1 ∗ size x ∗ size y then OpenDoor

//if a door is neither opening nor opened, it can only be closed
if ¬( OpeningDoor ∨ OpenDoor ) ∧ door then ClosedDoor

end

begin Selection

Player.isArmed,
barrel, box, decorLion, picture, map, column,
OpeningDoor, OpenDoor, ClosedDoor,
alarm, speakerbox, soundingPanel,
enemy, explosion, weapon
Exclude

end
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A.5 Script 3: Semantic & Eccentricity

begin Rules

if ceiling ∨ floor ∨ wall then Exclude

if door ∧ velocity > 0 then OpeningDoor
if pixelCoverage < 0.1 ∗ size x ∗ size y then OpenDoor
if ¬( OpeningDoor ∨ OpenDoor ) ∧ door then ClosedDoor

//there is only one weapon !
//if the player is armed he bears the weapon
if Player.isArmed ∧ weapon then BearedWeapon

//if the player is unarmed the weapon is a search target
if ¬Player.isArmed ∧ weapon then WeaponTarget

//define clusters:
if explosion ∨ enemy ∨ WeaponTarget ∨ soundingPanel then VeryImportant

if ¬Player.isArmed ∧ ( map ∨ column ) then Important
if OpeningDoor ∨ ClosedDoor ∨ speakerbox then Important

if box ∨ barrel ∨ alarm then Normal
if ¬Player.isArmed ∧ ( decorLion ∨ picture ) then Normal
if Player.isArmed ∧ column then Normal

if Player.isArmed ∧ ( picture ∨ map ∨ decorLion ) then Unimportant
if OpenDoor ∨ BearedWeapon ∨ light then Unimportant

//define eccentricity properties
if bw X > −0.05 ∧ bw x < 0.05 ∧ bw Y > −0.05 ∧ bw y < 0.05 then Ecc1
if bw X > −0.15 ∧ bw x < 0.15 ∧ bw Y > −0.15 ∧ bw y < 0.15 then EccWindow2
if bw X > −0.3 ∧ bw x < 0.3 ∧ bw Y > −0.3 ∧ bw y < 0.3 then EccWindow3
if bw X > −0.7 ∧ bw x < 0.7 ∧ bw Y > −0.7 ∧ bw y < 0.7 then EccWindow4
if ¬Ecc1 ∧ EccWindow2 then Ecc2
if ¬Ecc1 ∧ ¬EccWindow2 ∧ EccWindow3 then Ecc3
if ¬Ecc1 ∧ ¬EccWindow2 ∧ ¬EccWindow3 ∧ EccWindow4 then Ecc4
if ¬Ecc1 ∧ ¬EccWindow2 ∧ ¬EccWindow3 ∧ ¬EccWindow4 then Ecc5

end

begin Selection

VeryImportant, Important, Unimportant,
Ecc1, Ecc2, Ecc3, Ecc4, Ecc5,
Exclude

end
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