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Abstract
We present a physically based real-time water simulation and rendering method that brings volumetric foam to the
real-time domain, significantly increasing the realism of dynamic fluids. We do this by combining a particle-based
fluid model that is capable of accounting for the formation of foam with a layered rendering approach that is able
to account for the volumetric properties of water and foam. Foam formation is simulated through Weber number
thresholding. For rendering, we approximate the resulting water and foam volumes by storing their respective
boundary surfaces in depth maps. This allows us to calculate the attenuation of light rays that pass through these
volumes very efficiently. We also introduce an adaptive curvature flow filter that produces consistent fluid surfaces
from particles independent of the viewing distance.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Dynamic fluids are a desirable element of many real-time
applications like games. So far, the mathematical complex-
ity of realistically simulating and rendering the behavior and
interaction of fluids with the environment has hindered their
widespread use. One promising approach would be to ren-
der the results of smoothed particle hydrodynamics (SPH)
simulations using splatting, but the locally high curvature of
spherical splatting primitives results in an unrealistic jelly-
like appearance.

Only recently, van der Laan et al. [vdLGS09] proposed
curvature-based screen space filtering for rendering the re-
sult of SPH simulations. The approach alleviates sudden
changes in curvature between the particles and creates a
continuous and smooth surface. While this method is a sig-
nificant step towards realistic fluid rendering in real time,
there is room for improvement. First, the screen-space cur-
vature flow formulation is highly dependent on viewer dis-
tance. While fluids farther away from the viewer are overly
smoothed, fluids near the viewer almost completely retain
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the undesirable spherical particle structure. Second, there ex-
ists as yet no realistic real-time method to create foam, which
is an important visual element in most situations where real-
time fluids are used (see Figure 1).

Figure 1: A scene rendered with simple noise-based foam
[vdLGS09] (left) and with our new method (right);

This paper presents a real-time fluid simulation and ren-
dering system that overcomes these drawbacks:

• We introduce an adaptive curvature flow filtering algo-
rithm for SPH rendering which accounts for perspective.

• We introduce a physically based foam rendering method
using Weber number thresholding and a volumetric layer-
based rendering system (see Figure 2). Foam can appear
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Figure 2: A cross-section of our layered water model: The volumetric appearance of the result is achieved by not only account-
ing for the water thickness Twb at each pixel as previous approaches [vdLGS09], but also for the foam thickness Tf and the
thickness of water in front of the foam Tw f . We also partition foam into two differently colored layers (Tf f ) to achieve more
interesting foam.

as the top-most layer or between two water layers, as in a
waterfall.

• Our method is almost as fast as previous approaches,
while providing higher image quality.

• In addition, the algorithm is simple to implement and in-
tegrate into existing rendering engines.

2. Previous Work

Simulation of liquids like water can be classified into
Eulerian- and Lagrangian-approaches. The former build
on a fixed grid in space, using finite element techniques
[Sta99] to solve the Navier Stokes Equations. However,
these approaches are not intuitive for flows because they
limit the simulation to the space where the grid is defined.
Lagrangian-approaches, like Smoothed Particle Hydrody-
namics (SPH), introduced for computer graphics by [DG96],
simulate a fluid by moving discrete volume elements, and are
therefore not restricted concerning the simulation space.

Offline methods include effects like foam, bubbles and
spray, and we adapt some of their elements for our real-
time method. Losasso et al. [LTKF08] mix the Eulerian and
Lagrangian approaches to generate realistic fluids including
spray and foam. Mihalef et al. [MMS09] adapt this method
and replace the Lagrangian SPH approach by a simple par-
ticle system to include droplets and bubbles. The so-called
Weber number, as defined in [Sir99], is used to control the
generation of droplets and bubbles, which we adapt for cre-
ating foam in real time. Takahashi et al. [TFK∗03] use a
particle-based approach to model splashes and foam. The
generation and transition of foam is controlled using state
change rules, which work in a similar way as our separa-
tion of the particles into water- and foam-particles. Cleary et

al. [CPPK07] extend SPH by considering the dissolved gas
within the fluid. Similar to our work they use a layered rep-
resentation where the different parts of the fluid volume are
separately rendered and composed into the final image.

Current real-time approaches are usually limited in the
number of particles they can handle, and do not include re-
alistic foam [MCG03]. One way to render the water sur-
face from the results of the particle simulation are Müller et
al.’s [MSD07] screen space meshes, created using a march-
ing squares technique on the particle depth map. Although
the algorithm provides view-dependent level of detail and
filtering in screen space, rendering foam with this approach
is prohibitive, because of the large amount of geometry that
needs to be generated. Thürey et al. [TSS∗07] present a
shallow water-based particle model that is coupled with a
SPH simulation to simulate bubbles and foam effects, but
the method simulates individual foam particles, which is ex-
pensive.

van der Laan et al. [vdLGS09] present an approach for
rendering particle-based fluids directly using splatting in-
stead of performing a polygonization. They use screen space
curvature flow filtering to conceal the sphere geometry of
the particles and to prevent the fluid from looking jelly-like.
However, the curvature flow filtering is dependent on the
view distance, and the proposed simple noise-based surface
foam effect does not have a volumetric appearance (see Fig-
ure 1).

3. Overview

Our method builds on the screen space fluid rendering
approach with curvature flow [vdLGS09]. Similar to this
method, we start from an SPH simulation calculated using
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Figure 3: Overview of the buffers used in our method. Tw f : thickness of the water in front of the foam; Twb: thickness of the
water behind the foam; Tf : foam thickness; Tf f : thickness of the front foam layer;.

a hardware physics engine (PhysX), which provides a non-
sorted 3D point cloud as input. Apart from the particle’s po-
sition x we will also use the density ρ and velocity v for foam
thresholding and the lifetime for varying the Perlin noise on
a foam particle.

The original algorithm calculates the water depth by splat-
ting the particles, then smooths the depth buffer using curva-
ture flow filtering, then calculates water thickness by accu-
mulating particle depths in a separate thickness buffer, and
finally composites the results. Our algorithm extends this by
adapting the curvature flow filter for the viewer distance, and
by adding a foam layer that can lie between two water lay-
ers. Our algorithm then performs the following steps once
per frame after the scene has been rendered into a texture
(see Figure 3):

1. Calculate water and foam depth (Section 5.2)
2. Smooth the water depth using the new adaptive curvature

flow algorithm (Section 4)
3. Calculate water and foam thickness (Section 5.2)
4. Composite water and foam layers using intermediate re-

sults (Section 5.3)

4. Adaptive Curvature Flow

The first step in rendering a fluid using particles is to cre-
ate the fluid surface. This is done by splatting the particles

into the depth buffer using point sprites, with the depth val-
ues replaced by the geometry of a sphere. In order to avoid
a “jelly-like” appearance due to the spherical particles, it
is important to smooth the depth surface. van der Laan et
al. [vdLGS09] argue that (bilateral) Gaussian filters are too
expensive because they are not separable. Instead, they use
curvature flow [MS97], which is a method that repeatedly
shifts a surface along its normal vector depending on the
mean curvature of the surface. This process corresponds to
an Euler integration, and causes smoothing, as it tries to min-
imize curvature.

Under certain assumptions and simplifications, van der
Laan et al. derive a formulation of curvature flow in screen
space that moves the z-value according to a simple Euler in-
tegration of the differential equation

∂z
∂t

= H, (1)

where H is the mean curvature of a pixel, which is a function
of the partial derivatives at the pixel and the depth value itself
(for details see [vdLGS09]):
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where xs,ys are the window coordinates of the current pixel.
The partial derivatives are calculated using simple finite dif-
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ferencing, so the discrete form of the mean curvature Hs de-
pends on a 4-neighborhood around the current pixel:

Hs(z(xs,ys),z(xs−1,ys),z(xs+1,ys),z(xs,ys−1),z(xs,ys+1))
(3)

Each iteration of the Euler integration simply renders a
full-screen pass with zi+1 = zi + ∆tHs. As proposed by
[vdLGS09], the number of iterations are chosen depending
on the smoothness that is desired.

However, close inspection of the screen-space curvature
formulation reveals that the reference coordinate system for
calculating the curvature is the window coordinate system.
This means that, given equal iteration sizes, a particle that
appears larger on screen (because it is closer due to perspec-
tive) will have a significantly larger radius in this coordi-
nate system and therefore significantly lower curvature than
a particle that is farther away. The resulting artifact is that
smoothing will have a lower effect on closer particles, which
therefore retain the unwanted spherical appearance, whereas
particles far from the viewer will be overly smoothed, so
that the fluid surface loses its defining characteristics such
as highlights. This can be observed in Figure 4, left.

Figure 4: In [vdLGS09] (left), distant water is over-
smoothed (top) and near water is under-smoothed (bot-
tom). Our new method (right) maintains the same amount
of smoothing regardless of the distance.

One possible solution would be to remap the curvatures
into a common reference coordinate system, for example by
dividing Hs by z for each evaluation of Hs. However, our ex-
periments have shown that this makes the integration very
unstable, because the screen-space evaluation for larger par-
ticles is very noisy due to depth quantization. On the other
hand, depth correction would make the resulting curvatures
large in magnitude, leading to oscillation.

Therefore, we approach the problem from a different di-
rection and interpret each integration step as a filtering step
with a 3x3 kernel. Obviously, repeated filtering leads to an
increased screen-space kernel radius rs of the hypothetical
overall filter – in fact, the number of iterations corresponds
exactly to rs. The main idea is now to vary the number of
iterations depending on the view space distance z in order to
obtain a roughly equal overall filter kernel size rw in world

space, making sure that a similar world-space neighborhood
is taken into account when calculating the curvature flow. So
rs can be calculated from a desired world-space kernel radius
rw through

rs =
rw

z
FV
2

(4)

where F is the focal length, V is the viewport width in pixels,
and z is the eye-space z-distance. So in iteration i, an Euler
iteration step is only applied to a pixel if rs < i. For opti-
mization, the user can specify a maximum iteration count.
Furthermore, an occlusion query is issued for each iteration
to check whether any depth value was actually modified. If
that is not the case, all pixels are already converged and no
further iteration is necessary.

5. Real-Time Foam

In this section we describe how to incorporate foam into real-
time fluid rendering. We define water foam as a substance
that is formed by trapping air bubbles in the liquid. Form is
usually observed as spray or bubbles above the surface of
a turbulent water stream. However, we also observed that a
significant visual effect is caused by foam that occurs behind
a water surface, usually due to a turbulent water stream that
immerges into resting water with high impact (see Figure 5).

In order to capture these two main effects in a real-time
setting, we separate foam particles from water particles and
arrange the resulting foam and water particles in separate
layers and render them using volumetric back-to-front com-
positing. Although our layered representation does not ac-
count for discontinuity in the fluid volume which occurs if
there are several layers of water and foam, the two most com-
mon cases mentioned above are covered by this model.

5.1. Foam Formation

First, we classify particles as water or foam. Following
[MMS09], we base the classification on the Weber num-
ber [Sir99], which is a dimensionless physical quantity that
describes the relative influence of the inertia of a fluid to its
surface tension. The Weber number is defined as the ratio of
the kinetic energy to the surface energy:

We =
ρv2l

σ
, (5)

where ρ is the density, v is the relative velocity between the
liquid and the surrounding gas, l is the characteristic length,
and σ is the surface tension. For larger We, the kinetic energy
of the water is greater than the surface energy, causing water
to intermix with the surrounding air, which results in foam
formation. Thus, we separate particles into water and foam
particles by thresholding the Weber number. In practice, we
use a linear transition area where the particle is counted both
as water and foam particle to ensure a smooth emergence and
disappearance of foam. The new foam particle starts out as
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a point and expands, while the corresponding water particle
shrinks.

Similar to [MMS09], we assume that the surface tension
and the characteristic length are fixed for the SPH simula-
tion. We also assume that the characteristic length l is the
particle diameter, which is a simplification for our real-time
purposes, and that the surrounding air is not moving, and
therefore the relative velocity v is the velocity of the parti-
cles. The velocity v and the density ρ are obtained from the
physics simulation package.

5.2. Layer Creation

Now that particles have been classified as either particle or
foam, we partition the fluid into layers, as shown in Figure 2.

By using two water layers, one in front and one behind the
foam layer, we can simulate foam inside water, as happens
at the end of a waterfall (see for instance Figure 8, middle or
Figure 5). We first determine the front water surface and the
front foam surface by splatting water and foam particles into
separate depth buffers (the splatting step was described in
Section 4). Curvature flow is only applied to the front water
surface.

Figure 5: User defined colors (c f luid , c f f , c f b) and result-
ing colors from the compositing steps (Cbackground , Cwb, C f ,
Cw f ).

Since water and foam are volumetric phenomena, the
amount of water respectively foam between two layer sur-
faces needs to be determined in order to allow correct com-
positing and attenuation. Similar to [vdLGS09], the thick-
ness of a layer is determined by additively splatting every
particle belonging to the volume into a buffer. In contrast to
the depth surface calculation, the splat kernel gives the thick-
ness of the particle at each particle sampling point. Accumu-
lating particle thicknesses is a reasonable approximation be-
cause particles from the physics simulation can be assumed
to be largely non-overlapping.

T (x,y) =
n

∑
i=0

t(
x− xi

σi
,

y− yi

σi
) (6)

where t is the particle thickness function, xi,yi are the pro-
jected position of the particle, x and y are screen coordinates
and σi is the projected size. In comparison to [vdLGS09],
we not only calculate the water thickness, but also:

• the foam thickness Tf , by considering only foam particles.
For the foam particles, the splat kernel is also multiplied
with a 3D Perlin noise function (noise3), which is varied
with the lifetime of the particle, to add sub particle detail,
giving noise3(x,y, li f etime).

• the front water thickness Tw f , by considering only water
particles that are in front of the foam layer (by comparing
the particle depth with the depth of the front foam sur-
face).

• the back water thickness Twb, by considering the other wa-
ter particles.

• the thickness in a constant range behind the foam surface
Tf f (also multiplied with noise3), to allow blending of two
different foam colors.

5.3. Layer Compositing

Finally, to account for the attenuation caused by the previ-
ously calculated layers, the actual pixel color is calculated
by volumetric compositing. Figure 3 gives an overview of
the buffers that are used for the compositing.

Compositing along a viewing back to front, we have (see
Figure 2):

Cwb = lerp(c f luid ,Cbackground ,e
−Twb) (7)

C f = lerp(c f oam,Cwb,e
−Tf ) (8)

Cw f = lerp(c f luid ,C f ,e
−Tw f ) (9)

where c f oam and c f luid are the colors of the medium. Fig-
ure 5 shows the individual steps and colors used in the com-
positing.

In addition to attenuation, we also calculate reflection
with a Fresnel Term, and a highlight at the front water
surface, as well as refraction, similar to [vdLGS09]. For
reflection and highlight, care needs to be taken because
the front water surface might be behind the foam. So if
Tw f = 0, we have Cwb = illuminate(Cwb), otherwise Cw f =
illuminate(Cw f ), where

illuminate(x) = x(1−F(nv))+ rF(nv)+ ks(nh)α, (10)

i.e., the standard Fresnel (F) reflection calculation (r is a
lookup into an environment map) and a Phong term. We
also carry out refraction for the whole water surface, so
Cbackground is sampled from the scene background texture
perturbed along the normal vector, scaled using Twb + Tw f
(for details see [vdLGS09]).

Finally, we have found that foam can be made to look
more realistic by blending two different user defined colors,
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c f f and c f b. The thickness Tf f is calculated along with the
foam thicknesses Tf by accumulating just the foam parti-
cles within a user defined constant range δ f oam. So c f oam

is actually calculated as c f oam = lerp(c f b, c f f ,e
−Tf f ). By

considering only foam particles which are close behind the
foam surface, we obtain a foam pattern that has a control-
lable thickness, achieving the benefit that the pattern moves
along with the particles and exhibits fine micro-structures in
its visual appearance.

6. Results

We have tested our approach in three scenes (see Figure 8):
Corridor has many obstacles and therefore creates a turbu-
lent water flow with a lot of foam and spray. Waterfall is
less turbulent, but due to its simplicity, artifacts are easily
detected by visual inspection. Here, rendering of foam is es-
sential for realistic results. Bamboo has dynamic elements
that interact with the water. The bamboo is slowly filled with
water, till the water weights it down and is emptied again.
Please see the video for more details.

We have used an Intel Q9450 CPU with a GeForce GTX
280 graphics card. The SPH simulation was done with
NVIDIA PhysX. Particle counts range from 20k to 64k, de-
pending on the scene. All images were taken at 1280 x 720
resolution. The curvature flow filtering step was done at half
resolution. We use off-screen buffers to store our various in-
termediate results: 32 bit float for the water depth, 16 bit float
for the foam depth, and 16 bit each for Twb, Tw f , Tf and Tf f .
This results in a total of 112 bit per pixel.

Scene [vdLGS09] without foam with foam
Waterfall 14 ms 14 ms 16 ms
Corridor 11 ms 12 ms 15 ms
Bamboo 12 ms 13 ms 17 ms

Table 1: Performance comparison between [vdLGS09]
(without foam) and our method with and without foam.

Table 1 compares the computational cost of [vdLGS09]
with our method (SPH simulation time not included). The
indicated running times are an average for a default camera
movement. Our method has comparable performance with
the benefit of improved image quality especially at near or
far viewpoints. Even foam does not significantly increase
running time for our method. Figure 6 presents the compu-
tational cost of [vdLGS09] and our method using the ex-
ample of a camera zoom movement in the waterfall scene
(like the one of the filter comparison shown in the accom-
panying video). It takes on average 23.12% of the compu-
tation time to render the water and foam depth, 24.4% for
the thickness passes, 27.43% for the adaptive curvature flow
filtering and 25.05% for the composition (including update
of data structures). This measurement represents the mean
breakdown of 6k frames using different viewpoints. Figure 1

Figure 6: Performance comparison of a camera zoom move-
ment in the waterfall scene.

shows the benefit of our physically guided foam generation
over simple noise-based foam [vdLGS09]. Figure 7 demon-
strates that foam is an important visual element when render-
ing fluids. Figure 9 compares a photograph of a real waterfall
with our method. As one can observe, the foam is visible be-
low the surface when a turbulent water stream immerges into
resting water. Dynamic visual results can be observed in the
accompanying video.

7. Conclusions and Future Work

We presented a new method for rendering particle-based flu-
ids with foam in real time. The first contribution is an adap-
tive curvature flow smoothing method that avoids over- or
under-smoothing as present in previous methods. Our sec-
ond contribution is a fast physically guided foam rendering
algorithm based on Weber number thresholding and a lay-
ered compositing algorithm. Our approach provides more
realistic fluid rendering at comparable cost to previous meth-
ods, and is simple to implement and integrate into existing
engines. In future work, we plan to use the volumetric in-
formation available in the layers to generate soft shadows.
We will also investigate whether situations that require more
than 3 layers are likely to appear.

Figure 7: Corridor scene without/with foam (26–50 itera-
tions).
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Figure 8: Our three test scenes: at the top-left: Corridor (27–52 iterations) ; right: Bamboo (22–40 iterations); and at the
bottom: Waterfall (left: 15–20 iterations; right: 20–44 iterations).

Figure 9: Comparison between a photograph of a real wa-
terfall (left) and our new method (right). The rectangle
marks an area where foam occurs below the water surface.
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